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Abstract

Existing single image-to-3D creation methods typically involve a two-stage pro-1

cess, first generating multi-view images, and then using these images for 3D2

reconstruction. However, training these two stages separately leads to significant3

data bias in the inference phase, thus affecting the quality of reconstructed results.4

We introduce a unified 3D generation framework, named SC3D, which integrates5

diffusion-based multi-view image generation and 3D reconstruction through a6

self-conditioning mechanism. In our framework, these two modules are established7

as a cyclic relationship so that they adapt to the distribution of each other. During8

the denoising process of multi-view generation, we feed rendered color images and9

maps by SC3D itself to the multi-view generation module. This self-conditioned10

method with 3D aware feedback unites the entire process and improves geometric11

consistency. Experiments show that our approach enhances sampling quality, and12

improves the efficiency and output quality of the generation process.13

1 Introduction14

3D content creation from a single image have improved rapidly in recent years with the adoption of15

large 3D datasets [1, 2, 3] and diffusion models [4, 5, 6]. A body of research [7, 8, 9, 10, 11, 12, 13, 14]16

has focused on multi-view diffusion models, fine-tuning pretrained image or video diffusion models17

on 3D datasets to enable consistent multi-view synthesis. These methods demonstrate generalizability18

and produce promising results. Another group of works [15, 16, 17, 18, 19] propose generalizable19

reconstruction models, generating 3D representation from one or few views in a feed-forward process.20

Theses reconstruction models built upon convolutional network or transformer backbone, have led to21

efficient image-to-3D creation.22

Since single-view reconstruction models [15] trained on 3D datasets [1, 20] lack generalizability23

and often produce blurring at unseen viewpoints, several works [21, 16, 18, 19] extend models to24

sparse-view input, boosting the reconstruction quality. As shown in Fig. 1, these methods split 3D25

generation into two stages: multi-view synthesis and 3D reconstruction. By combining generalizable26

multi-view diffusion models and robust sparse-view reconstruction models, such pipelines achieve27

high-quality image to 3D generation. However, combining the two independently designed models28

introduces a significant “data bias” to the reconstruction model. The data bias is mainly reflected in29

two aspects: (1) Multi-view bias. Multi-view diffusion models learn consistency at the image level,30

struggle to ensure geometric consistency. When it comes to reconstruction, multi-view images that31

lack geometric consistency affect the subsequent stage. (2) Limited data for reconstruction model.32

Unlike multi-view diffusion models, reconstruction models which are trained from scratch on limited33

3D dataset, lacks the generalization ability.34

Recent works like IM-3D [22] and VideoMV [23] have attempted to aggregate the rendered views of35

the reconstructed 3D model into previous-step multi-view synthesis, thus improving the capability36
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Figure 1: Concept comparison between SC3D and previous two-stage methods. Instead of directly
combining multi-view diffusion model and reconstruction model, our self-conditioned framework
involves joint training of these two models and establish them as a cyclic association. During the
denoising process, rendered 3D-aware maps are fed to the multi-view generation module.

and consistency of the generated multi-view images. These methods integrate the aforementioned two37

stages at the inference phase. But the models at both stages still lack joint training, which prevents38

the reconstruction model from enhancing its robustness to the generated poor multiviews. Moreover,39

these test-time aggregating methods cannot directly utilize geometric information such as depth maps,40

normal maps, or position maps that can also be obtained from the reconstructed 3D. Notably, these41

explicit 3D aware maps can better guide the multi-view generation.42

To address these challenges, we propose a unified single image-to-3D creation framework, named43

SC3D, which integrates multi-view generation and 3D reconstruction through a self-conditioning44

mechanism. Our framework involves jointly training the multi-view diffusion model and the recon-45

struction model. In SC3D, these two modules are established as a cyclic relationship so that they46

adapt to the characteristics of each other, enabling robust generation at inference. Specifically, during47

the denoising process, we feed rendered 3D-aware maps from the reconstructed 3D to the multi-view48

generation module. By leveraging the color maps and spatial canonical coordinates maps from the49

reconstruction 3D representation as condition, our multi-view diffusion model synthesizes multi-view50

images that better conform to the actual 3D structure. This self-conditioned framework with 3D51

aware feedback unites the 3D generation process and enhances the robustness for unseen complex52

scenes. Experiments on the GSO dataset [24] validate that our SC3D reduces data bias between53

training and inference, and enhances the overall efficiency and output quality.54

Our key contributions are as follows:55

• We introduce SC3D, which unifies multi-view generation and 3D reconstruction in a single56

framework and involves jointly training these two modules, enabling adaption to each other.57

• SC3D employs a self-conditioning mechanism with 3D-aware feedback, using rendered 3D-aware58

maps to guide the multi-view generation, ensuring better geometric consistency and robustness.59

• Experiments show that SC3D significantly reduces data bias, improves the quality of 3D recon-60

struction, and enhances overall efficiency in creating 3D content from a single image.61

2 Related Work62

Image/Video Diffusion for Multi-view Generation Diffusion models [25, 26, 27, 28, 29, 30, 31,63

32, 33, 34] have demonstrated their powerful generative capabilities in image and video generation64

fields. Current research [7, 8, 9, 10, 11, 12, 13, 14, 35] fine-tunes pretrained image/video diffusion65

models on 3D datasets like Objaverse [1] and MVImageNet [20]. Zero123 [7] introduces relative66

view condition to image diffusion models, enabling novel view synthesis from a single image67

and preserving generalizability. Based on it, methods like SyncDreamer [9], ConsistNet [36] and68

EpiDiff [11] design attention modules to generate consistent multi-view images. These methods fine-69
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tuned from image diffusion models produce generally promising results. By considering multi-view70

images as consecutive frames of a video (e.g., orbiting camera views), it naturally leads to the idea of71

applying video generation models to 3D generation [13]. However, since the diffusion model is not72

explicitly modeled in 3D space, the generated multi-view images often struggle to achieve consistent73

and robust details.74

Image to 3D Reconstruction Recently, the task of reconstructing 3D objects has evolved from75

traditional multi-view reconstruction methods [37, 38, 39, 40] to feed-forward reconstruction mod-76

els [15, 41, 42, 16, 17, 18, 19]. Ultilizing one or few shot as input, these highly generalizable77

reconstruction models synthesize 3D representation, enabling the rapid generation of 3D objects.78

LRM [15] proposes a transformer-based model to effectively map image tokens to 3D triplanes.79

Instant3D [21] further extends LRM to sparse-view input, significantly boosting the reconstruction80

quality. LGM [16] and GRM [17] replace the triplane representation with 3D Gaussians [40] to enjoy81

its superior rendering efficiency. CRM [18] and InstantMesh [19] optimize on the mesh representation82

for high-quality geometry and texture modeling. These reconstrucion models built upon convolutional83

network architecture or transformer backbone, have led to efficient image-to-3D creation.84

Pipelines of 3D Generation Early works propose to distill knowledge of image prior to create 3D85

models via Score Distillation Sampling (SDS) [43, 44, 45], limited by the low speed of per-scene86

optimization. Several works [9, 11, 14, 22] fine-tune image diffusion models to generate multi-view87

images, which are then utilized for 3D shape and appearance recovery with traditional reconstruction88

methods [46, 40]. More recently, several works [21, 16, 18, 19, 23] involve both multi-view diffusion89

models and feed-forward reconstruction models in the generation process. Such pipelines attempt90

to combine the processes into a cohesive two-stage approach, thus achieving highly generalizable91

and high-quality single-image to 3D generation. However, due to the lack of explicit 3D modeling,92

the results generated by the multi-view diffusion model cannot guarantee strong consistency, which93

will lead to data deviation for the reconstructed model between the testing phase and the training94

phase. Compared to them, we propose a unified pipeline, integrating the two stages through a95

self-conditioning mechanism at the training stage, with 3D aware feedback for high consistency.96

3 Method97

Given a single image, SC3D aims to generate multiview-consistent images with a reconstructed 3D98

Gaussion model. To reduce the data bias and improve robustness of the generation, we propose SC3D,99

a unified 3D generation framework which integrates multi-view synthesis and 3D reconstruction100

through a self-conditioning mechanism. As illustrated in Fig. 2, the proposed framework involves a101

video diffusion model (SVD [32]) as multi-view generator (refer to Section 3.1) and a feed-forward102

reconstruction model to recover a 3D Gaussian Splatting (refer to Section 3.2. Moreover, we introduce103

a self-conditioning mechanism, feeding the 3D-aware information obtained from the reconstruction104

module back to the multi-view generation process (refer to Section 3.3). The 3D-aware denoising105

sampling strategy iteratively refines the multi-view images and the 3d model, thus enhancing the final106

production.107

3.1 Video Diffusion Model as Multiview Generator108

Recent video diffusion models such as those in [13, 34] have demonstrated a remarkable capability109

to generate 3D-aware videos by scaling up both the model and dataset. Our research employs110

the well-known Stable Video Diffusion (SVD) Model, which generates videos from image input.111

Formally, given an image I ∈ R3×h×w, the model is designed to generate a video V ∈ Rf×3×h×w.112

Further details about SVD can be found in Appendix A.1.113

We enhance the video diffusion model with camera control c to generate images from different114

viewpoints. Traditional methods encode camera positions at the frame level, which results in all115

pixels within one view sharing the same positional encoding [47, 13]. Building on the innovations116

of previous work [11, 35], we integrate the camera condition c into the denoising network by117

parameterizing the rays r = (o, o × d). Specifically, we use two-layered MLP to inject Plücker118

ray embeddings for each latent pixel, enabling precise positional encoding at the pixel level. This119

approach allows for more detailed and accurate 3D rendering, as pixel-specific embedding enhances120

the model’s ability to handle complex variations in depth and perspective across the video frames.121
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Figure 2: Overview of SC3D. We adopt a video diffusion model as the multi-view generator by
incorporating the input image and relative camera poses. In the denoising sampling loop, we decode
the predicted x̃f

0 to noise-corrupted images, which are then used to recover 3D representation by
a feed-forward reconstruction model. Then the rendered color images and coordinates maps are
encoded and fed into the next denoising step. At inference, the 3D-aware denoising sampling strategy
iteratively refines the images by incorporating feedback from the reconstructed 3D into the denoising
loop, enhancing multi-view consistency and image quality.

In our framework, unlike existing two-stage methods, our multi-view diffusion model does not122

complete multiple denoising steps independently. In contrast, in the denoising sampling loop, we123

obtain the straightly predicted x̃f
0 at the current timestep, which will be used for subsequent 3D124

reconstruction. Then we use rendered 3d-aware view maps as conditions to guide the next denoising125

step. Therefore, at each sampling step, we do the reparameterization of the output from the denoising126

network Fθ to convert it into x̃f
0 . Taking a single view as an example, we processes the denoised127

image cin(σ)x and the associated noise level cnoise(σ), which σ indicates the standard deviation of128

the noise. The reparameterization is formulated as follows:129

x̃0 = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)). (1)

The above operation process adjusts the output of Fθ to x̃f
0 , which will be decoded into images and130

passed to the subsequent 3D reconstruction module.131

3.2 Feed-Forward Reconstruction Model132

In the SC3D framework, the feed-forward reconstruction model is designed to recover 3D models133

from pre-generated multi-view images, which can be images decoded from straightly predicted x̃f
0 ,134

or completely denoised images. We utilize Large Multi-View Gaussian Model (LGM) [16] G as our135

reconstruction module due to its real-time rendering capabilities that benefit from 3D representation of136

Gaussian Splatting. This method integrates seamlessly with our jointly training framework, allowing137

for quick adaptation and efficient processing.138

We pass four specific views from the reparameterized output x̃f
0 to the Large Gaussian Model (LGM)139

for 3D Gaussian Splatting reconstruction. To enhance the performance of LGM, particularly its140

sensitivity to different noise levels cnoise(σ) and image details, we introduce a zero-initialized time141

embedding layer within the original U-Net structure of the LGM. This innovative modification142

enables the LGM to dynamically adapt to the diverse outputs that arise at different stages of the143
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denoising process, thereby substantially improving its capacity to accurately reconstruct 3D content144

from images that have undergone partial denoising.145

The loss function employed for the fine-tuning of the LGM is articulated as follows:146

LG = Lrgb(x0,G(x̃0, cnoise(σ))) + λLLPIPS(x0,G(x̃0, cnoise(σ))). (2)

where we have utilized the mean square error loss Lrgb for the color channel and a VGG-based147

perceptual loss LLPIPS[43] for the LPIPS term. In practical applications, the weighting factor λ is148

conventionally set to 1.149

Additionally, to maintain the model’s reconstruction capability for normal images, we also input the150

model without adding noise and calculate the corresponding loss. In this case, we set cnoise(σ) to 0.151

3.3 3D-Aware Feedback Mechanism152

As shown in Fig. 2, we adopt a 3D-aware feedback mechanism that involves the rendered color153

images and geometric maps produced by our reconstruction module in a denoising loop to further154

improve the multi-view consistency of the resulting images and facilitate cyclic adaptation of the155

two stages. Instead of integrating multi-view generation and 3D reconstruction at the inference stage156

using re-sampling strategy [22, 23], we propose to train these two modules jointly to support more157

informative feedback. Specifically, in addition to the rendered color images, our flexible framework158

is able to derive additional geometric features to guide the generation process, which brings guidance159

of more explicit 3D information to multi-view generation.160

In practice, we obtain color images and canonical coordinates maps [48] from the reconstructed 3D161

model, and utilize them as condition to guide the next denoising step of multi-view generation. We162

use position maps instead of depth maps or normal maps as the representative of geometric maps163

because canonical coordinate maps record the vertex coordinate values after normalization of the164

overall 3D model, rather than the normalization of the relative self-view (such as depth maps). This165

operation enables the rendered maps to be characterized as cross-view alignment, providing the strong166

guidance of more explicit cross-view geometry relationship. The details of canonical coordinates167

map can be found in Appendix A.2.168

We adopt a 3D-aware self-conditioning [49] training and inference strategy that leverages reconstruc-169

tion stage results to enhance multi-view consistency and the quality of generated images. During170

training, the original denoising network Fθ(x;σ) is augmented with a 3D-aware feedback denoising171

network Fθ(G(x̃0);σ), where G(x̃0) is the output of the LGM reconstruction.172

To encode color images and coordinates maps into the denoising network of multi-view generation173

module, we design two simple and lightweight encoders for color images and coordinates maps using174

a series of convolutional neural networks, like T2I-Adapter [50]. The encoders are composed of four175

feature extraction blocks and three downsample blocks to change the feature resolution, so that the176

dimension of the encoded features is the same as the intermediate feature in the encoder of U-Net177

denoiser. The extracted features from the two conditional modalities are then added to the U-Net178

encoder at each scale.179

Training Strategy As illustrated in Algorithm 1, to train a 3D-aware multi-view generation network,180

we use the rendered maps by the 3D reconstruction module as the self-conditioning input. In practice,181

we randomly use this self-conditioning mechanism with a probability of 0.5. When not using the 3D182

reconstruction result, we set G(x̃0) = 0 as the input. This probabilistic approach ensures balanced183

learning, allowing the model to effectively incorporate 3D information without over-reliance on it.184
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Algorithm 1 Training SC3D with the self-conditioned strategy.
def train_loss(x, cond_image):

"""Returns the loss on a training example x."""
# Sample sigma from a log-normal distribution
sigma = log_normal(P_mean, P_std)

# Reparameterize sigma to obtain conditioning parameters
c_in, c_out, c_skip, c_noise, lambda_param = reparameterizing(sigma)

# Add noise to input data
noise_x = x + sigma * normal(mean=0, std=1)
input_x = c_in * noise_x

# Initial prediction without self-conditioning
self_cond = None
F_pred = net(input_x, c_noise, cond_image, self_cond)
pred_x = c_out * F_pred + c_skip * noise_x

# Update self_cond using the reconstruction model
self_cond = recon_model(pred_x, c_noise)

# Use rendered maps as condition and denoise
if self_cond and np.random.uniform(0, 1) > 0.5:

F_pred = net(input_x, t, cond_image, self_cond.detach())
pred_x = c_out * F_pred + c_skip * noise_x

# Compute loss
loss = lambda_param * (pred_x - target) ** 2
recon_loss = recon_loss_fn(self_cond, x)

return loss.mean() + recon_loss

Inference/sampling strategy At the inference stage, as shown in Algorithm 2, the 3D feedback185

G(x̃0) is initially set to 0. At each timestep, this feedback is updated with the previous reconstruction186

result G(x̃0). This iterative process refines the 3D representation, ensuring each frame benefits from187

prior reconstructions, leading to higher quality and more consistent 3D-aware images.188

Algorithm 2 Sampling algorithm of SC3D.
def generate(sigmas, cond_image):

self_cond = None
x_T = normal(mean=0, std=1) # Initialize latent variable with Gaussian noise
for sigma in sigmas:

# Reparameterize sigma to obtain conditioning parameters
c_in, c_out, c_skip, c_noise, lambda_param = reparameterizing(sigma)

# Add noise to the latent variable
noise_x = x_T + sigma * normal(mean=0, std=1)
input_x = c_in * noise_x

# Generate prediction
F_pred = net(input_x, t, cond_image, self_cond)
pred_x = c_out * F_pred + c_skip * noise_x

# Update self_cond using the reconstruction model
self_cond = recon_model(pred_x, c_noise)

return pred_x
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Figure 3: Qualitative comparison with ImageDream-LGM and Our LGM.

Figure 4: Qualitative comparison with no-feedback and 3d-aware feedback.

4 Experiments189

We focus on 3D asset content synthesis, training our model on the G-Objaverse [1, 51] dataset and190

the LVIS subset of Objaverse, which consists of 300K high-quality 3D objects and is widely used in191

3D generation. We evaluate SC3D on the Google Scanned Object (GSO) dataset [24], which consists192

of approximately 1,000 scanned models, and we randomly select 100 samples for comparison. We193

adopt TripoSR[42], SyncDreamer[9], SV3D[13], ImageDream [8] combined with LGM [16] as the194

baseline approach [16] and VideoMV[23] as baseline methods. For each baseline, we report PSNR,195

SSIM, and LPIPS metrics.196

4.1 Comparison results197

For LGM, we utilize the official LGM single-image generation pipeline, which employs ImageDream198

[52] to transition from a single image input to multiple images. However, the conical coordinate199

system employed by ImageDream complicates the direct evaluation of the output. To address this,200

we use the official code to test on the GSO dataset, followed by manual calibration to assess the201

generated quality, as illustrated in Fig. 3. The misalignment between the two stages of ImageDream202

and LGM often results in generated models with blurred linear edges and geometric ambiguities.203

Nonetheless, our LGM, enhanced by a feedback mechanism, demonstrates significantly improved204

geometric and texture quality, producing results that closely approximate reality.205

As illustrate in 6, We find that although it can generate very continuous frames, the generated206

content tends to deviate from the given input image. This results in sub-optimal performance in207
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Method Resolution PSNR↑ SSIM↑ LPIPS↓
TripoSR 256× 256 18.481 0.8506 0.1357
SyncDreamer 256× 256 20.056 0.8163 0.1596
SV3D 576× 576 21.042 0.8497 0.1296
VideoMV(SD) 256× 256 17.459 0.806 0.1446
VideoMV(GS) 256× 256 17.577 0.807 0.1454

SC3D (SVD) 512× 512 21.625 0.9045 0.1011
SC3D (GS) 512× 512 21.761 0.9094 0.0991

Table 1: Comparison of performance metrics across different models and configurations.

Input image Rendered multi-views from Generated 3DGS

Figure 5: Out of distribution testing results.

the reconstruction metric. Additionally, VideoMV training the LGM separately with noisy images208

deteriorates, resulting in a visually noticeable reduction in its ability to generate texture details.209

4.2 Ablation study210

To validate the effectiveness of the proposed SC-3D framework, we conducted a series of ablation211

studies comparing PSNR, SSIM, and LPIPS metrics for different configurations (Table 2). We start212

with the base video diffusion model we trained, We then introduced 3D coordinates map feedback213

and RGB texture feedback from the reconstruction model to the diffusion model, which improved214

geometric consistency and texture detail across views. Combining both feedback mechanisms in the215

SVD + 3D-aware Feedback configuration resulted in the best performance, demonstrating significant216

improvements in the final 3D reconstruction quality by enhancing both geometric consistency and217

texture detail preservation.218

Method Variant PSNR ↑ SSIM ↑ LPIPS ↓
SVD SVD 20.038 0.8745 0.1253

GS 20.549 0.8651 0.1183
SVD + Coordinates Map Feedback SVD 21.021 0.8973 0.1110

GS 21.325 0.8937 0.1092
SVD + 3D-aware Feedback SVD 21.752 0.9122 0.0993

GS 21.761 0.9094 0.0991
Table 2: Performance metrics of different feedback mechanisms.
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Figure 6: The Generation Example of VideoMV

We also demonstrate the impact of incorporating feedback mechanisms on the two models, as shown219

in Table 3. It can be observed that when no feedback mechanism is used, there is a significant220

discrepancy between the two models’ modalities, which leads to a degradation in their combined221

performance.222

Method Delta PSNR Delta SSIM Delta LPIPS

SVD 0.511 0.0094 0.0070
SVD + Coordinates Map Feedback 0.304 0.0036 0.0018

SVD + 3D-aware Feedback 0.009 0.0028 0.0002
Table 3: The absolute differences in performance metrics between GS and SVD generation results..

4.3 Limitations223

Current models utilize Gaussian splatting as a 3D representation, mapping and rendering coordinates224

to textures for feedback. Although algorithms for converting Gaussian Splatting to meshe are under225

development, achieving high quality in converting Gaussian models to general meshes remains226

challenging. Directly employing a NeRF-based feed-forward model during the training process227

significantly reduces training speed due to the computational demands of volumetric rendering. Our228

model currently lacks the ability to generalize to the scene level, a limitation we intend to address in229

future research.230

5 Conclusion231

In this paper, we introduce SC3D, a unified framework for 3D generation from a single image that232

integrates multi-view image generation and 3D reconstruction through a self-conditioning mechanism.233

By establishing a cyclic relationship between these two stages, our approach effectively mitigates the234

data bias encountered in traditional methods. The self-conditioned method with 3D-aware feedback235

enhances geometric consistency throughout the generation process.236

Our experiments demonstrate that SC3D not only improves the quality and efficiency of the generation237

process but also achieves superior geometric consistency and detail in the reconstructed 3D models.238

By jointly training the multi-view diffusion model and the reconstruction model, SC3D adapts to the239

inherent biases of each stage, resulting in more robust and accurate outputs.240
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A Technical Details404

A.1 Video model finetuning405

Based on the approach outlined in [32], the generation process employs the EDM framework[53].406

Let pdata(x0) represent the video data distribution, and p(x;σ) be the distribution obtained by adding407

Gaussian noise with variance σ2 to the data. For sufficiently large σmax, p(x;σ2
max) approximates408

a normal distribution N (0, σ2
max). Diffusion models (DMs) leverage this property and begin with409

high variance Gaussian noise, xM ∼ N (0, σ2
max), and then iteratively denoise the data until reaching410

σ0 = 0.411

In practice, this iterative refinement process can be implemented through the numerical simulation of412

the Probability Flow ordinary differential equation (ODE):413

dx = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt (3)

where ∇x log p((x;σ) is called as score function.414

DM training is to learn a model sθ(x;σ) to approximate the score function ∇x log p((x;σ). The415

model can be parameterized as:416

∇x log p((x;σ) ≈ sθ((x;σ) =
Dθ(x;σ)− x

σ2
, (4)

where Dθ is a learnable denoiser that aims to predict ground truth x0.417

The denoiser Dθ is trained via denoising score matching (DSM):418

Ex0∼pdata(x0),(σ,n)∼p(σ,n)

[
λσ∥Dθ(x0 + n;σ)− x0∥22

]
, (5)

where p(σ, n) = p(σ)N (n; 0, σ2), p(σ) is a distribution over noise levels σ, λσ is a weighting419

function. The learnable denoiser Dθ is parameterized as:420

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)), (6)

where Fθ is the network to be trained.421

We sample log σ ∼ N (Pmean, P
2
std), with Pmean = 1.0 and Pstd = 1.6. Then we obtain all the422

parameters as follows:423

cin =
1√

σ2 + 1
(7)

424

cout =
−σ√
σ2 + 1

(8)
425

cskip(σ) =
1

σ2 + 1
(9)

426
cnoise(σ) = 0.25 log σ (10)

427

λ(σ) =
1 + σ2

σ2
(11)

We fine-tune the network backbone Fθ on multi-view images of size 512× 512. During training, for428

each instance in the dataset, we uniformly sample 8 views and choose the first view as the input view.429

view images of size 512× 512.430
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Figure 7: The projection process of coordinates map.

A.2 Coordinates Map431

In conditional control models such as ControlNet[54], T2IAdapter, when depth maps are used as432

input, their range needs to be normalized to the [0, 1] interval, typically using the formula: (p −433

pmean)/(pmax − pmin). However, this normalization process may introduce scale ambiguity, which434

can affect the multi-view generation performance. To avoid the issues caused by normalization, we use435

coordinate maps. Coordinate maps transform the depth value d to a common world coordinate system436

using the camera’s intrinsic and extrinsic parameters, represented as (X,Y, Z). The transformation437

formula is:438

(
X
Y
Z

)
= K−1 ·

(
u
v
1

)
· d

where (u, v) are the pixel coordinates, d is the corresponding depth value, and K is the camera439

intrinsic matrix.440

A.3 3D Feedback441

Figure 8: Architecture of the residual block
used in feedback stage.

Input inp ∈ R3×512×512

PixelUnshuffle [55] 192× 64× 64
ResBlock ×3 320× 64× 64
ResBlock ×3 640× 32× 32
ResBlock ×3 1280× 16× 16
ResBlock ×3 1280× 8× 8

Table 4: The detailed structure of all layers in
the feedback injection network.

442

With reference to Section 3.3 in the main paper, Fig. 8 and Table 4 provide a detailed illustration of443

the feedback injection netwrok. We use two networks to inject the coordinates map and RGB texture444

map feedback into the score function. Each network consists of four feature extraction blocks and445

three downsample blocks to adjust the feature resolution. The reconstruction coordinates map and446
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RGB texture map initially have a resolution of 512× 512. We employ the pixel unshuffle operation447

to downsample these maps to 64× 64.448

At each scale, three residual blocks[56] are used to extract the multi-scale feedback features,449

denoted as FP = {F 1
p , F

2
p , F

3
p , F

4
p } and FT = {F 1

t , F
2
t , F

3
t , F

4
t } for the coordinates map450

and RGB texture map, respectively. These feedback features match the intermediate features451

Fenc = {F 1
enc, F

2
enc, F

3
enc, F

4
enc} in the encoder of the UNet denoiser. The feedback features FP452

and FT are added to the intermediate features Fenc at each scale as described by the following453

equations:454

Fp = F0(P ) (12)
455

Ft = F1(T ) (13)
456

Fi
enc = Fi

enc + Fi
p + Fi

t, i ∈ {1, 2, 3, 4} (14)

where P represents the coordinates map feedback input, and T represents the RGB texture feedback457

input. F0 and F1 denote the functions of the feedback inject network applied to the coordinates map458

and RGB texture map, respectively.459

B Training Details and Experimental Settings460

Implementation As illustrate in Table 5, all models are trained for 30,000 iterations using 8 A100461

GPUs with a total batch size of 32. We clip the gradient with a maximum norm of 1.0. We use462

the AdamW optimizer with a learning rate of 1 × 10−5 and employ FP16 mixed precision with463

DeepSeed[57] with Zero-2 for efficient training. We adjust the cameras in each batch so that the464

initial input view consistently represents the reference frame, using an identity rotation matrix and a465

fixed translation for alignment.466

The inference settings are shown in Table 6.467

Hyperparameter SVD (1.8 B) LGM (424M)

Training
Optimizer AdamW AdamW
Learning rate 1e-5 1e-5
Batch size per GPU 4 4
# training steps 40k 40k
# GPUs 8 8
Training time (days) 4 4
Input Resolution 8× 512× 512× 3 4× 256× 256× 3
Output Resolution 8× 512× 512× 3 −× 512× 512× 3

Diffusion setup
Pmean 1.0 -
Pstd 1.6 -

Table 5: Hyperparameters for the training stage.

Hyperparameter SC3D VideoMV SV3D SyncDreamer

Sampling parameters
Sampler Euler DDIM Euler DDIM
steps 25 50 50 50
cfg gudiance 1.0 ∼ 3.0 6.0 6.0 2.0

Table 6: Hyperparameters for the inference stage.

C Additional Visualization Results468
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Figure 9: Visualization results generated by our SC3D. For each sample (3 rows), the 1st row is
ground truth, 2nd row is the generated multi-view images, while 3rd row is the rendered views from
reconstructed 3DGS. For each row, the first image is the input image.
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NeurIPS Paper Checklist469

1. Claims470

Question: Do the main claims made in the abstract and introduction accurately reflect the471

paper’s contributions and scope?472

Answer: [Yes]473

Justification: The abstract and introduction clearly outline the primary contributions of the474

paper. The claims made are directly supported by the experiments presented in the paper,475

ensuring an accurate representation of the work’s contributions and limitations.476

Guidelines:477

• The answer NA means that the abstract and introduction do not include the claims478

made in the paper.479

• The abstract and/or introduction should clearly state the claims made, including the480

contributions made in the paper and important assumptions and limitations. A No or481

NA answer to this question will not be perceived well by the reviewers.482

• The claims made should match theoretical and experimental results, and reflect how483

much the results can be expected to generalize to other settings.484

• It is fine to include aspirational goals as motivation as long as it is clear that these goals485

are not attained by the paper.486

2. Limitations487

Question: Does the paper discuss the limitations of the work performed by the authors?488

Answer: [Yes]489

Justification: See in Section 4.3.490

Guidelines:491

• The answer NA means that the paper has no limitation while the answer No means that492

the paper has limitations, but those are not discussed in the paper.493

• The authors are encouraged to create a separate "Limitations" section in their paper.494

• The paper should point out any strong assumptions and how robust the results are to495

violations of these assumptions (e.g., independence assumptions, noiseless settings,496

model well-specification, asymptotic approximations only holding locally). The authors497

should reflect on how these assumptions might be violated in practice and what the498

implications would be.499

• The authors should reflect on the scope of the claims made, e.g., if the approach was500

only tested on a few datasets or with a few runs. In general, empirical results often501

depend on implicit assumptions, which should be articulated.502

• The authors should reflect on the factors that influence the performance of the approach.503

For example, a facial recognition algorithm may perform poorly when image resolution504

is low or images are taken in low lighting. Or a speech-to-text system might not be505

used reliably to provide closed captions for online lectures because it fails to handle506

technical jargon.507

• The authors should discuss the computational efficiency of the proposed algorithms508

and how they scale with dataset size.509

• If applicable, the authors should discuss possible limitations of their approach to510

address problems of privacy and fairness.511

• While the authors might fear that complete honesty about limitations might be used by512

reviewers as grounds for rejection, a worse outcome might be that reviewers discover513

limitations that aren’t acknowledged in the paper. The authors should use their best514

judgment and recognize that individual actions in favor of transparency play an impor-515

tant role in developing norms that preserve the integrity of the community. Reviewers516

will be specifically instructed to not penalize honesty concerning limitations.517

3. Theory Assumptions and Proofs518

Question: For each theoretical result, does the paper provide the full set of assumptions and519

a complete (and correct) proof?520
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Answer: [NA] .521

Justification: The paper does not include theoretical results.522

Guidelines:523

• The answer NA means that the paper does not include theoretical results.524

• All the theorems, formulas, and proofs in the paper should be numbered and cross-525

referenced.526

• All assumptions should be clearly stated or referenced in the statement of any theorems.527

• The proofs can either appear in the main paper or the supplemental material, but if528

they appear in the supplemental material, the authors are encouraged to provide a short529

proof sketch to provide intuition.530

• Inversely, any informal proof provided in the core of the paper should be complemented531

by formal proofs provided in appendix or supplemental material.532

• Theorems and Lemmas that the proof relies upon should be properly referenced.533

4. Experimental Result Reproducibility534

Question: Does the paper fully disclose all the information needed to reproduce the main ex-535

perimental results of the paper to the extent that it affects the main claims and/or conclusions536

of the paper (regardless of whether the code and data are provided or not)?537

Answer: [Yes]538

Justification: We provide the GSO generation result and code in the supplemental materials.539

Guidelines:540

• The answer NA means that the paper does not include experiments.541

• If the paper includes experiments, a No answer to this question will not be perceived542

well by the reviewers: Making the paper reproducible is important, regardless of543

whether the code and data are provided or not.544

• If the contribution is a dataset and/or model, the authors should describe the steps taken545

to make their results reproducible or verifiable.546

• Depending on the contribution, reproducibility can be accomplished in various ways.547

For example, if the contribution is a novel architecture, describing the architecture fully548

might suffice, or if the contribution is a specific model and empirical evaluation, it may549

be necessary to either make it possible for others to replicate the model with the same550

dataset, or provide access to the model. In general. releasing code and data is often551

one good way to accomplish this, but reproducibility can also be provided via detailed552

instructions for how to replicate the results, access to a hosted model (e.g., in the case553

of a large language model), releasing of a model checkpoint, or other means that are554

appropriate to the research performed.555

• While NeurIPS does not require releasing code, the conference does require all submis-556

sions to provide some reasonable avenue for reproducibility, which may depend on the557

nature of the contribution. For example558

(a) If the contribution is primarily a new algorithm, the paper should make it clear how559

to reproduce that algorithm.560

(b) If the contribution is primarily a new model architecture, the paper should describe561

the architecture clearly and fully.562

(c) If the contribution is a new model (e.g., a large language model), then there should563

either be a way to access this model for reproducing the results or a way to reproduce564

the model (e.g., with an open-source dataset or instructions for how to construct565

the dataset).566

(d) We recognize that reproducibility may be tricky in some cases, in which case567

authors are welcome to describe the particular way they provide for reproducibility.568

In the case of closed-source models, it may be that access to the model is limited in569

some way (e.g., to registered users), but it should be possible for other researchers570

to have some path to reproducing or verifying the results.571

5. Open access to data and code572
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Question: Does the paper provide open access to the data and code, with sufficient instruc-573

tions to faithfully reproduce the main experimental results, as described in supplemental574

material?575

Answer: [Yes]576

Justification: We provide the code in the supplemental materials.577

Guidelines:578

• The answer NA means that paper does not include experiments requiring code.579

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/580

public/guides/CodeSubmissionPolicy) for more details.581

• While we encourage the release of code and data, we understand that this might not be582

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not583

including code, unless this is central to the contribution (e.g., for a new open-source584

benchmark).585

• The instructions should contain the exact command and environment needed to run to586

reproduce the results. See the NeurIPS code and data submission guidelines (https:587

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.588

• The authors should provide instructions on data access and preparation, including how589

to access the raw data, preprocessed data, intermediate data, and generated data, etc.590

• The authors should provide scripts to reproduce all experimental results for the new591

proposed method and baselines. If only a subset of experiments are reproducible, they592

should state which ones are omitted from the script and why.593

• At submission time, to preserve anonymity, the authors should release anonymized594

versions (if applicable).595

• Providing as much information as possible in supplemental material (appended to the596

paper) is recommended, but including URLs to data and code is permitted.597

6. Experimental Setting/Details598

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-599

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the600

results?601

Answer: [Yes]602

Justification: See in Appendix B.603

Guidelines:604

• The answer NA means that the paper does not include experiments.605

• The experimental setting should be presented in the core of the paper to a level of detail606

that is necessary to appreciate the results and make sense of them.607

• The full details can be provided either with the code, in appendix, or as supplemental608

material.609

7. Experiment Statistical Significance610

Question: Does the paper report error bars suitably and correctly defined or other appropriate611

information about the statistical significance of the experiments?612

Answer: [No]613

Justification: The paper does not provide error bars or any statistical significance measures614

for the experimental results.615

Guidelines:616

• The answer NA means that the paper does not include experiments.617

• The authors should answer "Yes" if the results are accompanied by error bars, confi-618

dence intervals, or statistical significance tests, at least for the experiments that support619

the main claims of the paper.620

• The factors of variability that the error bars are capturing should be clearly stated (for621

example, train/test split, initialization, random drawing of some parameter, or overall622

run with given experimental conditions).623
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• The method for calculating the error bars should be explained (closed form formula,624

call to a library function, bootstrap, etc.)625

• The assumptions made should be given (e.g., Normally distributed errors).626
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puter resources (type of compute workers, memory, time of execution) needed to reproduce639
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• Examples of negative societal impacts include potential malicious or unintended uses674
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11. Safeguards693

Question: Does the paper describe safeguards that have been put in place for responsible694
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image generators, or scraped datasets)?696

Answer: [NA]697

Justification: The paper does not involve the release of data or models that have a high risk698

for misuse.699
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• The answer NA means that the paper poses no such risks.702
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• Datasets that have been scraped from the Internet could pose safety risks. The authors707
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• We recognize that providing effective safeguards is challenging, and many papers do709
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faith effort.711

12. Licenses for existing assets712
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properly respected?715
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• For existing datasets that are re-packaged, both the original license and the license of744

the derived asset (if it has changed) should be provided.745

• If this information is not available online, the authors are encouraged to reach out to746

the asset’s creators.747

13. New Assets748

Question: Are new assets introduced in the paper well documented and is the documentation749

provided alongside the assets?750

Answer: [Yes]751

Justification: We provide the code and generation results in supplemental materials.752
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• The answer NA means that the paper does not release new assets.754
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limitations, etc.757

• The paper should discuss whether and how consent was obtained from people whose758

asset is used.759

• At submission time, remember to anonymize your assets (if applicable). You can either760

create an anonymized URL or include an anonymized zip file.761

14. Crowdsourcing and Research with Human Subjects762

Question: For crowdsourcing experiments and research with human subjects, does the paper763

include the full text of instructions given to participants and screenshots, if applicable, as764

well as details about compensation (if any)?765

Answer: [NA]766

Justification: The paper does not involve crowdsourcing nor research with human subjects.767
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Question: Does the paper describe potential risks incurred by study participants, whether779

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)780

approvals (or an equivalent approval/review based on the requirements of your country or781
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