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Abstract

Liberalism-oriented political philosophy reasons that all individuals should
be treated equally independently of their protected characteristics. Related
work in machine learning has translated the concept of equal treatment
into terms of equal outcome and measured it as demographic parity (also
called statistical parity). Our analysis reveals that the two concepts of equal
outcome and equal treatment diverge; therefore, demographic parity does
not faithfully represent the notion of equal treatment. We propose a new
formalization for equal treatment by (i) considering the influence of feature
values on predictions, such as computed by Shapley values decomposing
predictions across its features, (ii) defining distributions of explanations, and
(iii) comparing explanation distributions between populations with different
protected characteristics. We show the theoretical properties of our notion
of equal treatment and devise a classifier two-sample test based on the
AUC of an equal treatment inspector. We study our formalization of equal
treatment on synthetic and natural data. We release explanationspace,
an open-source Python package with methods and tutorials.

1 Introduction

In philosophy, long-held discussions about what constitutes a fair or an unfair political
system have led to established frameworks of distributive justice (Lamont & Favor, 2017;
Kymlicka, 2002). From the egalitarian school of thought, the equal opportunity concept was
argued by Rawls (1958). The concept has been translated into computable metrics with
the same name (Hardt et al., 2016). From a machine learning perspective, the technical
drawback is that metrics for equal opportunity require label annotations for true positive
outcomes, which are not always available after the deployment of a model.

The liberalism school of thought1, put forward by scholars such as Friedman et al. (1990)
and Nozick (1974), requires equal treatment of individuals regardless of their protected
characteristics. This concept has been translated by the machine learning literature (Simons
et al., 2021; Heidari et al., 2019; Wachter et al., 2020) into the requirement that machine
learning predictions should achieve equal outcomes for groups with different protected
characteristics. The corresponding measure, demographic parity (also called statistical
parity), compares the different distributions of predicted outcomes of a model f for different
social groups, e.g., protected vs dominant. We will show, however, that the metric of
demographic parity may indicate fairness, although groups are indeed treated differently.

We leave the normative discussion of which philosophical paradigm should be pursued by
policy to the discourse in the social sciences and the broad public. However, our analysis
contributes to a foundational understanding of fairness in machine learning. Moreover, we
remedy the divergence between the liberalism-oriented philosophical requirement of equal
treatment and actual measures used in fair machine learning approaches by proposing a
novel method for measuring equal treatment.

1We use the term liberalism to refer to the perspective exemplified by Friedman et al. (1990).
This perspective can also be referred to as neoliberalism or libertarianism (Lamont & Favor, 2017;
Friedman, 2022).
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Comparing different social groups, we measure how non-protected features of individuals
interact with the trained model f as explained by Shapley value attributions (Lundberg
& Lee, 2017). If two social groups are treated the same, the distributions of interaction
behavior, which we call explanation distributions, will not be distinguishable. We introduce
a tool, the “Equal Treatment Inspector”, that implements this idea. When detecting unequal
treatment, it explains the features involved in such an inequality, supporting understanding
of the causes of unfairness in the machine learning model. In summary, our contributions are:

1. The definition of explanation distributions as a basis for measuring equal treatment.
2. The definition of a novel method for recognizing and explaining unequal treatment.
3. The study of the formal relationship between equal outcome and equal treatment.
4. A novel Classifier Two Sample Test (C2ST) based on the AUC.
5. A study of synthetic and natural data to demonstrate our method and compare

with related work.
6. An open-source Python package explanationspace implementing the “Equal Treat-

ment Inspector” that is scikit-learn compatible together with documentation and
tutorials.

2 Foundations and Related work
This section briefly surveys the philosophical and technical foundations of our contribution
as well as related work. We also build on Shapley values, which are generally known in
the machine learning community, but for self-containedness we provide their mathematical
definition in Appendix A.

2.1 Basic Notations and Formal Definitions of Fairness in Related Work
In supervised learning, a function fθ : X → Y , also called a model, is induced from a
set of observations, called the training set, D = {(x1, y1), . . . , (xn, yn)} ∼ X × Y , where
X = {X1, . . . , Xp} represents predictive features and Y is the target feature. The domain
of the target feature is dom(Y ) = {0, 1} (binary classification) or dom(Y ) = R (regression).
For binary classification, we assume a probabilistic classifier, and we denote by fθ(x) the
estimate of the probability P (Y = 1|X = x) over the (unknown) distribution of X × Y . For
regression, fθ(x) estimates E[Y |X = x]. We call the projection of D on X, written DX =
{x1, . . . , xn} ∼ X, the empirical input distribution. The dataset fθ(DX) = {fθ(x) | x ∈ DX}
is called the empirical prediction distribution.

We assume a feature modeling protected social groups denoted by Z, called protected feature,
and assume it to be binary valued in the theoretical analysis. Z can either be included
in the predictive features X used by a model or not. If not, we assume that it is still
available for a test dataset. Even without the protected feature in training data, a model
can discriminate against the protected groups by using correlated features as a proxy of the
protected one (Pedreschi et al., 2008).

We write A⊥B to denote statistical independence between the two sets of random variables
A and B, or equivalently, between two multivariate probability distributions. We define two
common fairness notions and corresponding fairness metrics that quantify a model’s degree
of discrimination or unfairness (Mehrabi et al., 2022).
Definition 2.1. (Demographic Parity (DP)). A model fθ achieves demographic parity if
fθ(X) ⊥ Z.

Thus, demographic parity holds if ∀z. P (fθ(X)|Z = z) = P (fθ(X)). For binary Z’s, we can
derive an unfairness metric as d(P (fθ(X)|Z = 1), P (fθ(X)), where d(·) is a distance between
probability distributions.
Definition 2.2. (Equal Opportunity (EO)) A model fθ achieves equal opportunity if
∀z. P (fθ(X)|Y = 1, Z = z) = P (fθ(X) = 1|Y = 1).

As before, we can measure unfairness for binary Z’s as d(P (fθ(X)|Y = 1, Z = 1), P (fθ(X) =
1|Y = 1)). Equal opportunity comes with the problem that labels for correct outcomes are
required, but difficult or even impossible to collect Ruggieri et al. (2023).
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2.2 Philosophical Foundations and Computable Fairness Metrics
Political and moral philosophers from the egalitarian school of thought often consider
equal opportunity to be the key promoter of fairness and social justice, providing qualified
individuals with equal chances to succeed regardless of their background or circumstances
Rawls (1958; 1991), Dworkin (1981a;b), Arneson (1989), Cohen (1989). In fair ML, Hardt
et al. (2016) proposed translating equal opportunity into the inter-group difference of the
true positive rates. (Heidari et al., 2019) provided a moral framework to ground such a
metric of equal opportunity.

The liberalism school of thought argues that individuals should be treated equally indepen-
dently of outcomes Friedman et al. (1990); Nozick (1974). Equal treatment has also been
defined as “equal treatment-as-blindness" or neutrality Sunstein (1992); Miller & Howell
(1959). From a technical perspective, the notion of equal treatment has often been understood
as equal outcomes and translated to metrics such as demographic parity or statistical parity
(used synonymously). As we will analyze in Section 4.2, equal outcomes imply that two
demographic groups experience the same distribution of outcomes, even if the first of the
two groups have much better prospects for achieving the predicted outcome. Thus, a model
f that achieves equal outcome may have to prefer individuals from one group over those
from another group, violating the requirement for equal treatment of all individuals. Our
metric for equal treatment remedy this drawback.

In Appendix B.1, we provide an illustrative use-case of when equal treatment is in general
desired, but neither equal opportunity nor equal outcomes can model this: scientific paper
blind reviews.

2.3 Related Work
We briefly review related works below. See Appendix B for an in-depth comparison of our
work to existing research.

Measuring Demographic Parity. Previous work has relied on the notion of equal
outcomes and measured DP on the model predictions using statistics such as Mann–Whitney,
Kolmogorov-Smirnov or Wasserstein distance (Raji et al., 2020; Kearns et al., 2018; Cho
et al., 2020). Other research lines have aimed to measure DP when the protected attribute is
a continuous variable (Jiang et al., 2022). We measure DP by using a classifier two-sample
test (see later on) of statistical independence.

Classifier two-sample test (C2ST). We introduce a new classifier two-sample test (C2ST)
to measure the independence of sets of random variables. While such a kind of approach has
been previously explored by Lopez-Paz & Oquab (2017), the novelty of our proposal is to
rely on AUC rather than accuracy, with the advantage of a direct application to the case of
non-equal distribution of target labels – more in E.1.

Explainability for fair supervised learning. Lundberg (2020) apply Shapley values to
statistical parity. While there is a slight overlap with our work, their extended abstract is
not comparable to our paper wrt. objectives, breadth, and depth – more in Appendix B.3.
Other recent lines of work assume knowledge about causal relationships between random
variables, such as Grabowicz et al. (2022). Our work does not rely on causal graphs knowledge
but exploits the Shapley values’ theoretical properties to obtain fairness model auditing
guarantees.

3 A Model for Monitoring Equal Treatment

3.1 Formalizing Equal Treatment

To establish a criterion for equal treatment, we rely on the notion of explanation distributions.

Definition 3.1. (Explanation Distribution) An explanation function S : F ×X → Rp maps
a model fθ ∈ F and an input instance x ∈ X into a vector of reals S(fθ, x) ∈ Rp. We
extend it by mapping an input distribution DX into an (empirical) explanation distribution
as follows: S(fθ,DX) = {S(fθ, x) | x ∈ DX} ⊆ Rp.
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We use Shapley values as an explanation function (cf. Appendix A). In Appendix F, we
discuss the usage of LIME. Let us introduce next the new fairness notion of Equal Treatment,
which considers the independence of the model’s explanations with the membership to
a social group.
Definition 3.2. (Equal Treatment (ET)) A model fθ achieves ET if S(fθ, X) ⊥ Z.

Such a definition characterizes the philosophical notion of Equal Treatment by encoding
the “treatment” performed by the model through the attribution of the importance of its
input features. As we will see later in Section 4, Equal Treatment is a stronger notion
than Demographic Parity since it not only requires that the distributions of the predictions
are similar but that the processes of how predictions are made (i.e., the explanations) are
also similar.

3.2 Equal Treatment Inspector

Train Model
Input Data

Explanations Train Classifier for
Two-Sample Test

Equal treatmentUn-Equal TreatmentExplain
Equal Treatment Inspector

Not RejectReject

Figure 1: Equal Treatment Inspector workflow. The model fθ is learned based on training
data, Dtr = {(xi, yi)}, and outputs the explanations S(fθ,Dval

X ). The C2ST receives the
explanations to predict the protected attribute, Z on validation data Dval. The AUC of the
C2ST classifier gψ on test data Dte decides for or against equal treatment. We can interpret
the driver for unequal treatment on gψ with explainable AI techniques.

Our approach is based on the properties of the Shapley values (cf. Appendix A) and on a novel
classifier two-sample test. We split the available data into three parts Dtr,Dval,Dte ⊆ X×Y .
Here Dtr is the training set of fθ ∈ F (not required if fθ is already trained). Following
the intuition above, Dval is used to train another model gψ, called the “Equal Treatment
Inspector”. Here, the predictive features are the explanation distribution S(fθ,Dval

X\Z)

(excluding Z) and the target feature is the protected feature Z. The model gψ belongs to a
family G, possibly different from F . The parameter ψ optimizes a loss function ℓ:

ψ = argmin
ψ̃

∑
(x,z)∈Dval

ℓ(gψ̃(S(fθ, x)), z) (1)

To evaluate whether there is an equal treatment violation, we perform a statistical test of
independence based on the AUC of gψ on a test set Dte. We also use Dte for testing the
approach w.r.t. baselines. Besides detecting fairness violations, a common desideratum is to
understand what are the specific features driving such violations. The “Equal Treatment
Inspector” gψ can provide information on which features are the cause of the un-equal treatment
either by-design, if it is an interpretable model, or by applying post-hoc explainations
techniques, e.g., Shapley values. See Figure 1 for a visualization of the whole workflow.

4 Theoretical Analysis

Throughout this section, we assume an exact calculation of the Shapley values S(fθ, x)
for an instance x, possibly for the observational and interventional variants (see (4,5) in
Appendix A). In the experimental section, we will use non-IID data and non-linear models.
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4.1 Equal Treatment Given Shapley Values of Protected Attribute

Can we measure ET by looking only at the Shapley value of the protected feature? The
following result considers a linear model (with unknown coefficients) over independent features.
In such a very simple case, resorting to Shapley values leads to an exact test of both DP and
ET, which turn out to coincide. In the following, we write distinct(DX , i) for the number of
distinct values in the i-th feature of dataset DX , and S(fβ ,DX)i ≡ 0 if the Shapley values
of the i-th feature are all 0’s.
Lemma 4.1. Consider a linear model fβ(x) = β0 +

∑
j βj · xj . Let Z be the i-th feature, i.e.

Z = Xi, and let DX be such that distinct(DX , i) > 1. If the features in X are independent,
then S(fβ ,DX)i ≡ 0 ⇔ fβ(X) ⊥ Z ⇔ S(fβ , X) ⊥ Z.

Proof. It turns out S(fβ , x)i = βi · (xi −E[Xi]). This holds in general for the interventional
variant (5), and assuming independent features, also for the observational variant (4) (Aas
et al., 2021). Since distinct(DX , i) > 1, we have that S(fβ ,DX)i ≡ 0 iff βi = 0. By
independence of X, this is equivalent to fβ(X) ⊥ Xi, i.e., fβ(X) ⊥ Z. Moreover, by the
propagation of independence, this is also equivalent to S(fβ , X) ⊥ Z.

However, the result does not extend to the case of dependent features.
Example 4.1. Consider Z = X2 = X2

1 , and the linear model fβ(x1, x2) = β0 + β1 · x1 with
β1 ̸= 0 and β2 = 0, i.e., the protected feature is not used by the model. In the interventional
variant, the uninformativeness property implies that S(fβ , x)2 = 0. However, this does not
mean that Z = X2 is independent of the output because fβ(X1, X2) = β0 + β1 ·X1 ̸⊥ X2.
In the observational variant, Aas et al. (2021) show that:

val(T ) =
∑

i∈N\T

βi · E[Xi|XT = x⋆T ] +
∑
i∈T

βi · x⋆i

from which, we calculate: S(fβ , x⋆)2 = β1

2 E[X1|X2 = x⋆2]. We have S(fβ ,DX)2 ≡ 0 iff
E[X1|x2 = x⋆2] = 0 for all x⋆ in DX . For the marginal distribution P (X1 = v) = 1/4 for
v = 1,−1, 2,−2, and considering that X2 = X2

1 , it holds that E[X1|x2 = v] = 0 for all v.
Thus S(f,DX)2 ≡ 0. However, again fβ(X1, X2) = β0 + β1 ·X1 ̸⊥ X2.

The counterexample shows that focusing only on the Shapley values of the protected feature
is not a viable way to prove DP of a model – and, a fortiori, neither to prove ET of the
model, as will show in Lemma 4.2.

4.2 Equal Treatment vs Equal Outcomes vs Fairness of the Input

We start by observing that equal treatment (independence of the explanation distribution from
the protected attribute) is a sufficient condition for equal outcomes measured as demographic
parity (independence of the prediction distribution from the protected attribute).
Lemma 4.2. If S(fθ, X) ⊥ Z then fθ(X) ⊥ Z.

Proof. By the propagation of independence in probability distributions, the premise implies
(
∑
i Si(fθ, X)+ c) ⊥ Z where c is any constant. By setting c = E[f(X)] and by the efficiency

property (6), we have the conclusion.

Therefore, a DP violation (on the prediction distribution) is also a ET violation (in the
explanation distribution). ET accounts for a stricter notion of fairness. The other direction
does not hold. We can have dependence of Z from the explanation features, but the sum of
such features cancels out resulting in perfect DP on the prediction distribution. This issue is
also known as Yule’s effect (Ruggieri et al., 2023).
Example 4.2. Consider the model f(x1, x2) = x1 + x2. Let Z ∼ Ber(0.5), A ∼ U(−3,−1),
and B ∼ N(2, 1) be independent, and let us define:

X1 = A · Z +B · (1− Z) X2 = B · Z +A · (1− Z)
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We have f(X1, X2) = A+B ⊥ Z since A,B,Z are independent. Let us calculate S(f,X) in
the two cases Z = 0 and Z = 1. If Z = 0, we have f(X1, X2) = B +A, and then S(f,X)1 =
B − E[B] = B − 2 ∼ N(0, 1) and S(f,X)2 = A− E[A] = A+ 2 ∼ U(−1, 1). Similarly, for
Z = 1, we have f(X1, X2) = A+B, and then S(f,X)1 = A−E[A] = A+ 2 ∼ U(−1, 1) and
S(f,X)2 = B − E[B] = B − 2 ∼ N(0, 1). This shows:

P (S(f,X)|Z = 0) ̸= P (S(f,X)|Z = 1)

and then S(f,X) ̸⊥ Z. Notice this example holds both for the interventional and the
observational cases, as we exploited Shapley values of a linear model over independent
features, namely A,B,Z.

Statistical independence between the input X and the protected attribute Z, i.e., X ⊥ Z, is
another fairness notion. It targets fairness of the (input) datasets, disregarding the model fθ.
For fairness-aware training algorithms, which are able not to (directly or indirectly) rely on
Z, violation of such a notion of fairness does not imply ET violation nor DP violation.
Example 4.3. Let X = X1, X2, X3 be independent features such that E[X1] = E[X2] =
E[X3] = 0, and X1, X2 ⊥ Z, and X3 ̸⊥ Z. The target feature is defined as Y = X1 +X2,
hence it is also independent from Z. Assume a linear regression model fβ(x1, x2, x3) =
β1 · x1 + β2 · x2 + β3 · x3 trained from a sample data from (X,Y ) with β1, β2 ≈ 1 and β3 ≈ 0.
Intuitively, this occurs when a number of features are collected to train a classifier without a
clear understanding of which of them contributes to the prediction. It turns out that X ̸⊥ Z
but, for β3 = 0 (which can be obtained by some fairness regularization method (Kamishima
et al., 2011)), we have fβ(X1, X2, X3) = β1 ·X1 + β2 ·X2 ⊥ Z. By reasoning as in the proof
of Lemma 4.1, we have S(fβ , X) = (β1 ·X1, β2 ·X2, 0) and then S(fβ , X) ⊥ Z. This holds
both in the interventional and in the observational variants.

The above represents an example where the input data depends on the protected feature,
but the model and the explanations are independent.

4.3 Equal Treatment Inspection via Explanation Distributions

4.3.1 Statistical Independence Test via Classifier AUC Test

In this subsection, we introduce a statistical test of independence based on the AUC of
a binary classifier. The test of W ⊥ Z is stated in general form for multivariate random
variables W and a binary random variable Z with dom(Z) = {0, 1}. In the next subsection,
we will instantiate it to the case W = S(fθ, X).

Let D = {(wi, zi)}ni=1 be a dataset of realizations of the random sample (W,Z)n ∼ Fn where
F is unknown. The independence W ⊥ Z can be tested via a two-sample test. In fact, we
have W ⊥ Z iff P (W |Z) = P (W ) iff P (W |Z = 1) = P (W |Z = 0). We test whether the
positives and negatives instances in D are drawn from the same distribution by a novel
two-sample test, which does not require permutation of data nor equal proportion of positive
and negatives as in (Lopez-Paz & Oquab, 2017, Sections 2 and 3). We rely on a probabilistic
classifier f :W → [0, 1], for which f(w) estimates P (Z = 1|W = w), and on its AUC:

AUC(f) = E(W,Z),(W ′,Z′)∼F [I((Z − Z ′)(f(W )− f(W ′)) > 0) + 1/2 · I(f(W ) = f(W ′))|Z ̸= Z ′]
(2)

Under the null hypothesis H0 :W ⊥ Z, we have AUC(f) = 1/2.
Lemma 4.3. If W ⊥ Z then AUC(f) = 1/2 for any classifier f .

Proof. Let us recall the definition of the Bayes Optimal classifier fopt(w) = P (Z = 1|W = w).
For any classifier f , we have:

AUC(fopt) ≥ AUC(f) ≥ 1−AUC(fopt) (3)

The first bound AUC(fopt) ≥ AUC(f) follows because the Bayes Optimal classifier minimizes
the Bayes risk (Gao & Zhou, 2015). Assume the second bound does not hold, i.e., for
some f we have AUC(fopt) < 1 − AUC(f). Consider the classifier f̄(w) = 1 − f(w).
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We have AUC(f̄) ≥ 1 − AUC(f), and then f̄ would contradict the first bound because
AUC(fopt) < AUC(f̄).

If W ⊥ Z, then P (Z = 1|W = w) = P (Z = 1), and then fopt(w) is constant. By (2), this
implies AUC(fopt) = 1/2. By (3), this implies AUC(f) = 1/2 for any classifier.

As a consequence, any statistics to test AUC(f) = 1/2 can be used for testing W ⊥ Z. A
classical choice is to resort to the Wilcoxon–Mann–Whitney test, which, however, assumes that
the distributions of scores for positives and negatives have the same shape. Better alternatives
include the Brunner–Munzel test (Neubert & Brunner, 2007) and the Fligner–Policello
test (Fligner & Policello, 1981). The former is preferable, as the latter assumes that the
distributions are symmetric.

4.3.2 Testing for Equal Treatment via an Inspector

We instantiate the previous AUC-based method for testing independence to the case of
testing for Equal Treatment via an ET Inspector.
Theorem 4.4. Let gψ : S(fθ, X) → [0, 1] be an “Equal Treatment Inspector” for the model fθ,
and α a significance level. We can test the null hypothesis H0 : S(fθ, X) ⊥ Z at 100 · (1−α)%
confidence level using a test statistics of AUC(gψ) = 1/2.

Proof. Under H0, by Lemma 2 with W = S(fθ, X) and f = gψ, we have AUC(gψ) = 1/2.

Results of such a test can include p-values of the adopted test for AUC(gψ) = 1/2. Alterna-
tively, confidence intervals for AUC(gψ) can be reported, as returned by the Brunner–Munzel
test or by the methods (DeLong et al., 1988; Cortes & Mohri, 2004; Gonçalves et al., 2014).

4.3.3 Explaining Un-Equal Treatment

The following example showcases one of our main contributions: detecting the sources of
un-equal treatment through interpretable by-design (linear) inspectors. Here, we assume that
the model is also linear. In the Appendix E.4, we will experiment with non-linear models.
Example 4.4. Let X = X1, X2, X3 be independent features such that E[X1] = E[X2] =
E[X3] = 0, and X1, X2 ⊥ Z, and X3 ̸⊥ Z. Given a random sample of i.i.d. observations
from (X,Y ), a linear model fβ(x1, x2, x3) = β0 + β1 · x1 + β2 · x2 + β3 · x3 can be built
by OLS (Ordinary Least Square) estimation, possibly with β1, β2, β3 ̸= 0. By reasoning
as in the proof of Lemma 4.1, S(fβ , x)i = βi · xi. Consider now a linear ET Inspector
gψ(s) = ψ0 + ψ1 · s1 + ψ2 · s2 + ψ3 · s3, which can be written in terms of the x’s as:
gψ(x) = ψ0 + ψ1 · β1 · x1 + ψ2 · β2 · x2 + ψ3 · β3 · x3. By OLS estimation properties, we
have ψ1 ≈ cov(β1 · X1, Z)/var(β1 · X1) = cov(X1, Z)/(β1 · var(X1)) = 0 and analogously
ψ2 ≈ 0. Finally, ψ3 ≈ cov(X3, Z)/(β3 · var(X3)) ̸= 0. In summary, the coefficients of gψ
provide information about which feature contributes (and how much it contributes) to the
dependence between the explanation S(fβ , X) and the protected feature Z. Notice that
also fβ(X) ̸⊥ Z, but we cannot explain which features contribute to such a dependence by
looking at fβ(X), since βi ≈ cov(Xi, Y )/var(Xi) can be non-zero also for i = 1, 2.

5 Experimental Evaluation

We perform measures of equal treatment by systematically varying the model f , its parameters
θ, and the input data distributions DX . We complement experiments described in this section
by adding further experimental results in the Appendix that (i) compare the different types
of Shapley values estimation (Appendix C), (ii) add experiments on further natural datasets
(Appendix D), (iii) exhibit a larger range of modeling choices (Appendix E.3),(iv) compare
AUC vs accuracy for the C2ST independence test (Appendix E.1),(v) extend the comparison
against DP (Appendix E.5) and (vi) include LIME as an explanation method (Appendix F).

We adopt xgboost (Chen & Guestrin, 2016) for the model fθ, and logistic regression for the
inspectors. We compare the AUC performances of several inspectors: gψ (see Eq. 1) for ET
(see Def. 3.2), gv for DP (see Def. 2.1), gΥ for fairness of the input (i.e., X ⊥ Z as discussed
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in Section 4.2), and a combination gϕ of the last two inspectors to test fθ(X), X ⊥ Z. These
are the formal definitions:

Υ = argmin
Υ̃

∑
(x,z)∈Dval

ℓ(gΥ̃(x), z) υ = argmin
υ̃

∑
(x,z)∈Dval

ℓ(gυ̃(fθ(x)), z)

ϕ = argmin
ϕ̃

∑
(x,z)∈Dval

ℓ(gϕ̃(fθ(x), x), z)

5.1 Experiments with Synthetic Data

We generate synthetic datasets by first drawing 10, 000 samples from normally distributed

features X1 ∼ N(0, 1), X2 ∼ N(0, 1), (X3, X4) ∼ N

([
0
0

]
,

[
1 γ
γ 1

])
. Then, we define a

binary protected feature Z with values Z = 1 if X4 > 0 and Z = 0 otherwise. We compare
the methods and baselines while varying the correlation γ = r(X3, Z) from 0 to 1. We define
two experimental scenarios below. In both of them, the model fβ is a function over the
domain of the features X1, X2, X3 only.

Indirect Case: Unfairness in the data and in the model. We consider all of the three features
in the dataset X1, X2, X3. This gives rise to unfairness of the input parameterized by γ =
r(X3, Z). To generate DP violation in the model, we create the target Y = σ(X1+X2+X3),
where σ is the logistic function.

Uninformative Case: Unfairness in the data and fairness in the model. The unfairness in
the input data remains the same as in the previous case, while we now remove unfairness in
the model. The target feature is now defined as Y = σ(X1 +X2). The γ parameter controls
unfairness in the dataset, which should not be captured by the model, since X1, X2 ⊥ Z
implies Y ⊥ Z by propagation of independence.
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Figure 2: In the “Indirect case” (left): good unfairness detection methods should follow
a increasing steady slope to capture the fairness violation; the DT inspector appears less
sensitive due to the low dimensionality of its input. In the “Uninformative case” (right): good
unfairness detection methods should remain constant with an AUC ≈ 0.5; the inspectors
based on input data (gΥ and gϕ) flag a false positive case of unfairness.

In Figure 2, we compare the AUC performances of the different inspectors on synthetic data
split into 1/3 for training the model, 1/3for training the inspectors and 1/3 for testing them.
Overall, the ET inspector gψ is able to detect unfairness in both scenarios. The DP inspector
gv works fine in the indirect case, but it is not sensitive to unfairness both in the data and
in the model in the indirect case. Finally, the inspectors gΥ and gϕ detect unfairness in the
input but not in the model. Further experiments are shown in Appendix E.4 to investigate
the contribution of the explanation distribution features, namely the S(fθ, x)i’s, to the ET
inspector gψ.
5.2 Use Case: ACS US Income Data
We experiment here with the ACS Income dataset2 (Ding et al., 2021), and in the Appendix D
with three other ACS datasets. The fairness notions are tested against all pairs of groups

2ACS PUMS documentation: https://www.census.gov/programs-surveys/acs/microdata/
documentation.html

8

https://www.census.gov/programs-surveys/acs/microdata/documentation.html
https://www.census.gov/programs-surveys/acs/microdata/documentation.html


Asia
n-O

the
r

W
hit

e-O
the

r

Othe
r-B

lac
k

Othe
r-M

ixe
d

Asia
n-B

lac
k

Asia
n-M

ixe
d

W
hit

e-B
lac

k

W
hit

e-M
ixe

d

Blac
k-M

ixe
d

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Demographic Parity vs Equal Treatment measured by C2ST
Demographic Parity gv

Equal Treatment g

A
si

an
 v

s 
O

th
er

W
hi

te
 v

s 
O

th
er

O
th

er
 v

s 
B

la
ck

A
si

an
 v

s 
B

la
ck

O
th

er
 v

s 
M

ix
ed

A
si

an
 v

s 
M

ix
ed

W
hi

te
 v

s 
B

la
ck

B
la

ck
 v

s 
M

ix
ed

W
hi

te
 v

s 
M

ix
ed

Education

Occupation

Age

ClassOfWorker

Marital

Sex

WorkedHours

Relationship

1 0.66 0.61 0.35 0.58 0.31 0.028 0.022 0.019

0.49 0.41 0.1 0.28 0.29 0.12 0.24 0.21 0.034

0.25 0.26 0.22 0.022 0.12 0.29 0.053 0.35 0.29
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Figure 3: In the left figure, a comparison of ET and DP measures on the US Income data.
The AUC range for ET is notably wider, and aligning with the theoretical section, there are
indeed instances where DP fails to identify discrimination that ET successfully detects. For
a detailed statistical analysis, please refer to Appendix E.5. Right figure provides insight into
the influential features contributing to unequal treatment. Higher feature values correspond
to a greater likelihood of these features being the underlying causes of unequal treatment.

from the protected attribute “Race”. Figure 3 (left) shows the AUC performances of the ET
inspector gψ and the DT inspector gv. The standard deviation of the AUC is calculated over
30 bootstrap runs, each one splitting the data into 1/3 for training the model, 1/3 for training
the inspectors and 1/3 for testing them. In the Appendix E.1, the results of the C2ST test
of Section 4.1 are reported. The AUCs for the EP inspectors are greater than for the DP
inspectors, as expected due to Lemmma 4.2.

Figure 3 (right) shows the Wasserstein distance between the coefficients of the linear regressor
gψ compared to a baseline where groups are assigned at random in the input dataset. This
feature importance post-hoc explanation method provides insights into the impact of different
features as sources of unfairness. We observe “Education” as a highly discriminatory proxy
while the role of the feature “Worked Hours Per Week” is less relevant. This allows us to
identify areas where adjustments or interventions may be needed to move closer to the ideal
of equal treatment.

6 Conclusions

We introduced a novel approach for fairness in machine learning by measuring equal treatment.
While related work reasoned over model predictions to measure equal outcomes, our notion of
equal treatment is more fine-grained, accounting for the usage of attributes by the model via
explanation distributions. Consequently, equal treatment implies equal outcomes, but the
converse is not necessarily true, which we confirmed both theoretically and experimentally.

This paper also seeks to improve the understanding of how theoretical concepts of fairness
from liberalism-oriented political philosophy align with technical measurements. Rather
than merely comparing one social group to another based on disparities within decision
distributions, our concept of equal treatment takes into account differences through the
explanation distribution of all non-protected attributes, which often act as proxies for
protected characteristics. Implications warrant further techno-philosophical discussions.
Implications warrant further techno-philosophical discussions.

Limitations: Political philosophical notions of distributive justice are more complex than
we can account for in this paper. Our research has focused on tabular data using Shapley
values, which allow for theoretical guarantees but may differ from their computational
approximations. It is possible that alternative AI explanation techniques, such as feature
attribution methods, logical reasoning, argumentation, or counterfactual explanations, could
be useful and offer their unique advantages to definitions of equal treatment. It is important to
note that employing fair AI techniques does not necessarily ensure fairness in socio-technical
systems based on AI, as stated in Kulynych et al. (2020).
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Reproducibility Statement

To ensure the reproducibility of our results, we make publicly available at https://
anonymous.4open.science/r/xAIAuditing-F6F9/README.md: the data, the data prepa-
ration routines, the source code, and the code of experimental results. Also, the
open-source Python package explanationspace https://anonymous.4open.science/r/
explanationspace-B4B1/README.md will be released. We use default scikit-learn pa-
rameters (Pedregosa et al., 2011), unless stated otherwise. Our experiments were run on a 4
vCPU server with 32 GB RAM.
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A Definition and Properties of Shapley values

Explainability has become an important concept in legal and ethical guidelines for data
processing and machine learning applications (Selbst & Barocas, 2018). A wide variety of
methods have been developed, aiming to account for the decision of algorithmic systems
(Guidotti et al., 2019; Mittelstadt et al., 2019; Arrieta et al., 2020). One of the most popular
approaches to explainability in machine learning is Shapley values.

Shapley values are used to attribute relevance to features according to how the model relies
on them (Lundberg et al., 2020; Lundberg & Lee, 2017; Rozemberczki et al., 2022). Shapley
values are a coalition game theory concept that aims to allocate the surplus generated by
the grand coalition in a game to each of its players (Shapley, 1997).

For set of players N = {1, . . . , p}, and a value function val : 2N → R, the Shapley value Sj
of the j’th player is defined as the average marginal contribution of player j in all possibles
coalitions of players:

Sj =
∑

T⊆N\{j}

|T |!(p− |T | − 1)!

p!
(val(T ∪ {j})− val(T ))

In the context of machine learning models, players correspond to features X1, . . . , Xp,
and the contribution of the feature Xj is with reference to the prediction of a model f
for an instance x⋆ to be explained. Thus, we write S(f, x⋆)j for the Shapley value of
feature Xj in the prediction f(x⋆). We denote by S(f, x⋆) the vector of Shapely values
(S(f, x⋆)1, . . . ,S(f, x⋆)p).
There are two variants for the term val(T ) (Aas et al., 2021; Chen et al., 2020; Zern et al.,
2023): the observational and the interventional. When using the observational conditional
expectation, we consider the expected value of f over the joint distribution of all features
conditioned to fix features in T to the values they have in x⋆:

val(T ) = E[f(x⋆T , XN\T )|XT = x⋆T ] (4)

where f(x⋆T , XN\T ) denotes that features in T are fixed to their values in x⋆, and features not
in T are random variables over the joint distribution of features. Opposed, the interventional
conditional expectation considers the expected value of f over the marginal distribution of
features not in T :

val(T ) = E[f(x⋆T , XN\T )] (5)

In the interventional variant, the marginal distribution is unaffected by the knowledge that
XT = x⋆T . In general, the estimation of (4) is difficult, and some implementations (e.g.,
SHAP) actually consider (5) as the default one. In the case of decision tree models, TreeSHAP
offers both possibilities.

The Shapley value framework is the only feature attribution method that satisfies the
properties of efficiency, symmetry, uninformativeness and additivity (Molnar, 2019; Shapley,
1997; Winter, 2002; Aumann & Dreze, 1974). We recall next the key properties of efficiency
and uninformativeness:
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Efficiency. Feature contributions add up to the difference of prediction for x⋆ and the
expected value of f : ∑

j∈N
S(f, x⋆)j = f(x⋆)− E[f(X)]) (6)

The following property only holds for the interventional variant (e.g., for SHAP values), but
not for the observational variant.

Uninformativeness. A feature Xj that does not change the predicted value (i.e., for all
x, x′j : f(xN\{j}, xj) = f(xN\{j}, x

′
j)) has a Shapley value of zero, i.e., S(f, x⋆)j = 0.

In the case of a linear model fβ(x) = β0 +
∑
j βj · xj , the SHAP values turns out to be

S(f, x⋆)i = βi(x
⋆
i − µi) where µi = E[Xi]. For the observational case, this holds only if the

features are independent (Aas et al., 2021).

B Detailed Related Work

This section provides an in-depth review of the related theoretical work that informs our
research. We contextualize our contribution within the broader field of explainable AI and
fairness auditing. We discuss the use of fairness measures such as demographic parity, as
well as explainability techniques like Shapley values and counterfactual explanations.

B.1 Fairness Notions: Paper Blind Reviews Use Case

To illustrate the difference between equal opportunity, equal outcomes, and equal treatment,
based on the previously discussed framework, we consider the example of conference papers’
blind reviews and focus on the protected attribute of the country of origin of the paper’s
author, comparing Germany and the United Kingdom.

For equal opportunity, we quantify fairness by the true positive rate (cf. Definition 2.2). In
words, it is the acceptance ratio given that the quality of the paper is high. Achieving equal
opportunity will imply that these ratios are similar between the two countries. In blind
reviews, the purpose is to evaluate the paper’s quality and the research’s merit without being
influenced by factors such as the author’s identity, affiliations, background or country. If we
were to enforce equal opportunity in this use case, we would aim for similar true positive rates
for submissions from different countries. However, this approach could lead to unintended
consequences, such as unintentionally favouring, reverse discrimination, overcorrection or
quotas of affirmative action towards certain countries.

For equal outcomes, we require that the distribution of acceptance rates is similar, inde-
pendently of the quality of the paper (cf. Definition 2.1). Note that the outcomes can
have similar rates due to random chance, even if there is a country bias in the acceptance
procedure.

For equal treatment, we require that the contributions of the features used to make a decision
on paper’s acceptance has similar distributions (cf. Definition 3.2). Equality of treatment
through blindness is more desirable than equal opportunity or equal outcomes because it
ensures that all submissions are evaluated solely on the basis of their quality, without any
bias or discrimination towards any particular country. By achieving equality of treatment
through blindness, we can promote fairness and objectivity in the review process and ensure
that all papers have an equal chance to be evaluated on their merits.

In comparing our introduced measure of equal treatment with equal outcomes (or demographic
or statistical parity, used as synonymous), we note that the latter looks at the distributions of
predictions and measures their similarity. Equal treatment goes a step further by evaluating
whether the contribution of features to the decision, is similar. Our definition of equal
treatment implies the notion of equal outcome, but the converse is not necessarily true, as we
showed in Section 4.3.1.
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B.2 Measuring Fairness

Selecting a measure to compare fairness between two sensitive groups has been a highly
discussed topic, where results such as (Chouldechova, 2017; Hardt et al., 2016; Kleinberg
et al., 2017), have highlighted the impossibility to satisfy simultaneously three type of fairness
measures: demographic parity (Dwork et al., 2012), equalized odds (Hardt et al., 2016), and
predictive parity (Corbett-Davies et al., 2017; Ruf & Detyniecki, 2021; Wachter et al., 2020).

Previous work has relied on measuring and calculating demographic parity on the model
predictions (Raji et al., 2020; Kearns et al., 2018), or on the input data (Fabbrizzi et al., 2022;
Yang et al., 2020; Zhao et al., 2017). In this work, we perform equal treatment measures on
the explanation distribution, which measures that each feature contributes equally to the
prediction, which differs from the previous notions.

In this work, we focus on Equal Treatment (ET), as this fairness metric does not require
a ground truth target variable, allowing for our method to work in its absence (Aka et al.,
2021), and under distribution shift conditions (Mougan et al., 2022) where model performance
metrics are not feasible to calculate (Garg et al., 2021; 2022; Mougan & Nielsen, 2023).
Demographic Parity requires independence of the model’s output from the protected features,
written fθ(X) ⊥ Z, while Equal Treatment requires independence accross the feature
attributions of the model S(fθ(X), X) ⊥ Z.

B.3 Explainability and fair supervised learning

The intersection of fairness and explainable AI has been an active topic in recent years. The
work most close to our approach is Lundberg (2020) where Shapley values are aimed at
testing for demographic parity. This concise workshop paper emphasizes the importance of
“decomposing a fairness metric among each of a model’s inputs to reveal which input features
may be driving any observed fairness disparities”. In terms of statistical independence, the
approach can be rephrased as decomposing fθ(X) ⊥ Z by examining S(fθ, X)i ⊥ Z for
i ∈ [1, p]. Actually, the paper limits to consider difference in means, namely testing for
E[S(fθ, X)i|Z = 1] ̸= E[S(fθ, X)i|Z = 0]. Our approach goes beyond this, as we consider
different distributions, and introduce the ET fairness notion for that. On the contrary,
Lundberg (2020) claims a decomposition method specific of DP. However, the decomposition
method proposed is not sufficient nor necessary to prove DP, as showed next.

Lemma B.1. fθ(X) ⊥ Z is neither implied by nor it implies (S(fθ, X)i ⊥ Z for i ∈ [1, p]).

Proof. Consider fθ(X1, X2) = X1 − X2 with X1, X2 ∼ Ber(0.5) and Z = 1 if X1 =
X2, and Z = 0 otherwise. Hence Z ∼ Ber(0.5). We have S(fθ, X1) = X1 ⊥ Z and
S(f,X2) = −X2 ⊥ Z. However, fθ(X1, X2) = X1 − X2 does not satisfy fθ(X1, X2) ⊥ Z,
e.g., P (Z = 0|fθ(X1, X2) = 0) = P (Z = 0|X1 −X2 = 0) = 1. Example 4.2 illustrates a case
where fθ(X) ⊥ Z yet S(fθ, X)1 and S(fθ, X)2 are not independent of Z.

Our approach to ET considers the independence of the multivariate distribution of S(f,X)
with respect to Z, rather than the independence of each marginal distribution S(fθ, X)i ⊥ Z.
With such a definition, we obtain a sufficient condition for DP, as shown in Lemma 4.2.

Stevens et al. (2020) presents an approach based on adapting the Shapley value function
to explain model unfairness. They also introduce a new meta-algorithm that considers the
problem of learning an additive perturbation to an existing model in order to impose fairness.
In our work, we do not adopt the Shapley value function. Instead, we use the theoretical
Shapley properties to provide fairness auditing guarantees. Our “Equal Treatment Inspector”
is not perturbation-based but uses Shapley values to project the model to the explanation
distribution, and then measures un-equal treatment. It also allows us to pinpoint what are
the specific features driving this violation.

Grabowicz et al. (2022) present a post-processing method based on Shapley values aiming to
detect and nullify the influence of a protected attribute on the output of the system. For
this, they assume there are direct causal links from the data to the protected attribute and

19



that there are no measured confounders. Our work does not use causal graphs but exploits
the theoretical properties of the Shapley values to obtain fairness model auditing guarantees.

A few works have researched fairness using other explainability techniques such as counterfac-
tual explanations (Kusner et al., 2017; Manerba & Guidotti, 2021; Mutlu et al., 2022). We
don’t focus on counterfactual explanations but on feature attribution methods that allow us
to measure unequal feature contribution to the prediction. Further work can be envisioned
by applying explainable AI techniques to the “Equal Treatment Inspector” or constructing
the explanation distribution out of other techniques.

B.4 Classifier Two-Sample Test (C2ST)

The use of classifiers as a statistical tests of independence W ⊥ Z for a binary Z has been
previously explored in the literature (Lopez-Paz & Oquab, 2017). The approach relies on
testing accuracy of a classifier trained to distinguish Z = 1 (positives) from Z = 0 (negatives)
given W = w. In the null hypothesis that the distributions of positives and negatives are the
same, no classifier is better than a random answer with accuracy 1/2. This assumes equal
proportion of instances of the two distributions in the training and test set. Our approach
builds on this idea, but it considers testing the AUC instead of the accuracy. Thus, we
remove the assumption of equal proportions3. We also show in Section E.1 that using AUC
may achieve a better power than using accuracy.

Liu et al. (2020) propose a kernel-based approach to two-sample tests classification. Alike work
has also been used in Kaggle competitions under the name of “Adversarial Validation” (Ellis,
2023; Guschin et al., 2018), a technique which aims to detect which features are distinct
between train and leaderboard datasets to avoid possible leaderboard shakes.

Edwards & Storkey (2016) focuses on removing statistical parity from images by using an
adversary that tries to predict the relevant sensitive variable from the model representation
and censoring the learning of the representation of the model and data on images and neural
networks. While methods for images or text data are often developed specifically for neural
networks and cannot be directly applied to traditional machine learning techniques, we
focus on tabular data where techniques such as gradient boosting decision trees achieve
state-of-the-art model performance (Grinsztajn et al., 2022; Elsayed et al., 2021; Borisov
et al., 2021). Furthermore, our model and data projection into the explanation distributions
leverages Shapley value theory to provide fairness auditing guarantees. In this sense, our work
can be viewed as an extension of their work, both in theoretical and practical applications.

C True to the Model or True to the Data?

Many works discuss the application of Shapley values for feature attribution in ML mod-
els (Strumbelj & Kononenko, 2014; Lundberg et al., 2020; Lundberg & Lee, 2017; Lundberg
et al., 2018). However, the correct way to connect a model to a coalitional game, which is
the central concept of Shapley values, is a source of controversy, with two main approaches:
an interventional (Aas et al., 2021; Frye et al., 2020; Zern et al., 2023), and an observational
formulation of the conditional expectation, see (4,5) (Sundararajan & Najmi, 2020; Datta
et al., 2016; Mase et al., 2019).

In the following experiment, we compare the impact of the two approaches on our “Equal
Treatment Inspector”. We benchmark this experiment on the four prediction tasks based
on the US census data (Ding et al., 2021) and use linear models for both the fθ(X) and
gψ(S(fθ, X)). We calculate the two variants of Shapley values using the SHAP linear
explainer.4 The comparison will be parametric to a feature perturbation hyperparameter.
The interventional SHAP values break the dependence structure between features in the
model to uncover how the model would behave if the inputs are changed (as it was an
intervention). This option is said to stay “true to the model” meaning it will only give

3For unequal proportions, one can consider the accuracy of the majority class, but this still make
the requirement to know the true proportion of positives and negatives.

4https://shap.readthedocs.io/en/latest/generated/shap.explainers.Linear.html
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allocation credit to the features that are actually used by the model. On the other hand,
the full conditional approximation of the SHAP values respects the correlations of the input
features. If the model depends on one input that is correlated with another input, then
both get some credit for the model’s behaviour. This option is said to say “true to the
data”, meaning that it only considers how the model would behave when respecting the
correlations in the input data (Chen et al., 2020). We will measure the difference between
the two approaches by looking at the AUC and at the linear coefficients of the inspector
gψ, for this case only for the pair White-Other. In Table 1 and Table 2, we can see that
differences in AUC and coefficients are negligible.

Table 1: AUC comparison of the “Equal Treatment Inspector” between estimating the Shapley
values between the interventional and the observational approaches for the four prediction
tasks based on the US census dataset. The % column is the relative difference.

Interventional Correlation %
Income 0.736438 0.736439 1.1e-06
Employment 0.747923 0.747923 4.44e-07
Mobility 0.690734 0.690735 8.2e-07
Travel Time 0.790512 0.790512 3.0e-07

Table 2: Linear regression coefficients comparison of the “Equal Treatment Inspector” between
estimating the Shapley values between the interventional and the observational approaches
for the ACS Income prediction task. The % column is the relative difference.

Interventional Correlation %
Marital 0.348170 0.348190 2.0e-05
Worked Hours 0.103258 -0.103254 3.5e-06
Class of worker 0.579126 0.579119 6.6e-06
Sex 0.003494 0.003497 3.4e-06
Occupation 0.195736 0.195744 8.2e-06
Age -0.018958 -0.018954 4.2e-06
Education -0.006840 -0.006840 5.9e-07
Relationship 0.034209 0.034212 2.5e-06

D Experiments on datasets derived from the US Census

In the main body of the paper, we considered the ACS Income dataset. Here, we experiment
with additional datasets derived from the US census database (Ding et al., 2021): ACS
Travel Time, ACS Employment and ACS Mobility. We compare fairness of the prediction
tasks for pairs of protected attribute groups over the California 2014 district data.

We follow the same methodology as in the experimental Section 5.2. The choice of xgboost
(Chen & Guestrin, 2016) for the model fβ is motivated as it achieves state-of-the-art
performance Grinsztajn et al. (2022); Elsayed et al. (2021); Borisov et al. (2021). The choice
of logistic regression for the inspector gψ is motivated by its direct interpretability.

D.1 ACS Employment

The goal of this task is to predict whether an individual, is employed. Figure 4 shows a low DP
violation, compared to the other prediction tasks based on the US census dataset. The AUC
of the “Equal Treatment Inspector” is ranging from 0.55 to 0.70. For Asian vs Black un-equal
treatment we see that there significant variation of the AUC, indicating that the method
achieves different values on the bootstrapping folds. Looking at the features driving the ET
violation, we see particularly high values when comparing “Asian” and “Black” populations,
and for features “Citizenship” and “Employment”. On average, the most important features
across all group comparisons are also “Education” and “Area”. Interestingly, features such as
“difficulties on the hearing or seeing”, do not play a role.
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Figure 4: Left: AUC of the inspector for ET and DP, over the district of California 2014
for the ACS Employment dataset. Right: contribution of features to the ET inspector
performance.

D.2 ACS Travel Time

The goal of this task is to predict whether an individual has a commute to work that is longer
than 20 minutes. The threshold of 20 minutes was chosen as it is the US-wide median travel
time to work based on 2018 data. Figure 5 shows an AUC for the ET inspector in the range
of 0.50 to 0.60. By looking at the features, they highlight different ET drivers depending on
the pair-wise comparison made. In general, the feature “Education”, “Citizenship” and “Area”
are the those with the highest difference. Even though for Asian-Black pairwise comparison
“Employment” is also one of the most relevant features.
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Figure 5: Left: AUC of the inspector for ET and DP, over the district of California 2014
for the ACS Travel Time dataset. Right: contribution of features to the ET inspector
performance.

D.3 ACS Mobility

The goal of this task is to predict whether an individual had the same residential address one
year ago, only including individuals between the ages of 18 and 35. This filtering increases the
difficulty of the prediction task, as the base rate of staying at the same address is above 90%
for the general population (Ding et al., 2021). Figure 6 show an AUC of the ET inspector in
the range of 0.55 to 0.80. By looking at the features, they highlight different source of the ET
violation depending on the group pair-wise comparison. In general the feature “Ancestry”,
i.e. “ancestors’ lives with details like where they lived, who they lived with, and what they
did for a living", plays a high relevance when predicting ET violation.
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ClassOfWorker
JWMNP
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Sex
PINCP
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GCL

EaringDiff
Employment

0.66 0.049 0.84 0.0091 0.4 0.02 0.22 0.25 0.47
0.29 0.43 0.19 0.97 0.38 0.077 0.03 0.085 0.017
0.44 0.36 0.072 0.082 0.037 0.19 0.13 0.033 0.038

0.042 0.19 0.036 0.029 0.09 0.2 0.17 0.14 0.063
0.053 0.15 0.032 0.019 0.03 0.061 0.11 0.13 0.036
0.059 0.14 0.034 0.049 0.0086 0.1 0.058 0.076 0.032
0.065 0.066 0.073 0.011 0.074 0.19 0.056 0.013 0.007
0.15 0.038 0.022 0.031 0.053 0.039 0.081 0.034 0.082
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Figure 6: Left: AUC of the inspector for ET and DP, over the district of California 2014 for
the ACS Mobility dataset. Right: contribution of features to the ET inspector performance.

E Additional Experiments

In this section, we run additional experiments regarding C2ST, hyperparameters, and models
for estimators fθ and inspectors gψ.

E.1 Statistical Independence Test via Classifier AUC Test

We complement the experiments of Section 5.2 by reporting in Table 3 the results of the C2ST
for group pair-wise comparisons. As discussed in Section 4.3.1, we perform the statistical
test H0 : AUC = 1/2 of the “Equal Treatment Inspector” using a Brunner-Munzel one tailed
test against H1 : AUC > 1/2 as implemented in Virtanen et al. (2020). Table 3 reports the
empirical AUC on test set, the confidence intervals at 95% confidence level (columns “Low”
and “High”), and the p-value of the test. The “Random” row regards a randomly assigned
group and represents a baseline for comparison. The statistical tests clearly show that the
AUC is significantly different from 1/2, also when correcting for multiple comparison tests.

Table 3: Results of the C2ST on the “Equal Treatment Inspector”.
Pair AUC Low High pvalue Test Statistic

Random 0.501 0.494 0.507 0.813 0.236
White-Other 0.735 0.731 0.739 < 2.2e-16 97.342
White-Black 0.62 0.612 0.627 < 2.2e-16 27.581
White-Mixed 0.615 0.607 0.624 < 2.2e-16 23.978
Asian-Other 0.795 0.79 0.8 < 2.2e-16 107.784
Asian-Black 0.667 0.659 0.676 < 2.2e-16 38.848
Asian-Mixed 0.644 0.634 0.653 < 2.2e-16 28.235
Other-Black 0.717 0.708 0.725 < 2.2e-16 48.967
Other-Mixed 0.697 0.688 0.707 < 2.2e-16 39.925
Black-Mixed 0.598 0.586 0.61 < 2.2e-16 15.451

We also compare the power of the C2ST based on the AUC against the two-sample test of
Lopez-Paz & Oquab (2017), which is based on accuracy. We generate synthetic datasets
where Y ∼ Ber(0.5) and X = (X1, X2) with positives distributed as N((µ, µ),Σ) and

negatives distributed as N((−µ,−µ),Σ), where Σ =

[
1 0.5
0.5 1

]
. Thus, the large the µ, the

easier is to distinguish the two distributions. Figure 7 reports the power of the AUC-based
test vs the accuracy-based test using a logistic regression classifier, estimated by 1000 runs
for each of the µ’s ranging from 0.005 to 0.1. The figure highlights that, under such a setting,
testing the AUC rather than the accuracy leads to a better power (probability of rejecting
H0 when it does not hold).
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Figure 7: Comparing the power of C2ST based on Accuracy vs AUC.

E.2 Hyperparameters Evaluation

This section presents an extension to our experimental setup, where we increase the model
complexity by varying the model hyperparameters. We use the US Income dataset for the
population of the CA14 district. We consider three models for fθ: Decision Trees, Gradient
Boosting, and Random Forest. For the Decision Tree models, we vary the depth of the
tree, while for the Gradient Boosting and Random Forest models, we vary the number of
estimators. Shapley values are calculated by means of the TreeExplainer algorithm (Lundberg
et al., 2020). For the ET inspector gψ, we consider logistic regession, and XGB.

Figure 8 shows that less complex models, such as Decision Trees with maximum depth
1 or 2, are also less unfair. However, as we increase the model complexity, the unequal
treatment of the model becomes more pronounced, achieving a plateau when the model has
enough complexity. Furthermore, when we compare the results for different ET inspectors,
we observe minimal differences (note that the y-axis takes different ranges).
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Figure 8: AUC of the inspector for ET, over the district of CA14 for the US Income dataset.

E.3 Varying Estimator and Inspector

We vary here the model fθ and the inspector gψ over a wide range of well-known classification
algorithms. Table 4 shows that the choice of model and inspector impacts on the measure of
Equal Treatment, namely the AUC of the inspector. By Theorem 4.4, the larger the AUC
of any inspector the smaller is the p-value of the null hypothesis S(fθ, X) ⊥ Z. Therefore,
inspectors able to achive the best AUC should be considered. Weak inspectors have lower
probability of rejecting the null hypothesis when it does not hold.
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Model fθ
Inspector gψ DecisionTree SVC Logistic Reg. RF XGB
DecisionTree 0.631 0.644 0.644 0.664 0.634

KNN 0.737 0.754 0.75 0.744 0.751
Logistic Reg. 0.767 0.812 0.812 0.812 0.821

MLP 0.786 0.795 0.795 0.813 0.804
RF 0.776 0.782 0.781 0.758 0.795

SVC 0.743 0.807 0.807 0.790 0.810
XGB 0.775 0.780 0.780 0.789 0.790

Table 4: AUC of the ET inspector for different combinations of models and inspectors.

E.4 Explaining ET Unfairness

We complement the results of the experimental Section 5.1 with a further experiment
relating the correlation hyperparameter γ to the coefficients of an explainable ET inspector.
We consider a synthetic dataset with one more feature, by drawing 10, 000 samples from
a X1 ∼ N(0, 1), X2 ∼ N(0, 1), and (X3, X5) and (X4, X5) following bivariate normal
distributions N ([0 0] , [1 γ γ 1]) and N ([0 0] , [1 γ0.5 γ0.5 1]), respectively. We define
the binary protected feature Z with values Z = 1 if X5 > 0 and Z = 0 otherwise. As in
Section 5.1, we consider two experimental scenarios. In the first scenario, the indirect case, we
have unfairness in the data and in the model. The targe feature is Y = σ(X1+X2+X3+X4),
where σ is the logistic function. In the second scenario, the uninformative case, we have
unfairness in the data and fairness in the model. The target feature is Y = σ(X1 +X2).

Figure 9 shows howt the coefficients of the inspector gψ vary with correlation γ in both
scenario. In the indirect case, coefficients for S(fθ, X1)1 and S(fθ, X1)2 correctly attributes
zero importance to such variables, while coefficients for S(fθ, X1)3 and S(fθ, X1)4 grow
linearly with γ, and with the one for S(fθ, X1)3 with higher slope as expected. In the
uninformative case, coefficients are correctly zero for all variables.
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Figure 9: Coefficient of gψ over γ for synthetic datasets in two experimental scenarios.

E.5 Statistical Comparison of Demographic Parity versus Equal Treatment

So far, we measured ET and DP fairness usingthe AUC of an inspector, gψ and gv respectively
(see Section 5). For DP, however, other probability density distance metrics can be considered,
including the p-value of the Kolmogorov–Smirnov (KS) test and the Wasserstein distance.
Table 5 reports all such distances in the format “mean ± stdev" calculated over 100 random
sampled datasets. The pairs of group comparisons are sorted by descending AUC values. We
highlight in red values below the threshold of 0.05 for the KS test, of 0.55 for the AUC of the
C2ST, and of 0.05 for the Wasserstein distance. They represent cases where ET violation
occurs, but no DP violation is measured (with different metrics).
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Table 5: Comparison of ET and DP measured in differnt ways. Case of ET violaion but no
DP violation are highlighted in red.

Pair Data Equal treatment Demographic Parity
C2ST(AUC) C2ST(AUC) KS(pvalue) Wasserstein

Asian-Other Income 0.794± 0.004 0.709± 0.004 0.338± 0.007 0.256± 0.004
White-Other Income 0.734± 0.002 0.675± 0.003 0.282± 0.003 0.209± 0.002
Other-Black Income 0.724± 0.004 0.628± 0.006 0.216± 0.007 0.143± 0.004
Other-Mixed Income 0.707± 0.005 0.593± 0.005 0.169± 0.006 0.117± 0.004
Asian-Black Income 0.664± 0.008 0.587± 0.004 0.142± 0.005 0.111± 0.004
Asian-Mixed Income 0.644± 0.005 0.607± 0.006 0.159± 0.008 0.128± 0.006
White-Mixed Income 0.613± 0.005 0.546± 0.005 0.082± 0.004 0.058± 0.002
White-Black Income 0.613± 0.005 0.57± 0.007 0.113± 0.008 0.08± 0.006
Black-Mixed Income 0.603± 0.006 0.523± 0.007 0.055± 0.007 0.023± 0.004
Asian-Black TravelTime 0.677± 0.052 0.502± 0.011 0.021± 0.009 0.01± 0.003
Asian-Other TravelTime 0.653± 0.024 0.528± 0.006 0.053± 0.011 0.027± 0.004
Asian-Mixed TravelTime 0.647± 0.013 0.557± 0.003 0.096± 0.004 0.045± 0.002
White-Other TravelTime 0.636± 0.02 0.568± 0.007 0.107± 0.01 0.06± 0.005
Other-Mixed TravelTime 0.618± 0.017 0.546± 0.011 0.079± 0.012 0.043± 0.006
Other-Black TravelTime 0.615± 0.021 0.526± 0.011 0.049± 0.014 0.026± 0.006
White-Black TravelTime 0.599± 0.006 0.569± 0.004 0.12± 0.006 0.057± 0.003
Black-Mixed TravelTime 0.588± 0.012 0.557± 0.012 0.098± 0.015 0.0557± 0.001
White-Mixed TravelTime 0.557± 0.008 0.497± 0.006 0.016± 0.004 0.006± 0.002
Other-Black Employment 0.744± 0.008 0.524± 0.005 0.036± 0.005 0.036± 0.004
Asian-Other Employment 0.711± 0.011 0.557± 0.003 0.066± 0.004 0.066± 0.003
White-Other Employment 0.695± 0.007 0.524± 0.003 0.019± 0.005 0.019± 0.002
Other-Mixed Employment 0.683± 0.022 0.557± 0.008 0.083± 0.005 0.083± 0.003
Black-Mixed Employment 0.678± 0.028 0.534± 0.007 0.049± 0.007 0.048± 0.004
Asian-Mixed Employment 0.671± 0.019 0.61± 0.006 0.0144± 0.006 0.145± 0.004
Asian-Black Employment 0.655± 0.021 0.587± 0.004 0.106± 0.006 0.106± 0.004
White-Mixed Employment 0.651± 0.009 0.581± 0.006 0.095± 0.004 0.095± 0.003
White-Black Employment 0.619± 0.011 0.544± 0.004 0.049± 0.003 0.049± 0.002
Asian-Mixed Mobility 0.753± 0.02 0.511± 0.014 0.04± 0.012 0.014± 0.006
Other-Mixed Mobility 0.748± 0.02 0.573± 0.015 0.113± 0.017 0.062± 0.009
Asian-Other Mobility 0.714± 0.011 0.565± 0.01 0.114± 0.011 0.054± 0.005
Asian-Black Mobility 0.672± 0.012 0.503± 0.014 0.032± 0.011 0.012± 0.004
Other-Black Mobility 0.66± 0.012 0.526± 0.009 0.044± 0.009 0.02± 0.004
White-Mixed Mobility 0.655± 0.007 0.568± 0.005 0.105± 0.007 0.044± 0.003
White-Other Mobility 0.626± 0.017 0.555± 0.009 0.091± 0.01 0.046± 0.005
White-Black Mobility 0.611± 0.009 0.518± 0.008 0.043± 0.008 0.017± 0.004
Black-Mixed Mobility 0.602± 0.035 0.503± 0.016 0.031± 0.013 0.012± 0.006
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F LIME as an Alternative to Shapley Values

The definition of ET (Def. 3.2) is parametric in the explanation function. We used Shapley
values for their theoretical advantages (see Appendix A). Another widely used feature
attribution technique is LIME (Local Interpretable Model-Agnostic Explanations). The
intuition behind LIME is to create a local linear model that approximates the behavior
of the original model in a small neighbourhood of the instance to explain (Ribeiro et al.,
2016b;a), whose mathematical intuition is very similar to the Taylor/Maclaurin series. This
section discusses the differences in our approach when adopting LIME instead of the SHAP
implementation of Shapley values. First of all, LIME has certain drawbacks:

• Computationally Expensive: Its current implementation is more computationally
expensive than current SHAP implementations such as TreeSHAP (Lundberg et al.,
2020), Data SHAP (Kwon et al., 2021; Ghorbani & Zou, 2019), or Local and
Connected SHAP (Chen et al., 2019). This problem is exacerbated when producing
explanations for multiple instances (as in our case). In fact, LIME requires sampling
data and fitting a linear model, which is a computationally more expensive approach
than the aforementioned model-specific approaches to SHAP. A comparison of the
execution time is reported in the next sub-section.

• Local Neighborhood: The randomness in the calculation of local neighbourhoods
can lead to instability of the LIME explanations. Works including Slack et al. (2020);
Alvarez-Melis & Jaakkola (2018); Adebayo et al. (2018) highlight that several types
of feature attributions explanations, including LIME, can vary greatly.

• Dimensionality: LIME requires, as a hyperparameter, the number of features to
use for the local linear model. For our method, all the features in the explanation
distribution should be used. However, linear models suffer from the curse of di-
mensionality. In our experiments, this is not apparent, since our synthetic and real
datasets are low-dimensional.
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Figure 10: AUC of the ET inspect using SHAP vs using LIME.

Figure 10 compares the AUC of the ET inspector using SHAP and LIME as explanation
functions over the synthetic dataset of Section 5.1. In both scenarios (indirect case and
uninformative case), the two approaches have similar results. In both cases, however, the
stability of using SHAP is better than using LIME.

F.1 Runtime

We conduct an analysis of the runtimes of generating the explanation distributions using
TreeShap vs LIME. We adoptshap version 0.41.0 and lime version 0.2.0.1 as software
packages. In order to define the local neighborhood for both methods in this example, we
used all the data provided as background data. The model fθ is set to xgboost. As data
we produce a randon generated data matrix, of varying dimensions. When varying the
number of samples, we use 5 features, and when varying the number of features, we use1000
samples. Figure 11 shows the elapsed time for generating explanation distributions with
varying numbers of samples and columns.
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The runtime required to generate explanation distributions using LIME is considerably
greater than using SHAP. The difference becomes more pronounced as the number of samples
and features increases.
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Figure 11: Elapsed time for generating explanation distributions using SHAP and LIME with
different numbers of samples (left) and features (right) on synthetically generated datasets.
Note that the y-scale is logarithmic.
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