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Abstract
Implicit Neural Representations (INRs) have
gained popularity for encoding signals as com-
pact, differentiable entities. While commonly
using techniques like Fourier positional encod-
ings or non-traditional activation functions (e.g.,
Gaussian, sinusoid, or wavelets) to capture high-
frequency content, their properties lack explo-
ration within a unified theoretical framework. Ad-
dressing this gap, we conduct a comprehensive
analysis of these activations from a sampling the-
ory perspective. Our investigation reveals that
sinc activations—previously unused in conjunc-
tion with INRs—are theoretically optimal for sig-
nal encoding. Additionally, we establish a con-
nection between dynamical systems and INRs,
leveraging sampling theory to bridge these two
paradigms.

1. Introduction
Recently, the concept of representing signals as Implicit
Neural Representations (INRs) has garnered widespread
attention across various problem domains (Mildenhall et al.,
2021; Li et al., 2023; Büsching et al., 2023; Peng et al.,
2021; Strümpler et al., 2022). This surge in popularity can
be attributed to the remarkable capability of INRs to en-
code high-frequency signals as continuous representations.
Unlike conventional neural networks, which typically pro-
cess and convert sparse, high-dimensional signals (such as
images, videos, text) into label spaces (e.g., one-hot encod-
ings, segmentation masks, text corpora), INRs specialize
in encoding and representing signals by consuming low-
dimensional coordinates.

However, a significant challenge in representing signals
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using neural networks is the presence of spectral bias (Ra-
haman et al., 2019). Neural networks inherently tend to
favor learning functions with lower frequencies, which
can hinder their ability to capture high-frequency informa-
tion. To address this challenge, a common approach in-
volves projecting low-dimensional coordinates into a higher-
dimensional space through positional encodings (Zheng
et al., 2022; Tancik et al., 2020). Prior research has demon-
strated that incorporating positional encodings allows INRs
to achieve high-rank representations, enabling them to cap-
ture fine details (Zheng et al., 2022). Nevertheless, posi-
tional encodings have a critical limitation – they struggle to
maintain smooth gradients, which can be problematic for
optimization (Saratchandran et al., 2023). To overcome
this limitation, non-traditional activations, such as sinu-
soids (Sitzmann et al., 2020), Gaussians (Ramasinghe &
Lucey, 2022), and wavelets (Saragadam et al., 2023), have
emerged as effective alternatives. These unconventional
activations facilitate encoding higher frequencies while pre-
serving smooth gradients, and as shown in prior research
(Saratchandran et al., 2023; Chng et al., 2024; Saratchan-
dran et al., 2024), they are remarkably stable with respect to
various optimization algorithms.

Until now, prior research that delved into the analysis of
activations in INRs has primarily been tied to the specific
activations proposed in their respective studies. For instance,
(Sitzmann et al., 2020) introduced sinusoidal activations and
demonstrated their shift invariance and favorable properties
for learning natural signals. (Ramasinghe & Lucey, 2022)
explored Gaussian activations, showcasing their high Lips-
chitz constants that enable INRs to capture sharp variations.
More recently, wavelet-based activations (Saragadam et al.,
2023) were introduced, highlighting their spatial-frequency
concentration and suitability for representing images. How-
ever, this fragmented approach has obscured the broader
picture, making it difficult to draw connections and con-
duct effective comparisons among these activations. In
contrast, our research unveils a unified theory of INR acti-
vations through the lens of sampling theory. Specifically,
we show that, under mild conditions, activations in INRs
can be considered as generator functions that facilitate the
reconstruction of a given signal from sparse samples. Lever-
aging this insight, we demonstrate that activations in the
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form of sin(x)
x (known as the sinc function) theoretically

enable INRs to optimally reconstruct a given signal while
preserving smooth gradients. To the best of our knowledge,
sinc activations have not been used with INRs previously.
Furthermore, we validate these insights in practical scenar-
ios across tasks involving images and neural radiance fields
(NeRF).

The proficiency of sinc-activated INRs in signal reconstruc-
tion suggests an exciting possibility: the effective modeling
of complex dynamical systems using these activations. We
explore this idea by focusing on chaotic dynamical sys-
tems, noting the similarity between dynamical systems and
INRs when approached from a signal processing lens. Dy-
namical systems can be seen as multi-dimensional signals
evolving over time, resembling the task of reconstructing
multi-dimensional signals from discrete samples. INRs,
with their objective of encoding and reconstructing continu-
ous signals from discrete coordinates and samples, share a
similar goal. Drawing inspiration from this connection, we
establish parallels between dynamical systems and INRs,
using sampling theory to bridge these two paradigms. Our
research not only demonstrates the superior performance
of sinc-activated INRs in modeling dynamical systems but
also provides a theoretical explanation for this advantage.

2. Related Work
INRs. INRs, pioneered by (Mildenhall et al., 2021), have
gained prominence as an effective architecture for signal
reconstruction. Traditionally, such architectures employed
activations such as ReLU and Sigmoid. However, these
activations suffer from spectral bias, limiting their effective-
ness in capturing high-frequency content (Rahaman et al.,
2019). To overcome this limitation, (Mildenhall et al., 2021)
introduced a positional embedding layer to enhance high-
frequency modeling. Meanwhile, (Sitzmann et al., 2020)
proposed SIREN, a sinusoidal activation that eliminates the
need for positional embeddings but exhibits instability with
random initializations. In contrast, (Ramasinghe & Lucey,
2022) introduced Gaussian-activated INRs, showcasing ro-
bustness to various initialization schemes. More recently,
wavelet activations were proposed by (Saragadam et al.,
2023) with impressive performance. Yet, the theoretical op-
timality of these activation functions in the context of signal
reconstruction has largely eluded investigation. In this study,
we aim to address this gap by examining the selection of
activation functions through the lens of sampling theory.

Data driven dynamical systems modeling. Numerous ap-
proaches have been explored for the data-driven discovery
of dynamical systems, employing various techniques. These
methodologies include nonlinear regression (Voss et al.,
1999), empirical dynamical modeling (Ye et al., 2015), nor-
mal form methods (Majda et al., 2009), spectral analysis

(Giannakis & Majda, 2012), Dynamic Mode Decomposition
(DMD) (Schmid, 2010; Kutz et al., 2016), as well as com-
pressed sensing and sparse regression within a library of
candidate models (Reinbold et al., 2021; Wang et al., 2011;
Naik & Cochran, 2012; Brunton et al., 2016). Addition-
ally, reduced modeling techniques like Proper Orthogonal
Decomposition (POD) (Holmes et al., 2012; Kirby, 2001;
Sirovich, 1987; Lumley, 1967), both local and global POD
methods (Schmit & Glauser, 2004; Sahyoun & Djouadi,
2013), and adaptive POD methods (Singer & Green, 2009;
Peherstorfer & Willcox, 2015) have been widely applied in
dynamical system analysis. Koopman operator theory in
conjunction with DMD methods has also been utilized for
system identification (Budišić et al., 2012; Mezić, 2013).

3. A sampling perspective on INRs
In this section, we present our primary theoretical insights,
showcasing how sampling theory offers a fresh perspective
on understanding the optimality of activations in INRs.

3.1. Implicit Neural Representations

We consider INRs of the following form: Consider an L-
layer network, FL, with widths {n0, . . . , nL}. The output
at layer l, denoted fl, is given by

fl(x) =


x, if l = 0

ϕ(WlFl−1 + bl), if l ∈ {1, . . . , L− 1}
WL−1FL−1 + bL, if l = L

(1)

where Wl ∈ Rnl×nl−1 , bl ∈ Rnl are the weights and biases
respectively of the network, and ϕ is a non-linear activation.

3.2. Classical sampling theory

Sampling theory considers bandlimited signals, which are
characterized by a limited frequency range. Formally, for a
continuous signal denoted as f , being bandlimited to a max-
imum frequency of Ω implies that its Fourier transform, rep-
resented as f̂(s), equals zero for all |s| values greater than Ω.
If we have an Ω-bandlimited signal f belonging to the space
L2(R), then the Nyquist-Shannon sampling theorem (as ref-
erenced in (Zayed, 2018)) provides a way to represent this

signal as f(x) =
∑∞

n=−∞ f

(
n
2Ω

)
sinc

(
2Ω

(
x − n

2Ω

))
,

where sinc(x) := sin(πx)
πx for x ̸= 0 and sinc(0) := 1, and

the equality means converges in the L2 sense. Essentially,
by sampling the signal at regularly spaced points defined by
n
2Ω for all integer values of n, and using shifted sinc func-
tions, we can reconstruct the original signal. However, this
requires us to sample at a rate of at least 2Ω-Hertz (Zayed,
2018).

In theory, perfect reconstruction necessitates an infinite num-
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ber of samples, which is impractical in real-world scenarios.
It’s crucial to acknowledge that the sampling theorem is an
idealization, not universally applicable to real signals due to
their non-bandlimited nature. However, as natural signals
often exhibit dominant frequency components at lower ener-
gies, we can effectively approximate the original signal by
projecting it into a finite-dimensional space of bandlimited
functions, enabling robust reconstruction.

3.3. Optimal Activations via Riesz Sampling

In the previous section, we discussed how an exact recon-
struction of a bandlimited signal could be achieved via a
linear combination of shifted sinc functions. Thus, it is in-
triguing to explore if an analogous connection can be drawn
to INRs. We will take a general approach and consider
spaces of the form

V (F ) =

{
s(x) =

∑
k∈Z

a(k)F (x− k) : a ∈ l2(R)
}
, (2)

where l2(R) denotes the Hilbert space of square summable
sequences over the integers Z. The reader who is not famil-
iar with the sequence space l2(R) can consult App. A.1 for
its definition. The space V (F ) should be seen as a general-
isation of the space of bandlimited functions occurring in
the Shannon sampling theorem.

Definition 3.1. The family of translates {Fk := F (x −
k)}k∈Z is a Riesz basis for V (F ) if the following two con-
ditions hold:

1. A||a||2l2 ≤
∣∣∣∣∣∣∣∣∑

k∈Z
a(k)Fk

∣∣∣∣∣∣∣∣2 ≤ B||a||2l2 , ∀a(k) ∈ l2(R).

2.
∑
k∈Z

F (x− k) = 1, ∀x ∈ R (PUC)

where in condition 1 we have that A and B are constants
greater than zero. Observe that if s =

∑
k a(k)Fk = 0 then

the lower inequality in condition 1 implies a(k) = 0 for
all k. In other words, the basis functions Fk are linearly
independent, which in turn implies each signal s ∈ V (F )
is uniquely determined by its coefficient sequence a(k) ∈
l2(R). The upper inequality in 1. implies that the L2 norm
of a signal s ∈ V (F ) is finite, implying that V (F ) is a
subspace of L2(R).

Condition 2 in Defn. 3.1 is known as the partition of unity
condition (PUC). It allows the capability of approximating
a signal s ∈ V (F ) as closely as possible by selecting a
sample step that is sufficiently small. This can be seen as
a generalisation of the Nyquist criterion, where in order to
reconstruct a bandlimited signal, a sampling step of less than

π
2ωmax

must be chosen, where ωmax is the highest frequency
present in the signal s (Zayed, 2018; Unser, 2000).

Definition 3.2. The family of translates {Fk = F (x −
k)}k∈Z is a weak Riesz basis for V (F ) if condition 1 from
Defn. 3.1 holds but condition 2 does not.

The following proposition considers activations in INRs and
the sinc function. Specifically, we show that sinc forms a
Riesz basis, Gaussian and wavelets form weak Riesz bases,
and ReLU or Sinusoid does not form Riesz/weak Riesz
bases. The proof is given in app. A.1.

Proposition 3.3. 1. Let F (x) = sinc(x) = sin(x)
x then

the family {sinc(x−k)}k∈Z forms a Riesz basis where
V (sinc) is the space of signals with bandlimited fre-
quency.

2. Let F (x) = Gs(x) := e−x2/s2 , for some fixed s > 0,
the family {Gs(x− k)}k∈Z forms a weak Riesz basis
for the space V (Gs) but not a Riesz basis. In this case
V (Gs) can be interpreted as signals whose Fourier
transform has Gaussian decay, where the rate of decay
will depend on s.

3. Let F (x) = Ψ(x) denote a wavelet. In general
wavelets form a weak Riesz basis but not all form a
Riesz basis.

4. Let F (x) = ReLU(x), the family {ReLU(x−k)}k∈Z
does not form a Riesz/weak Riesz basis as it violates
condition 1 from Defn. 3.1.

5. Let F (x) = sin(ωx), for ω a fixed frequency param-
eter, the family {sin(ω(x− k))}k∈Z does not form a
Riesz/weak Riesz basis as it violates condition 1 from
Defn. 3.1.

Interestingly, to fit INRs into the above picture, observe that
the elements in V (F ) that are finite sums can be represented
by INRs with activation F (this is explicitly proved in the
next theorem, see also appendix A.1). Thus, it follows that
signals in V (F ) that have an infinite number of non-zero
summands can be approximated by INRs, the proof can be
found in the app. A.2.1.

Theorem 3.4. Suppose the family of functions {F (x −
k)}k∈Z forms a weak Riesz basis for the space V (F ). Let
g be a signal in V (F ) and let ϵ > 0 be given. Then there
exists a 2-layer INR f , with a parameter set θ, F as the
activation, and n(ϵ) neurons in the hidden layer, such that

||f(θ)− g||L2 < ϵ.

The primary limitation of Theorem 3.4 lies in its applica-
bility solely to signals within the domain of V (F ). This
prompts us to inquire whether Riesz bases can be employed
to approximate arbitrary L2-functions, even those outside
the confines of V (F ). The significance of posing this ques-
tion lies in the potential revelation that, if affirmed, INRs
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can also approximate such signals. This would, in turn,
demonstrate the universality of F -activated INRs within the
space of L2(R) functions.

We now show, in order to be able to approximate arbitrary
signals in L2(R) the partition of unity condition, condition
2 of Defn. 3.1, plays a key role. To analyse this situation,
we introduce the scaled signal spaces.

Definition 3.5. For a fixed Ω > 0, let

VΩ(F ) =

{
sΩ =

∑
k∈Z

aΩ(k)F (
x

Ω
− k) : a ∈ l2(R)

}
.

We call VΩ(F ) an Ω-scaled signal space.

Example 3.6. The canonical example of an Ω-scaled signal
space is given by taking F (x) = sinc(2Ωx). In this case
VΩ(F ) is the space of Ω-bandlimited signals.

The difference between VΩ(F ) and V (F ) is that in the for-
mer the basis functions are scaled by Ω. Previously, we
remarked that one of the issues in applying Thm. 3.4 is
that it does not provide a means for approximating general
signals in L2(R) by INRs. What we wish to establish now
is that given an arbitrary signal s ∈ L2(R) and an approxi-
mation error ϵ > 0, if {F (x− k}k∈Z is a Riesz basis then
there exists a scale Ω(ϵ), that depends on ϵ, such that the
scaled signal space VΩ(ϵ)(F ) can approximate s to within
ϵ in the L2-norm. We will follow the approach taken by
(Unser, 2000) and give a brief overview of how to proceed.
More details can be found in app. A.

In order to understand how we can reconstruct a signal to
within a given error using VΩ(F ), we follow the strategy
of (Unser, 2000). We define the approximation operator
AΩ : L2(R) → VΩ(F ) by

AΩ(s(x)) =
∑
k∈Z

(∫
R
s(y)F̃ (

y

Ω
− k)

dy

Ω

)
F (

x

Ω
− k) (3)

where F̃ is a suitable analysis function from a fixed test
space. We will not go into the details of how to construct
F̃ but for now will simply assume such an F̃ exists and
remark that its definition depends on F . For details on how
to construct F̃ we refer the reader to appendix sec. A.1.1.
The quantity

∫
s(y)F̃ ( y

Ω − k)dyΩ is to be thought of as the
coefficients aΩ(k) in reconstructing s.

The approximation error is defined as

ϵs(Ω) = ||s−AΩ(s)||L2 . (4)

The goal is to understand how we can make the approx-
imation error small by choosing Ω and the right analysis
function F̃ .

The general approach to this problem via sampling theory,
see (Unser, 2000) for details, is to proceed via the average

approximation error:

ϵs(Ω)
2 =

1

Ω

∫ Ω

0

||s(· − τ)−AΩ(s(· − τ))||2L2dτ. (5)

Using Fourier analysis, see (Blu & Unser, 1999), it can
be shown that ϵs(Ω)2 =

∫ +∞
−∞ EF̃ ,F (Ωξ)|ŝ(ξ)|

2 dξ
2π where

ŝ denotes the Fourier transform of s and EF̃ ,F is the error
kernel defined by

EF̃ ,F (ω) = |1− ˆ̃
F (ω)F̂ (ω)|2+| ˆ̃F (ω)|2

∑
k ̸=0

|F̂ (ω+2πk)|2

(6)

where F̂ and ˆ̃
F denote the Fourier transforms of F and F̃

respectively. Understanding the approximation properties
of the shifted basis functions Fk = F (x− k) comes down
to analysing the error kernel EF̃ ,F . The reason being is
that the average error ϵs(Ω)2 is a good predictor of the true
error ϵs(Ω)2. This was shown in (Blu & Unser, 1999) and a
statement of their theorem can be found in App. A.1.1 as
Thm. A.1

Thm. A.1 shows that the dominant part of the approximation
error ϵs(Ω) is controlled by the average error ϵs(Ω). This
means that in order to show that there exists a scale Ω
such that the scaled signal space VΩ(F ) can be used to
approximate s ∈ L2(R) up to any given error, it suffices to
show that

lim
Ω→0

EF̃ ,F → 0. (7)

This is precisely where the partition of unity condition
comes in. As shown in (Blu & Unser, 1999) if a family
of shifted basis functions satisfies the partition of unity con-
dition (PUC), condition 2 from Defn. 3.1, then the above
limit holds meaning the error kernel vanishes. The inter-
ested reader can consult App. A.1.1 for details on how the
argument proceeds.

From Prop. 3.3, we see that the sinc function has vanishing
error kernel as the scale Ω → 0. However, a Gaussian does
not necessarily have vanishing error kernel as Ω → 0.

We immediately obtain the following approximation result,
proof can be found in App. A.2.1.

Proposition 3.7. Let s ∈ L2(R) and ϵ > 0. Assume the
shifted functions {F (x − k)}k∈Z form a Riesz basis for
V (F ). Then there exists an Ω > 0 and an fΩ ∈ VΩ(F )
such that

||s− fΩ||L2 < ϵ. (8)

Prop. 3.7 implies that the signal s can be approximated by
basis functions given by shifts of F with bandwidth 1/Ω.

Using Prop. 3.7 we obtain a universal approximation result
for neural networks employing Riesz bases as their activa-
tion functions, the proof can be found in app. A.2.1.
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Theorem 3.8. Let s ∈ L2(R) and ϵ > 0. Assume the shifted
functions {F (x−k)}k∈Z form a Riesz basis for V (F ). Then
there exists a 2-layer INR N , with a parameter set θ, n(ϵ)
neurons in the hidden layer, and an Ω > 0 such that

||N (θ)− s||L2 < ϵ

where N (θ) employs FΩ as its activation in the hidden layer,
where FΩ(x) = F ( 1

Ωx).

Remark 3.9. Thm. 3.8 shows why sinc being able to gen-
erate a Riesz basis is an optimal condition to satisfy for an
activation function. Note that in general, any function in
L2(R) that generates a Riesz basis will be optimal in this
sense. Furthermore, out of the activations that practitioners
in the ML community use, such as sinc, sine, Gaussian,
tanh, ReLU, sigmoid, we find sinc is the optimal. For an
overview of how the partition of unity condition, condition
2 of Defn. 3.1, plays a role in Thm. 3.8 see App. A.2.

Thm. 3.8 underscores the significance of the activation func-
tion within an INR when it comes to signal reconstruction
in L2(R). Specifically, as exemplified in Prop. 3.3, it be-
comes evident that an INR equipped with a sinc activation
function can achieve reconstructions of signals in L2(R) up
to any accuracy, rendering it the optimal choice for the INR
architecture. See App. C for the connection of the above
analysis to the universal approximation theorem.

4. Extensions of the theory
Results for deep networks: The theoretical results from
the previous section were initially demonstrated in the con-
text of shallow networks to emphasize fundamental tech-
niques. These results naturally extend to deep networks, as
discussed in App. B.1.

Other basis functions: Various common basis functions
are utilized for interpolation in existing literature. To con-
textualize our results alongside these alternatives, we direct
the reader to App. B.2.

Positional encoding: For insights into how our theoretical
contributions relate to positional encodings, please refer to
App. 5.4.

5. Experiments
In this section, we aim to compare the performance of dif-
ferent INR activations. First, we focus on image and NeRF
reconstructions and later move on to dynamical systems.

5.1. Image reconstruction

A critical problem entailed with INRs is that they are sen-
sitive to the hyperparameters in activation functions (Ra-
masinghe & Lucey, 2022). That is, one has to tune the

Activation PSNR SSIM
Gaussian 31.13 0.947
Sinusoid 28.96 0.933
Wavelet 30.33 0.941
Sinc 31.37 0.947

Table 1. Quantitative comparison in novel view synthesis on
the real synthetic dataset (Mildenhall et al., 2021). sinc-INRs
perform on-par with other activations.

hyperparameters of the activations to match the spectral
properties of the encoded signal. Here, we focus on the
robustness of activation parameters when encoding different
signals. To this end, we do a grid search and find the single
best performing hyperparameter setting for all the images
in a sub-sampled set of the DIV2K dataset (Agustsson &
Timofte, 2017) released by (Tancik et al., 2020). For ex-
ample, for sinc activations, we experiment with different
bandwidth parameters, each time fixing it across the entire
dataset. Then, we select the bandwidth parameter that pro-
duced the best results. Since all the compared activations
contain a tunable parameter, we perform the same for all
the activations and find the best parameters for each. This
dataset contains images of varying spectral properties: 32
images of Text and Natural scenes, each. We train with dif-
ferent sampling rates and test against the full ground truth
image. The PSNR plots are shown in Fig. 1. As depicted,
sinc activation performs better or on-par with other activa-
tions. We use 4-layer networks with 256 width for these
experiments.

5.2. Neural Radiance Fields

NeRFs are one of the key applications of INRs, popular-
ized by (Mildenhall et al., 2021). Thus, we evaluate the
performance of sinc-INRs in this setting. Table. 1 demon-
strates quantitative results. We observed that all the activa-
tions perform on-par with NeRF reconstructions with proper
hyperparameter tuning, where sinc outperformed the rest
marginally.

5.3. Dynamical systems

It is intriguing to see if the superior signal encoding proper-
ties of sinc-INRs (as predicted by the theory) would trans-
late to a clear advantage in a challenging setting. To this
end, we choose dynamical (chaotic) systems as a test bed.

Dynamical systems can be defined in terms of a time depen-
dant state space x(t) ∈ RD where the time evolution of x(t)
can be described via a differential equation,

dx(t)

dt
= f(x(t), α), (9)

5



A Sampling Theory Perspective on Activations for Implicit Neural Representations

Rossler

Activation n = 0.1 n = 0.5 n = 1.

Baseline 42.1 29.8 22.3
Gaussian 46.6 37.1 33.6
Sinusoid 45.1 36.6 32.1
Wavelet 40.3 35.9 30.9

Sinc 48.9 42.8 38.5
Lorenz

Activation n = 0.1 n = 0.5 n = 1.

Baseline 43.8 28.2 20.3
Gaussian 45.7 39.1 35.7
Sinusoid 42.1 37.4 30.3
Wavelet 38.2 37.3 31.8

Sinc 46.2 40.9 39.3

Table 2. SINDy reconstructions (PSNR) with different noise levels
(n =standard deviation of the Gaussian noise).

where f is a non-linear function and α are a set of sys-
tem parameters. The solution to the differential equation
9 gives the time dynamics of the state space x(t). In
practice, we only have access to discrete measurements
[y(t1), y(t2), . . . y(tQ)] where y(t) = g(x(t)) + η and
{tn}Qn=1 are discrete instances in time. Here, g(·) can be
the identity or any other non-linear function, and η is noise.
Thus, the central challenge in modeling dynamical systems
can be considered as recovering the characteristics of the
state space from such discrete observations.

We note that modeling dynamical systems and encoding
signals using INRs are analogous tasks. That is, model-
ing dynamical systems can be interpreted as recovering
characteristics of a particular system via measured phys-
ical quantities over time intervals. Similarly, INRs are
used to recover a signal given discrete samples.

5.3.1. DISCOVERING THE LATENT DYNAMICS

In practical scenarios, we often encounter limitations in
measuring all the variables influencing a system’s dynam-
ics. When only partial measurements are available, deriving
a closed-form model for the system becomes challenging.
However, Takens’ Theorem (refer to App. E) offers a sig-
nificant insight. It suggests that under certain conditions,
augmenting partial measurements with delay embeddings
can produce an attractor diffeomorphic to the original one.
This approach is remarkably powerful, allowing for the dis-
covery of complex system dynamics from a limited set of
variables.

Time Delay Embedding. To implement this, we start with
discrete time samples of an observable variable y(t). We
construct a Hankel matrix H by augmenting these samples

as delay embeddings in each row:

H =


y1(t1) y1(t2) . . . y1(tn)
y1(t2) y1(t3) . . . y1(tn+1)

...
...

. . .
...

y1(tm) y1(tm+1) . . . y1(tm+n+1)

 . (10)

According to Takens’ Theorem, the dominant eigenvectors
of this Hankel matrix encapsulate dynamics that are diffeo-
morphic to the original attractor. For our experiment, we
utilize systems such as the Vanderpol, Limit cycle attractor,
Lorenz, and Duffing equations (see F). We generate 5000
samples, spanning from 0 to 100, to form the Hankel matrix.
Subsequently, we extract its eigenvectors and plot them to
visualize the surrogate attractor that mirrors the original
attractor. To assess the method’s robustness against noise,
we introduce noise into the y(t) samples from a uniform
distribution η ∼ U(−n, n), varying n. To demonstrate the
efficacy of INRs in this context, we employ a sinc-INR to
encode the original measurements as a continuous signal.
Initially, we train a sinc-INR using discrete pairs of t and
y(t) as inputs and labels. Then, we use the sampled values
from the INR as a surrogate signal to create the Hankel
matrix, which yields robust results. Interestingly, the con-
tinuous reconstruction from the sinc-INR requires sparser
samples (with nτ = 0.2)), thus overcoming a restrictive
condition typically encountered in this methodology. The
results, as depicted in Fig. 2 and Fig. 3, clearly demonstrate
that sinc-INRs can accurately recover the dynamics of a sys-
tem from partial, noisy, random, and sparse observations. In
contrast, the performance of classical methods deteriorates
under these conditions, underscoring the advantage of the
sinc-INR approach in handling incomplete and imperfect
data.

5.3.2. DISCOVERING GOVERNING EQUATIONS

The SINDy algorithm (Brunton et al., 2016) is designed
to deduce the governing equations of a dynamical system
from discrete observations of its variables. Consider observ-
ing the time dynamics of a D-dimensional variable y(t) =
[y1(t), . . . , yD(t)]. For observations at N time stamps, we
construct the matrix Y = [y(t1),y(t2), . . .y(tN )]T ∈
RN×D. The initial step in SINDy involves computing
Ẏ = [ ˙y(t1), ˙y(t2), . . . ˙y(tN )]T ∈ RN×D, achieved either
through finite difference or continuous approximation tech-
niques. Subsequently, an augmented library Θ(Y) is con-
structed, composed of predefined candidate nonlinear func-
tions of Y’s columns, encompassing constants, polynomials,
and trigonometric terms, e.g.,

6



A Sampling Theory Perspective on Activations for Implicit Neural Representations

Figure 1. Comparison of Image reconstruction across different INRs over DIVK dataset. We run a grid search to find the optimal
parameters for each INR. Note that a single optimal parameter setting is used for each activation, across all the images in the dataset.

Figure 2. Discovering the dynamics from partial observations. We use the Vanderpol system (see App. F) for this illustration. Top row:
the original attractor and the diffeomorphism obtained by the SVD decomposition of the Hankel matrix (see Sec. 5.3.1) without noise.
Third row: The same procedure is used to obtain the reconstructions with noisy, random, and sparse samples (the sparsity and the noise
increases from left to right). Second row: First, a sinc-INR is used to obtain a continuous reconstruction of the signal from discrete
samples, which is then used as a surrogate signal to resample measurements. Afterwards, the diffeomorphisms are obtained using those
measurements. As shown, sinc-INRs are able to recover the dynamics more robustly with noisy, sparse, and random samples.

Figure 3. Quantitative comparison on discovering the dynamics of latent variables using INRs vs classical methods.

7
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Figure 4. We use sinc-INRs to improve the results of the SINDy algorithm. The top block and the bottom block demonstrate experiments
on the Lorenz system and the Rossler system, respectively. In each block, the top row and the bottom row represent the results of the
baseline SINDy algorithm and the improved version (using INRs). As evident, INRs can be used to obtain significantly robust results.

Θ(Y) =


A(t1)
A(t2)

...
A(tN )


where

A(ti) =
[
y
2
1(ti), y

2
2(ti), . . . , sin(y1(ti)) cos(y2(ti)), . . . , yd(ti)y

2
2(ti)

]
.

SINDy then seeks to minimize the loss function:

LS = ||Ẏ −Θ(Y)Γ||22 + λ||Γ||21, (11)

where Γ is a sparsity matrix initialized randomly that en-
forces sparsity.

INRs introduce two significant architectural biases here.
When we train an INR using {tn}Nn=1 and {y(tn)}Nn=1 as
inputs and labels, it allows us to reconstruct a continuous
representation of y(t). By controlling the frequency param-
eter ω of sinc functions during training, we can filter out
high-frequency noise in y. Additionally, ẏ measurements
can be obtained by calculating the Jacobian of the network,
taking advantage of the smooth derivatives of sinc-INRs.
We then replace Ẏ and Y in Eq. 11 with values obtained
from the INR, keeping the rest of the SINDY algorithm
unchanged.

For our experiment, we employ the Lorenz and Rossler sys-
tems (refer to App. F for the equations that define these
systems), generating 1000 samples from 0 to 100 at inter-
vals of 0.1 to create Y. We introduce noise from a uniform
distribution η ∼ U(−n, n), varying n. As a baseline, we
compute Ẏ using spectral derivatives, a common method
in numerical analysis and signal processing for computing
derivatives through spectral methods. This involves trans-
lating the function’s derivative in the time or space domain
to a multiplication by iω in the frequency domain. The
reason for choosing spectral derivatives is empirical; After
evaluating various methods to compute Ẏ, including finite
difference methods and polynomial approximations, we em-
pirically selected spectral derivatives for the best baseline.
As a competing method, for each noise scale, we use a sinc-
INR to compute both Ẏ and Y as described. Utilizing the
SINDy algorithm for both scenarios, we obtain the govern-
ing equations for each system. The dynamics recovered
from these equations are compared in Fig. 4 and Table 2.
Remarkably, the sinc-INR approach demonstrates robust
results at each noise level, surpassing the baseline. For this
experiment, we use 4-layer INRs with each layer having a
width of 256.

It is also important to note that the ω parameter of the sinc
activation plays a key role in such signal reconstruction
tasks. If ω is too small, the model will not be able to capture
high-frequency informatino. On the other hand, if its too
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w = 0.3 w = 5

Figure 5. The top row and the bottom row depicts the SINDy re-
constructions obtained for the Lorenz system and the Rossler sys-
tem, respectively, using sinc-INRs. As ω is increased in the sinc
function, the INR allows more higher frequencies to be captured,
resulting in noisy reconstructions.

high, the INR allows unnecessarily higher frequencies to be
captured, resulting in noisy reconstructions. Fig. 5 depicts
this phenomenon.

5.4. Sinc activations for positional embeddings

We also discuss the possibility of using sinc activations for
positional embeddings. Recent research, notably (Zheng
et al., 2022), has provided compelling evidence that the
effectiveness of positional encodings need not be exclu-
sively tied to a Fourier perspective. They demonstrate that
non-Fourier embedding functions, such as shifted Gaussian
functions, can be effectively utilized for positional encoding.
These functions are characterized by having a sufficiently
high Lipschitz constant and the ability to generate high-rank
embedding matrices, attributes that are shown to achieve
results comparable to Random Fourier Feature (RFF) en-
codings.

Building on this, (Ramasinghe & Lucey, 2023) further con-
firmed that shifted Gaussian functions with spatially varying
variances can surpass the performance of RFF encodings.
Given that sinc functions also exhibit these desirable proper-
ties, they can be feasibly employed as shifted basis functions
for high-frequency signal encoding.

To explore this, we developed a sinc-based positional embed-
ding layer. For a 2D coordinate (x1, x2), each dimension is
embedded using sinc functions:

ψ1(x1) = [sinc(∥t1 − x1∥), sinc(∥t2 − x1∥), . . . ,
sinc(∥tN − x1∥)] (12)

ψ1(x2) = [sinc(∥t1 − x2∥), sinc(∥t2 − x2∥), . . . ,
sinc(∥tN − x2∥)] (13)

where t1, . . . , tN are equidistant samples in [0, 1]. Then,
these embeddings are concatenated to create the final em-
bedding as,

Ψ(x1, x2) = [ψ1(x1), ψ1(x2)]

In a comparative study using the DIV2K dataset for image
reconstruction, our sinc-based positional embedding layer
demonstrated superior performance to an RFF-based layer,
as shown Table 3:

PE layer PSNR
RFF 23.5
Sinc PE 26.4

Table 3. Comparison of the sinc psitional embedding layer against
RFF positional embeddings.

This result indicates that sinc-based positional embeddings
offer a promising alternative to RFF encodings.

6. Conclusion
In this work, we offer a fresh view-point on INRs using
sampling theory. Particularly, we focus on proposing a
unified framework to analyze the properties of activations
of INRs. In this vein, we show that sinc activations are
optimal for encoding signals in the context of INRs. We
conduct experiments on various modalities including image
reconstructions, NeRFs and dynamical systems to showcase
that these theoretical predictions hold at a practical level.
Further, we discuss the potential of using sinc activations
for positional encodings as well.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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ism. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 22(4):047510, 2012.
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A. Proofs of results in section 3.3
A.1. Preliminaries

We recall the definition of the space of square integrable functions on R, which we denote by L2(R). This is defined as the
vector space of equivalence classes of Lebesgue measurable functions on R that have finite L2 norm, which is defined via
the following inner product

⟨f, g⟩L2 =

∫
R
f · g. (14)

We will also make use of the localized space of square integrable functions on R denoted L2
loc(R). This space is defined as

the vector space of equivalence classes of Lebesgue measurable functions that have finite L2 norm over any compact subset
K ⊆ R.

Note that a function that is in L2(R) is automatically in L2
loc(R) but the converse is in general not true.

We will also need to make use of the Sobolev spaces of order r, denoted by W r
2 (R). We define this space as the space of

L2-functions that have r weak derivatives that are also in L2(R).

The space of square integrable sequences will be denoted by l2(R). This is the Hilbert space of square summable sequences
over the integers Z. That is, a sequence x(k)k∈Z ∈ l2(R) if each x(k) ∈ R and∑

k∈Z
|x(k)|2 <∞. (15)

Proof of prop. 3.3. The function sinc(x) is in L2(R) and furthermore the translates sinc(x − k), for k ∈ Z, form an
orthonormal basis of L2(R). Hence sinc(x) satisfies the first condition of a Riesz basis with A = B = 1.

The next step is to check that the partition of unity condition holds. In order to do this we will make use of the Poisson
summation formula (Stein & Shakarchi, 2011) that states that for a function f ∈ L2(R) we have∑

k∈Z
f(x+ k) =

∑
n∈Z

f̂(2πn)e2πinx. (16)

Using the Poisson summation formula, we can rewrite the partition of unity condition, see cond. 2 in Defn. 3.1, as∑
n∈Z

f̂(2πn)e2πinx = 1. (17)

We then observe that the Fourier transform of sinc(x) is given by the characteristic function χ
[−1,1]

on the set [−1, 1]. I.e.
χ

[−1,1]
takes the value 1 on [−1, 1] and 0 elsewhere (Stein & Shakarchi, 2011). The proof now follows by observing that

χ
[−1,1]

(2πn) = 1 for n = 0 and 0 for n ̸= 0. We then see that (17) is true for sinc(x) and thus sinc(x) forms a Riesz basis.

The proof that the Gaussian ϕ = e−x2/2s2 does not form a Riesz basis and only a weak Riesz basis follows the same strategy
as above. The first step is to note that translates of the Gaussian: ϕk = e−(x−k)2/2s2 all lie in L2(R) for any k ∈ Z. This
establishes the upper bound in condition 1 of the Riesz basis definition. To prove the lower bound in condition 1, we use an
equivalent definition of condition 1 in the Fourier domain given by

A ≤
∑
k∈Z

|ϕ̂(ξ + 2kπ)|2 ≤ B (18)

where ϕ̂ denotes the Fourier transform of ϕ and ξ the frequency variable in the Fourier domain. The equivalence of (18) with
the Riesz basis definition given in Defn. 3.1 follows by noting that Defn. 3.1 is translation invariant, see (Aldroubi et al.,
1994) for explicit details. We then observe that in the case of a Gaussian the term ϕ̂(ξ + 2kπ) is given by e−(ξ+2kπ)2s2/2,
which follows from the fact that the Fourier transform of a Gaussian is another Gaussian, see (Stein & Shakarchi, 2011).
The final observation to make is that the sum ∑

k∈Z
|ϕ̂(ξ + 2kπ)|2 ≥ |ϕ̂(ξ)|2 (19)
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for any ξ ∈ R and that we only need to consider ξ ∈ [0, 2π] from the symmetry of the Gaussian about the y-axis and the fact
that for any ξ outside of [0, 2π], there exists some k ∈ Z such that the translate ξ + 2kπ lies in [0, 2π]. The lower bound in
(18) then follows by taking 0 < A ≤ e−(2πs)2 .

In order to show that the Gaussian ϕ does not satisfy the partition of unity condition. We go through the formulation (17). In
this case this formula reads ∑

n∈Z
e−(2πn)2s2/2e2πinx = 1. (20)

We now observe it is impossible for this equality to hold due to the gaussian decay of the function e−(2πn)2s2/2. In particular
for x = 0 the condition becomes ∑

n∈Z
e−(2πn)2s2/2 = 1. (21)

The left hand side is clearly greater than 1, and thus we see that the condition cannot hold. This proves that a Gaussian
e−x2/2s2 can only define a weak Riesz basis.

In general, the Fourier transform of a wavelet is localized in phase and frequency, hence as in the case of the Gaussian above,
they will be in L2(R) and form a weak Riesz basis but in general they might not form a Riesz basis. Conditions have been
given for a wavelet to form a Riesz basis, see (Sun & Zhou, 2002), though this is outside the scope of this work.

In order to form a Riesz basis ReLU would have to be in L2(R), which it is not. On the other hand, given x ∈ R we have
that ∑

k∈Z
ReLU(x+ k) =

∑
k≥−x,k∈Z

ReLU(x+ k) =
∑

k≥−x,k∈Z
(x+ k) = ∞

showing that there is no way ReLU could satisfy the partition of unity condition.

A similar proof shows that translates of sine cannot form a Riesz/weak Riesz basis.

A.1.1. RESULTS ON THE ERROR KERNEL AND PUC CONDITION

We recall from sec. 3.3 that the understanding of the sampling properties of the shifted basis functions Fk comes down to
analysing the error kernel EF̃ ,F . The reason being was that the average error ϵs(T )2 is a good predictor of the true error
ϵs(T )

2. The main theorem that shows this is the following theorem from (Blu & Unser, 1999)

Theorem A.1. The L2 approximation error ϵs(Ω)2 can be written as

ϵs(Ω)
2 =

(∫ ∞

−∞
EF̃ ,F (Ωξ)|ŝ(ξ)|

2 dξ

2π

)1/2

+ ϵcorr (22)

where ϵcorr is a correction term negligible under most circumstances. Specifically, if f ∈W r
2 (Sobolev space of order r, see

appendix A) with r > 1
2 , then |ϵcorr| ≤ γΩr||s(r)||L2 where γ is a known constant and moreover, |ϵcorr| = 0 provided the

signal s is bandlimited to π
Ω .

Our goal in this section is to give a sketch of the proof of the following lemma, which relates the partition of unity condition
to the vanishing of the error kernel, following the reference (Blu & Unser, 1999).

Lemma A.2. If the family of shifted basis function {F (x− k)}k∈Z satisfies the condition∑
k∈Z

F (x+ k) = 1, ∀x ∈ R (23)

then limΩ→0EF̃ ,F → 0, for any F̃ ∈ S, where S is the space of Schwartz functions f whose Fourier transform satisfies

f̂(0) = 1.

We now sketch a proof showing that the vanishing of the error kernel in the limit T → 0 for a suitable test function F̃ is
equivalent to F satisfying the partition of unity condition. We will do this under two assumptions:

A1. The Fourier transform of F is continuous at 0.
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A2. The Fourier transform of F̃ is continuous at 0.

A3. The sampled signal s we wish to reconstruct is contained in W r
2 for some r > 1

2 . This assumption is needed so that the
quantity ϵcorr goes to zero as T → 0.

We remark that an explicit construction of F̃ will be given after the proof as during the course of the proof we will see what
conditions we need to impose for the construction of F̃ from F .

From the definition of the approximation operator, (3), we have that

lim
T→0

||f −AT (f)||2L2 = lim
T→0

∫ ∞

−∞
EF̃ ,F (Tω)|ŝ(ω)|

2 dω

2ω
(24)

where we remind the reader that the error kernel EF̃ ,F is given by equation (6). We now observe that if F̃ is a function such

that ˆ̃F is bounded and F satisfies the first Riesz condition, condition 1 from Defn. 3.1, then by definition it follows that
EF̃ ,F is bounded. Therefore in the above integral we can apply the dominated convergence theorem and compute

lim
T→0

||s−AT (s)||2L2 =

∫ ∞

−∞
lim
T→0

EF̃ ,F (Tω)|ŝ(ω)|
2 dω

2ω
(25)

= EF̃ ,F (0)

∫ ∞

−∞
|ŝ(ω)|2 dω

2ω
(26)

= EF̃ ,F (0)||s||
2 (27)

where to get the second equality we have used assumptions A1 and A2 above and to get the third equality we have used the
fact that the Fourier transform is an isometry from L2(R) to itself.

We thus see that the statement limT→0 ||s−QT (s)||2L2 = 0 is equivalent to EF̃ ,F (0) = 0. From (6) this is equivalent to

EF̃ ,F (0) = |1− ˆ̃
F (0)F̂ (0)|2 + | ˆ̃F (0)|2

∑
k ̸=0

|F̂ (2πk)|2 = 0. (28)

We see that EF̃ ,F (0) is a sum of positive terms and hence will vanish if and only if all the terms in the summands vanish.

Looking at the first summand we see that we need ˆ̃
F (0)F̂ (0) = 1, which can hold if and only if both factors are not zero.

We normalise the function F so that F̂ (0) =
∫
F (x)dx = 1. Thus the conditions that need to be satisfied are

ˆ̃
F (0) = 1 and

∑
k ̸=0

|F̂ (2πk)|2 = 0. (29)

We can rewrite the second condition in (29) as
F̂ (2πk) = δk (30)

where δ denotes the Dirac delta distribution. From this viewpoint we then immediately have that the second condition can
be written in the form ∑

k

F (x+ k) = 1 (31)

which is precisely the partition of unity condition.

The function F̃ is easy to choose. Let S denote Schwartz space of Schwartz functions in L2(R). It is well known that this
space is dense in L2(R) and that the Fourier transform maps S onto itself. Therefore, in the Fourier domain let S̃ denote
the set of Schwartz functions f such that f̂(0) ̸= 0. Note that S̃ is dense in L2(R) and elements in S̃ are continuous at the
origin. In order to define F̃ we simply take any element f ∈ S̃ and let F̃ = 1

f̂(0)
f . In fact, if we denote the space S to

consist of those Schwartz functions f whose Fourier transform satisfies f̂(0) = 1, then it is easy to see that S is dense in
L2(R). Thus the space S can be used as a test space for F̃ and is the defining test space for the approximation operator AT .
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A.2. What does the partition of unity condition mean?

In the previous sec. A.1.1 we saw that the vanishing of the error kernel EF̃ ,F in the limit T → 0 was equivalent to the
function F ∈ L2(R) satisfying the partition of unity condition. In this section we want to explain in a more qualitative
manner what the partition of unity condition means for reconstruction in the space L2(R).

Fix a function F ∈ L2(R), we have seen we can create the subspace V (F ) ⊆ L2(R). For the time being let us only assume
F satisfies the first condition of being a Riesz basis. Recall this means that:

A||a||2l2 ≤
∣∣∣∣∣∣∣∣∑

k∈Z
a(k)Fk

∣∣∣∣∣∣∣∣2 ≤ B||a||2l2 , ∀a(k) ∈ l2(R) (32)

Given an arbitrary function g ∈ V (F ) the above condition 32 means that when we express

g =

∞∑
k=−∞

a(k)F (x− k), (33)

the coefficients a(k) are uniquely determined. This follows because condition 32 implies that the translates F (x− k) form
a linearly independent set inside V (F ). Thus condition 1 is there to tell us how to approximate functions within V (F ). It
states that we can perfectly reconstruct any function in V (F ) using the translates {F (x− k}.

However, let us now assume that we are given a function g ∈ L2(R)− V (F ), that is g is a square integrable function that
does not reside in the space V (F ). A natural question that arises is can we we still use elements in the space V (F ) to
approximate g? Mathematically, what this question is asking is if we are given a very small ϵ > 0 can we find a function
G ∈ V (F ) such that

||G− g||L2 < ϵ? (34)

This is precisely where the partition of unity condition comes in:

∑
k∈Z

F (x+ k) = 1, ∀x ∈ R(PUC) (35)

Mathematically, the reason the partition of unity condition is able to bridge the gap between V (F ) and L2(R) is that if we
have an arbitrary function g ∈ L2(R)− V (F ), then we can write

g = g −G+G (36)

for any function G ∈ V (F ). The question now is does there exist a G ∈ V (F ) that makes the quantity g −G very small in
the L2-norm? In other words, given a very small ϵ > 0 can we make g −G smaller than ϵ in the L2-norm.

The way to answer this question is to first note that there is a simple way to try to construct such a G. Namely, project g
onto the subspace V (F ) forming the function P(g) ∈ V (F ). Then look at the difference

g − P(g) (37)

and ask can it be made very small? In general this technique does not work. However, there is another projection. Namely,
we can project g onto the Ω-scaled signal space VΩ(F ) for Ω > 0 forming PΩ(g) and ask if the difference g − PΩ(g) can
be made very small. For the definition of the Ω-scaled signal space VΩ(F ) please see sec. 3.3.

The partition of unity condition says that there exists a Ω > 0 such that the difference

g − PΩ(g) (38)

can be made very small.
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Thus the second condition from the Riesz basis definition, the partition of unity condition, is telling us how to approximate
functions outside of V (F ) using the translates {F (x−k} and the scaled signal spaces VΩ. It says that we cannot necessarily
perfectly reconstruct a function outside of V (F ) but we can reconstruct it up to a very small error using the Ω-scaled signal
space VΩ(F ). The partition of unity condition bridges the gap between V (F ) and L2(R) via the scaled signal spaces VΩ(F )
telling us that reconstruction is possible only in VΩ(F ) for some Ω > 0.

For a full mathematical proof of how the partition of unity does this we kindly ask the reader to consult sec. A.1.1.

Let us summarize what we have discussed:

1. The first condition of a Riesz basis is there so that we know that translates of F namely {F (x − k} can be used to
uniquely approximate functions in the signal space V (F ). In this case, theoretically the translates {F (x− k} provide
a perfect reconstruction.

2. The second condition of a Riesz basis, namely the partition of unity condition, is there so that we know how to
approximate functions that do not lie in V (F ). It says that in order to bridge the gap between V (F ) and L2(R) we
need to do so by going through an Ω-scaled signal space VΩ(F ) for a Ω > 0. In the scaled signal space perfect
reconstruction is not possible but we can reconstruct up to a very small error.

A.2.1. PROOFS OF MAIN RESULTS IN SECTION 3.3

Proof of theorem 3.4. We first note that by condition 1 in Defn. 3.1. The space V (F ) is a subspace of L2(R). Therefore,
the space V (F ) with the induced L2-norm forms a well-defined normed vector space.

Since g ∈ V (F ) we can write g =
∑∞

k=−∞ a(k)F (x− k) in L2(R). This means that the difference

g −
∞∑

k=−∞

a(k)F (x− k) = 0 ∈ L2(R) (39)

and in particular that the partial sums

Sn :=

n∑
k=−n

a(k)F (x− k) (40)

converge in L2 to g as n→ ∞. Writing this out, this means that given any ϵ > 0, there exists an integer k(ϵ) such that

∣∣∣∣∣∣∣∣g − k(ϵ)∑
k=−k(ϵ)

a(k)F (x− k)

∣∣∣∣∣∣∣∣
L2

< ϵ. (41)

We can then define a 2-layer neural network f with n(ϵ) = 2k(ϵ) + 1 neurons as follows: Let the weights in the first
layer be the constant vector [1, · · · , 1]T and the associated bias to be the vector [−k(ϵ),−k(ϵ) + 1, . . . , k(ϵ)]T . Let the
weights associated to the second layer be the vector [a(−k(ϵ)), a(−k(ϵ) + 1), · · · , a(k(ϵ))] and the associated bias be 0.
These weights and biases will make up the parameters for the neural network f and in the hidden layer we take F as the
non-linearity.

Applying (41) we obtain that
||f(θ)− g||2L < ϵ. (42)

Proof of prop. 3.7. The proof of this proposition will be in two steps. The reason for this is that we need to use Thm. A.1
and in doing so we want to know that the error ϵcorr can be made arbitrarily small. Thm. A.1 shows that if we assume our
signal s ∈W 1

2 (R), then we have the bound
ϵcorr ≤ γΩ||s(1)||L2 (43)

where s(1) denotes the first Sobolev derivative, which exists because of the assumption that s ∈W 1
2 .
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We thus see that if we choose Ω > 0 sufficiently small we can make ϵcorr < ϵ
2 , by (43). Furthermore, by lemma A.2 we

have that the average approximation error ϵ(Ω) < ϵ
2 for Ω sufficiently small. Therefore, by taking fΩ = AΩ(s) ∈ VΩ(F )

the proposition follows for the signal s ∈W 1
2 .

As we have only proved the proposition for signals in s ∈ W 1
2 (R) we are not done. We want to prove it for signals

s ∈ L2(R). This is the second step, which proceeds as follows.

We start by observing that AΩ is a bounded operator from L2(R) into L2(R), see (Blu & Unser, 1999). Let T = ||AΩ||op
denote the operator norm of AΩ. We also use the fact that C∞

c (R) is dense in L2(R), see (Stein & Shakarchi, 2011).

Then by density of C∞
c (R) in L2(R) we can find an f ∈ C∞

c (R) such that

||f − s||L2 < min

{
ϵ

3T
,
ϵ

3

}
(44)

||f − s||L2 < η
3T . Furthermore, since f ∈ C∞

c it lies in W 1
2 . By the above we have that there exists Ω > 0 such that

||f −AΩ(f)||L2 < ϵ
3 . We then estimate:

||s−AΩ(s)|| = ||s− f + f −AΩ(f) +AΩ(f)−AΩ(s)||L2 (45)
≤ ||s− f ||L2 + ||f −AΩ(f)||L2 + ||AΩ(f)−AΩ(s)||L2 (46)
≤ ||s− f ||L2 + ||f −AΩ(f)||L2 + ||AΩ||op||s− f ||L2 (47)

≤ ϵ

3
+
ϵ

3
+
ϵ

3
(48)

= ϵ (49)

where (46) follows from the triangle inequality and (47) from (44). This completes the proof.

Proof of Thm. 3.8. By Prop. 3.7 there exists an Ω > 0 sufficiently small and an fΩ ∈ VΩ(F ) such that

||s− fΩ||L2 <
ϵ

2
. (50)

As fΩ lies in VΩ(F ) we can write fΩ =
∑∞

k=−∞ aΩ(k)F (
1
Ω (x− Ωk)). This implies that the partial sums

Sn =

n∑
k=−n

aΩ(k)F (
1

Ω
(x− Ωk)) (51)

converge under the L2-norm to fΩ as n → ∞. By definition of convergence this means given any ϵ > 0 there exists an
integer k(ϵ) > 0 such that ∣∣∣∣∣∣∣∣fΩ −

k(ϵ)∑
k=−k(ϵ)

aΩ(k)F

(
1

Ω
(x− Ωk)

)∣∣∣∣∣∣∣∣ < ϵ

2
. (52)

We define a neural network N with n(ϵ) = 2k(ϵ) + 1 neurons in its hidden layer as follows. The weights in the first layer
will be the constant vector [1, . . . , 1]T and the associated bias will be the vector [−Ωk(ϵ),−Ωk(ϵ) + 1, . . . ,Ωk(ϵ)]T . The
weights associated to the second layer will be [a(−k(ϵ)), . . . , a(k(ϵ))] and the bias for this layer will be 0. These weights
and biases will make up the parameters θ for the neural network. In the hidden layer we take as activation the function FΩ.
With these parameters and activation function, we see that

N (θ)(x) =

k(ϵ)∑
k=−k(ϵ)

aΩ(k)F

(
1

Ω
(x− Ωk)

)
. (53)

We then have that (52) implies that

||N (θ)− fΩ||L2 <
ϵ

2
. (54)
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Combining this with (50) we have

||N (θ)− s||L2 = ||N (θ)− fΩ + fΩ − s||L2 (55)
≤ ||N (θ)− fΩ||L2 + ||fΩ − s||L2 (56)

≤ ϵ

2
+
ϵ

2
(57)

= ϵ (58)

where (56) follows from the triangle inequality and (57) follows by using (50) and (54). The theorem has been proved.

B. Extensions of the theory
B.1. Extending the theory to deep networks

In this section we will extend our main theorem 3.8 to the setting of deep networks. Our results will be proved for signals
lying in L2(K) where K is a compact subset of R. This is not a strong assumption as data sets are always finite and hence
are always contained in some compact set K. Furthermore, we will be assuming that the Riesz bases we deal with will all
be generated by a continuous function F . As many practical deep networks employ a continuous activation function this
assumption is still useful for such practical deep networks.

We start with the following lemma.

Lemma B.1. Let F be a continuous function that generates a Riesz basis V (F ). Given any compact set K, let ϕK(x)
denote the function that is the affine map Ax+ b, for some A, b ∈ R, over K and zero outside. Then for any ϵ > 0, we have
that there exists an Ω > 0 and an f ∈ VΩ(F ) such that

||f − ϕ||L2(K) < ϵ.

Proof. We first observe that ϕK ∈ L2(R). This means we can apply Prop. 3.7 to find an Ω > 0 and an f ∈ V (F ) such that

||f − ϕ||L2(R) < ϵ.

However, note that ϕK vanishes outside of K. Thus we must have that

||f − ϕ||L2(K) < ϵ.

We will need one more lemma before we prove the main theorem for deep networks.

Lemma B.2. Let F be a continuous function that generates a Riesz basis V (F ). Fix a compact set K and consider the
maps ϕn defined by x 7→ x− n over K and is zero outside K, where n ∈ Z. If for a fixed n ∈ Z there exists an Ω > 0 and
a fn ∈ VΩ(F ) such that

||ϕn − fn||L2(R) < ϵ

for some ϵ > 0 then for any other k ∈ Z such that k ̸= n, there exists an fk ∈ VΩ(F ) such that

||ϕk − fk||L2(R) < ϵ

Proof. The proof of the lemma starts by observing that over the compact set K, the graphs of the functions ϕk for k ∈ Z are
all parallel. Fix k ∈ Z such that k ̸= n. Write

fn

∞∑
j=−∞

aj(n)FΩ(x− Ωj).

Since ϕk is parallel to ϕn over K and equals ϕn outside of K. For those points x − Ωj that lie inside K we can simply
increase or decrease the amplitude aj(n), depending on whether phik(x) is bigger or smaller than ϕn(x), and obtain a
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representation of the basis functions FΩ(x − Ωj) over K that approximate ϕk over K. For those points x − j that lie
outside of K we don’t change the amplitude aj(n) of the respective basis function FΩ(x−Ωj). This creates a new function
fk ∈ VΩ(F ) such that

||ϕk − fk||L2(R) < ϵ.

The next step is to prove the an analogue of Thm. 3.8 for a deep network that has two hidden layers. The general case of k
hidden layers then follows by an induction argument.

Theorem B.3. Let K be a fixed compact set, s ∈ L2(K), and ϵ > 0. Assume the shifted functions {F (x− k)}k∈Z form a
Riesz basis for V (F ) where F is a continuous function. Then there exists a deep INR N , with two hidden layers with n(ϵ)1
neurons in the first hidden layer and n(ϵ)2 neurons in the second hidden layer, parameter set θ, and an Ω1 > 0, Ω2 > 0,
such that

||N (θ)− s||L2(K) < ϵ

where N (θ) employs FΩ1
and FΩ2

as its activation in the first and second hidden layers respectively, where FΩ(x) =
F ( 1

Ωx).

Proof. Extend s by zero to all of R to obtain a function s̃ ∈ L2(R). We then apply Thm. 3.8 to obtain a shallow Ns that can
approximate s̃ on R in the L2 norm with activation FΩ2

where Ω2 > 0. That is,

||Ns − s̃||L2(R).

We will denote the number of neurons in the hidden layer of Ns by 2n2 and write

Ns(x) =

n2∑
k=−n2

bkFΩ2
(x− Ω2k).

Thus the parameters of Ns are given by: [1, · · · , 1]T as the weight matrix of the hidden layer and
[(−Ω1)(−n2), (−Ω1)(−n2 + 1), · · · , (−Ω1)(n2)] as the bias of the hidden layer, [b−n2 , · · · , bn2 ] as the weight matrix of
the final layer and [0] as the bias of the final layer.

We then observe that we can define 2n2 functions ϕk given by x 7→ x− Ωk over the compact set K and is zero outside K,
for k an integer such that −n2 ≤ k ≤ n2.

Applying Lem. B.2 for each k and any ϵ̃ > 0 we can find an Ω1 > 0 and fk ∈ VΩ1
(F ) such that

||ϕk − fk||L2(R) < ϵ̃.

Each fk is an infinite series. Therefore, we can find a n1 such that if we let f̃k denote the first 2n1 sums of fk so that

f̃k =

n1∑
j=−n1

aj(k)FΩ1(x− Ω1j)

and so that
||ϕk − f̃k||L2(R) < ϵ.

We now observe that since f̃k is ϵ close to ϕk in L2 by taking ϵ even smaller if necessary we have that f̃k is ϵ close to ϕk in
the pointwise norm. So that we have

|ϕk(x)− f̃k(x)| < ϵ

for all x ∈ K.

We can now build the required deep network with 2 hidden layers. The parameters θ of the deep network are defined as
follows: The first layer of the network will have 2n1 neurons. The weight matrix for the first hidden layer will be a 2n1 × 1
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matrix given by W1 = [1, · · · , 1]T with bias b1 = [−Ω1(−n1), · · · − Ω1(n1)]. The activation function in this layer will be
FΩ1 .

The second hidden layer will have 2n2 neurons. The weight matrix will be a 2n2 × 2n1 matrix given by

W2 =

a−n1(−n2) a−n1+1(−n2) · · · an1(−n2)
...

...
...

...
a−n1

(n2) a−n1+1(n2) · · · an1
(n2)

 with bias b2 = [0, · · · , 0]T and activation FΩ2
.

Finally, the final layer has weight matrix a 1× n2 matrix given by W3 = [b−n2 , · · · , bn2 ] with bias b3 = [0].

This defines a deep network N . We can check that it satisfies the theorem. First observe that for x ∈ K we have W1x+ b1 is
given by [x−Ω1(−n1), · · · , x−Ω1(n1)]

T . Applying the activation FΩ1
gives the vector [FΩ1

(x−Ω1(−n1)), · · · , FΩ1
(x−

Ω1(n1))]
T . When we apply W2 and add b2 to this vector we obtain the vector:


∑n1

j=−n1
aj(−n2)FΩ1

(x− Ω1j)
...∑n1

j=−n1
aj(n2)FΩ1

(x− Ω1j)

. Now

observe that this latter vector is ϵ close in pointwise norm to the vector

ϕ−n2

...
ϕn2

. Therefore over the compact set K we

get that the vector

FΩ2(
∑n1

j=−n1
aj(−n2)FΩ1(x− Ω1j))

...
FΩ2(

∑n1

j=−n1
aj(n2)FΩ1(x− Ω1j))

 is ϵ close to

FΩ2
(x− Ω2(−n2))

...
FΩ2(x− Ω2(n2))

 where we have used the

continuity of F .

Applying the matrixW3 and adding the bias b3 we obtain that the number
∑n2

k=−n2
bk

(
FΩ2

(
∑n1

j=−n1
aj(k)FΩ1

(x−Ω1j))

)
is ϵ close to the number

∑n2

k=−n2
bkFΩ2(x− Ω2k). As all functions in question are continuous, and the set K is compact it

follows that the two functions are ϵ close in the uniform norm and hence in the L2(K) norm. It then follows that we have
the estimate

||N (x; θ)− s||L2(K) < ϵ

and the proof is finished.

The previous theorem B.3 established that there exists a deep network with 2 hidden layers and activations defined by a
Riesz basis function F that can approximate an L2 signal over any compact set K.

The idea of the proof was simple. The first step is to approximate s by a shallow network and then to approximate linear
functions x−n for some n ∈ Z using elements in a scaled signal space. For general deep networks the process repeats itself.
For example if we want to approximate the signal s with a deep network with 3 hidden layers, we start by approximating the
signal over K with a shallow network, then approximate the linear functions x − n over K with a deep network with 2
hidden layers. Putting together these two approximations, using the continuity of F gives the desired result.

Theorem B.4. Let K be a fixed compact set, s ∈ L2(K), and ϵ > 0. Assume the shifted functions {F (x− k)}k∈Z form
a Riesz basis for V (F ) where F is a continuous function. Then for any k > 1, there exists a deep INR N , with k hidden
layers with n(ϵ)j neurons in the jth hidden layer, parameter set θ, and Ωj > 0 for 1 ≤ j ≤ k such that

||N (θ)− s||L2(K) < ϵ

where N (θ) employs FΩj and as its activation in the jth hidden layer, where FΩj (x) = F ( 1
Ωj
x).

Proof. The proof is by induction with the case k = 2 being done in Thm. B.3.

So suppose the theorem is true for deep networks with k − 1 hidden layers. As in the proof of Thm. B.3 we start by
extending s by zero outside K denoted s̃ and then constructing a shallow network Ns that is ϵ close to s̃ in the L2(R) norm.
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We will denote the number of neurons in the hidden layer of Ns by 2nk and write

Ns(x) =

nk∑
j=−nk

bjFΩk
(x− Ωkj).

The second step is to use Thm. B.3 and the induction hypothesis to build 2nk deep networks with k1 hidden layers that
approximate the function x− j over K for each −nk ≤ j ≤ nk.

Using the fact that F is continuous we then put these two networks together and obtain the required k hidden layer deep
network.

B.2. Other basis functions

This work has been considered with the application of sampling theory to the understanding of optimum activation functions
for neural network interpolation. Our focus has primarily been on those functions that can generate a Riesz basis or a weak
Riesz basis. However, as is well known in interpolation theory there are several other basis functions that can theoretically
perform interpolation over various function spaces.

Hermite basis functions: An example is given by Hermite polynomials which are defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

These polynomials form a basis for the space L2(µ) where µ is the Gaussian measure e−x2

dx. We tested these basis
functions against shifted sinc basis functions on an INR in an image regression task. We compared a sinc activated INR
with a Hermite activated INR to regress an image from the DIV2K dataset. We found that using a sum of degree k Hermite
polynomials for 1 ≤ k ≤ 4 performed the best. In this application the sinc INR outperforms the Hermite INR as shown in
table 4.

PSNR (dB)
Sinc 31.2

Hermite 25.5

Table 4. Comparison of a sinc INR with a Hermite INR on an image regression task.

Fourier basis: Another example of a common basis function used in the literature is the Fourier basis defined by sums of
sin(nθ) and cos(nθ). Note that as cos(x) = sin(x+ π/2) these basis functions are covered by sin activated INRs which
we have already shown do not outperform sinc in the experiments.

C. Relation to Universal Approximation
Thms. 3.4 and 3.8 can be interpreted as universal approximation theorems for signals in L2(R). The classic universal
approximation theorems are generally for functions on bounded domains (Cybenko, 1989). In 1992 W. A Light extended
those results on bounded domains to a universal approximation for continuous function on Rn by sigmoid activated networks
(Light, 1992). His result can also be made to hold for sinc activated networks, and since the space of continuous functions
is dense in L2(R) his proof easily extends to give a universal approximation result for sinc activated 2 layer networks for
signals in L2(R). Thus Thm. 3.8 can be seen as giving a different proof of W.A. Light’s result.

Although it seems like such results have been known through classical methods, we would like to emphasize that the
importance of Thm. 3.8 comes in how it relates to sampling theory. Given a signal s ∈ L2(R) that is bandlimited, the
Nyquist-Shannon sampling theorem is a classical sampling theorem, see (Marks, 2012), that allows signal reconstruction
using shifted sinc functions while explicitly specifying the coefficients of these shifted sinc functions. These coefficients
correspond to samples of the signal, represented as s(n/2Ω). In cases where the signal is not bandlimited, Prop. 3.7 still
enables signal reconstruction via shifted sinc functions, albeit without a closed formula for the coefficients involved. This is
precisely where Thm. 3.8 demonstrates its significance. The theorem reveals that the shifted sinc functions constituting the
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approximation can be encoded using a two-layer sinc-activated neural network. Notably, this implies that the coefficients
can be learned as part of the neural network’s weights, rendering such a sinc-activated network exceptionally suited for
signal reconstruction in the L2(R) space. In fact, Thm. 3.8 shows that one does not need to restrict to sinc functions and
that any activation that forms a Riesz basis will be optimal.

D. Relation to Filtering
In this section, we place our work within the context of filtering, a common technique for removing noise from signals.
Real-world signals are often noisy, so when training a signal with noise using an INR, it is natural to ask if the INR
can distinguish between the high-frequency components of the signal and the noise. Each sinc function has a bandwidth
hyperparameter that determines the frequencies it contains (via its Fourier transform). Since noise typically consists of very
high frequencies, ensuring that the bandwidth hyperparameter of the sinc activation in the INR is not too high will prevent
the INR from capturing the noise.

To implement this practically across different signal modalities, the bandwidth hyperparameter can be made learnable.
Additionally, a regularizer can be added to the loss function to constrain the learnable bandwidth to stay below a certain
threshold frequency corresponding to the noise frequency. The drawback of this approach is that it would require more
training iterations, as the specific frequencies present in the noise are not known a priori.

E. Taken’s embedding theorem
Taken’s embedding theorem is a delay embedding theorem giving conditions under which the strange attractor of a dynamical
system can be reconstructed from a sequence of observations of the phase space of that dynamical system.

The theorem constructs an embedding vector for each point in time

x(ti) = [x(ti), x(ti + n∆t), . . . , x(ti + (d− 1)n∆t)]

Where d is the embedding dimension and n is a fixed value. The theorem then states that in order to reconstruct the dynamics
in phase space for any n the following condition must be met

d ≥ 2D + l

where D is the box counting dimension of the strange attractor of the dynamical system which can be thought of as the
theoretical dimension of phase space for which the trajectories of the system do not overlap.

Drawbacks of the theorem: The theorem does not provide conditions as to what the best n is and in practise when D is not
known it does not provide conditions for the embedding dimension d. The quantity n∆t is the amount of time delay that is
being applied. Extremely short time delays cause the values in the embedding vector to almost be the same, and extremely
large time delays cause the value to be uncorrelated random variables. The following papers show how one can find the time
delay in practise (Kim et al., 1999; Small, 2005). Furthermore, in practise estimating the embedding dimension is often
done by a false nearest neighbours algorithm (Kennel et al., 1992).

Thus in practise time delay embeddings for the reconstruction of dynamics can require the need to carry further experiments
to find the best time delay length and embedding dimension.

F. Dynamical equations
Lorentz System: For the Lorenz system we take the parameters, σ = 10, ρ = 28 and β = 8

3 . The equations defining the
system are:

dx

dt
= σ(−x+ y) (59)

dy

dt
= −xz + ρx− y (60)

dz

dt
= −xy − βz (61)
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Van der Pol Oscillator: For the Van der Pol oscillator we take the parameter, µ = 1. The equations defining the system are:

dx

dt
= µ(x− 1

3
x3 − y) (62)

dy

dt
=

1

µ
x (63)

Rössler System: For the Rössler system we take the parameters, a = 0.2, b = 0.2 and c = 5.7. The equations defining the
system are:

dx

dt
= −(y + z) (64)

dy

dt
= x+ ay (65)

dz

dt
= b+ z(x− c) (66)
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