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ABSTRACT

Traditional embeddings represent datapoints as vectors, which makes similarity
easy to compute but limits how well they capture hierarchy, asymmetry and com-
positional reasoning. We propose a fundamentally different approach: represent-
ing concepts as learnable linear subspaces. By spanning multiple dimensions,
subspaces can model broader concepts with higher-dimensional regions and nest
more specific concepts within them. This geometry naturally captures generality
through dimension, hierarchy through inclusion, and enables an emergent struc-
ture for logical composition, where conjunction, disjunction, and negation are
mapped to linear operations. To make this paradigm trainable, we introduce a
differentiable parameterization via soft projection matrices, allowing the effec-
tive dimension of each subspace to be learned end-to-end. We validate our ap-
proach on hierarchical and natural language inference benchmarks. Our method
not only achieves state-of-the-art performance but also provides a more inter-
pretable, geometrically-grounded model of entailment. Remarkably, the ability
to perform logical composition with the learned concepts arises naturally from
standard training objectives, without any direct supervision.

1 INTRODUCTION

Dense vector embeddings have become the bedrock of modern machine learning, underpinning
systems from language models (LMs) (Devlin et al., 2019; Reimers & Gurevych, 2019) and vision-
language models (VLMs) (Radford et al., 2021; Li et al., 2022), to retrieval augmented generation
(RAG) systems (Lewis et al., 2020). By representing words, documents and images as points in
high-dimensional space, these representations excel at capturing similarities in a scalable manner.

Despite their success, the efficacy of vector embeddings is limited by a geometric mismatch: the
flat, symmetric structure of Euclidean space is ill-suited to the hierarchical and asymmetric nature
of language and logic (Horn, 1972). Due to its symmetry, metrics like cosine similarity cannot cap-
ture directional relationships such as entailment or hyponymy; a high similarity between “dog” and
“animal” fails to convey that one is a subtype of the other. Moreover, vector spaces lack native op-
erators for logical conjunction and negation. This forces models to default to additive composition,
effectively treating phrases as a bag-of-words. This explains why queries with negations often fail,
with embeddings including the very concept meant for exclusion. Recent work confirms these flaws
empirically, showing that even advanced models disregard logical connectives (Yuksekgonul et al.,
2023; Moreira et al., 2025), requiring ad-hoc solutions (Weller et al., 2024; Gokhale et al., 2020;
Zhang et al., 2025; Alhamoud et al., 2025). This inability to interpret nuanced instructions motivates
our search for a framework that can natively represent these crucial relations.

We propose an alternative that extends Euclidean vector representations: instead of mapping a con-
cept to a single vector, we embed it as a linear subspace of Rd i.e., the span of a set of basis vectors.
This enables an interpretable geometric understanding of conceptual properties. First, generality
and specificity are captured by the subspace dimension, with higher-dimensional subspaces denot-
ing broader concepts e.g., animal vs. dog. Secondly, hierarchy is naturally modeled by subspace
inclusion, where a more specific concept’s subspace is contained within a more general one. Fi-
nally, logical operations are directly mapped to linear-algebraic operations: conjunction as subspace
intersection, disjunction as linear sum (span), and negation as the orthogonal complement (Fig. 1).
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Figure 1: We embed concepts as linear subspaces of Rd (left). These representations enable logical
operations: subspace intersections e.g., “man on a boat” and “is fishing” (middle left); negation and
composition e.g., orthogonal complement of “of man on a boat” and “is fishing” (middle right) and
linear sums of subspaces, which yield a higher variance of instances (right).

A key challenge in learning subspaces is that dimensionality, or the number of basis vectors, is
discrete and thus non-differentiable. Our technical contribution overcomes this by introducing a dif-
ferentiable parameterization via soft projection matrices. Instead of selecting an integer dimension,
we learn a set of vectors and modulate their individual importance, allowing each subspace to add
or drop basis vectors as needed during training. Crucially, this approach remains grounded in Eu-
clidean geometry, preserving full compatibility with standard training pipelines, Euclidean metrics
and loss functions. This allows for seamless integration with highly efficient, dot-product-based
search libraries Douze et al. (2025); Johnson et al. (2019), ensuring our method is scalable.

Beyond quantitative performance, our approach yields representations with emergent properties that
are not explicitly optimized for. Remarkably, by training solely on entailment, our model learns
embeddings that are inherently amenable to logical composition, supporting operations like con-
junction, disjunction, and negation of queries. We also observe a strong correlation between the
learned dimensionality of a subspace and the semantic generality of the concept it represents. This
provides an interpretable measure of a concept’s specificity that can be leveraged for compression.

We validate our framework across standard lexical and textual entailment benchmarks. Our method
sets a new state of the art on WORDNET reconstruction, shows a stronger correlation with human
judgments on HyperLex, and surpasses strong bi-encoder baselines on SNLI, demonstrating robust
performance and generalization.

In summary, our key contributions are:

• A novel and differentiable method for learning subspace representations of language, fea-
turing a data-dependent dimensionality that captures semantic specificity.

• An emergent structure for logical composition over natural language. We show that fun-
damental logical operations, such as conjunction, disjunction, and negation, arise naturally
from standard training objectives, without any explicit logical supervision.

• A demonstration that these expressive representations remain tractable for large-scale re-
trieval by preserving compatibility with standard, highly optimized vector search pipelines.

2 RELATED WORK

Most embedding methods, from Word2Vec (Mikolov et al., 2013) to multimodal models such as
CLIP (Radford et al., 2021), rely on a simple idea: datapoints are represented as vectors in a high-
dimensional metric space, where similarity is encoded by inner products or distances.

Limitations of Vector Representations. This prevalent vector-based view, while powerful for
capturing co-occurrence patterns, exhibits limitations: the inner product cannot capture asymmetric
relationships, such as entailment or hierarchies, without additional structural constraints or complex
transformations. Recent empirical analyses have shed light on how language and vision-language
encoder models represent hierarchies (Park et al., 2025; He et al., 2024) and logical constructs.
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Remarkably, instead of capturing formal logical structure, vector embeddings behave akin to bag-
of-words representations (Yuksekgonul et al., 2023), failing to differentiate between positive and
negated concepts (Gokhale et al., 2020; Singh et al., 2024; Moreira et al., 2025; Alhamoud et al.,
2025). This limitation has motivated the creation of enhanced datasets and benchmarks with explicit
negations (Quantmeyer et al., 2024; Weller et al., 2024; Zhang et al., 2025).

Hyperbolic Embeddings. Hyperbolic embeddings (Nickel & Kiela, 2018; 2017; Ganea et al.,
2018a) exploit the exponential growth of hyperbolic space to model hierarchical structures com-
pactly and encode transitive inclusion (Bai et al., 2021). Applications include hierarchical classifi-
cation (Dhall et al., 2020), logical prediction (Xiong et al., 2022), and entailment reasoning (Poppi
et al., 2025). However, they require complex Riemannian optimization, lack native logical reason-
ing, and struggle with non-hierarchical relations (Sala et al., 2018; Moreira et al., 2024).

Partial Order Embeddings. Partial order embeddings (Vendrov et al., 2016; Li et al., 2017) map
entities into partially ordered spaces. Variants include positive operator embeddings (Lewis, 2019),
probabilistic approaches such as Gaussians, mixtures, Beta distributions, box lattices (Vilnis & Mc-
Callum, 2015; Athiwaratkun & Wilson, 2018; Choudhary et al., 2021; Ren & Leskovec, 2020; Vilnis
et al., 2018; Li et al., 2018; Ren et al., 2020), and entailment cones (Zhang et al., 2021; Pal et al.,
2025; Ganea et al., 2018b; Yu et al., 2024). While effective for entailment, these methods typically
lack principled logical operators, relying on heuristic approximations for disjunction and negation.
Our subspace embeddings overcome this limitation. While subspace inclusion similarly models
entailment, the key advantage is its algebraic closure: the intersection, sum, and orthogonal comple-
ment provide principled representations for conjunction, disjunction, and negation, respectively.

3 SUBSPACE REPRESENTATIONS

This paper presents a paradigm shift in embeddings: rather than representing a datapoint as a single
vector x ∈ Rd, we represent it as a subspace S ⊆ Rd. To illustrate, consider Fig. 1. Instead of the
traditional formulation, where the concept “man on a boat” is embedded as a single direction, we
map it to x1 and x2. Each vector encodes a variation of the underlying concept: x1 might represent a
“man on a boat that is fishing” while x2 represents a “man on a boat that is not fishing”. The concept
“man on a boat” is then represented by the subspace Sman on a boat = span(x1,x2), encompassing all
instances that align with either x1, x2, or any linear combination thereof, representing the space of
all possible instances (Van Rijsbergen, 2004; Ganter & Wille, 2024).

Formally, we parameterize a subspace S as the span of n ≥ d learnable vectors X =
[x1 . . . xn] ∈ Rd×n. Let the thin singular value decomposition of X be UΣV ⊤, with
U ∈ Rd×r and U⊤U = Ir. Then U is an orthonormal basis for the rank-r subspace S. We
can write an equivalent representation of S through its orthogonal projection operator,

P := X(X⊤X)†X⊤ = UU⊤ ∈ Rd×d, (1)

where † is the pseudoinverse. This projector is symmetric (P⊤ = P ), idempotent (P 2 = P ), and
its trace reveals the rank of S i.e.,

Tr(P ) = Tr(U⊤U) = Tr(Ir) = r. (2)

Subspace Similarity and Inclusion. Cosine similarity between vectors can be generalized to sub-
spaces Si, Sj , with orthonormal basis Ui, Uj , respectively, via their projection operators Pi and Pj ,

sim(Pi,Pj) := Tr(PiPj) = ∥U⊤
i Uj∥2F =

m∑
k=1

cos2(θk), (3)

where {θk}mk=1 are the principal angles between Si and Sj and m = min{rank(Si), rank(Sj)}.
Each θk is the smallest possible angle between a unit vector in Si and a unit vector in Sj , subject
to orthogonality constraints on previously chosen directions. Thus, sim(Pi,Pj) measures the total
squared alignment across the m most comparable directions of the two subspaces, or their degree
of overlap. This recovers standard cosine similarity as a special case: if Pi and Pj are rank-one
projectors onto unit vectors xi and xj , then sim(Pi,Pj) = (x⊤

i xj)
2 = cos2(∠(xi,xj)).
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An immediate consequence of Eqs. (2) and (3) is that we can quantify subspace inclusion via a
normalized inclusion score (NIS) (Da Silva & Costeira, 2009):

NIS(Pj | Pi) :=
sim(Pi,Pj)

Tr(Pi)
∈ [0, 1]. (4)

This score attains 1 if and only if subspace i is contained within subspace j. This formulation allows
for an intuitive interpretation as a Bayes-like conditional probability: the probability of an instance
belonging to subspace j given it belongs to i.

3.1 ALGEBRAIC STRUCTURE OF SUBSPACES

The power of subspaces lies in their algebraic structure, which natively supports interpretable opera-
tions between concepts. Using projection operators lets us map logical relations such as conjunction
(∧), disjunction (∨) and negation (¬) into the subspace operations of intersection (∩), linear sum
(+) and orthogonal complement (⊥), respectively. These have tractable linear-algebraic represen-
tations, thus addressing the limitations of vector embeddings discussed in §1.

Conjunction (i ∧ j). Corresponds to the intersection of subspaces Si∧j = Si ∩ Sj . Any vector in
Si∧j is an element of Si and Sj . The product PiPj is an orthogonal projection onto Si ∩ Sj if and
only if Pi and Pj commute. In the general case, Pi∧j = limn→∞(PiPj)

n. In Fig. 1, the intersection
Sman on a boat = span(x1,x2) and Sis fishing = span(x1,x3) yields Sman fishing on a boat = span(x1).

Disjunction (i∨j). Corresponds to the span (linear sum) of subspaces: Si∨j = Si+Sj . Any vector
in Si∨j is a linear combination of elements in Si or in Sj . For commuting subspaces, the projection
onto Si∨j satisfies Pi∨j = Pi + Pj − Pi∧j . In Fig. 1, the linear sum Sman fishing on a boat = span(x1)
and Sman fishing not on a boat = span(x3) yields Sman fishing = span(x1,x3).

Complement (¬i). Corresponds to the subspace of all vectors orthogonal to the subspace: S¬i =
S⊥
i . The projection operator onto S⊥

i is given by P¬i = I − Pi. In Fig. 1, the complement of
Sman on a boat = span(x1,x2) is given by S⊥

man on a boat = span(x3).

3.2 REPRESENTING SUBSPACES AS SOFT PROJECTION OPERATORS

While the orthogonal projector from Eq. (1) offers a rich and interpretable parameterization of a
subspace, its optimization poses a challenge for gradient-based methods. Since the rank of a sub-
space is integer-valued, the space of all subspaces (a union of Grassmannian manifolds) is stratified
and non-differentiable across rank changes. This makes it hard to simultaneously learn orientation
and dimensionality via gradient-based methods.

Soft Projection Operators. To overcome the challenges associated with learning adaptive-rank
subspaces we introduce a relaxation of the projection operator in Eq. (1). For a rank-r subspace S
spanned by the columns of X SVD

= UΣV ⊤ ∈ Rd×n, where Σ = diag({σi}ri=1) and U ∈ Rd×r is
the orthonormal basis of S, we define a soft projector via Tikhonov regularization

P̃ := X(X⊤X + λI)−1X⊤ = Udiag

({
σ2
i

σ2
i + λ

}r

i=1

)
U⊤, λ > 0. (5)

Unlike a true projector (P 2 = P ), P̃ is a soft projector: its eigenvalues vary smoothly in [0, 1)
rather than being binary. This makes the operator differentiable with respect to both orientation and
rank, avoiding hard rank jumps and enabling gradual changes in dimensionality. Geometrically, this
relaxation replaces the stratified manifold of projectors with a smooth manifold of PSD operators.
From a Bayesian point of view, it corresponds to a Gaussian prior with precision λI .

For small values of λ, the soft projectors in Eq. (5) provide accurate surrogates for the algebraic op-
erations and metrics introduced in §3.1. The approximation error depends primarily on the weakest
nonzero singular value σr of X , being upper bounded by (see Appendix A)

ϵ(σr, λ) = λ/(σ2
r + λ). (6)
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Table 1: Soft approximations of projection operations derived from Xi and Xj . Errors are in
operator norm, except rank (relative absolute error). σr, ηr are the weakest non-null singular values
of Xi and Xj . ϵ(σr, λ) = λ/(σ2

r + λ).

Projector Negation Intersection Linear sum Rank

Exact X(XX⊤)†X⊤ I − P PiPj Pi + Pj − PiPj Tr(P )

Soft X(XX⊤ + λI)−1X⊤ I − P̃ P̃iP̃j P̃i + P̃j − P̃iP̃j Tr(P̃ )
Error ϵ(σr, λ) ϵ(σr, λ) ϵ(σr, λ) + ϵ(ηr, λ) 2(ϵ(σr, λ) + ϵ(ηr, λ)) ϵ(σr, λ)

As λ→ 0, ϵ(σr, λ)→ 0 and we recover the orthogonal projection operator P̃ → P , while larger λ
enforces smoother, more regularized projectors. Table 1 summarizes how each operation is approx-
imated using P̃ and the resulting deviation from the orthogonal projector (λ = 0).

Subspace Projection Head (SPH). To bridge our subspace representations with transformer mod-
els, we introduce the Subspace Projection Head (SPH). A transformer first encodes text inputs into
a contextualized hidden state H ∈ Rh×m (where m is sequence length, h is hidden dimension).
The SPH transforms this hidden state H into a fixed-size set of n vectors X ∈ Rd×n that span the
subspace S, and computes the corresponding soft projector P̃ .

We map the hidden state H into a sequence-length-invariant subspace in three stages. First, we
augment the transformer with a set of n learnable query vectors Q ∈ Rh×n. These queries, attend
to H (acting as keys and values) via Multi-Head Attention (MHA), pooling n embeddings X ′,

X ′ = MHA(query = Q, key = H, value = H) ∈ Rh×n. (7)

This ensures invariance to sequence length m. However, the rank of X ′ is still limited: since each
head outputs a linear combination of the columns of H , then rank(X ′) ≤ nheads · rank(H) ≤ m ·
nheads. We address this via a Multi-Layer Perceptron (MLP) which maps the n h-dimensional vectors
from the MHA output to Rd as X = MLP(X ′). This yields the subspace matrix X ∈ Rd×n, which
spans the subspace. Finally, the soft projector P̃ is computed from X using Eq. (5).

3.3 TRAINING METHODOLOGY

We learn subspaces end-to-end via gradient descent, requiring no special pretraining, or training
constraints. Depending on the downstream task, we employ one of the following loss functions.

Reconstruction. For similarity-based tasks, we use an InfoNCE loss (van den Oord et al., 2019)
with the subspace similarity computed via sim(P̃i, P̃j), from Eq. (3).

Link Prediction. In link prediction tasks, we optimize the normalized inclusion score NIS(P̃i |
P̃j) from Eq. (4) directly and consider the margin loss (Vendrov et al., 2016)

L =
∑
i,j∈P

[γ+ −NIS(P̃i | P̃j)]+ +
∑

i,j∈N
[NIS(P̃i | P̃j)− γ−]+, (8)

where [·]+ denotes the ReLU function. Here, γ+, γ− ∈ (0, 1) are the positive and negative margins
and P and N the set of positives and negatives, respectively.

NLI Classification. Textual Entailment presents a unique challenge, requiring not just a measure
of inclusion but also an explicit model of neutrality. For a premise p and hypothesis h, we model
the relation Y ∈ {E,N,C} (entailment, neutral, contradiction) as a discrete latent variable. For
Y ∈ {E,C}, we assume the generative process for S = NIS(P̃h | P̃p)

S | (Y = y) ∼ Beta(αy, βy), y ∈ {E,C}, (9)

with αy ≤ βy if y = C and βy ≤ αy if y = E. For neutrals, subspace inclusion does not provide a
reliable signal. Instead, we model neutrality independently by an MLP as

P (Y = y | P̃p, P̃h) := σ
(
MLP

(
P̃p, P̃h, P̃pP̃h, P̃hP̃p

))
, y = N (10)
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Table 2: WORDNET reconstruction. mAP = Mean Average Precision, MR = Mean Rank, ρ =
Spearman correlation between taxonomy rank and subspace dimension or norm (for P10,H10).

Method Nouns Verbs

mAP (↑) MR (↓) ρ (↑) mAP (↑) MR (↓) ρ (↑)

Euclidean (R128) 95.1 1.31 – 98.6 1.04 –
Poincaré (P10) 86.5 4.02 58.5 91.2 1.35 55.1
Lorentz (H10) 92.8 2.95 59.5 93.3 1.23 56.6
Subspaces (SE128) 98.6 1.04 68.0 99.9 1.00 67.0

where σ(·) denotes the sigmoid function. Assuming uniform priors for entailment and contradiction
classes, conditional on non-neutrality, we compute posterior probabilities for y = E and y = C,
denoted P (Y = y | S = s, Y ∈ {E,C}). The final posterior probabilities for y ∈ {E,C} are then
derived by combining the MLP output for neutrality with the Beta posteriors for non-neutrality:

P (Y = y | P̃p, P̃h, S = s) = (1− P (Y = N | P̃p, P̃h))P (Y = y | S = s, Y ̸= N), (11)

for y ∈ {E,C}. The posteriors in Eqs. (10) and (11) are optimized via a cross-entropy loss.

A key insight into how these losses shape the subspaces is revealed by the gradient dynamics. As
derived in Appendix B, ∇Xisim(P̃i, P̃j) encourages subspace i to expand along the principal direc-
tions of subspace j that it currently lacks. This update naturally promotes subspace inclusion, and
the gradient vanishes once one subspace is contained within the other, leading to stable convergence.

Efficiency Considerations. While computing P̃ from X ∈ Rd×n is O(n3) in the number of
vectors n, and has a memory footprint that scales with d2, where d is the ambient dimension, our
approach is practical for two key reasons. First, the model learns a data-dependent rank for each
subspace. As our experiments demonstrate, this allows for considerable compression of P̃ via low-
rank approximations. Second, the subspace similarity (3) and NIS (4) are equivalent to dot products
between the vectorized matrices: Tr(P̃iP̃j) = vec(P̃i)

⊤vec(P̃j). This allows our subspaces to be
indexed by highly optimized vector search libraries, making large-scale retrieval feasible.

4 EXPERIMENTS

We empirically validate our embeddings’ ability to model large-scale hierarchies and textual entail-
ment on a suite of benchmarks including WORDNET (Miller, 1995) reconstruction in §4.1 and link
prediction in §4.2, HyperLex (Vulić et al., 2017), and SNLI (Bowman et al., 2015) in §4.3.

4.1 WORDNET RECONSTRUCTION

In WORDNET’s reconstruction task, all edges from the full transitive closure of the noun and verb
hypernymy hierarchies are used for training and testing. The goal is to assess the capacity of the
representations to capture known hierarchical relations by providing only pairwise relations.

Experimental Details. Each node in the graph is represented by a soft projection matrix (5), with
λ = 0.2, parameterized by a matrix Xi ∈ R128×128. For each training edge (u, v), we sample 19
nodes v′ ̸= u such that neither (u, v′) nor (v′, u) are in the train split and optimize InfoNCE using
Adam (Kingma & Ba, 2017). During evaluation, we first compute the subspace similarity Tr(P̃uP̃v)
of every edge (u, v) in the transitive closure. We then rank each of these scores among those of all
node pairs that are not connected in the transitive closure. Based on these rankings, we report the
mean rank (MR) and the mean average precision (mAP). Additional details in Appendix C.1.

Reconstruction Results. Our method achieves state-of-the-art performance on the WordNet re-
construction. As shown in Table 2, our subspace representations (SE128) significantly outperform
both Hyperbolic (Poincaré P10 and Lorentz H10 models), and Euclidean embeddings (R128) base-
lines, with a near-perfect reconstruction on the shallower verb hierarchy.

6
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Table 3: HYPERLEX lexical entailment Spearman’s rank correlation (WORDNET embeddings).

R5 P5 DOE-A50 SE128 (λ=0.2) SE128 (λ=0.6)

ρ (↑) 0.389 0.512 0.590 0.683 0.734

Table 4: WORDNET noun link prediction F1-Scores (↑). Superscript denotes dimension.

% Non-Basic Edges R10 OE10 P10 Cones10 Disk10 UHS10 SE64 SE128

0% 29.4 43.0 29.0 32.4 36.5 52.2 48.9 53.4
10% 75.4 69.7 71.5 84.9 79.5 89.4 93.7 94.2
25% 78.4 79.4 82.1 90.8 90.5 95.7 95.7 96.0
50% 78.1 84.1 85.4 93.8 94.2 97.0 95.9 95.4

To assess how these representations generalize to graded lexical entailment, we evaluated them
on the HYPERLEX noun subset without fine-tuning (see Appendix C.3). We quantify entailment
using the NIS from Eq. (4), selecting the synset pair with maximal similarity for disambiguation
(Athiwaratkun & Wilson, 2018). As reported in Table 3, our embeddings demonstrate a significantly
stronger correlation with human judgments than prior work. Our approach achieves a Spearman’s ρ
of 0.73 (λ = 0.6), substantially outperforming Poincaré and Gaussian embedding baselines.

4.2 WORDNET LINK PREDICTION

In the link prediction task, we evaluate generalization from sparse supervision. We split the set of
edges from the transitive closure that are not part the original graph (non-basic edges) into train
(90%), validation (5%) and test (5%) using the data split from Suzuki et al. (2019).

Experimental Details. To assess how the percentage of the transitive closure seen during training
impacts performance, we created partial training edge coverages by randomly sampling 0%, 10%,
25% or 50% of non-basic edges, to which we append all the basic edges. We considered two ambient
space dimensions d = 64 and d = 128, setting the number of vectors as n = d in each case. Training
was performed by optimizing the margin loss defined in Eq. (8). During evaluation, for each positive
test edge, we consider 10 negative test edges: half with a corrupted head, and half with a corrupted
tail. We classify edges by thresholding the NIS from Eq. (4) and report the classification F1-Score.

Link Prediction Results. Link prediction results are shown in Table 4. We compare against Eu-
clidean embeddings (R10), Order Embeddings (OE10), Poincaré (P10) Nickel & Kiela (2017), Hy-
perbolic Entailment Cones (Cones10) (Ganea et al., 2018b), Hyperbolic Disk Embeddings (Disk10)
(Suzuki et al., 2019) and the Umbral Half-Space embeddings (UHS10) (Yu et al., 2024). Subspace
embeddings SE64 and SE128 outperform the baselines across most supervision levels. SE128, in par-
ticular, offers a considerable improvement when training with sparser supervision. This underscores
the ability of subspace representations to infer hierarchical relations even from weak supervision.

4.3 SNLI

We conducted experiments on NLI using the SNLI dataset. SNLI comprises 550,152 training, and
10,000 validation/test premise (p) - hypothesis (h) pairs, each annotated with one of three labels:
entailment, neutral, or contradiction. We consider two regimes: 3-way, and 2-way classification
(entailment vs non-entailment). For a fair comparison, we benchmarked bi-encoder baselines, us-
ing the all-miniLM-L6-v2 and mpnet-base-v2 models with a shallow MLP classifier. We consid-
ered two variants: MLP(p,h), using concatenated premise p and hypothesis h embeddings , and
MLP(p,h,p−h). In our models, we map p and h to soft projectors via our SPH module (λ = 0.05).
All models were trained with a cross-entropy loss. Additional details are provided in Appendix D.

Results. As shown in Table 5, our approach consistently outperforms bi-encoder baselines. For
reference, we also include two GRU-based hierarchical approaches: Order Embeddings and Hyper-
bolic Neural Networks (HNN) Ganea et al. (2018a), which do not model neutrality. Crucially, in the
2-way setting, our method, which relies solely on subspace inclusion, consistently outperforms the
MLP baselines, with a more interpretable mechanism.
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Table 5: SNLI test accuracy: 2-way (entailment
vs non-entailment) and 3-way (+Neutral).

Method 2-way 3-way
Order Embeddings (GRU) 88.60 –
HNN (GRU) 81.19 –

all-miniLM-L6-v2 (22.7m params)
MLP(p, h) 90.48 83.63
MLP(p, h, p− h) 91.06 84.74
SPH (SE64) 91.02 84.62
SPH (SE128) 91.12 85.24

mpnet-base-v2 (109m params)
MLP(p, h) 90.86 83.77
MLP(p, h, p− h) 91.63 86.14
SPH (SE64) 92.27 85.66
SPH (SE128) 92.21 86.50

Effective subspace rank
A man wearing a dark suit strolls near the small pond.

A man in a dark attire strolls near the pond.
A man walks near the pond.

A man is in a park.
A person is in a park.

A person is outside.
A person.

Effective subspace rank
A girl is building a tall tower alone.

A girl is building a tall tower.
A girl is building with blocks.
A girl is playing with blocks.

A girl is playing with toys.
A child is playing.

A child.

Effective subspace rank
A red car drives down the street.

A red car is on the road.
A car is on the road.

A vehicle is on the road.
A vehicle.

Figure 2: Example effective subspace ranks.

5 QUALITATIVE ANALYSIS

A key finding of our work is that our framework learns an interpretable geometry that maps the
hierarchical structure of language onto the representations. We confirm this empirically on SNLI,
using our SE128 embeddings. In Fig. 3, we plot the histogram of the NIS (4) for premise-hypothesis
pairs encoded with out mpnet-base-v2 (SE128) subspace model. We observe that, for entailment
this metric is concentrated towards 1, for contradictions it skews towards 0, and for neutrals it is
centered around 0.5. This confirms that the NIS reflects the underlying entailment structure via
subspace inclusion: each premise subspace is contained within the hypotheses subspaces it entails.
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Figure 3: Histogram of the NIS for SNLI’s test
premise-hypothesis pairs encoded with our SE128

model. Left: Two-way; Right: Three-way.

Rank as a Measure of Generality. A di-
rect consequence of this is that a subspace’s
effective rank, as measured by Tr(P̃ ), be-
comes an emergent measure of semantic gen-
erality. For a specific concept to be nested
within many broader ones, it must occupy a
lower-dimensional subspace. This property is
confirmed quantitatively by the high Spearman
correlation (ρ) between WORDNET nouns’ true
hierarchical positions (distance from root) and
their learned effective rank in Table 2. We pro-
vide additional visual confirmation of this prin-
ciple. Fig. 4 shows how the effective rank of
WORDNET’s nouns grows with the number of
their descendants. The annotated chain from the specific homo sapiens to the root noun entity
clearly illustrates this monotonic increase. Fig. 2 shows the same phenomenon for three entailment
sequences. We observe again that, the effective rank of each sentence increases as we go from a
specific description to general one e.g., “A car is on the road.” → “A vehicle.”.

Dimensionality Reduction. This learned structure, where the rank encodes specificity, makes our
embeddings inherently compressible. Since each subspace dynamically allocates the dimensions
needed to represent each concept, we can perform post-training compression via truncated SVD,
with minimal performance loss. To assess this capability, we approximated WORDNET and SNLI
embeddings P̃i by retaining singular values greater than a threshold τ ∈ [0, 1] and plot the recon-
struction mAP, in the case of WordNet, or the two-way accuracy, for SNLI, as well as the average
subspace rank, as a function τ . As shown in Fig. 5, the learned subspaces exhibit rapid spectral
decay in both experiments, allowing for compression of up to 4× with negligible impact on task
performance. This paves the way for a new class of embeddings where representational complexity
is not fixed, but a learned, data-driven property.
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Figure 4: Effective rank Tr(P̃ ) vs number of
descendants of WORDNET nouns.
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Figure 5: Accuracy, mAP and average rank as a
function of the singular value threshold.

Emergent Logical Reasoning. A key advan-
tage of subspace embeddings is their emergent
logical compositionality, which arises directly
from the geometry of the embeddings, without
explicit training signals. Fig. 6 provides an ex-
ample illustrating this inherent compositional-
ity, for conjunctions P̃iP̃j and negations I− P̃ ,
in a retrieval setting. For a query formed by a
logical combination of concept subspaces, we
retrieve images from Flickr30k (Young et al.,
2014) whose caption subspaces have the largest
NIS(P̃query | P̃caption). Each caption subspace
is computed with our mpnet-base-v2 + SPH
(SE128) model, fine-tuned on SNLI. The re-
sults demonstrate that subspaces enable com-
positional retrieval, allowing for the search of
novel concepts or query editing through geo-
metric operations. Additional examples in Ap-
pendix E.

(a) P̃a city streetP̃at night

(b) P̃a city street(I − P̃at night)

(c) P̃an umbrellaP̃it’s raining

(d) P̃an umbrella(I − P̃it’s raining)

Figure 6: Flickr30k retrieval from composition
of natural language queries.

6 EFFICIENCY ANALYSIS

By vectorizing the similarity (3) and the NIS (4), we can make
our embeddings compatible with fast search libraries like FAISS.
This contrasts with non-Euclidean embeddings requiring brute-force
search. We benchmarked retrieval latency on CPU over the 155,070
Flickr30k captions (batch-size 128). The results in Table 6 show
that SE128 is nearly 8× faster than a 10D Poincaré (P10) baseline.
The encoding overhead introduced by the SPH is also minimal, av-
eraging at an additional 0.12ms/query on GPU (Appendix F).

Table 6: Search efficiency.

Latency (ms/query)

P10 3.64± 0.13
SE128 0.47± 0.02

7 CONCLUSION

This paper introduced subspace embeddings, a novel paradigm that addresses the limitations of
vector representations in capturing logical structure and asymmetric, or hierarchical, relations. By
representing concepts as subspaces, our framework naturally encodes generality through dimen-
sionality and hierarchy through inclusion. Our evaluation across hierarchical and entailment tasks
reveals the power of this inductive bias: it not only achieves state-of-the-art results but also gives
rise to an emergent structure for logical composition without explicit supervision. The linearity of
the core operations and metrics ensures compatibility with efficient vector search pipelines. Overall,
our results establish subspace embeddings as a bridge between representation learning and logical
reasoning, opening avenues for new representations that exploit the structural nature of data.
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A ERROR BOUNDS FOR SOFT PROJECTORS

Lemma A.1. Let X = UΣV ⊤, where U ∈ O(d), and define P̃ := X(X⊤X + λI)−1X⊤. We
have

P̃ = UΣ2(Σ2 + λI)−1U⊤ (12)

and the spectrum of P̃ is
{

σ2
i

σ2
i+λ

}d

i=1
.

Proof. Letting the SVD of X be UΣV ⊤,

P̃ = UΣV ⊤(V Σ2V ⊤ + λI)−1V ΣU⊤

= UΣV ⊤V (Σ2 + λI)−1V ⊤V ΣU⊤

= UΣ2(Σ2 + λI)−1U⊤. (13)

The spectrum of P̃ is the diagonal of Σ2(Σ2 + λI)−1, which reads
{

σ2
i

σ2
i+λ

}d

i=1
.

Proposition A.2 (Frobenius norm error). Let X = UΣV ⊤ be rank-r, where U ∈ O(d) and let
the orthogonal projector onto Span(X) be P = UJrU

⊤. Define P̃ := X(X⊤X + λI)−1X⊤.
Then,

∥P − P̃ ∥F ≤ λ

σ2
r + λ

. (14)

Proof. Let Jr = BlockDiag(Ir,0d−r), where r = rank(X) and write the SVD of the orthogonal
projector as P = UJrU

⊤ for U ∈ O(d). Using Lemma A.1, we can write P − P̃ = U(Jr −
Σ2(Σ2 + λI)−1)U⊤. The Frobenius norm is invariant to orthogonal transformations U , hence

∥P − P̃ ∥2F = ∥Jr −Σ2(Σ2 + λI)−1∥2F =

r∑
i=1

(
1− σ2

i

σ2
i + λ

)2

≤ r

(
λ

σ2
r + λ

)2

. (15)

Therefore, ∥P − P̃ ∥F ≤ λ
√
r

σ2
r+λ .

Proposition A.3 (Operator norm error). Let X = UΣV ⊤ be rank-r, where U ∈ O(d), and let
the orthogonal projector onto Span(X) be P = UJrU

⊤. Define P̃ := X(X⊤X + λI)−1X⊤.
Then,

∥P − P̃ ∥2 =
λ

σ2
r + λ

. (16)

Proof. Let Jr = BlockDiag(Ir,0d−r), where r = rank(X) and write the SVD of the orthogonal
projector as P = UJrU

⊤ for U ∈ O(d). Using Lemma A.1, we can write P − P̃ = U(Jr −
Σ2(Σ2 + λI)−1)U⊤. The operator norm is invariant to orthogonal transformations U , hence

∥P − P̃ ∥2 = ∥Jr −Σ2(Σ2 + λI)−1∥22 = max

{
1− σ2

i

σ2
i + λ

}r

i=1

=
λ

σ2
r + λ

. (17)

Therefore, ∥P − P̃ ∥2 = λ
σ2
r+λ .

Corollary A.4 (Negation operator error). Let X , P and P̃ be in the conditions of Proposition A.2.
Then,

∥(I − P )− (I − P̃ )∥2 ≤ λ

σ2
r + λ

. (18)

Proof. Note that ∥(I − P )− (I − P̃ )∥2 = ∥P − P̃ ∥2 and apply Proposition A.3.

Proposition A.5 (Trace error). Let X = UΣV ⊤ be rank-r, where U ∈ O(d), and let the orthog-
onal projector onto Span(X) be P = UJrU

⊤. Define P̃ := X(X⊤X + λI)−1X⊤. Then,∣∣∣Tr(P )− Tr(P̃ )
∣∣∣ ≤ λr

σ2
r + λ

(19)
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Proof. First write P − P̃ = U(Jr −Σ2(Σ2 + λI)−1)U⊤. We have then,∣∣∣Tr(P )− Tr(P̃ )
∣∣∣ = ∣∣Tr(Jr −Σ2(Σ2 + λI)−1)

∣∣ = r∑
i=1

(
1− σ2

i

σ2
i + λ

)
≤ λr

σ2
r + λ

. (20)

Corollary A.6 (Subspace rank error). Letting r := rank(X), the relative error of estimating r via
Tr(P̃ ) verifies ∣∣∣Tr(P̃ )− r

∣∣∣
r

≤ λ

σ2
r + λ

. (21)

Proof. Suffices to note that r = Tr(P ) and use Proposition A.5.

Proposition A.7 (Subspace similarity error). Let Xi and Xj be rank-ri and rj matrices, with
singular values {σk}dk=1 and {ηk}dk=1 (in descending order), respectively. Denote by Pi, P̃i and
Pj , P̃j the respective orthogonal and soft projectors. Then,∣∣∣Tr(PiPj)− Tr(P̃iP̃j)

∣∣∣ ≤ √
rirj

(
λ

σ2
r + λ

+
λ

η2r + λ

σ2
r

σ2
r + λ

)
(22)

Proof. We have∣∣∣Tr(PiPj)− Tr(P̃iP̃j)
∣∣∣ = ∣∣∣Tr((Pi − P̃i)Pj) + Tr((Pj − P̃j)P̃i)

∣∣∣
≤
∣∣∣Tr((Pi − P̃i)Pj)

∣∣∣+ ∣∣∣Tr((Pj − P̃j)P̃i)
∣∣∣ . (23)

Apply Cauchy-Schwartz to both terms, we arrive at∣∣∣Tr(PiPj)− Tr(P̃iP̃j)
∣∣∣ ≤ ∥Pi − P̃i∥F ∥Pj∥F + ∥Pj − P̃j∥F ∥P̃i∥F

(24)
and we can replace √

rj = ∥Pj∥F ,
√
ri = ∥Pi∥F and employ Proposition A.2,∣∣∣Tr(PiPj)− Tr(P̃iP̃j)
∣∣∣ ≤ ∥Pi − P̃i∥F

√
rj + ∥Pj − P̃j∥F ∥P̃i∥F

≤ √
rirj

λ

σ2
r + λ

+
√
rj

λ

η2r + λ
∥P̃i∥F . (25)

Finally, note that ∥P̃i∥F ≤ √
ri

(
σ2
r

σ2
r+λ

)
∣∣∣Tr(PiPj)− Tr(P̃iP̃j)

∣∣∣ ≤ √
rirj

(
λ

σ2
r + λ

+
λ

η2r + λ

σ2
r

σ2
r + λ

)
. (26)

Proposition A.8 (Intersection operator error). Let Xi and Xj be rank-ri and rj matrices, with
singular values {σk}dk=1 and {ηk}dk=1 (in descending order), respectively. Denote by Pi, P̃i and
Pj , P̃j the respective orthogonal and soft projectors. Then,

∥PiPj − P̃iP̃j∥2 ≤ λ

σ2
r + λ

+
λ

η2r + λ
. (27)

Proof. From writing PiPj−P̃iP̃j = (Pi−P̃i)Pj+(Pj−P̃j)P̃i and applying the triangle inequality

∥PiPj − P̃iP̃j∥2 = ∥(Pi − P̃i)Pj + (Pj − P̃j)P̃i∥2
≤ ∥Pi − P̃i∥2∥Pj∥2 + ∥Pj − P̃j∥2∥P̃i∥2. (28)

Noting that ∥Pj∥2 ≤ 1 and ∥P̃i∥2 ≤ 1 and using Proposition A.3, we have

∥PiPj − P̃iP̃j∥2 ≤ λ

σ2
r + λ

+
λ

η2r + λ
. (29)
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B GRADIENTS OF SOFT PROJECTION MATRICES

To understand how gradient-based training inherently shapes subspaces, we analyze the gradient
flow of the subspace intersection. This reveals how projection operators evolve by incorporating
missing dimensions from positive samples and repelling those aligned with negative ones.

The gradient of Tr(P̃iP̃j) with respect to Xi can be derived from the identity

∇XTr
(
(A+X⊤XX)−1(X⊤BX)

)
=

− 2CX(A+X⊤CX)−1X⊤BX(A+X⊤CX)−1 + 2BX(A+X⊤CX)−1. (30)

We have then

∇Xi
Tr
(
P̃iP̃j

)
= 2(I − P̃i)P̃jXi(X

⊤
i Xi + λI)−1

∝ P̃⊥
i P̃j︸ ︷︷ ︸

New information

Xi(X
⊤
i Xi + λI)−1︸ ︷︷ ︸

Spectral scaling

. (31)

The spectral scaling factor Xi(X
⊤
i Xi + λI)−1 acts as low-pass filter on Xi. If we write the SVD

of Xi as Xi = UΣV ⊤, then Xi(X
⊤
i Xi + λI)−1 = UΣ(Σ2 + λI)−1V ⊤. As a result, high-

energy directions (associated with large singular values) are attenuated, while low-energy directions
are amplified. This ensures that updates to Xi preserve dominant, well-supported directions while
adapting underrepresented ones.

The component P̃⊥
i P̃j , where P̃⊥

i = I − P̃i, indicates that gradient flow occurs only along direc-
tions present in subspace j but orthogonal to subspace i, formally, in range(P̃j) ∩ null(P̃i). Thus,
the learning signal drives Xi to incorporate directions it lacks but that are represented by Xj , en-
couraging alignment without redundancy. If subspace j is already contained within subspace i i.e.,
P̃j ≤ P̃i, the gradient vanishes since P̃jP̃i = P̃j implies (Id− P̃i)P̃j = 0. This update mechanism
shares similarities with Oja’s rule in online PCA, promoting efficient subspace adaptation.

Conversely, negative pairs induce repulsive gradients, driving Xi to remove directions aligned with
Xj and thus promoting subspace separation. Consequently, the effective dimensionality of subspace
i naturally adapts to encompass the union of all its relevant positive neighbors i.e.,

rank(P̃i) ≥ dim span

 ⋃
j∈Pos(i)

range(P̃j)

 . (32)

In other words, examples with more diverse positive neighborhoods require richer subspaces, while
simpler ones can be encoded more compactly.

C WORDNET EXPERIMENTS

WORDNET’s noun hierarchy has 82,115 nodes and 75,850 edges. The verb hierarchy is smaller,
featuring 13,767 nodes and 13,239 edges. Their transitive closures are significantly denser, with
663,508 (noun) and 35,079 (verb) edges. All WORDNET experiments were conducted on a
RTX8000 GPU with 49GB of memory.

C.1 RECONSTRUCTION

Experimental Details. We parameterize each node’s subspace with a matrix Xi ∈ R128×128,
initialized with entries from a zero-mean Gaussian distribution with standard deviation 0.0001. The
regularizer was set λ = 0.2. For each training edge (u, v), we sample 19 nodes v′ ̸= u such that
neither (u, v′) nor (v′, u) are in the train split and optimized InfoNCE, applying the the subspace
similarity Tr(P̃iP̃j) from Eq. (3) to soft projectors. We used Adam Kingma & Ba (2017), with
a batch-size of 128 and learning rate of 0.0005. During evaluation, we compute the similarity
Tr(P̃uP̃v) of each edge (u, v) in the full transitive closure TC(G) and rank it among the those of all
node pairs that are not connected in the transitive closure {Tr(P̃uP̃v′) : (u, v′) ̸∈ TC(G)}.
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Figure 7: Sorted eigenvalues of the soft projection operators P̃ for nouns in the hypernymy chain
homo sapiens → entity. As we move from specific to general concepts, the subspace’s effective rank
gradually expands. This illustrates how our soft projectors naturally capture concept specificity:
specific nouns like homo sapiens activate fewer dimensions (eigenvalues near zero), while broader
concepts like entity activate more dimensions (eigenvalues near one).

Visualization of the Spectrum of WordNet Nouns. In Fig. 7, we plot the sorted eigenvalues of
our soft projector representations (P̃ ) for WORDNET nouns, traversing a hypernymy chain from
homo sapiens to entity. This plot illustrates two key properties:

• Smooth Eigenvalue Distribution: Unlike the binary (0 or 1) eigenvalues of orthogonal pro-
jection matrices, the eigenvalues of P̃ are smooth within [0,1]. This smoothness is crucial
for our learnable, soft subspace representations.

• Effective Rank Justification: The plot directly justifies our use of Tr(P̃ ) as a measure of
the effective rank of a concept’s subspace. For orthogonal projection operators, the trace
(sum of eigenvalues) precisely equals the subspace’s rank due to their binary eigenvalues.
Here, while eigenvalues are not binary, the plot clearly shows the distribution of activated
dimensions for each concept. For instance, the broad concept entity utilizes all 128 dimen-
sions, with all eigenvalues near one. In contrast, homo sapiens activates fewer dimensions,
with most eigenvalues approaching zero.

C.2 LINK PREDICTION

Experimental Details. For link prediction, every node is initialized as a random matrix Xd×n
i ,

with entries sampled from a zero-mean Gaussian distribution (σ = 0.0001). In our experiments
we considered d = n = 64 as well as d = n = 128. The soft projector regularizer was set to
λ = 0.2. We optimized the margin loss from Eq. (8) with γ+ = 0.9 and γ− = 0.5 for 0% of
non-basic edges, and γ+ = 0.8, γ− = 0.1 for the remaining percentages. To compute this loss, we
used 10 negatives per each observed positive edge (u, v). Negatives were generated by sampling 5
corrupted-tail (u, v′) and 5 corrupted-head (u′, v) examples per positive edge, with corrupted nodes
sampled from the entire set of nodes. We employed Adam (Kingma & Ba, 2017) with a constant
learning rate of 0.0005 and a batch-size of 128 to perform the optimization.

C.3 GRADED LEXICAL ENTAILMENT

Experimental Details. For our HYPERLEX experiment, we use the noun subset (2,163 pairs),
which provides human-annotated scores (0-10) for word pairs (u, v), quantifying the degree to which
u is a type of v. We quantify entailment using the NIS from Eq. (4), with word sense disambigua-
tion performed as in Athiwaratkun & Wilson (2018), by selecting the WORDNET synset pair with
maximal subspace similarity Tr(P̃i, P̃j).
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D NLI EXPERIMENTS

Experimental Details. All experiments utilized a maximum sequence length of 35. We trained
all-MiniLM-L6-v2 with a batch size of 1024, and all-mpnet-base-v2 with a batch size of 2048.
Optimization was performed using Adam (Kingma & Ba, 2017), employing a learning rate of 0.0001
and no weight decay. An exponential learning-rate scheduler with a gamma of 0.9 was used. For
the MLP-based baselines, premise and hypothesis embeddings were first computed by mean pooling
the transformer’s output hidden state before being passed to the MLP classification head. The MLP
classification head consisted of 3 layers, featuring LeakyReLU activations and matching the hidden
dimension of its corresponding transformer. A label smoothing of 0.1 was consistently applied
across all training runs. The Beta priors of our model were initialized as (αC = 1, βC = 6) and
(αE = 6, βE = 1) and were optimized during training. All experiments were conducted on a
RTX8000 GPU with 49GB of memory.

E COMPOSITE QUERIES

In this section, we present in more detail how to construct logical queries with subspace opera-
tions. We use our SNLI-fine-tuned mpnet-base-v2 + SPH (SE128) model to embed the 155,070
Flickr30k captions (as candidate sentences) and encode individual phrases for logical query con-
struction. Composite query subspaces are then formed by combining these individual embeddings.

For instance, to represent the concept “a dog running”, we obtain its subspace embedding
Sa dog running, which is represented, in practice, by the output of the SPH, a soft projector
P̃a dog running ∈ R128×128. Similarly for “on the beach”, we obtain P̃on the beach ∈ R128×128. These
subspaces are then combined using linear-algebraic operations to formulate composite query sub-
spaces which approximate the true logical connectives described in the main text.

Conjunction. We approximate the projection operator of subspace intersection Si ∩ Sj as P̃iP̃j .
Recall that PiPi is the projector onto the intersection if and only if Pi and Pj commute i.e., PiPj =
PjPi. While this is not enforced in our training pipeline, we observed good empirical results from
approximating the intersection operator by P̃iP̃j .

Negation. We approximate the projection operator onto the subspace complement S⊥
i as I − P̃i.

The approximation error in this case only comes from the regularization λ.

Disjunction. We approximate the projection operator onto the subspace sum Si+Sj by explicitly
building the linear sum from the basis of each soft projector. Letting the SVD of the projectors
be P̃i = UiΣiV

⊤
i and P̃j = UjΣjV

⊤
j , we approximate the soft projector for the subspace sum

as X(X⊤X + λI)−1X⊤, where X =
[
UiΣ

1
2
i UjΣ

1
2
j

]
. Here, λ = 0.05 (consistent with the

regularization used during training).

F EFFICIENCY EXPERIMENTS

Retrieval Efficiency. We benchmarked top-10 retrieval latency on the 155,070 captions from the
Flickr30k dataset, using batches of 128 queries. We compared our subspace embeddings (SE128)
against a 10-dimensional Poincaré hyperbolic baseline (P10). Because hyperbolic distance is non-
Euclidean, we applied brute-force search over the entire database, ranking by the negative hyperbolic
distance. In contrast, our NIS score can be formulated as a maximum inner product search problem
between query and caption vectors:

NIS(P̃caption | P̃query) =

(
vec(P̃caption)

Tr(P̃caption)

)⊤

vec(P̃query). (33)

This formulation allows us to use fast approximate search libraries. We indexed the normalized cap-
tion vectors using a CPU index from the FAISS library Douze et al. (2025), specifically an inverted
file index with Product Quantization (IndexIVFPQ). The index was trained on 50,000 vectors. We
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Table 7: GPU encoding time per query (ms), averaged over Flickr30k’s captions. The overhead of
the SPH module is consistently small.

Batch size
Model 1 4 16 64 128

mpnet-base-v2 5.95 1.74 0.69 0.59 0.56
mpnet-base-v2 + SPH (SE128) 6.80 2.13 0.86 0.73 0.68

used 64 subquantizers for PQ with 8 bits per subquantizer, and set the search-time parameter to
nprobe = 32.

Encoding Time. We also measured the overhead introduced by our SPH module when encoding
Flickr30k captions on a RTX8000 GPU with 49GB of memory. To isolate the computation cost
of the forward pass, tokenization (max-size of 35) and data transfers were computed beforehand.
Table 7 shows the average encoding time per query (forward-pass) for different batch sizes, demon-
strating that the additional computational cost is modest, especially with larger batches.

G LARGE LANGUAGE MODELS

The authors are solely responsible for the research ideas, experimental design, and analysis presented
in this work. Large language model (LLMs) was used for editorial assistance to enhance the paper’s
clarity and readability, with its contributions limited to grammar, sentence structure, and flow.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Sa child playing outdoors ∩ Snear a road (b) Sa child playing outdoors ∩ S⊥
near a road

(c) Sperson walking ∩ Son the sidewalk (d) Sperson walking ∩ S⊥
on the sidewalk

(e) Sa man ∩ S⊥
on a boat ∩ Sis fishing (f) Sfood being prepared ∩ Soutdoors on the grill

(g) Sa city street ∩ Sat night (h) Sa city street ∩ S⊥
at night

(i) Sa group of people ∩ Smilitary (j) San animal interacting with a human ∩ Sin a zoo

(k) Speople ∩ Ssitting ∩ Son a bench (l) Sa person riding a bicycle ∪ Sa person walking a dog

(m) Sa child playing ∩ Sinteracting with a dog (n) S⊥
a child playing ∩ Sinteracting with a dog

(o) Sa man playing guitar ∩ Ssitting on the ground (p) Sa man playing guitar ∩ S⊥
sitting on the ground

(q) Sa person playing the violin ∩ Sstanding in the street (r) Sa person playing the violin ∩ S⊥
standing in the street

(s) Sa man and a surfboard ∩ Sis surfing (t) Sa man and a surfboard ∩ S⊥
is surfing

Figure 8: Each subfigure demonstrates the inherent capacity of subspace embeddings for logical
composition. Queries are formed by applying subspace operations intersection (∩), linear sum (+)
and orthogonal complement (⊥) to the subspace embeddings of phrases or sentences, embedded by
our SNLI-fine-tuned mpnet-base-v2 + SPH (SE128) model. For each composite query, we retrieve
the top Flickr30k images whose captions have the highest NIS with the composite query subspace.
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