

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NATIVE LOGICAL AND HIERARCHICAL REPRESENTATIONS WITH SUBSPACE EMBEDDINGS

Anonymous authors

Paper under double-blind review

ABSTRACT

Traditional embeddings represent datapoints as vectors, which makes similarity easy to compute but limits how well they capture hierarchy, asymmetry and compositional reasoning. We propose a fundamentally different approach: representing concepts as learnable linear subspaces. By spanning multiple dimensions, subspaces can model broader concepts with higher-dimensional regions and nest more specific concepts within them. This geometry naturally captures generality through dimension, hierarchy through inclusion, and enables an emergent structure for logical composition, where conjunction, disjunction, and negation are mapped to linear operations. To make this paradigm trainable, we introduce a differentiable parameterization via soft projection matrices, allowing the effective dimension of each subspace to be learned end-to-end. We validate our approach on hierarchical and natural language inference benchmarks. Our method not only achieves state-of-the-art performance but also provides a more interpretable, geometrically-grounded model of entailment. Remarkably, the ability to perform logical composition with the learned concepts arises naturally from standard training objectives, without any direct supervision.

1 INTRODUCTION

Dense vector embeddings have become the bedrock of modern machine learning, underpinning systems from language models (LMs) (Devlin et al., 2019; Reimers & Gurevych, 2019) and vision-language models (VLMs) (Radford et al., 2021; Li et al., 2022), to retrieval augmented generation (RAG) systems (Lewis et al., 2020). By representing words, documents and images as points in high-dimensional space, these representations excel at capturing similarities in a scalable manner.

Despite their success, the efficacy of vector embeddings is limited by a geometric mismatch: the flat, symmetric structure of Euclidean space is ill-suited to the hierarchical and asymmetric nature of language and logic (Horn, 1972). Due to its symmetry, metrics like cosine similarity cannot capture directional relationships such as entailment or hyponymy; a high similarity between “dog” and “animal” fails to convey that one is a subtype of the other. Moreover, vector spaces lack native operators for logical conjunction and negation. This forces models to default to additive composition, effectively treating phrases as a bag-of-words. This explains why queries with negations often fail, with embeddings including the very concept meant for exclusion. Recent work confirms these flaws empirically, showing that even advanced models disregard logical connectives (Yuksekgonul et al., 2023; Moreira et al., 2025), requiring *ad-hoc* solutions (Weller et al., 2024; Gokhale et al., 2020; Zhang et al., 2025; Alhamoud et al., 2025). This inability to interpret nuanced instructions motivates our search for a framework that can natively represent these crucial relations.

We propose an alternative that extends Euclidean vector representations: instead of mapping a concept to a single vector, we embed it as a linear subspace of \mathbb{R}^d *i.e.*, the span of a set of basis vectors. This enables an interpretable geometric understanding of conceptual properties. First, generality and specificity are captured by the subspace dimension, with higher-dimensional subspaces denoting broader concepts *e.g.*, animal vs. dog. Secondly, hierarchy is naturally modeled by subspace inclusion, where a more specific concept’s subspace is contained within a more general one. Finally, logical operations are directly mapped to linear-algebraic operations: conjunction as subspace intersection, disjunction as linear sum (span), and negation as the orthogonal complement (Fig. 1).

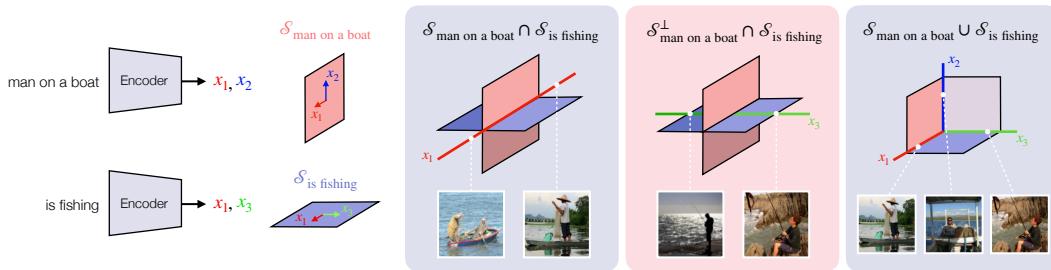


Figure 1: We embed concepts as linear subspaces of \mathbb{R}^d (left). These representations enable logical operations: subspace intersections e.g., “man on a boat” and “is fishing” (middle left); negation and composition e.g., orthogonal complement of “of man on a boat” and “is fishing” (middle right) and linear sums of subspaces, which yield a higher variance of instances (right).

A key challenge in learning subspaces is that dimensionality, or the number of basis vectors, is discrete and thus non-differentiable. Our technical contribution overcomes this by introducing a differentiable parameterization via soft projection matrices. Instead of selecting an integer dimension, we learn a set of vectors and modulate their individual importance, allowing each subspace to add or drop basis vectors as needed during training. Crucially, this approach remains grounded in Euclidean geometry, preserving full compatibility with standard training pipelines, Euclidean metrics and loss functions. This allows for seamless integration with highly efficient, dot-product-based search libraries Douze et al. (2025); Johnson et al. (2019), ensuring our method is scalable.

Beyond quantitative performance, our approach yields representations with emergent properties that are not explicitly optimized for. Remarkably, by training solely on entailment, our model learns embeddings that are inherently amenable to logical composition, supporting operations like conjunction, disjunction, and negation of queries. We also observe a strong correlation between the learned dimensionality of a subspace and the semantic generality of the concept it represents. This provides an interpretable measure of a concept’s specificity that can be leveraged for compression.

We validate our framework across standard lexical and textual entailment benchmarks. Our method sets a new state of the art on WORDNET reconstruction, shows a stronger correlation with human judgments on HyperLex, and surpasses strong bi-encoder baselines on SNLI, demonstrating robust performance and generalization.

In summary, our key contributions are:

- A novel and differentiable method for learning subspace representations of language, featuring a data-dependent dimensionality that captures semantic specificity.
- An emergent structure for logical composition over natural language. We show that fundamental logical operations, such as conjunction, disjunction, and negation, arise naturally from standard training objectives, without any explicit logical supervision.
- A demonstration that these expressive representations remain tractable for large-scale retrieval by preserving compatibility with standard, highly optimized vector search pipelines.

2 RELATED WORK

Most embedding methods, from Word2Vec (Mikolov et al., 2013) to multimodal models such as CLIP (Radford et al., 2021), rely on a simple idea: datapoints are represented as vectors in a high-dimensional metric space, where similarity is encoded by inner products or distances.

Limitations of Vector Representations. This prevalent vector-based view, while powerful for capturing co-occurrence patterns, exhibits limitations: the inner product cannot capture asymmetric relationships, such as entailment or hierarchies, without additional structural constraints or complex transformations. Recent empirical analyses have shed light on how language and vision-language encoder models represent hierarchies (Park et al., 2025; He et al., 2024) and logical constructs.

108 Remarkably, instead of capturing formal logical structure, vector embeddings behave akin to bag-
 109 of-words representations (Yuksekgonul et al., 2023), failing to differentiate between positive and
 110 negated concepts (Gokhale et al., 2020; Singh et al., 2024; Moreira et al., 2025; Alhamoud et al.,
 111 2025). This limitation has motivated the creation of enhanced datasets and benchmarks with explicit
 112 negations (Quantmeyer et al., 2024; Weller et al., 2024; Zhang et al., 2025).
 113

114 **Hyperbolic Embeddings.** Hyperbolic embeddings (Nickel & Kiela, 2018; 2017; Ganea et al.,
 115 2018a) exploit the exponential growth of hyperbolic space to model hierarchical structures com-
 116 pactly and encode transitive inclusion (Bai et al., 2021). Applications include hierarchical classifi-
 117 cation (Dhall et al., 2020), logical prediction (Xiong et al., 2022), and entailment reasoning (Poppi
 118 et al., 2025). However, they require complex Riemannian optimization, lack native logical reason-
 119 ing, and struggle with non-hierarchical relations (Sala et al., 2018; Moreira et al., 2024).
 120

121 **Partial Order Embeddings.** Partial order embeddings (Vendrov et al., 2016; Li et al., 2017) map
 122 entities into partially ordered spaces. Variants include positive operator embeddings (Lewis, 2019),
 123 quantum logic-inspired representations (Garg et al., 2019; Srivastava et al., 2020) and probabilistic
 124 approaches such as Gaussians, Beta distributions, box lattices (Vilnis & McCallum, 2015; Athi-
 125 waratkun & Wilson, 2018; Choudhary et al., 2021; Ren & Leskovec, 2020; Vilnis et al., 2018; Li
 126 et al., 2018; Ren et al., 2020), and entailment cones (Zhang et al., 2021; Pal et al., 2025; Ganea et al.,
 127 2018b; Yu et al., 2024). While effective for entailment, these methods lack a principled logical struc-
 128 ture, requiring *ad-hoc* losses, or relying on heuristic approximations for disjunction and negation.
 129 Our subspace embeddings overcome these limitations. While subspace inclusion models entailment,
 130 the key advantage is its emergent closure: the intersection, sum, and orthogonal complement provide
 131 principled representations for conjunction, disjunction, and negation, respectively.
 132

3 SUBSPACE REPRESENTATIONS

134 This paper presents a paradigm shift in embeddings: rather than representing a datapoint as a single
 135 vector $\mathbf{x} \in \mathbb{R}^d$, we represent it as a subspace $\mathcal{S} \subseteq \mathbb{R}^d$. To illustrate, consider Fig. 1. Instead of the
 136 traditional formulation, where the concept ‘‘man on a boat’’ is embedded as a single direction, we
 137 map it to \mathbf{x}_1 and \mathbf{x}_2 . Each vector encodes a variation of the underlying concept: \mathbf{x}_1 might represent a
 138 ‘‘man on a boat that is fishing’’ while \mathbf{x}_2 represents a ‘‘man on a boat that is not fishing’’. The concept
 139 ‘‘man on a boat’’ is then represented by the subspace $\mathcal{S}_{\text{man on a boat}} = \text{span}(\mathbf{x}_1, \mathbf{x}_2)$, encompassing all
 140 instances that align with either \mathbf{x}_1 , \mathbf{x}_2 , or any linear combination thereof, representing the space of
 141 all possible instances (Van Rijsbergen, 2004; Ganter & Wille, 2024).
 142

143 Formally, we parameterize a subspace \mathcal{S} as the span of $n \geq d$ learnable vectors $\mathbf{X} =$
 $[\mathbf{x}_1 \dots \mathbf{x}_n] \in \mathbb{R}^{d \times n}$. Let the thin singular value decomposition of \mathbf{X} be $\mathbf{U}\Sigma\mathbf{V}^\top$, with
 144 $\mathbf{U} \in \mathbb{R}^{d \times r}$ and $\mathbf{U}^\top \mathbf{U} = \mathbf{I}_r$. Then \mathbf{U} is an orthonormal basis for the rank- r subspace \mathcal{S} . We
 145 can write an equivalent representation of \mathcal{S} through its orthogonal projection operator,

$$\mathbf{P} := \mathbf{X}(\mathbf{X}^\top \mathbf{X})^\dagger \mathbf{X}^\top = \mathbf{U}\mathbf{U}^\top \in \mathbb{R}^{d \times d}, \quad (1)$$

146 where \dagger is the pseudoinverse. This projector is symmetric ($\mathbf{P}^\top = \mathbf{P}$), idempotent ($\mathbf{P}^2 = \mathbf{P}$), and
 147 its trace reveals the rank of \mathcal{S} *i.e.*,
 148

$$\text{Tr}(\mathbf{P}) = \text{Tr}(\mathbf{U}^\top \mathbf{U}) = \text{Tr}(\mathbf{I}_r) = r. \quad (2)$$

151 **Subspace Similarity and Inclusion.** Cosine similarity between vectors can be generalized to sub-
 152 spaces $\mathcal{S}_i, \mathcal{S}_j$, with orthonormal basis $\mathbf{U}_i, \mathbf{U}_j$, respectively, via their projection operators \mathbf{P}_i and \mathbf{P}_j ,
 153

$$\text{sim}(\mathbf{P}_i, \mathbf{P}_j) := \text{Tr}(\mathbf{P}_i \mathbf{P}_j) = \|\mathbf{U}_i^\top \mathbf{U}_j\|_F^2 = \sum_{k=1}^m \cos^2(\theta_k), \quad (3)$$

154 where $\{\theta_k\}_{k=1}^m$ are the *principal angles* between \mathcal{S}_i and \mathcal{S}_j and $m = \min\{\text{rank}(\mathcal{S}_i), \text{rank}(\mathcal{S}_j)\}$.
 155 Each θ_k is the smallest possible angle between a unit vector in \mathcal{S}_i and a unit vector in \mathcal{S}_j , subject
 156 to orthogonality constraints on previously chosen directions. Thus, $\text{sim}(\mathbf{P}_i, \mathbf{P}_j)$ measures the total
 157 squared alignment across the m most comparable directions of the two subspaces, or their degree
 158 of *overlap*. This recovers standard cosine similarity as a special case: if \mathbf{P}_i and \mathbf{P}_j are rank-one
 159 projectors onto unit vectors \mathbf{x}_i and \mathbf{x}_j , then $\text{sim}(\mathbf{P}_i, \mathbf{P}_j) = (\mathbf{x}_i^\top \mathbf{x}_j)^2 = \cos^2(\angle(\mathbf{x}_i, \mathbf{x}_j))$.
 160

162 An immediate consequence of Eqs. (2) and (3) is that we can quantify subspace inclusion via a
 163 normalized inclusion score (NIS) (Da Silva & Costeira, 2009):
 164

$$165 \quad \text{NIS}(\mathbf{P}_j \mid \mathbf{P}_i) := \frac{\text{sim}(\mathbf{P}_i, \mathbf{P}_j)}{\text{Tr}(\mathbf{P}_i)} \in [0, 1]. \quad (4)$$

167 This score attains 1 if and only if subspace i is contained within subspace j . This formulation allows
 168 for an intuitive interpretation as a Bayes-like conditional probability: the probability of an instance
 169 belonging to subspace j given it belongs to i .
 170

171 3.1 ALGEBRAIC STRUCTURE OF SUBSPACES

173 The power of subspaces lies in their algebraic structure, which natively supports interpretable opera-
 174 tions between concepts. Using projection operators lets us map logical relations such as conjunction
 175 (\wedge), disjunction (\vee) and negation (\neg) into the subspace operations of intersection (\cap), linear sum
 176 (+) and orthogonal complement (\perp), respectively. These have tractable linear-algebraic represen-
 177 tations, thus addressing the limitations of vector embeddings discussed in §1.

178 **Conjunction** ($i \wedge j$). Corresponds to the intersection of subspaces $\mathcal{S}_{i \wedge j} = \mathcal{S}_i \cap \mathcal{S}_j$. Any vector in
 179 $\mathcal{S}_{i \wedge j}$ is an element of \mathcal{S}_i and \mathcal{S}_j . The product $\mathbf{P}_i \mathbf{P}_j$ is an orthogonal projection onto $\mathcal{S}_i \cap \mathcal{S}_j$ if and
 180 only if \mathbf{P}_i and \mathbf{P}_j commute. In the general case, $\mathbf{P}_{i \wedge j} = \lim_{n \rightarrow \infty} (\mathbf{P}_i \mathbf{P}_j)^n$. In Fig. 1, the intersection
 181 $\mathcal{S}_{\text{man on a boat}} = \text{span}(\mathbf{x}_1, \mathbf{x}_2)$ and $\mathcal{S}_{\text{is fishing}} = \text{span}(\mathbf{x}_1, \mathbf{x}_3)$ yields $\mathcal{S}_{\text{man fishing on a boat}} = \text{span}(\mathbf{x}_1)$.
 182

183 **Disjunction** ($i \vee j$). Corresponds to the span (linear sum) of subspaces: $\mathcal{S}_{i \vee j} = \mathcal{S}_i + \mathcal{S}_j$. Any vector in
 184 $\mathcal{S}_{i \vee j}$ is a linear combination of elements in \mathcal{S}_i or in \mathcal{S}_j . For commuting subspaces, the projection
 185 onto $\mathcal{S}_{i \vee j}$ satisfies $\mathbf{P}_{i \vee j} = \mathbf{P}_i + \mathbf{P}_j - \mathbf{P}_{i \wedge j}$. In Fig. 1, the linear sum $\mathcal{S}_{\text{man fishing on a boat}} = \text{span}(\mathbf{x}_1)$
 186 and $\mathcal{S}_{\text{man fishing not on a boat}} = \text{span}(\mathbf{x}_3)$ yields $\mathcal{S}_{\text{man fishing}} = \text{span}(\mathbf{x}_1, \mathbf{x}_3)$.
 187

188 **Complement** ($\neg i$). Corresponds to the subspace of all vectors orthogonal to the subspace: $\mathcal{S}_{\neg i} =$
 189 \mathcal{S}_i^\perp . The projection operator onto \mathcal{S}_i^\perp is given by $\mathbf{P}_{\neg i} = \mathbf{I} - \mathbf{P}_i$. In Fig. 1, the complement of
 190 $\mathcal{S}_{\text{man on a boat}} = \text{span}(\mathbf{x}_1, \mathbf{x}_2)$ is given by $\mathcal{S}_{\text{man on a boat}}^\perp = \text{span}(\mathbf{x}_3)$.
 191

192 3.2 REPRESENTING SUBSPACES AS SOFT PROJECTION OPERATORS

194 While the orthogonal projector from Eq. (1) offers a rich and interpretable parameterization of a
 195 subspace, its optimization poses a challenge for gradient-based methods. Since the rank of a sub-
 196 space is integer-valued, the space of all subspaces (a union of Grassmannian manifolds) is stratified
 197 and non-differentiable across rank changes. This makes it hard to simultaneously learn orientation
 198 and dimensionality via gradient-based methods.

199 **Soft Projection Operators.** To overcome the challenges associated with learning adaptive-rank
 200 subspaces we introduce a relaxation of the projection operator in Eq. (1). For a rank- r subspace \mathcal{S}
 201 spanned by the columns of $\mathbf{X} \stackrel{\text{SVD}}{=} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top \in \mathbb{R}^{d \times n}$, where $\mathbf{\Sigma} = \text{diag}(\{\sigma_i\}_{i=1}^r)$ and $\mathbf{U} \in \mathbb{R}^{d \times r}$ is
 202 the orthonormal basis of \mathcal{S} , we define a soft projector via Tikhonov regularization

$$204 \quad \tilde{\mathbf{P}} := \mathbf{X} (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^\top = \mathbf{U} \text{diag} \left(\left\{ \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \right\}_{i=1}^r \right) \mathbf{U}^\top, \quad \lambda > 0. \quad (5)$$

207 Unlike a true projector ($\mathbf{P}^2 = \mathbf{P}$), $\tilde{\mathbf{P}}$ is a *soft projector*: its eigenvalues vary smoothly in $[0, 1]$
 208 rather than being binary. This makes the operator differentiable with respect to both orientation and
 209 rank, avoiding hard rank jumps and enabling gradual changes in dimensionality. Geometrically, this
 210 relaxation replaces the stratified manifold of projectors with a smooth manifold of PSD operators.
 211 From a Bayesian point of view, it corresponds to a Gaussian prior with precision $\lambda \mathbf{I}$.

212 For small values of λ , the soft projectors in Eq. (5) provide accurate surrogates for the algebraic op-
 213 erations and metrics introduced in §3.1. The approximation error depends primarily on the weakest
 214 nonzero singular value σ_r of \mathbf{X} , being upper bounded by (see Appendix A)

$$215 \quad \epsilon(\sigma_r, \lambda) = \lambda / (\sigma_r^2 + \lambda). \quad (6)$$

216 Table 1: Soft approximations of projection operations derived from \mathbf{X}_i and \mathbf{X}_j . Errors are in
 217 operator norm, except rank (relative absolute error). σ_r, η_r are the weakest non-null singular values
 218 of \mathbf{X}_i and \mathbf{X}_j . $\epsilon(\sigma_r, \lambda) = \lambda / (\sigma_r^2 + \lambda)$.

	Projector	Negation	Intersection	Linear sum	Rank
Exact	$\mathbf{X}(\mathbf{X}\mathbf{X}^\top)^\dagger \mathbf{X}^\top$	$\mathbf{I} - \mathbf{P}$	$\mathbf{P}_i \mathbf{P}_j$	$\mathbf{P}_i + \mathbf{P}_j - \mathbf{P}_i \mathbf{P}_j$	$\text{Tr}(\mathbf{P})$
Soft	$\mathbf{X}(\mathbf{X}\mathbf{X}^\top + \lambda \mathbf{I})^{-1} \mathbf{X}^\top$	$\mathbf{I} - \tilde{\mathbf{P}}$	$\tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j$	$\tilde{\mathbf{P}}_i + \tilde{\mathbf{P}}_j - \tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j$	$\text{Tr}(\tilde{\mathbf{P}})$
Error	$\epsilon(\sigma_r, \lambda)$	$\epsilon(\sigma_r, \lambda)$	$\epsilon(\sigma_r, \lambda) + \epsilon(\eta_r, \lambda)$	$2(\epsilon(\sigma_r, \lambda) + \epsilon(\eta_r, \lambda))$	$\epsilon(\sigma_r, \lambda)$

225 As $\lambda \rightarrow 0$, $\epsilon(\sigma_r, \lambda) \rightarrow 0$ and we recover the orthogonal projection operator $\tilde{\mathbf{P}} \rightarrow \mathbf{P}$, while larger λ
 226 enforces smoother, more regularized projectors. Table 1 summarizes how each operation is approx-
 227 imated using $\tilde{\mathbf{P}}$ and the resulting deviation from the orthogonal projector ($\lambda = 0$).
 228

229 **Subspace Projection Head (SPH).** To bridge our subspace representations with transformer mod-
 230 els, we introduce the *Subspace Projection Head (SPH)*. A transformer first encodes text inputs into
 231 a contextualized hidden state $\mathbf{H} \in \mathbb{R}^{h \times m}$ (where m is sequence length, h is hidden dimension).
 232 The SPH transforms this hidden state \mathbf{H} into a fixed-size set of n vectors $\mathbf{X} \in \mathbb{R}^{d \times n}$ that span a
 233 subspace \mathcal{S} and then explicitly computes the corresponding soft projector $\tilde{\mathbf{P}}$.
 234

235 We map the hidden state \mathbf{H} into a sequence-length-invariant subspace in three stages. First, we
 236 augment the transformer with a set of n learnable query vectors $\mathbf{Q} \in \mathbb{R}^{h \times n}$. These queries attend to
 237 \mathbf{H} (acting as keys and values) via Multi-Head Attention (MHA), pooling n embeddings \mathbf{X}' ,
 238

$$\mathbf{X}' = \text{MHA}(\text{query} = \mathbf{Q}, \text{key} = \mathbf{H}, \text{value} = \mathbf{H}) \in \mathbb{R}^{h \times n}. \quad (7)$$

239 This ensures the dimensions of \mathbf{X}' are independent of the sequence length m . However, the rank
 240 of \mathbf{X}' is still limited: since each head outputs a linear combination of the columns of \mathbf{H} , then
 241 $\text{rank}(\mathbf{X}') \leq n_{\text{heads}} \cdot \text{rank}(\mathbf{H}) \leq m \cdot n_{\text{heads}}$. We address this via a Multi-Layer Perceptron (MLP)
 242 which maps the n h -dimensional vectors from the MHA output to \mathbb{R}^d as $\mathbf{X} = \text{MLP}(\mathbf{X}')$. This
 243 yields the subspace matrix $\mathbf{X} \in \mathbb{R}^{d \times n}$, which spans the subspace \mathcal{S} . Finally, the actual representa-
 244 tion *i.e.*, the soft projector $\tilde{\mathbf{P}}$ onto \mathcal{S} , is computed from \mathbf{X} using the closed-form in Eq. (5).
 245

246 3.3 TRAINING METHODOLOGY

247 We learn subspaces end-to-end via gradient descent, requiring no special pretraining, or training
 248 constraints. Depending on the downstream task, we employ one of the following loss functions.
 249

250 **Reconstruction.** For similarity-based tasks, we use an InfoNCE loss (van den Oord et al., 2019)
 251 with the subspace similarity computed via $\text{sim}(\tilde{\mathbf{P}}_i, \tilde{\mathbf{P}}_j)$, from Eq. (3).
 252

253 **Link Prediction.** In link prediction tasks, we optimize the normalized inclusion score $\text{NIS}(\tilde{\mathbf{P}}_i \mid$
 254 $\tilde{\mathbf{P}}_j)$ from Eq. (4) directly and consider the margin loss (Vendrov et al., 2016)
 255

$$L = \sum_{i,j \in \mathcal{P}} [\gamma_+ - \text{NIS}(\tilde{\mathbf{P}}_i \mid \tilde{\mathbf{P}}_j)]_+ + \sum_{i,j \in \mathcal{N}} [\text{NIS}(\tilde{\mathbf{P}}_i \mid \tilde{\mathbf{P}}_j) - \gamma_-]_+, \quad (8)$$

256 where $[\cdot]_+$ denotes the ReLU function. Here, $\gamma_+, \gamma_- \in (0, 1)$ are the positive and negative margins
 257 and \mathcal{P} and \mathcal{N} the set of positives and negatives, respectively.
 258

259 **NLI Classification.** Textual Entailment presents a unique challenge, requiring not just a measure
 260 of inclusion but also an explicit model of neutrality. For a premise p and hypothesis h , we model
 261 the relation $Y \in \{E, N, C\}$ (entailment, neutral, contradiction) as a discrete latent variable. For
 262 $Y \in \{E, C\}$, we assume the generative process for $S = \text{NIS}(\tilde{\mathbf{P}}_h \mid \tilde{\mathbf{P}}_p)$
 263

$$S \mid (Y = y) \sim \text{Beta}(\alpha_y, \beta_y), \quad y \in \{E, C\}, \quad (9)$$

264 with $\alpha_y \leq \beta_y$ if $y = C$ and $\beta_y \leq \alpha_y$ if $y = E$. For neutrals, subspace inclusion does not provide a
 265 reliable signal. Instead, we model neutrality independently by an MLP as
 266

$$P(Y = y \mid \tilde{\mathbf{P}}_p, \tilde{\mathbf{P}}_h) := \sigma \left(\text{MLP} \left(\tilde{\mathbf{P}}_p, \tilde{\mathbf{P}}_h, \tilde{\mathbf{P}}_p \tilde{\mathbf{P}}_h, \tilde{\mathbf{P}}_h \tilde{\mathbf{P}}_p \right) \right), \quad y = N \quad (10)$$

270 Table 2: WORDNET **reconstruction**. mAP = Mean Average Precision, MR = Mean Rank, ρ =
 271 Spearman correlation between taxonomy rank and subspace dimension or norm (for \mathcal{P}^{10} , \mathcal{H}^{10}).
 272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323			273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323		
Method	Nouns			Verbs		
	mAP (\uparrow)	MR (\downarrow)	ρ (\uparrow)	mAP (\uparrow)	MR (\downarrow)	ρ (\uparrow)
Euclidean (\mathbb{R}^{128})	95.1	1.31	—	98.6	1.04	—
Poincaré (\mathcal{P}^{10})	86.5	4.02	58.5	91.2	1.35	55.1
Lorentz (\mathcal{H}^{10})	92.8	2.95	59.5	93.3	1.23	56.6
Subspaces (SE ¹²⁸)	98.6	1.04	68.0	99.9	1.00	67.0

280 where $\sigma(\cdot)$ denotes the sigmoid function. Assuming uniform priors for entailment and contradiction
 281 classes, conditional on non-neutrality, we compute posterior probabilities for $y = E$ and $y = C$,
 282 denoted $P(Y = y | S = s, Y \in \{E, C\})$. The final posterior probabilities for $y \in \{E, C\}$ are then
 283 derived by combining the MLP output for neutrality with the Beta posteriors for non-neutrality:
 284

$$P(Y = y | \tilde{\mathbf{P}}_p, \tilde{\mathbf{P}}_h, S = s) = (1 - P(Y = N | \tilde{\mathbf{P}}_p, \tilde{\mathbf{P}}_h))P(Y = y | S = s, Y \neq N), \quad (11)$$

285 for $y \in \{E, C\}$. The posteriors in Eqs. (10) and (11) are optimized via a cross-entropy loss.
 286

287 A key insight into how these losses shape the subspaces is revealed by the gradient dynamics. As
 288 derived in Appendix B, $\nabla_{\mathbf{X}_i} \text{sim}(\tilde{\mathbf{P}}_i, \tilde{\mathbf{P}}_j)$ encourages subspace i to expand along the principal direc-
 289 tions of subspace j that it currently lacks. This update naturally promotes subspace inclusion, and
 290 the gradient vanishes once one subspace is contained within the other, leading to stable convergence.
 291

292 **Efficiency Considerations.** While computing $\tilde{\mathbf{P}}$ from $\mathbf{X} \in \mathbb{R}^{d \times n}$ is $\mathcal{O}(n^3)$ in the number of
 293 vectors n , and has a memory footprint that scales with d^2 , where d is the ambient dimension, our
 294 approach is practical for two key reasons. First, the model learns a data-dependent rank for each
 295 subspace. As our experiments demonstrate, this allows for considerable compression of $\tilde{\mathbf{P}}$ via low-
 296 rank approximations. Second, the subspace similarity (3) and NIS (4) are equivalent to dot products
 297 between the vectorized matrices: $\text{Tr}(\tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j) = \text{vec}(\tilde{\mathbf{P}}_i)^\top \text{vec}(\tilde{\mathbf{P}}_j)$. This allows our subspaces to be
 298 indexed by highly optimized vector search libraries, making large-scale retrieval feasible.
 299

300 4 EXPERIMENTS

301 We empirically validate our embeddings’ ability to model large-scale hierarchies and textual entail-
 302 ment on a suite of benchmarks including WORDNET (Miller, 1995) reconstruction in §4.1 and link
 303 prediction in §4.2, HyperLex (Vulić et al., 2017), and SNLI (Bowman et al., 2015) in §4.3.
 304

305 4.1 WORDNET RECONSTRUCTION

306 In WORDNET’s reconstruction task, all edges from the full transitive closure of the noun and verb
 307 hypernymy hierarchies are used for training and testing. The goal is to assess the capacity of the
 308 representations to capture known hierarchical relations by providing only pairwise relations.
 309

310 **Experimental Details.** Each node in the graph is represented by a soft projection matrix (5), with
 311 $\lambda = 0.2$, parameterized by a matrix $\mathbf{X}_i \in \mathbb{R}^{128 \times 128}$. For each training edge (u, v) , we sample 19
 312 nodes $v' \neq u$ such that neither (u, v') nor (v', u) are in the train split and optimize InfoNCE using
 313 Adam (Kingma & Ba, 2017). During evaluation, we first compute the subspace similarity $\text{Tr}(\tilde{\mathbf{P}}_u \tilde{\mathbf{P}}_v)$
 314 of every edge (u, v) in the transitive closure. We then rank each of these scores among those of all
 315 node pairs that are not connected in the transitive closure. Based on these rankings, we report the
 316 mean rank (MR) and the mean average precision (mAP). Additional details in Appendix D.1.
 317

318 **Reconstruction Results.** Our method achieves state-of-the-art performance on the WordNet re-
 319 construction. As shown in Table 2, our subspace representations (SE¹²⁸) significantly outperform
 320 both Hyperbolic (Poincaré \mathcal{P}^{10} and Lorentz \mathcal{H}^{10} models), and Euclidean embeddings (\mathbb{R}^{128}) base-
 321 lines, with a near-perfect reconstruction on the shallower verb hierarchy.
 322

324 Table 3: HYPERLEX **lexical entailment** Spearman’s rank correlation (WORDNET embeddings).
325

	\mathbb{R}^5	\mathcal{P}^5	DOE-A ⁵⁰	SE ¹²⁸ ($\lambda=0.2$)	SE ¹²⁸ ($\lambda=0.6$)
ρ (\uparrow)	0.389	0.512	0.590	0.683	0.734

329 Table 4: WORDNET noun **link prediction** F1-Scores (\uparrow). Superscript denotes dimension.
330

Non-Basic Edges	\mathbb{R}^{10}	OE^{10}	\mathcal{P}^{10}	Cones^{10}	Disk^{10}	UHS^{10}	SE ⁶⁴	SE ¹²⁸
0%	29.4	43.0	29.0	32.4	36.5	52.2	49.0 ± 0.11	53.4 ± 0.41
10%	75.4	69.7	71.5	84.9	79.5	89.4	93.6 ± 0.06	94.3 ± 0.05
25%	78.4	79.4	82.1	90.8	90.5	95.7	95.9 ± 0.08	95.9 ± 0.11
50%	78.1	84.1	85.4	93.8	94.2	97.0	95.8 ± 0.07	95.5 ± 0.06

337 To assess how these representations generalize to graded lexical entailment, we evaluated them
338 on the HYPERLEX noun subset without fine-tuning (see Appendix D.3). We quantify entailment
339 using the NIS from Eq. (4), selecting the synset pair with maximal similarity for disambiguation
340 (Athiwaratkun & Wilson, 2018). As reported in Table 3, our embeddings demonstrate a significantly
341 stronger correlation with human judgments than prior work. Our approach achieves a Spearman’s ρ
342 of 0.73 ($\lambda = 0.6$), substantially outperforming Poincaré and Gaussian embedding baselines.
343

344 4.2 WORDNET LINK PREDICTION

345 In the link prediction task, we evaluate generalization from sparse supervision. We split the set of
346 edges from the transitive closure that are not part the original graph (non-basic edges) into train
347 (90%), validation (5%) and test (5%) using the data split from Suzuki et al. (2019).
348

349 **Experimental Details.** To assess how the percentage of the transitive closure seen during training
350 impacts performance, we created partial training edge coverages by randomly sampling 0%, 10%,
351 25% or 50% of non-basic edges, to which we append all the basic edges. We considered two ambient
352 space dimensions $d = 64$ and $d = 128$, setting the number of vectors as $n = d$ in each case. Training
353 was performed by optimizing the margin loss defined in Eq. (8). During evaluation, for each positive
354 test edge, we consider 10 negative test edges: half with a corrupted head, and half with a corrupted
355 tail. We classify edges by thresholding the NIS from Eq. (4) and report the classification F1-Score.
356

357 **Link Prediction Results.** Link prediction results are shown in Table 4. We compare against Eu-
358 clidean embeddings (\mathbb{R}^{10}), Order Embeddings (OE^{10}), Poincaré (\mathcal{P}^{10}) Nickel & Kiela (2017), Hy-
359 perbolic Entailment Cones (Cones^{10}) (Ganea et al., 2018b), Hyperbolic Disk Embeddings (Disk^{10})
360 (Suzuki et al., 2019) and the Umbral Half-Space embeddings (UHS^{10}) (Yu et al., 2024). Subspace
361 embeddings SE^{64} and SE^{128} outperform the baselines across most supervision levels. SE^{128} , in par-
362 ticular, offers a considerable improvement when training with sparser supervision. This underscores
363 the ability of subspace representations to infer hierarchical relations even from weak supervision.
364

365 4.3 SNLI

366 We conducted experiments on NLI using the SNLI dataset. SNLI comprises 550,152 training, and
367 10,000 validation/test premise (p) - hypothesis (h) pairs, each annotated with one of three labels:
368 entailment, neutral, or contradiction. We consider two regimes: 3-way, and 2-way classification
369 (entailment vs non-entailment). For a fair comparison, we benchmarked bi-encoder baselines, us-
370 ing the all-miniLM-L6-v2 and mpnet-base-v2 models with a shallow MLP classifier. We consid-
371 ered two variants: $\text{MLP}(p, h)$, using concatenated premise p and hypothesis h embeddings, and
372 $\text{MLP}(p, h, p-h)$. In our models, we map p and h to soft projectors via our SPH module ($\lambda = 0.05$).
373 All models were trained with a cross-entropy loss. Additional details are provided in Appendix E.
374

375 **Results.** As shown in Table 5, our approach consistently outperforms bi-encoder baselines. For
376 reference, we also include two GRU-based hierarchical approaches: Order Embeddings (OE) and
377 Hyperbolic Neural Networks (HNN) Ganea et al. (2018a), which do not model neutrality. Crucially,
378 in the 2-way setting, our method, which relies solely on subspace inclusion, consistently outperforms
379 the MLP baselines, with a more interpretable mechanism.
380

378
379
380
Table 5: SNLI test accuracy: 2-way (entail-
ment vs non-entailment) and 3-way (+Neutral).

381 Method	382 2-way	383 3-way
384 OE (GRU)	385 88.60	386 —
387 HNN (GRU)	388 81.19	389 —
390 all-miniLM-L6-v2 (22.7m params)		
391 MLP(p, h)	392 90.16 ± 0.19	393 83.57 ± 0.11
394 MLP(p, h, Δ)	395 91.02 ± 0.10	396 84.89 ± 0.21
397 SPH (SE ⁶⁴)	398 91.02 ± 0.11	399 84.43 ± 0.07
400 SPH (SE ¹²⁸)	401 91.25 ± 0.09	402 85.41 ± 0.09
403 mpnet-base-v2 (109m params)		
404 MLP(p, h)	405 90.67 ± 0.33	406 84.10 ± 0.27
407 MLP(p, h, Δ)	408 91.74 ± 0.07	409 85.68 ± 0.15
410 SPH (SE ⁶⁴)	411 91.77 ± 0.42	412 85.63 ± 0.14
413 SPH (SE ¹²⁸)	414 91.91 ± 0.08	415 85.80 ± 0.05

396
4.4 COMPOSITE ENTAILMENT

397
398 To quantify the logical structure of our representations, namely the ability to model conjunctions and
399 negations, we constructed an evaluation set consisting of 600 premise-composite hypothesis pairs.
400 Given a premise (e.g., “Two children are sitting on a red picnic blanket, eating sandwiches”), we
401 generate two conjunction-based hypotheses (e.g., “People are eating” \wedge “People sitting on a blanket”)
402 and two hypotheses combined via negation (e.g., “People are eating” $\wedge \neg$ “People sitting directly on
403 the grass”). The models trained on two-way SNLI from Table 5 were evaluated zero-shot. Because
404 vectors lack native logical operators, we used vector averaging for conjunction and vector difference
405 for negation. In contrast, subspaces were composed via intersections and complements, as in §3.1.
406 We report AUC for conjunction and negation separately, using the NIS for our subspace embeddings
407 and entailment probabilities for the vector baselines. Additional details in Appendix E.2

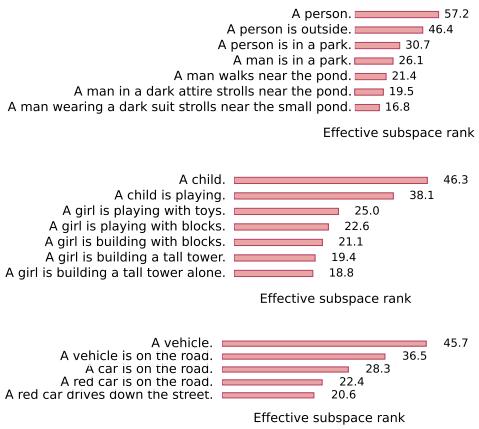
408 **Results** As shown in Table 7, vector baselines perform adequately on conjunction (83-91% AUC),
409 confirming that vector averaging is a reasonable heuristic for additive semantics. However, they
410 suffer a catastrophic failure on negations, dropping to near-random performance (49-69% AUC). In
411 contrast, all our subspace embeddings exceed 90% AUC on both operations, retaining thus the same
412 predictive power observed for atomic hypotheses.

413
5 EFFICIENCY ANALYSIS

414
415 By vectorizing the similarity (3) and the NIS (4), we can make
416 our embeddings compatible with fast search libraries like FAISS.
417 This contrasts with non-Euclidean embeddings requiring brute-force
418 search. We benchmarked retrieval latency on CPU over the 155,070
419 Flickr30k captions (batch-size 128). The results in Table 6 show
420 that SE¹²⁸ is nearly **8x faster** than a 10D Poincaré (\mathcal{P}^{10}) baseline.
421 The encoding overhead introduced by the SPH is also minimal, av-
422 eraging at an additional 0.12ms/query on GPU (Appendix G).

423
6 QUALITATIVE ANALYSIS

424
425 A key finding of our work is that our framework learns an interpretable geometry that maps the
426 hierarchical structure of language onto the representations. We confirm this empirically on SNLI,
427 using our SE¹²⁸ embeddings. In Fig. 3, we plot the histogram of the NIS (4) for premise-hypothesis
428 pairs encoded with our mpnet-base-v2 (SE¹²⁸) subspace model. We observe that, for entailment
429 this metric is concentrated towards 1, for contradictions it skews towards 0, and for neutrals it is
430 centered around 0.5. This confirms that the NIS reflects the underlying entailment structure via
431 subspace inclusion: each premise subspace is contained within the hypotheses subspaces it entails.

396
Figure 2: Example *effective subspace ranks*.413
Table 6: Search latency.

414 Latency (ms/query)	
415 \mathcal{P}^{10}	416 3.64 ± 0.13
417 SE ¹²⁸	418 0.47 ± 0.02

Table 7: Zero-shot composite entailment **ROC AUC**.

Model	AUC	
	Conjunction (\wedge)	Negation ($\wedge\neg$)
all-MiniLM-L6-v2 + MLP(p, h)	86.45	57.68
all-MiniLM-L6-v2 + MLP($p, h, p - h$)	91.22	48.62
mpnet-base-v2 + MLP(p, h)	82.91	55.75
mpnet-base-v2 + MLP($p, h, p - h$)	90.20	68.69
all-MiniLM-L6-v2 + SPH (SE ⁶⁴)	94.68	90.49
all-MiniLM-L6-v2 + SPH (SE ¹²⁸)	95.02	92.77
mpnet-base-v2 + SPH (SE ⁶⁴)	95.87	93.89
mpnet-base-v2 + SPH (SE ¹²⁸)	96.55	95.76

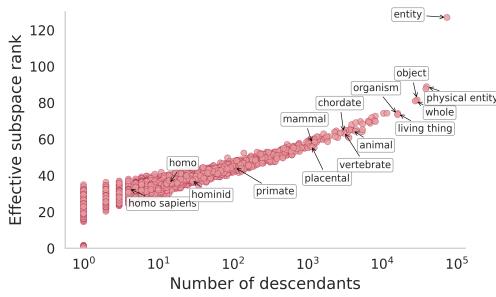
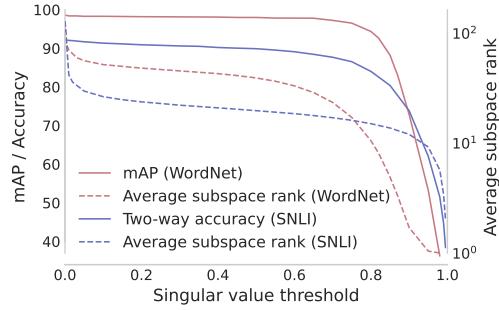
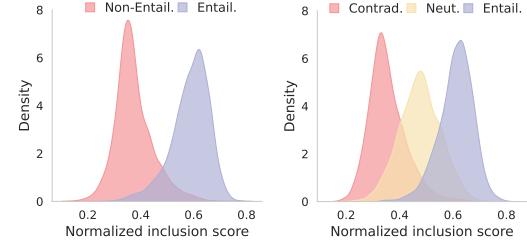
Figure 4: *Effective rank* $\text{Tr}(\tilde{P})$ vs number of descendants of WORDNET nouns.

Figure 5: Accuracy, mAP and average rank as a function of the singular value threshold.

Figure 3: NIS histogram of SNLI’s test set encoded with SE¹²⁸. Left: 2-way; Right: 3-way.

Rank as a Measure of Generality. A direct consequence of this is that a subspace’s *effective rank*, as measured by $\text{Tr}(\tilde{P})$, becomes an emergent measure of semantic generality. For a specific concept to be nested within many broader ones, it must occupy a lower-dimensional subspace. This property is confirmed quantitatively by the high Spearman correlation (ρ) between WORDNET nouns’ true hierarchical positions (distance from root) and their learned *effective rank* in Table 2. We provide additional visual confirmation of this principle. Fig. 4 shows how the *effective rank* of WORDNET’s nouns grows with the number of their descendants. The annotated chain from the specific *homo sapiens* to the root noun *entity* clearly illustrates this monotonic increase. Fig. 2 shows the same phenomenon for three entailment sequences encoded with our SE¹²⁸ model. We observe again that the *effective rank* of each sentence increases as we go from a specific description to general one *e.g.*, “A red car drives down the street.” \rightarrow “a vehicle is on the road.” \rightarrow “A vehicle.”.

Dimensionality Reduction. This learned structure, where the rank encodes specificity, makes our embeddings inherently compressible. Since each subspace dynamically allocates the dimensions needed to represent each concept, we can perform post-training compression via truncated SVD, with minimal performance loss. To assess this capability, we approximated WORDNET and SNLI embeddings \tilde{P}_i by retaining singular values greater than a threshold $\tau \in [0, 1]$ and plot the reconstruction mAP, in the case of WordNet, or the two-way accuracy, for SNLI, as well as the average subspace rank, as a function τ . As shown in Fig. 5, the learned subspaces exhibit rapid spectral decay in both experiments, allowing for compression of up to 4 \times with negligible impact on task performance. This paves the way for a new class of embeddings where representational complexity is not fixed, but a learned, data-driven property.

486 **Emergent Compositionality.** As evidenced
 487 by the results in Table 7, a key advantage of
 488 subspace embeddings is their emergent compo-
 489 sitionality, which arises from the geometry of
 490 the embeddings without explicit training sig-
 491 nals. Fig. 6 provides an example illustrating
 492 this inherent compositionality, for conjunc-
 493 tions $\tilde{P}_i \tilde{P}_j$ and negations $\mathbf{I} - \tilde{P}$, in a retrieval
 494 setting. For a query formed by a logical com-
 495 position of concept subspaces, we retrieve im-
 496 ages from Flickr30k (Young et al., 2014) whose
 497 caption subspaces have the largest $\text{NIS}(\tilde{P}_{\text{query}}$
 498 $| \tilde{P}_{\text{caption}})$. Each caption subspace is com-
 499 puted with our mpnet-base-v2 + SPH (SE¹²⁸)
 500 model, fine-tuned on SNLI. The results demon-
 501 strate that subspaces enable compositional re-
 502 trieval, allowing for the search of novel concepts
 503 or query editing through geometric operations.
 504 Additional examples are shown in Appendix F.
 505

7 LIMITATIONS

507 We identify two central limitations of our subspace representations and outline several promising
 508 directions for future work.
 509

510 **Approximate Logic.** Our framework relies on soft projectors *i.e.*, operators with eigenvalues in
 511 $[0, 1]$, as opposed to true orthogonal projectors with binary eigenvalues. This relaxation is essential
 512 for differentiability. However, it implies that logical operations are approximate rather than symbol-
 513 ically exact, as evidenced by the error bounds in Table 1. Despite this, our empirical results, most
 514 prominently the NIS separation in Fig. 3 and the strong compositional performance in Table 7, sug-
 515 gest that these approximations remain stable and semantically coherent. A compelling direction for
 516 future work is to gradually anneal the regularization parameter $\lambda \rightarrow 0$ during training. This would
 517 allow the model to exploit soft gradients in early stages, yet increasingly sharpen its projectors to-
 518 toward true idempotent, orthogonal operators as training progresses, potentially recovering orthogonal
 519 projectors without sacrificing learnability.
 520

521 **Storage Complexity.** A possible trade-off regarding our soft projector representations is the mem-
 522 ory footprint, if one were to store the full $d \times d$ matrices. Encouragingly, however, the rank vs num-
 523 ber of descendants plot in Fig. 4, as well as the dimensionality reduction plot in Fig. 5 reveal that
 524 the learned projectors exhibit an intrinsic low-rank structure, concentrating most of their semantic
 525 mass in few principal directions. This property can be exploited directly. By storing only the top- k
 526 eigenvectors (and corresponding eigenvalues) of each projector, we can compress the representation
 527 significantly, bringing its memory footprint close to that of standard vector embeddings. Crucially,
 528 this compression has minimal impact on downstream tasks, suggesting that low-rank parameteriza-
 529 tions, or even constrained low-rank training, provides a path toward scalable subspace embeddings.
 530

8 CONCLUSION

532 This paper introduced *subspace embeddings*, a novel paradigm that addresses the limitations of
 533 vector representations in capturing logical structure and asymmetric, or hierarchical, relations. By
 534 representing concepts as subspaces, our framework naturally encodes generality through dimen-
 535 sionality and hierarchy through inclusion. Our evaluation across hierarchical and entailment tasks
 536 reveals the power of this inductive bias: it not only achieves state-of-the-art results but also gives
 537 rise to an emergent structure for logical composition without explicit supervision. The linearity of
 538 the core operations and metrics ensures compatibility with efficient vector search pipelines. Overall,
 539 our results establish subspace embeddings as a bridge between representation learning and logical
 reasoning, opening avenues for new representations that exploit the structural nature of data.

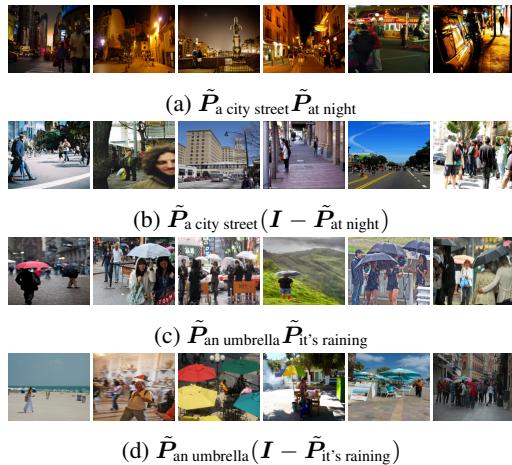


Figure 6: Flickr30k retrieval from composition of natural language queries.

540 REFERENCES
541

542 Kumail Alhamoud, Shaden Alshammari, Yonglong Tian, Guohao Li, Philip HS Torr, Yoon Kim,
543 and Marzyeh Ghassemi. Vision-language models do not understand negation. In *Proceedings of
544 the Computer Vision and Pattern Recognition Conference*, pp. 29612–29622, 2025.

545 Ben Athiwaratkun and Andrew Gordon Wilson. Hierarchical density order embeddings. In *6th
546 International Conference on Learning Representations, ICLR 2018*, 2018.

547 Yushi Bai, Zhitao Ying, Hongyu Ren, and Jure Leskovec. Modeling heterogeneous hierarchies with
548 relation-specific hyperbolic cones. volume 34, pp. 12316–12327, 2021.

549

550 Samuel Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large anno-
551 tated corpus for learning natural language inference. In *Proceedings of the 2015 Conference on
552 Empirical Methods in Natural Language Processing*, pp. 632–642, 2015.

553 Narendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan Reddy. Probabilistic
554 entity representation model for reasoning over knowledge graphs. volume 34, pp. 23440–
555 23451, 2021.

556

557 Nuno Pinho Da Silva and Joao Paulo Costeira. The normalized subspace inclusion: Robust cluster-
558 ing of motion subspaces. In *2009 IEEE 12th International Conference on Computer Vision*, pp.
559 1444–1450. IEEE, 2009.

560 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
561 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
562 the North American chapter of the association for computational linguistics: human language
563 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

564

565 Ankit Dhall, Anastasia Makarova, Octavian Ganea, Dario Pavlo, Michael Greeff, and Andreas
566 Krause. Hierarchical image classification using entailment cone embeddings. In *Proceedings of
567 the IEEE/CVF conference on computer vision and pattern recognition workshops*, pp. 836–837,
568 2020.

569 Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre-
570 Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library, 2025.
571 URL <https://arxiv.org/abs/2401.08281>.

572 Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. volume 31,
573 2018a.

574

575 Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for learn-
576 ing hierarchical embeddings. In *International conference on machine learning*, pp. 1646–1655.
577 PMLR, 2018b.

578 Bernhard Ganter and Rudolf Wille. *Formal concept analysis: mathematical foundations*. Springer
579 Nature, 2024.

580

581 Dinesh Garg, Shajith Iqbal, Santosh K Srivastava, Harit Vishwakarma, Hima Karanam, and
582 L Venkata Subramaniam. Quantum embedding of knowledge for reasoning. In *Advances in
583 Neural Information Processing Systems*, volume 32, 2019.

584

585 Tejas Gokhale, Pratyay Banerjee, Chitta Baral, and Yezhou Yang. Vqa-lol: Visual question answer-
586 ing under the lens of logic. In *European conference on computer vision*, pp. 379–396. Springer,
587 2020.

588

589 Yuan He, Moy Yuan, Jiaoyan Chen, and Ian Horrocks. Language models as hierarchy encoders.
volume 37, pp. 14690–14711, 2024.

590

591 Laurence Robert Horn. *On the semantic properties of logical operators in English*. University of
592 California, Los Angeles, 1972.

593 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. *IEEE
Transactions on Big Data*, 7(3):535–547, 2019.

594 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 595 <https://arxiv.org/abs/1412.6980>.
 596

597 Martha Lewis. Compositional hyponymy with positive operators. In *Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)*, pp.
 598 638–647, 2019.
 599

600 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 601 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 602 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 603 9459–9474, 2020.
 604

605 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 606 training for unified vision-language understanding and generation. In *International conference on
 607 machine learning*, pp. 12888–12900. PMLR, 2022.
 608

609 Xiang Li, Luke Vilnis, and Andrew McCallum. Improved representation learning for predicting
 610 commonsense ontologies, 2017. URL <https://arxiv.org/abs/1708.00549>.
 611

612 Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Boratko, and Andrew McCallum. Smoothing the
 613 geometry of probabilistic box embeddings. In *International Conference on Learning Representa-
 614 tions*, 2018.
 615

616 Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representa-
 617 tions of words and phrases and their compositionality. volume 26, 2013.
 618

619 George A Miller. Wordnet: a lexical database for english. *Communications of the ACM*, 38(11):
 620 39–41, 1995.
 621

622 Gabriel Moreira, Manuel Marques, João Paulo Costeira, and Alexander Hauptmann. Hyperbolic vs
 623 euclidean embeddings in few-shot learning: Two sides of the same coin. In *Proceedings of the
 624 IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 2082–2090, 2024.
 625

626 Gabriel Moreira, Alexander Hauptmann, Manuel Marques, and João Paulo Costeira. Learning
 627 visual-semantic subspace representations. 2025.
 628

629 Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representa-
 630 tions. volume 30, 2017.
 631

632 Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
 633 hyperbolic geometry. In *International conference on machine learning*, pp. 3779–3788. PMLR,
 634 2018.
 635

636 Avik Pal, Max van Spengler, Guido Maria D’Amely di Melendugno, Alessandro Flaborea, Fabio
 637 Galasso, and Pascal Mettes. Compositional entailment learning for hyperbolic vision-language
 638 models. In *The Thirteenth International Conference on Learning Representations*, 2025.
 639

640 Kiho Park, Yo Joong Choe, Yibo Jiang, and Victor Veitch. The geometry of categorical and hier-
 641 archical concepts in large language models, 2025. URL <https://arxiv.org/abs/2406.01506>.
 642

643 Tobia Poppi, Tejaswi Kasarla, Pascal Mettes, Lorenzo Baraldi, and Rita Cucchiara. Hyperbolic
 644 safety-aware vision-language models. In *Proceedings of the Computer Vision and Pattern Recog-
 645 nition Conference*, pp. 4222–4232, 2025.
 646

647 Vincent Quantmeyer, Pablo Mosteiro, and Albert Gatt. How and where does clip process negation?
 648 In *Proceedings of the 3rd Workshop on Advances in Language and Vision Research (ALVR)*, pp.
 649 59–72, 2024.
 650

651 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 652 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 653 models from natural language supervision. In *International conference on machine learning*, pp.
 654 8748–8763. PMLR, 2021.
 655

648 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 649 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language*
 650 *Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-*
 651 *IJCNLP)*, pp. 3982–3992, 2019.

652 H Ren, W Hu, and J Leskovec. Query2box: Reasoning over knowledge graphs in vector space using
 653 box embeddings. In *International Conference on Learning Representations (ICLR)*, 2020.

655 Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge
 656 graphs. volume 33, pp. 19716–19726, 2020.

658 Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for hyperbolic
 659 embeddings. In *International conference on machine learning*, pp. 4460–4469. PMLR, 2018.

660 Jaisidh Singh, Ishaan Shrivastava, Mayank Vatsa, Richa Singh, and Aparna Bharati. Learn "no"
 661 to say "yes" better: Improving vision-language models via negations, 2024. URL <https://arxiv.org/abs/2403.20312>.

663 Santosh Kumar Srivastava, Dinesh Khandelwal, Dhiraj Madan, Dinesh Garg, Hima Karanam, and
 664 L Venkata Subramaniam. Inductive quantum embedding. In *Advances in Neural Information*
 665 *Processing Systems*, volume 33, pp. 16012–16024, 2020.

667 Ryota Suzuki, Ryusuke Takahama, and Shun Onoda. Hyperbolic disk embeddings for directed
 668 acyclic graphs. In *International Conference on Machine Learning*, pp. 6066–6075. PMLR, 2019.

670 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 671 tive coding, 2019. URL <https://arxiv.org/abs/1807.03748>.

672 Cornelis Joost Van Rijsbergen. *The geometry of information retrieval*. Cambridge University Press,
 673 2004.

674 Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-embeddings of images and
 676 language, 2016. URL <https://arxiv.org/abs/1511.06361>.

677 Luke Vilnis and Andrew McCallum. Word representations via gaussian embedding, 2015. URL
 678 <https://arxiv.org/abs/1412.6623>.

680 Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew Mccallum. Probabilistic embedding of knowl-
 681 edge graphs with box lattice measures. In *Proceedings of the 56th Annual Meeting of the Associa-
 682 tion for Computational Linguistics (Volume 1: Long Papers)*, pp. 263–272, 2018.

683 Ivan Vulić, Daniela Gerz, Douwe Kiela, Felix Hill, and Anna Korhonen. HyperLex: A large-scale
 684 evaluation of graded lexical entailment. *Computational Linguistics*, 43(4):781–835, December
 685 2017. doi: 10.1162/COLI_a.00301. URL <https://aclanthology.org/J17-4004/>.

687 Orion Weller, Dawn Lawrie, and Benjamin Van Durme. Nevir: Negation in neural information
 688 retrieval. In *Proceedings of the 18th Conference of the European Chapter of the Association for
 689 Computational Linguistics (Volume 1: Long Papers)*, pp. 2274–2287, 2024.

690 Bo Xiong, Michael Cochez, Mojtaba Nayyeri, and Steffen Staab. Hyperbolic embedding inference
 691 for structured multi-label prediction. volume 35, pp. 33016–33028, 2022.

693 Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
 694 denotations: New similarity metrics for semantic inference over event descriptions. *Transactions*
 695 *of the Association for Computational Linguistics*, 2:67–78, 2014.

696 Tao Yu, Toni JB Liu, Albert Tseng, and Christopher De Sa. Shadow cones: A generalized framework
 697 for partial order embeddings. In *The Twelfth International Conference on Learning Representa-
 698 tions*, 2024.

699 Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and
 700 why vision-language models behave like bags-of-words, and what to do about it?, 2023. URL
<https://arxiv.org/abs/2210.01936>.

702 Yuhui Zhang, Yuchang Su, Yiming Liu, and Serena Yeung-Levy. Negvqa: Can vision language
703 models understand negation?, 2025. URL <https://arxiv.org/abs/2505.22946>.

704

705 Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone embeddings for
706 multi-hop reasoning over knowledge graphs. volume 34, pp. 19172–19183, 2021.

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A ERROR BOUNDS FOR SOFT PROJECTORS
757758 **Lemma A.1.** Let $\mathbf{X} = \mathbf{U}\Sigma\mathbf{V}^\top$, where $\mathbf{U} \in O(d)$, and define $\tilde{\mathbf{P}} := \mathbf{X}(\mathbf{X}^\top\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^\top$. We
759 have

760
$$\tilde{\mathbf{P}} = \mathbf{U}\Sigma^2(\Sigma^2 + \lambda\mathbf{I})^{-1}\mathbf{U}^\top \quad (12)$$

761 and the spectrum of $\tilde{\mathbf{P}}$ is $\left\{ \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \right\}_{i=1}^d$.
762763 *Proof.* Letting the SVD of \mathbf{X} be $\mathbf{U}\Sigma\mathbf{V}^\top$,

764
$$\begin{aligned} \tilde{\mathbf{P}} &= \mathbf{U}\Sigma\mathbf{V}^\top(\mathbf{V}\Sigma^2\mathbf{V}^\top + \lambda\mathbf{I})^{-1}\mathbf{V}\Sigma\mathbf{U}^\top \\ &= \mathbf{U}\Sigma\mathbf{V}^\top\mathbf{V}(\Sigma^2 + \lambda\mathbf{I})^{-1}\mathbf{V}^\top\mathbf{V}\Sigma\mathbf{U}^\top \\ &= \mathbf{U}\Sigma^2(\Sigma^2 + \lambda\mathbf{I})^{-1}\mathbf{U}^\top. \end{aligned} \quad (13)$$

765 The spectrum of $\tilde{\mathbf{P}}$ is the diagonal of $\Sigma^2(\Sigma^2 + \lambda\mathbf{I})^{-1}$, which reads $\left\{ \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \right\}_{i=1}^d$. \square
766767 **Proposition A.2** (Frobenius norm error). Let $\mathbf{X} = \mathbf{U}\Sigma\mathbf{V}^\top$ be rank- r , where $\mathbf{U} \in O(d)$ and let
768 the orthogonal projector onto $\text{Span}(\mathbf{X})$ be $\mathbf{P} = \mathbf{U}\mathbf{J}_r\mathbf{U}^\top$. Define $\tilde{\mathbf{P}} := \mathbf{X}(\mathbf{X}^\top\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^\top$.
769 Then,

770
$$\|\mathbf{P} - \tilde{\mathbf{P}}\|_F \leq \frac{\lambda}{\sigma_r^2 + \lambda}. \quad (14)$$

771 *Proof.* Let $\mathbf{J}_r = \text{BlockDiag}(\mathbf{I}_r, \mathbf{0}_{d-r})$, where $r = \text{rank}(\mathbf{X})$ and write the SVD of the orthogonal
772 projector as $\mathbf{P} = \mathbf{U}\mathbf{J}_r\mathbf{U}^\top$ for $\mathbf{U} \in O(d)$. Using Lemma A.1, we can write $\mathbf{P} - \tilde{\mathbf{P}} = \mathbf{U}(\mathbf{J}_r -$
773 $\Sigma^2(\Sigma^2 + \lambda\mathbf{I})^{-1})\mathbf{U}^\top$. The Frobenius norm is invariant to orthogonal transformations \mathbf{U} , hence

774
$$\|\mathbf{P} - \tilde{\mathbf{P}}\|_F^2 = \|\mathbf{J}_r - \Sigma^2(\Sigma^2 + \lambda\mathbf{I})^{-1}\|_F^2 = \sum_{i=1}^r \left(1 - \frac{\sigma_i^2}{\sigma_i^2 + \lambda}\right)^2 \leq r \left(\frac{\lambda}{\sigma_r^2 + \lambda}\right)^2. \quad (15)$$

775 Therefore, $\|\mathbf{P} - \tilde{\mathbf{P}}\|_F \leq \frac{\lambda\sqrt{r}}{\sigma_r^2 + \lambda}$. \square
776777 **Proposition A.3** (Operator norm error). Let $\mathbf{X} = \mathbf{U}\Sigma\mathbf{V}^\top$ be rank- r , where $\mathbf{U} \in O(d)$, and let
778 the orthogonal projector onto $\text{Span}(\mathbf{X})$ be $\mathbf{P} = \mathbf{U}\mathbf{J}_r\mathbf{U}^\top$. Define $\tilde{\mathbf{P}} := \mathbf{X}(\mathbf{X}^\top\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^\top$.
779 Then,

780
$$\|\mathbf{P} - \tilde{\mathbf{P}}\|_2 = \frac{\lambda}{\sigma_r^2 + \lambda}. \quad (16)$$

781 *Proof.* Let $\mathbf{J}_r = \text{BlockDiag}(\mathbf{I}_r, \mathbf{0}_{d-r})$, where $r = \text{rank}(\mathbf{X})$ and write the SVD of the orthogonal
782 projector as $\mathbf{P} = \mathbf{U}\mathbf{J}_r\mathbf{U}^\top$ for $\mathbf{U} \in O(d)$. Using Lemma A.1, we can write $\mathbf{P} - \tilde{\mathbf{P}} = \mathbf{U}(\mathbf{J}_r -$
783 $\Sigma^2(\Sigma^2 + \lambda\mathbf{I})^{-1})\mathbf{U}^\top$. The operator norm is invariant to orthogonal transformations \mathbf{U} , hence

784
$$\|\mathbf{P} - \tilde{\mathbf{P}}\|_2 = \|\mathbf{J}_r - \Sigma^2(\Sigma^2 + \lambda\mathbf{I})^{-1}\|_2 = \max \left\{ 1 - \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \right\}_{i=1}^r = \frac{\lambda}{\sigma_r^2 + \lambda}. \quad (17)$$

785 Therefore, $\|\mathbf{P} - \tilde{\mathbf{P}}\|_2 = \frac{\lambda}{\sigma_r^2 + \lambda}$. \square
786787 **Corollary A.4** (Negation operator error). Let \mathbf{X} , \mathbf{P} and $\tilde{\mathbf{P}}$ be in the conditions of Proposition A.2.
788 Then,

789
$$\|(\mathbf{I} - \mathbf{P}) - (\mathbf{I} - \tilde{\mathbf{P}})\|_2 \leq \frac{\lambda}{\sigma_r^2 + \lambda}. \quad (18)$$

790 *Proof.* Note that $\|(\mathbf{I} - \mathbf{P}) - (\mathbf{I} - \tilde{\mathbf{P}})\|_2 = \|\mathbf{P} - \tilde{\mathbf{P}}\|_2$ and apply Proposition A.3. \square
791792 **Proposition A.5** (Trace error). Let $\mathbf{X} = \mathbf{U}\Sigma\mathbf{V}^\top$ be rank- r , where $\mathbf{U} \in O(d)$, and let the orthogonal
793 projector onto $\text{Span}(\mathbf{X})$ be $\mathbf{P} = \mathbf{U}\mathbf{J}_r\mathbf{U}^\top$. Define $\tilde{\mathbf{P}} := \mathbf{X}(\mathbf{X}^\top\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^\top$. Then,

794
$$|\text{Tr}(\mathbf{P}) - \text{Tr}(\tilde{\mathbf{P}})| \leq \frac{\lambda r}{\sigma_r^2 + \lambda} \quad (19)$$

810 *Proof.* First write $\mathbf{P} - \tilde{\mathbf{P}} = \mathbf{U}(\mathbf{J}_r - \Sigma^2(\Sigma^2 + \lambda\mathbf{I})^{-1})\mathbf{U}^\top$. We have then,

$$812 \quad \left| \text{Tr}(\mathbf{P}) - \text{Tr}(\tilde{\mathbf{P}}) \right| = \left| \text{Tr}(\mathbf{J}_r - \Sigma^2(\Sigma^2 + \lambda\mathbf{I})^{-1}) \right| = \sum_{i=1}^r \left(1 - \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \right) \leq \frac{\lambda r}{\sigma_r^2 + \lambda}. \quad (20)$$

□

815 **Corollary A.6** (Subspace rank error). *Letting $r := \text{rank}(\mathbf{X})$, the relative error of estimating r via*
 816 *$\text{Tr}(\tilde{\mathbf{P}})$ verifies*

$$818 \quad \frac{\left| \text{Tr}(\tilde{\mathbf{P}}) - r \right|}{r} \leq \frac{\lambda}{\sigma_r^2 + \lambda}. \quad (21)$$

821 *Proof.* Suffices to note that $r = \text{Tr}(\mathbf{P})$ and use Proposition A.5. □

823 **Proposition A.7** (Subspace similarity error). *Let \mathbf{X}_i and \mathbf{X}_j be rank- r_i and r_j matrices, with*
 824 *singular values $\{\sigma_k\}_{k=1}^d$ and $\{\eta_k\}_{k=1}^d$ (in descending order), respectively. Denote by $\mathbf{P}_i, \tilde{\mathbf{P}}_i$ and*
 825 *$\mathbf{P}_j, \tilde{\mathbf{P}}_j$ the respective orthogonal and soft projectors. Then,*

$$827 \quad \left| \text{Tr}(\mathbf{P}_i \mathbf{P}_j) - \text{Tr}(\tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j) \right| \leq \sqrt{r_i r_j} \left(\frac{\lambda}{\sigma_r^2 + \lambda} + \frac{\lambda}{\eta_r^2 + \lambda} \frac{\sigma_r^2}{\sigma_r^2 + \lambda} \right) \quad (22)$$

829 *Proof.* We have

$$831 \quad \begin{aligned} \left| \text{Tr}(\mathbf{P}_i \mathbf{P}_j) - \text{Tr}(\tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j) \right| &= \left| \text{Tr}((\mathbf{P}_i - \tilde{\mathbf{P}}_i) \mathbf{P}_j) + \text{Tr}((\mathbf{P}_j - \tilde{\mathbf{P}}_j) \tilde{\mathbf{P}}_i) \right| \\ 832 &\leq \left| \text{Tr}((\mathbf{P}_i - \tilde{\mathbf{P}}_i) \mathbf{P}_j) \right| + \left| \text{Tr}((\mathbf{P}_j - \tilde{\mathbf{P}}_j) \tilde{\mathbf{P}}_i) \right|. \end{aligned} \quad (23)$$

834 Apply Cauchy-Schwartz to both terms, we arrive at

$$836 \quad \left| \text{Tr}(\mathbf{P}_i \mathbf{P}_j) - \text{Tr}(\tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j) \right| \leq \|\mathbf{P}_i - \tilde{\mathbf{P}}_i\|_F \|\mathbf{P}_j\|_F + \|\mathbf{P}_j - \tilde{\mathbf{P}}_j\|_F \|\tilde{\mathbf{P}}_i\|_F \quad (24)$$

839 and we can replace $\sqrt{r_j} = \|\mathbf{P}_j\|_F$, $\sqrt{r_i} = \|\mathbf{P}_i\|_F$ and employ Proposition A.2,

$$840 \quad \begin{aligned} \left| \text{Tr}(\mathbf{P}_i \mathbf{P}_j) - \text{Tr}(\tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j) \right| &\leq \|\mathbf{P}_i - \tilde{\mathbf{P}}_i\|_F \sqrt{r_j} + \|\mathbf{P}_j - \tilde{\mathbf{P}}_j\|_F \|\tilde{\mathbf{P}}_i\|_F \\ 841 &\leq \sqrt{r_i r_j} \frac{\lambda}{\sigma_r^2 + \lambda} + \sqrt{r_j} \frac{\lambda}{\eta_r^2 + \lambda} \|\tilde{\mathbf{P}}_i\|_F. \end{aligned} \quad (25)$$

844 Finally, note that $\|\tilde{\mathbf{P}}_i\|_F \leq \sqrt{r_i} \left(\frac{\sigma_r^2}{\sigma_r^2 + \lambda} \right)$

$$846 \quad \left| \text{Tr}(\mathbf{P}_i \mathbf{P}_j) - \text{Tr}(\tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j) \right| \leq \sqrt{r_i r_j} \left(\frac{\lambda}{\sigma_r^2 + \lambda} + \frac{\lambda}{\eta_r^2 + \lambda} \frac{\sigma_r^2}{\sigma_r^2 + \lambda} \right). \quad (26)$$

□

849 **Proposition A.8** (Intersection operator error). *Let \mathbf{X}_i and \mathbf{X}_j be rank- r_i and r_j matrices, with*
 850 *singular values $\{\sigma_k\}_{k=1}^d$ and $\{\eta_k\}_{k=1}^d$ (in descending order), respectively. Denote by $\mathbf{P}_i, \tilde{\mathbf{P}}_i$ and*
 851 *$\mathbf{P}_j, \tilde{\mathbf{P}}_j$ the respective orthogonal and soft projectors. Then,*

$$853 \quad \|\mathbf{P}_i \mathbf{P}_j - \tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j\|_2 \leq \frac{\lambda}{\sigma_r^2 + \lambda} + \frac{\lambda}{\eta_r^2 + \lambda}. \quad (27)$$

856 *Proof.* From writing $\mathbf{P}_i \mathbf{P}_j - \tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j = (\mathbf{P}_i - \tilde{\mathbf{P}}_i) \mathbf{P}_j + (\mathbf{P}_j - \tilde{\mathbf{P}}_j) \tilde{\mathbf{P}}_i$ and applying the triangle inequality

$$857 \quad \begin{aligned} \|\mathbf{P}_i \mathbf{P}_j - \tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j\|_2 &= \|(\mathbf{P}_i - \tilde{\mathbf{P}}_i) \mathbf{P}_j + (\mathbf{P}_j - \tilde{\mathbf{P}}_j) \tilde{\mathbf{P}}_i\|_2 \\ 858 &\leq \|\mathbf{P}_i - \tilde{\mathbf{P}}_i\|_2 \|\mathbf{P}_j\|_2 + \|\mathbf{P}_j - \tilde{\mathbf{P}}_j\|_2 \|\tilde{\mathbf{P}}_i\|_2. \end{aligned} \quad (28)$$

859 Noting that $\|\mathbf{P}_j\|_2 \leq 1$ and $\|\tilde{\mathbf{P}}_i\|_2 \leq 1$ and using Proposition A.3, we have

$$862 \quad \|\mathbf{P}_i \mathbf{P}_j - \tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j\|_2 \leq \frac{\lambda}{\sigma_r^2 + \lambda} + \frac{\lambda}{\eta_r^2 + \lambda}. \quad (29)$$

□

864 B GRADIENTS OF SOFT PROJECTION MATRICES 865

866 To understand how gradient-based training inherently shapes subspaces, we analyze the gradient
867 flow of the subspace intersection. This reveals how projection operators evolve by incorporating
868 missing dimensions from positive samples and repelling those aligned with negative ones.
869

870 The gradient of $\text{Tr}(\tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j)$ with respect to \mathbf{X}_i can be derived from the identity
871

$$\nabla_{\mathbf{X}} \text{Tr} ((\mathbf{A} + \mathbf{X}^\top \mathbf{X} \mathbf{X})^{-1} (\mathbf{X}^\top \mathbf{B} \mathbf{X})) = \\ 872 - 2\mathbf{C} \mathbf{X} (\mathbf{A} + \mathbf{X}^\top \mathbf{C} \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{B} \mathbf{X} (\mathbf{A} + \mathbf{X}^\top \mathbf{C} \mathbf{X})^{-1} + 2\mathbf{B} \mathbf{X} (\mathbf{A} + \mathbf{X}^\top \mathbf{C} \mathbf{X})^{-1}. \quad (30)$$

873 We have then
874

$$\nabla_{\mathbf{X}_i} \text{Tr} (\tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j) = 2(\mathbf{I} - \tilde{\mathbf{P}}_i) \tilde{\mathbf{P}}_j \mathbf{X}_i (\mathbf{X}_i^\top \mathbf{X}_i + \lambda \mathbf{I})^{-1} \\ 875 \propto \underbrace{\tilde{\mathbf{P}}_i^\perp \tilde{\mathbf{P}}_j}_{\text{New information}} \underbrace{\mathbf{X}_i (\mathbf{X}_i^\top \mathbf{X}_i + \lambda \mathbf{I})^{-1}}_{\text{Spectral scaling}}. \quad (31)$$

876 The spectral scaling factor $\mathbf{X}_i (\mathbf{X}_i^\top \mathbf{X}_i + \lambda \mathbf{I})^{-1}$ acts as low-pass filter on \mathbf{X}_i . If we write the SVD
877 of \mathbf{X}_i as $\mathbf{X}_i = \mathbf{U} \Sigma \mathbf{V}^\top$, then $\mathbf{X}_i (\mathbf{X}_i^\top \mathbf{X}_i + \lambda \mathbf{I})^{-1} = \mathbf{U} \Sigma (\Sigma^2 + \lambda \mathbf{I})^{-1} \mathbf{V}^\top$. As a result, high-
878 energy directions (associated with large singular values) are attenuated, while low-energy directions
879 are amplified. This ensures that updates to \mathbf{X}_i preserve dominant, well-supported directions while
880 adapting underrepresented ones.
881

882 The component $\tilde{\mathbf{P}}_i^\perp \tilde{\mathbf{P}}_j$, where $\tilde{\mathbf{P}}_i^\perp = \mathbf{I} - \tilde{\mathbf{P}}_i$, indicates that gradient flow occurs only along direc-
883 tions present in subspace j but orthogonal to subspace i , formally, in $\text{range}(\tilde{\mathbf{P}}_j) \cap \text{null}(\tilde{\mathbf{P}}_i)$. Thus,
884 the learning signal drives \mathbf{X}_i to incorporate directions it lacks but that are represented by \mathbf{X}_j , en-
885 couraging alignment without redundancy. If subspace j is already contained within subspace i i.e.,
886 $\tilde{\mathbf{P}}_j \leq \tilde{\mathbf{P}}_i$, the gradient vanishes since $\tilde{\mathbf{P}}_j \tilde{\mathbf{P}}_i = \tilde{\mathbf{P}}_j$ implies $(\mathbf{I}_d - \tilde{\mathbf{P}}_i) \tilde{\mathbf{P}}_j = 0$. This update mechanism
887 shares similarities with Oja’s rule in online PCA, promoting efficient subspace adaptation.
888

889 Conversely, negative pairs induce repulsive gradients, driving \mathbf{X}_i to remove directions aligned with
890 \mathbf{X}_j and thus promoting subspace separation. Consequently, the effective dimensionality of subspace
891 i naturally adapts to encompass the union of all its relevant positive neighbors *i.e.*,
892

$$\text{rank}(\tilde{\mathbf{P}}_i) \geq \dim \text{span} \left(\bigcup_{j \in \text{Pos}(i)} \text{range}(\tilde{\mathbf{P}}_j) \right). \quad (32)$$

893 In other words, examples with more diverse positive neighborhoods require richer subspaces, while
894 simpler ones can be encoded more compactly.
895

901 C LOGICAL COMPOSITION 902

903 In this section, we present in more detail how to construct logical queries with subspace operations.
904

905 **Conjunction.** We approximate the projection operator of subspace intersection $\mathcal{S}_i \cap \mathcal{S}_j$ as $\tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j$.
906 Recall that $\mathbf{P}_i \mathbf{P}_j$ is the projector onto the intersection if and only if \mathbf{P}_i and \mathbf{P}_j commute *i.e.*, $\mathbf{P}_i \mathbf{P}_j =$
907 $\mathbf{P}_j \mathbf{P}_i$. While this is not enforced in our training pipeline, we observed good empirical results from
908 approximating the intersection operator by $\tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j$.
909

910 **Negation.** We approximate the projection operator onto the subspace complement \mathcal{S}_i^\perp as $\mathbf{I} - \tilde{\mathbf{P}}_i$.
911 The approximation error in this case only comes from the regularization λ .
912

913 **Disjunction.** We approximate the projection operator onto the subspace sum $\mathcal{S}_i + \mathcal{S}_j$ by explicitly
914 building the linear sum from the basis of each soft projector. Letting the SVD of the projectors be
915 $\tilde{\mathbf{P}}_i = \mathbf{U}_i \Sigma_i \mathbf{V}_i^\top$ and $\tilde{\mathbf{P}}_j = \mathbf{U}_j \Sigma_j \mathbf{V}_j^\top$, we approximate the soft projector for the subspace sum as
916 $\mathbf{X} (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^\top$, where $\mathbf{X} = [\mathbf{U}_i \Sigma_i^{\frac{1}{2}} \quad \mathbf{U}_j \Sigma_j^{\frac{1}{2}}]$. We used the same λ as the one used during
917 training.
918



Figure 7: Sorted eigenvalues of the soft projection operators $\tilde{\mathbf{P}}$ for nouns in the hypernymy chain *homo sapiens* \rightarrow *entity*. As we move from specific to general concepts, the subspace’s effective rank gradually expands. This illustrates how our soft projectors naturally capture concept specificity: specific nouns like *homo sapiens* activate fewer dimensions (eigenvalues near zero), while broader concepts like *entity* activate more dimensions (eigenvalues near one).

D WORDNET EXPERIMENTS

WORDNET’s noun hierarchy has 82,115 nodes and 75,850 edges. The verb hierarchy is smaller, featuring 13,767 nodes and 13,239 edges. Their transitive closures are significantly denser, with 663,508 (noun) and 35,079 (verb) edges. All WORDNET experiments were conducted on a RTX8000 GPU with 49GB of memory.

D.1 RECONSTRUCTION

Experimental Details. We parameterize each node’s subspace with a matrix $\mathbf{X}_i \in \mathbb{R}^{128 \times 128}$, initialized with entries from a zero-mean Gaussian distribution with standard deviation 0.0001. The regularizer was set $\lambda = 0.2$. For each training edge (u, v) , we sample 19 nodes $v' \neq u$ such that neither (u, v') nor (v', u) are in the train split and optimized InfoNCE, applying the the subspace similarity $\text{Tr}(\tilde{\mathbf{P}}_i \tilde{\mathbf{P}}_j)$ from Eq. (3) to soft projectors. We used Adam Kingma & Ba (2017), with a batch-size of 128 and learning rate of 0.0005. During evaluation, we compute the similarity $\text{Tr}(\tilde{\mathbf{P}}_u \tilde{\mathbf{P}}_v)$ of each edge (u, v) in the full transitive closure $\text{TC}(\mathcal{G})$ and rank it among the those of all node pairs that are not connected in the transitive closure $\{\text{Tr}(\tilde{\mathbf{P}}_u \tilde{\mathbf{P}}_{v'}) : (u, v') \notin \text{TC}(\mathcal{G})\}$.

Visualization of the Spectrum of WordNet Nouns. In Fig. 7, we plot the sorted eigenvalues of our soft projector representations ($\tilde{\mathbf{P}}$) for WORDNET nouns, traversing a hypernymy chain from *homo sapiens* to *entity*. This plot illustrates two key properties:

- Smooth Eigenvalue Distribution: Unlike the binary (0 or 1) eigenvalues of orthogonal projection matrices, the eigenvalues of $\tilde{\mathbf{P}}$ are smooth within [0,1]. This smoothness is crucial for our learnable, soft subspace representations.
- Effective Rank Justification: The plot directly justifies our use of $\text{Tr}(\tilde{\mathbf{P}})$ as a measure of the *effective rank* of a concept’s subspace. For orthogonal projection operators, the trace (sum of eigenvalues) precisely equals the subspace’s rank due to their binary eigenvalues. Here, while eigenvalues are not binary, the plot clearly shows the distribution of activated dimensions for each concept. For instance, the broad concept *entity* utilizes all 128 dimensions, with all eigenvalues near one. In contrast, *homo sapiens* activates fewer dimensions, with most eigenvalues approaching zero.

972 Table 8: **SNLI test accuracy** for all-miniLM-L6-v2 + SPH (SE¹²⁸) across different values of the
 973 regularization hyperparameter λ .

	λ			
	0.01	0.05	0.1	0.2
2-way	91.18	91.26	91.12	91.06
3-way	85.27	85.34	85.61	85.62

980 D.2 LINK PREDICTION

981 **Experimental Details.** For link prediction, every node is initialized as a random matrix $\mathbf{X}_i^{d \times n}$,
 982 with entries sampled from a zero-mean Gaussian distribution ($\sigma = 0.0001$). In our experiments
 983 we considered $d = n = 64$ as well as $d = n = 128$. The soft projector regularizer was set to
 984 $\lambda = 0.2$. We optimized the margin loss from Eq. (8) with $\gamma_+ = 0.9$ and $\gamma_- = 0.5$ for 0% of
 985 non-basic edges, and $\gamma_+ = 0.8$, $\gamma_- = 0.1$ for the remaining percentages. To compute this loss, we
 986 used 10 negatives per each observed positive edge (u, v) . Negatives were generated by sampling 5
 987 corrupted-tail (u, v') and 5 corrupted-head (u', v) examples per positive edge, with corrupted nodes
 988 sampled from the entire set of nodes. The results were averaged over 5 random seeds, employing
 989 Adam (Kingma & Ba, 2017) with a constant learning rate of 0.0005 and a batch-size of 128 to
 990 perform the optimization.

993 D.3 GRADED LEXICAL ENTAILMENT

994 **Experimental Details.** For our HYPERLEX experiment, we use the noun subset (2,163 pairs),
 995 which provides human-annotated scores (0-10) for word pairs (u, v) , quantifying the degree to which
 996 u is a type of v . We quantify entailment using the NIS from Eq. (4), with word sense disambiguation
 997 performed as in Athiwaratkun & Wilson (2018), by selecting the WORDNET synset pair with
 998 maximal subspace similarity $\text{Tr}(\tilde{\mathbf{P}}_i, \tilde{\mathbf{P}}_j)$.

1001 E NLI EXPERIMENTS

1002 **Experimental Details.** All experiments utilized a maximum sequence length of 35. We trained
 1003 all-MiniLM-L6-v2 and all-mpnet-base-v2 with a batch size of 1024. Optimization was performed
 1004 using Adam (Kingma & Ba, 2017), employing a learning rate of 0.0001 and no weight decay. An
 1005 exponential learning-rate scheduler with a gamma of 0.9 was used. For the MLP-based baselines,
 1006 premise and hypothesis embeddings were first computed by mean pooling the transformer’s out-
 1007 put hidden state before being passed to the MLP classification head. The MLP classification head
 1008 consisted of 3 layers, featuring LeakyReLU activations and matching the hidden dimension of its
 1009 corresponding transformer. A label smoothing of 0.1 was consistently applied across all training
 1010 runs. The Beta priors of our model were initialized as $(\alpha_C = 1, \beta_C = 6)$ and $(\alpha_E = 6, \beta_E = 1)$
 1011 and were optimized during training. All experiments were averaged over 5 random seeds on a
 1012 RTX8000 GPU with 49GB of memory.

1014 E.1 SENSITIVITY TO THE REGULARIZATION HYPERPARAMETER (λ)

1015 Table 8 reports SNLI classification accuracy for the all-miniLM-L6-v2 + SPH (SE¹²⁸) model for
 1016 several choices of the regularization parameter $\lambda > 0$. Recall that λ controls the amount of spectral
 1017 smoothing applied to the projection operator: when $\lambda = 0$ the operator reduces to an orthogonal
 1018 projector, while $\lambda > 0$ yields a PSD operator with eigenvalues in $[0, 1]$, avoiding a binary spec-
 1019 trum and ensuring differentiability. Across the tested range, model accuracy varies only marginally,
 1020 indicating that the method remains performant.

1023 E.2 COMPOSITE ENTAILMENT

1024 **Dataset.** We start with a set of 150 premises. For each premise, we define two entailed atomic
 1025 hypotheses: h_1 and h_2 . We define a third atomic hypothesis h_3 (contradicted) that shares context

1026 with h_2 but is factually incompatible with p . In total, we have thus 300 premise-hypotheses pairs
 1027 featuring hypotheses combined via conjunction, and another 300 pairs with hypotheses combined
 1028 via conjunction and negation. For each p we have then:

1029

- 1030 • **Entailed hypotheses:** $h_1 \wedge h_2$ and $h_1 \wedge \neg h_3$ remain entailed by p .
- 1031 • **Contradicted hypotheses:** $h_1 \wedge h_3$ and $h_1 \wedge \neg h_2$ contradict p due to the inclusion of h_3
 1032 in one case, and the negation of h_2 in the other.

1033

1034 We filtered for examples where atomic entailments were correctly predicted by the baselines, ensuring
 1035 that failures in the composite task were due to the composition operation itself, not a failure to
 1036 represent the individual atomic sentences. We have, for example,

1037

- 1038 • **Premise:** “Two children are sitting on a red picnic blanket, eating sandwiches.”.
- 1039 • **Entailed:** “People are eating.” \wedge “People sitting on a blanket.”, “People are eating.” $\wedge \neg$
 1040 “People sitting directly on the grass”.
- 1041 • **Contradicted:** “People are eating.” \wedge “People sitting directly on the grass.”, “People are
 1042 eating.” $\wedge \neg$ “People sitting on a blanket.”.

1043

1044 F FLICKR30K RETRIEVAL WITH COMPOSITE QUERIES

1045

1046 To qualitatively demonstrate the zero-shot compositional capabilities of our representations, we utilize
 1047 the SNLI-fine-tuned mpnet-base-v2 + SPH (SE¹²⁸) model.

1048

1049 **Methodology.** We embed the 155,070 Flickr30k captions to serve as the candidate retrieval pool.
 1050 We construct composite queries by encoding individual phrases and combining them via logical
 1051 subspace operations. For instance, to represent “a dog running” AND “on the beach”:

1052

- 1053 1. Compute the soft projector for the first phrase: $\tilde{P}_{\text{a dog running}}$.
- 1054 2. Compute the soft projector for the second phrase: $\tilde{P}_{\text{on a beach}}$.
- 1055 3. Formulate a composite query by the composition of $\tilde{P}_{\text{a dog running}}$ and $\tilde{P}_{\text{on a beach}}$.
- 1056 4. Rank all candidate captions in the Flickr30k corpus against this composite subspace \tilde{P}_{query}
 1057 using the Normalized Inclusion Score (NIS) defined in Eq. (4)

1058

1059 **Results.** In Fig. 8, we display the ground-truth images associated with the top-6 retrieved captions
 1060 for 20 different composite queries. These results illustrate that the model successfully retrieves
 1061 instances satisfying multiple logical constraints simultaneously, despite being trained solely on textual
 1062 entailment pairs.

1063

1064 G EFFICIENCY EXPERIMENTS

1065

1066 **Training Time and Peak GPU Memory.** Using SNLI with a batch size of 1024 on a single
 1067 RTX8000 GPU, Table 9 summarizes the wall-clock time per epoch and peak GPU memory for both
 1068 our model and for the vector baselines used in the NLI experiments. Our training incurs a moderate
 1069 overhead: for the larger mpnet-base-v2 backbone, training our SE¹²⁸ model is approximately 1.3×
 1070 slower and uses 1.2× more memory than the vector baseline.

1071

1072 **Encoding Time.** We measured the overhead introduced by our SPH module when encoding
 1073 Flickr30k captions on a RTX8000 GPU with 49GB of memory. To isolate the computation cost
 1074 of the forward pass, tokenization (max-size of 35) and data transfers were computed beforehand.
 1075 Table 10 shows the average encoding time per query (forward-pass) for different batch sizes, demon-
 1076 strating that the additional computational cost is modest, averaging at an additional 0.12ms/query
 1077 for a batch size of 128.

1078

1080 Table 9: **Training wall-clock time (s/epoch) and peak GPU memory (MB)**. Averaged over 3 runs.
1081

1082 Model	1083 Wall-clock time (s/epoch)	1084 Peak GPU mem. (MB)
1084 all-MiniLM-L6-v2 + MLP($p, h, p - h$)	1085 124.63 ± 0.88	1086 7617.95 ± 0.04
1085 all-MiniLM-L6-v2 + SPH (SE ¹²⁸)	1086 218.19 ± 1.54	1087 12633.51 ± 0.04
1086 mpnet-base-v2 + MLP($p, h, p - h$)	1087 551.07 ± 1.45	1088 32327.88 ± 0.15
1087 mpnet-base-v2 + SPH (SE ¹²⁸)	1088 710.99 ± 3.12	1089 39399.39 ± 0.04

1088 Table 10: **GPU average encoding time (ms/query)**, averaged over Flickr30k’s captions. The over-
1089 head of the SPH module is consistently small.
1090

1091 Model	Batch size				
	1092 1	1093 4	1094 16	1095 64	1096 128
1095 mpnet-base-v2	5.95	1.74	0.69	0.59	0.56
1096 mpnet-base-v2 + SPH (SE ¹²⁸)	6.80	2.13	0.86	0.73	0.68

1097 **Retrieval Latency.** Given the embeddings for the 155,070 captions from the Flickr30k dataset, we
1098 benchmarked top-10 retrieval latency on CPU using batches of 128 queries. We compared our sub-
1099 space embeddings (SE¹²⁸) against a 10-dimensional Poincaré hyperbolic baseline (\mathcal{P}^{10}). Because
1100 hyperbolic distance is non-Euclidean, we applied brute-force search over the entire database, rank-
1101 ing by the negative hyperbolic distance. In contrast, our NIS score can be formulated as a maximum
1102 inner product search problem between query and caption vectors:

$$1104 \text{NIS}(\tilde{\mathbf{P}}_{\text{caption}} \mid \tilde{\mathbf{P}}_{\text{query}}) = \left(\frac{\text{vec}(\tilde{\mathbf{P}}_{\text{caption}})}{\text{Tr}(\tilde{\mathbf{P}}_{\text{caption}})} \right)^{\top} \text{vec}(\tilde{\mathbf{P}}_{\text{query}}). \quad (33)$$

1107 This formulation allows us therefore to use fast approximate search libraries. We indexed the
1108 normalized caption vectors using a CPU index from the FAISS library Douze et al. (2025). We used
1109 an inverted file index with Product Quantization (IndexIVFPQ). The index was trained on 50,000
1110 vectors. We used 64 subquantizers for PQ with 8 bits per subquantizer, and set the search-time
1111 parameter to $n_{\text{probe}} = 32$.

1113 H LARGE LANGUAGE MODELS

1115 The authors are solely responsible for the research ideas, experimental design, and analysis presented
1116 in this work. Large language model (LLMs) was used for editorial assistance to enhance the paper’s
1117 clarity and readability, with its contributions limited to grammar, sentence structure, and flow.

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

(a) $\mathcal{S}_{\text{a child playing outdoors}} \cap \mathcal{S}_{\text{near a road}}$ (c) $\mathcal{S}_{\text{person walking}} \cap \mathcal{S}_{\text{on the sidewalk}}$ (e) $\mathcal{S}_{\text{a man}} \cap \mathcal{S}_{\text{on a boat}} \cap \mathcal{S}_{\text{is fishing}}$ (g) $\mathcal{S}_{\text{a city street}} \cap \mathcal{S}_{\text{at night}}$ (i) $\mathcal{S}_{\text{a group of people}} \cap \mathcal{S}_{\text{military}}$ (k) $\mathcal{S}_{\text{people}} \cap \mathcal{S}_{\text{sitting}} \cap \mathcal{S}_{\text{on a bench}}$ (m) $\mathcal{S}_{\text{a child playing}} \cap \mathcal{S}_{\text{interacting with a dog}}$ (o) $\mathcal{S}_{\text{a man playing guitar}} \cap \mathcal{S}_{\text{sitting on the ground}}$ (q) $\mathcal{S}_{\text{a person playing the violin}} \cap \mathcal{S}_{\text{standing in the street}}$ (s) $\mathcal{S}_{\text{a man and a surfboard}} \cap \mathcal{S}_{\text{is surfing}}$ (b) $\mathcal{S}_{\text{a child playing outdoors}} \cap \mathcal{S}_{\text{near a road}}^\perp$ (d) $\mathcal{S}_{\text{person walking}} \cap \mathcal{S}_{\text{on the sidewalk}}^\perp$ (f) $\mathcal{S}_{\text{food being prepared}} \cap \mathcal{S}_{\text{outdoors on the grill}}$ (h) $\mathcal{S}_{\text{a city street}} \cap \mathcal{S}_{\text{at night}}^\perp$ (j) $\mathcal{S}_{\text{an animal interacting with a human}} \cap \mathcal{S}_{\text{in a zoo}}$ (l) $\mathcal{S}_{\text{a person riding a bicycle}} \cup \mathcal{S}_{\text{a person walking a dog}}$ (n) $\mathcal{S}_{\text{a child playing}}^\perp \cap \mathcal{S}_{\text{interacting with a dog}}$ (p) $\mathcal{S}_{\text{a man playing guitar}} \cap \mathcal{S}_{\text{sitting on the ground}}^\perp$ (r) $\mathcal{S}_{\text{a person playing the violin}} \cap \mathcal{S}_{\text{standing in the street}}^\perp$ (t) $\mathcal{S}_{\text{a man and a surfboard}} \cap \mathcal{S}_{\text{is surfing}}^\perp$

1176
1177 Figure 8: Each subfigure demonstrates the inherent capacity of subspace embeddings for logical
1178 composition. Queries are formed by applying subspace operations intersection (\cap), linear sum (+)
1179 and orthogonal complement (\perp) to the subspace embeddings of phrases or sentences, embedded by
1180 our SNLI-fine-tuned mpnet-base-v2 + SPH (SE¹²⁸) model. For each composite query, we retrieve
1181 the top Flickr30k images whose captions have the highest NIS with the composite query subspace.
1182
1183
1184
1185
1186
1187