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ABSTRACT

Preference tuning has greatly improved large language models (LLMs), yet ob-
taining preference data remains challenging, often requiring expensive human an-
notation or strong LLM judges to assess response quality. We explore the fea-
sibility of synthetically generating preference pairs without optimizing the pre-
ferred response quality to train LLMs that surpass the preferred responses. We
formulate the delta learning hypothesis, which posits that models can improve
beyond the quality of their training data by learning solely from the relative qual-
ity difference—-rather than the absolute quality—of paired responses. To validate
this hypothesis, we conduct controlled experiments across diverse domains: a toy
stylistic task (bold section generation), a math reasoning task (GSM8K), and real-
world instruction-following. We show that preference tuning via Direct Preference
Optimization (DPO) can enable models to extrapolate improvements from subop-
timal data, whereas directly imitating weak data through supervised fine-tuning
(SFT) can degrade performance. Armed with these insights, we build a simple
weak-to-strong setup that achieves consistent gains over Llama-3.1-8B-Instruct,
as well as a SOTA-competitive preference dataset—all without any strong judge.

1 INTRODUCTION

Preference tuning has become a crucial step in the LLM development pipeline (Lambert et al., 2024;
Touvron et al., 2023; Ivison et al., 2024). Modern recipes for generating preference data typically
involve sampling many responses to a set of prompts and then distinguishing the best responses
as the chosen (preferred) response using either human annotation or a strong LLM judge (Lambert
et al., 2024; Touvron et al., 2023). Such practices implicitly assume that optimizing the quality and
correctness of the chosen response is crucial for downstream training. In this work, we challenge this
assumption and introduce the delta learning hypothesis, which posits that the absolute quality of the
chosen response is not necessary to drive learning. Instead, it suffices to ensure that a meaningful
delta exists between the chosen and rejected (dispreferred) responses. Moreover, we hypothesize
that such deltas can enable improvement beyond the absolute quality of the chosen response.

In Section 2, we present an intriguing empirical finding that motivates our hypothesis. Section 3
formalizes the hypothesis and explores it in two controlled settings, where we can explicitly manip-
ulate the quality of both chosen and rejected responses. Section 4 extends our findings to real-world
applications. Notably, we (1) achieve consistent self-improvement gains over Llama-3.1-8B-Instruct
and (2) construct a preference dataset that rivals a SOTA dataset built using a GPT-4o judge (Tulu 3
data, Lambert et al. (2024))—all without relying on any LLM judge or humans for supervision.

2 ULTRAFEEDBACK: A MOTIVATING CASE STUDY

We begin our study with an intriguing empirical result that motivates our central hypothesis. We find
that training on paired preference data generated by weak models can improve a stronger model’s
performance, even when finetuning directly on the weaker models’ outputs hurts.

Data. The ULTRAFEEDBACK preference dataset (Cui et al., 2023) is constructed by prompting
a set of large language models (LLMs) with a diverse set of prompts and then scoring the result-
ing responses using a strong judge model (GPT-4). For each prompt x, we form preference pairs
(x, yc, yr) by selecting one high-scoring response yc and one lower-scoring response yr. Because
ULTRAFEEDBACK was constructed in 2023, the models underlying these responses (e.g., Llama
2) are generally weaker than modern LLMs (e.g., Llama 3). To ensure a clear performance gap
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between (1) the weaker data generators and (2) the stronger models we later train, we exclude any
responses from models that have an LMSYS Chatbot Arena ELO score close to or above Llama-3.2-
3B-Instruct. We call the resulting filtered dataset ULTRAFEEDBACK-WEAK. See Appendix A.1 for
full filtering details.

Training and evaluation. We finetune Llama-3.2-3B-Instruct and Llama-3.1-8B-Instruct (Tou-
vron et al., 2023) on ULTRAFEEDBACK-WEAK in two ways. One, we use (1) Direct Preference
Optimization (DPO) to train on the preference pairs (x, yc, yr), updating the model to prefer higher-
scoring responses yc to lower-scoring responses yr (Rafailov et al., 2024). Crucially, although the
chosen response yc derives from a model that is weaker than the models we train, it is still higher-
quality relative to the rejected response yr. We compare DPO to (2) Supervised Finetuning (SFT)
directly on the chosen responses (x, yc). To ablate the effect of the regularization used in DPO, we
also consider SFT + regularization, where we apply LoRA with very low rank (r = 8) to constrain
the optimized model to be close to the base model (Biderman et al., 2024; Hu et al., 2021). See
Appendix A.1 for more training details and hyperparemters.

We evaluate the trained models on a suite of standard downstream tasks measuring instruc-
tion following (IFEval (Zhou et al., 2023), AlpacaEval 2 (Dubois et al., 2024)), math reasoning
(MATH (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021)), truthfulness (TruthfulQA (Lin
et al., 2021)), and general reasoning (BigBenchHard (Suzgun et al., 2022)).

Model MATH GSM8K BBH TruthfulQA AlpacaEval2 IFEval Avg.

LLAMA-3.2-3B-INSTRUCT 36.5 69.0 51.7 53.9 19.4 66.7 49.5
+ UF-WEAK SFT 24.0 63.5 50.6 46.0 5.5 40.8 38.4
+ UF-WEAK SFT (reg.) 26.5 66.5 50.7 46.6 4.7 41.4 39.4
+ UF-WEAK DPO 37.5 71.0 53.2 59.2 22.0 67.3 51.7

LLAMA-3.1-8B-INSTRUCT 42.5 81.3 66.7 60.1 20.9 71.0 57.1
+ UF-WEAK SFT 31.5 69.0 62.3 44.9 6.6 50.6 44.2
+ UF-WEAK SFT (reg.) 39.2 74.5 68.2 45.0 9.3 65.4 50.3
+ UF-WEAK DPO 44.0 86.0 62.6 63.0 25.6 72.5 59.0

Table 1: We tune Llama-3 Instruct models on ULTRAFEEDBACK-WEAK (UF-WEAK), which com-
prises of preference data generated by weaker models. Training with DPO to prefer “weak over
weaker” yields gains, while SFT (with/without regularization) on the weak responses directly hurts.

Results. We present results in Table 1. Both standard SFT and SFT + regularization substantially
hurt performance—likely because the models are finetuned to imitate responses from weaker mod-
els. In contrast, DPO on the same weak data consistently improves performance, indicating that
there is valuable signal in the pairwise contrast between chosen and preferred outputs.

3 THE DELTA LEARNING HYPOTHESIS

Why does preference learning with weak data help when SFT on the same data hurts? We hy-
pothesize that training on paired responses (x, yc, yr) allows the model to learn from the relative
quality difference between yc and yr—the delta—rather than their absolute quality. Even if both
responses yc, yr have low absolute quality compared to the model we aim to improve, as long as yc
is meaningfully better than yr, the model can learn from this delta to improve.

Formally, let µ(x, y) be the “true” utility of a response y to some prompt x. The delta learning
hypothesis posits that as long as µ(x, yc) > µ(x, yr), even if both are suboptimal, the paired-
preference signal suffices to drive improvement beyond the quality µ(x, yc) of the preferred response
yc. In contrast, supervised fine-tuning encourages the model to simply imitate yc, which can hinder
improvement and even be detrimental when µ(x, yc) is low. In the remainder of this section, we will
present experiments in controlled settings where we explicitly impose definitions of µ and construct
responses of varying utility to explore this hypothesis.

3.1 CONTROLLED SETTING: NUMBER OF BOLD SECTIONS

To study our hypothesis, we define µ(x, y) to be “the number of Markdown-denoted bold section
headers in y” (e.g., **My Header**). Suppose we have a model M that produces 6 such sections
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on average, so that µ
(
x,M(x)

)
= 6. Our hypothesis predicts that if we collect pairs (x, yc, yr)

where yc contains, say, 3 sections and yr contains 2, then training M to prefer yc over yr should
teach the model to produce more sections overall—even though 3 sections (the “better” response) is
still less than the model’s current capability. As we show below, this is indeed what we observe.

Data. We construct a dataset of prompts x with responses yk1
. . . ykn

containing varying numbers
ki of bolded sections. To construct each prompt x, we start with prompts from the Tulu 3 SFT
dataset (Lambert et al., 2024) and append the instruction “Include bolded sections in your response.”
To obtain the associated responses yki , we modify the appended instruction into a hard constraint:
“Include exactly ki bolded sections in your response.” We use Llama-3.2-3B-Instruct to generate
responses adhering to this constraint; we filter for correct adherence with regular expressions.

Training and evaluation. We tune Llama-3.2-3B-Instruct with DPO on preference pairs
(x, yki

, ykj
) formed by selecting a response yki

with more sections (ki > kj) as the preferred
response. To isolate the effect of the positive delta from any potential confounding effects associ-
ated with DPO training, we also evaluate two control settings: (1) reversing the preference pairs
(ki < kj) and (2) creating preference pairs where both preferred and rejected responses contain
equal numbers of sections (ki = kj). Finally, we compare against SFT directly on the prompts and
chosen responses (x, yki) of each preference pair. We use a validation set to pick training hyperpa-
rameters. See Appendix A.2 for training details. We evaluate by measuring the average number of
bolded sections generated before and after training in response to a set of held-out test prompts.

Model/Algorithm Chosen Res. Rejected Res. Section Delta # Sections Generated

Llama-3.2-3B-Instruct (Baseline) — — — 5.9

+ DPO 3 sections 2 sections +1 81.1 (+ 75.2)
+ DPO 2 sections 3 sections -1 1.1 (- 4.8)
+ DPO 3 sections 3 sections 0 6.1 (+ 0.2)
+ SFT 3 sections — — 4.4 (- 1.5)
+ SFT 2 sections — — 2.9 (- 3.0)

Table 2: We train Llama-3.2-3B-Instruct with DPO on chosen and rejected responses with varying
numbers of bold sections, and compare to SFT on the chosen response directly. When the responses
contain less sections than the model’s baseline behavior, the sections generated decreases after SFT.
In contrast, training with DPO enables the model to learn from the delta between responses, improv-
ing the model’s number of sections generated even when each response individually is suboptimal.

Results. We present results in Table 2 and qualitative examples of model generations in Figure 1.
Results strongly support our hypothesis: SFT on responses with fewer sections than the original
model’s generations reduces the number of generated sections. However, even when responses are
individually suboptimal, pairing them together with a positive delta massively boosts section gener-
ation, extrapolating beyond the number of sections contained in the chosen response1. Moreoever,
DPO with a negative delta hurts; DPO with zero delta minimally changes the model. This suggests
that the positive delta is essential for driving the observed gains.

3.2 CONTROLLED SETTING: GSM8K WITH INSERTED ERRORS

To test whether the delta learning hypothesis extends beyond stylistic features to semantic quality,
we controllably introduce arithmetic errors into GSM8K solutions. Our hypothesis predicts that
training to prefer “fewer mistakes” over “more mistakes” should enhance mathematical reasoning,
even when direct SFT on error-ridden solutions is detrimental.

Data. We use a strong model (Llama-3.1-70B-Instruct, which has near-perfect accuracy on
GSM8K) to introduce either 2 or 3 arithmetic errors into ground truth solutions from the GSM8K
train set. Each GSM8K problem x is thus associated with two responses, y2 (2 errors) and y3 (3 er-
rors). See Figure 2 for qualitative examples of the corrupted solutions.

1The model learns to make every single word a new section header! See Figure 1.
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Training and evaluation. We tune from OLMo-1.7-7B-SFT, a model that is not saturated on
GSM8K. We train using DPO on GSM8K problems with solution pairs (x, y2, y3) as well as flipped
preferences (x, y3, y2). We compare against SFT directly on corrupted solutions (x, y2). We evalu-
ate via standard 8-shot chain-of-thought prompting on a 919 question subset of the GSM8K test set.
We use the remaining 400 test set questions as a validation set to select hyperparameters.

Model/Algorithm Chosen response Rejected response Error Delta GSM8K Acc.

OLMo-1.7-7B-SFT (Baseline) — — — 22.7

+ DPO Solution w/ 2 errors Solution w/ 3 errors - 1 24.2 (+ 1.5)
+ DPO Solution w/ 3 errors Solution w/ 2 errors + 1 21.8 (- 0.9)
+ SFT Solution w/ 2 errors — — 20.6 (- 2.1)

Table 3: We train OLMo-1.7-7B-SFT using DPO and SFT on GSM8K solutions containing varying
amounts of synthetically-inserted arithmetic errors. DPO training yields gains when the chosen
response has less errors than the rejected response, even though both are error-ridden.

Results. See Table 3. The results are consistent with our hypothesis and the findings from Sec-
tion 3.1. Even though SFT on GSM8K solutions with 2 errors hurts, as long as we pair it against a
solution with more errors (i.e., 3 errors), training with DPO to prefer “less errors” yields gains.

4 PUSHING TOWARDS SOTA

Now that we’ve validated our hypothesis in our controlled settings, how might we leverage the
insight in practice? In this section, we present two gains that that we achieve by constructing paired
data with an explicit gap, even when the chosen response’s quality is not optimized. We evaluate on
the benchmark suite detailed in Section 2. See Appendix A.4 for full training details.

Model MATH GSM8K BBH TruthfulQA AlpacaEval2 IFEval Avg.

LLAMA-3.1-8B-INSTRUCT 42.5 81.3 66.7 60.1 20.9 71.0 57.1
+ SFT (self-generated responses) 36.6 80.0 62.2 57.7 22.1 67.8 54.4
+ DPO (self vs. weaker responses) 43.0 83.7 66.6 63.0 26.0 71.5 59.0

TULU-3-8B-SFT 31.5 76.2 69.7 48.0 12.4 64.7 50.4
+ DPO (Tulu 3 data, GPT-4o judge) 44.0 84.3 68.7 72.9 33.5 76.3 63.3
+ DPO (ours, Tulu prompts no judge) 44.9 85.5 62.3 85.8 36.8 74.3 64.9

Table 4: Our hypothesis implies that we can create useful preference data for DPO training without
optimizing the quality of the chosen responses. Leveraging this insight, we achieve gains using only
self- and weak-supervision by pairing self-generated responses with weaker responses (top half).
We also create SOTA-comparable preference data without using any LLM judge (bottom half).

Improving a SOTA LLM with only self- and weak-supervision. Starting from the Tulu 3 SFT
prompts x, we greedy decode with Llama-3.1-8B-Instruct to obtain responses y. By construction,
these responses reflect the model’s current capability level, and so we would not expect SFT on
(x, y) to yield gains. However, our hypothesis implies that so long as we can pair response y with a
response y′ that is worse, then DPO training can extract supervision from the delta between y, y′. To
obtain such a y′, we simply use greedy responses from a smaller model, in this case Llama-3.2-3B-
Instruct. We train on the resulting pairs (x, y, y′) with DPO and SFT. We present results in Table 4
(top half); our DPO setup improves over Llama-3.1-8B-Instruct without any stronger supervision.

Constructing SOTA preference data without strong models. Following a similar setup as
above, we start with the Tulu 3 DPO prompts and greedy decode chosen and rejected responses y, y′
with Qwen-2.5-3B-Instruct and Qwen-2.5-1.5B-Instruct (Qwen Team, 2024), respectively. Cru-
cially, we do not use a strong LLM judge to assess response quality in forming these pairs; follow-
ing our hypothesis, we rely solely on the delta that implicitly exists between the chosen and rejected
response. We compare DPO training from the same base model (Tulu3-8B-SFT) with (a) our prefer-
ence data to (b) the Tulu 3 DPO preference data, a SOTA dataset constructed with a GPT-4o judge.
As shown in Table 4 (bottom half), our preference data rivals and often outperforms SOTA.
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5 RELATED WORK

Language model preference tuning. Preference tuning (Ziegler et al., 2019) has become an inte-
gral part of the LLM development pipeline. It is now widely used to improve the safety (Dai et al.,
2023), helpfulness and harmlessness (Ouyang et al., 2022), as well as general capabilities Lambert
et al. (2024) of LLMs. Initial approaches for preference tuning used human-annotated preference
data to train a reward model (Ziegler et al., 2019; Ouyang et al., 2022), and then optimized against
the reward model using reinforcement learning algorithms such as PPO (Schulman et al., 2017).
Recent work has sought to simplify this pipeline by (1) approximating human annotations with a
strong LLM judge (Cui et al., 2023) and (2) removing the need for an explicit external reward model
by moving towards direct optimization algorithms like DPO (Rafailov et al., 2024). In our work, we
seek to understand whether the chosen response truly needs to be high quality for preference tuning
to succeed—we seek to explore the feasibility of preference tuning on suboptimal data and on pairs
constructed without strong judge supervision.

Weak-to-strong generalization. As language models continually improve, a natural question that
arises is how we might improve them beyond the frontier of human capability. The weak-to-strong
generalization problem thus seeks to study the extent to which weak supervision can elicit strong
behaviors in trained models (Burns et al., 2023; Hase et al., 2024). Consistent with our motivating
case study, recent work has observed that preference tuning on wrong answers only can yield im-
provements, so long as the chosen response is “less wrong” than the rejected (Yao et al., 2024). Our
work seeks to deeply understand and push the limits of this phenomenon. We formalize a concrete
hypothesis that we empirically verify with controlled experiments, and show that the implications
can lead to SOTA-competitive gains.

6 LIMITATIONS AND FUTURE WORK

Our study has several limitations that leave open questions for future work.

First, due to compute limitations, we use LoRA tuning with very high rank for the experiments in
Section 4 to approximate full finetuning (Biderman et al., 2024). See Appendix A.4 for more details.
We hypothesize that our results hold in the full finetuning regime, but we were not able to validate
this empirically.

Second, while we have empirically demonstrated that preference tuning can extract supervision
from the delta in quality between chosen and rejected responses, what specific properties of the
delta matter remain unclear. Does a larger delta result in larger gains for preference tuning? What
is more critical—the absolute quality of the chosen response or the delta in quality between chosen
and rejected responses? Furthermore, are different deltas composable, and if so, under what condi-
tions? We are optimistic that understanding which tasks benefit most from delta-based learning and
understanding how to better synthesize deltas is a promising direction.

Third, we have not characterized how learning from deltas scales. Do our findings generalize to
significantly larger models, such as LLMs with 70B parameters? Additionally, how does having
suboptimal chosen responses relative to traditional preference data impact dataset size scaling?

Finally, the underlying factors driving our observation that comparing Qwen-2.5-3B-Instruct re-
sponses to Qwen-2.5-1.5B-Instruct responses rivals the Tulu 3 preference dataset remain unclear.
Does this trend hold broadly when pairing responses from a larger and a smaller model, or is it due
to some specific effect from the Qwen models? Moreover, how does the reward signal derived from
this heuristic compare to the traditional reward signal from a strong LLM judge? Are these signals
complementary, or do they capture fundamentally different aspects of preference tuning?

We leave these questions for future work.
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A EXPERIMENTAL DETAILS

We use code from the OpenRLHF Github repository (Hu et al., 2024) to train all of our models, and
evaluate with the OpenInstruct repository (Ivison et al., 2024). We use the default evaluation settings
from OpenInstruct and report strict prompt accuracy for IFEval, truth-info accuracy for TruthfulQA,
length-controlled winrate for AlpacaEval, 4-shot CoT accuracy for MATH, 8-shot CoT accuracy for
GSM8K, and CoT accuracy for BBH.
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A.1 ULTRAFEEDBACK EXPERIMENT

Filtering. As of February 7 2025, Llama-3.2-3B-Instruct achieves a LMSYS Chatbot Arena ELO
score of 1103 and Llama-3.1-8B-Instruct achieves 1176 ELO. We filter out all responses from the
original ULTRAFEEDBACK dataset that were generated by models with higher ELO than 1100. This
excludes GPT-4-0613 (1163 ELO), GPT-3.5-Turbo (1106 ELO), and WizardLM-70B (1106 ELO).
The best remaining model is Vicuna-33B (1091 ELO); see Table 5 for a full list of remaining models.

Hyperparmeters. We generally use hyperparameters close to defaults suggested by recent
work (Lambert et al., 2024; Hu et al., 2024), and sweep a reasonable range for each method to
avoid overoptimizing any one particular setup. We use length normalization in the DPO loss, which
Lambert et al. (2024) suggests to generally work better. For both SFT and DPO, we use a cosine
annealing LR schedule with a warmup ratio of 0.03. For DPO, we use batch size 32 and train for one
epoch. We sweep LR in {1e-7, 3e-7, 5e-7, 7e-7} as well as DPO β ∈ {5, 10}. For SFT, we use batch
size 256, and sweep epochs in {1, 2} and learning rate in {1e-5, 5e-5, 1e-6}. When constraining
SFT with low-rank LoRA, we use r = 8 and α = 2r = 16.

Model Reference
Alpaca-7B Taori et al. (2023)
Bard https://bard.google.com/
Falcon-40B-Instruct Almazrouei et al. (2023)
Llama-2-13B-Chat Touvron et al. (2023)
Llama-2-70B-Chat Touvron et al. (2023)
Llama-2-7B-Chat Touvron et al. (2023)
MPT-30B-Chat Team (2023)
Pythia-12B Biderman et al. (2023)
StarChat Tunstall et al. (2023)
UltraLM-13B Ding et al. (2023)
UltraLM-65B Ding et al. (2023)
Vicuna-33B Chiang et al. (2023)
WizardLM-7B Xu et al. (2023)
WizardLM-13B Xu et al. (2023)

Table 5: Models used to generate the responses in our ULTRAFEEDBACK-WEAK dataset, con-
structed by filtering out all responses generated by Llama-3.2-3B-Instruct level models from the
original ULTRAFEEDBACK dataset.

A.2 NUMBER OF BOLDED SECTIONS EXPERIMENT

We use the same hyperparameters and sweep the same ranges as in Appendix A.1. We train on
exactly 16384 data points for each setting.

A.3 GSM8K WITH ERRORS

We use largely the same hyperparameters and sweep the same ranges as in Appendix A.1. Because
the chosen and rejected responses are highly similar and differ (by construction) by only a few to-
kens, vanilla DPO training may drastically reduce the likliehood of the chosen response (Razin et al.,
2024). To mitigate this, we follow existing practice and also consider adding a NLL regularization
term to the DPO objective, which we sweep as a hyperparameter. We select best hyperparmeters on
a held-out validation set. We train on exactly 7473 samples (the size of the full GSM8K train set)
for each setting.

A.4 REAL-WORLD PREFERENCE TUNING EXPERIMENTS

We use same hyperparmeters as in Appendix A.1, except we sweep DPO hyperparameters less
extensively due to compute limitations: we only consider LR in {1e-7, 5e-7}. We also train models
with LoRA as opposed to full-finetuning; to limit the error introduced by this approximation, we
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use a very high rank of r = 256 (α = 2r = 512), which recent work suggests can generally match
full finetuning performance (Biderman et al., 2024). This is a limitation of our study that we hope
to address in future work.

B QUALITATIVE EXAMPLES

B.1 NUMBER OF BOLDED SECTIONS

Examples of model generations before and after DPO training are presented in Figure 1.

B.2 TRAINING DATA FOR GSM8K WITH ARITHMETIC ERRORS

Examples of the corrupted training data are presented in Figure 2.
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Llama-3.2-3B-Instruct (no training baseline)

User: ...assuming the graph is Eulerian, determine the number of possible closed trails of length 7 (i.e., the
number of Eulerian circuits of length 7) that the guide can choose from, if possible. (Note: A graph is Eulerian
if it has an Eulerian circuit, and it must satisfy certain conditions). If the tour guide decides to add an additional
attraction to the itinerary, represented by adding a new node and connecting it with edges to 3 existing nodes,
analyze how this change affects the Eulerian properties of the graph and determine the new possible number of
closed trails of length 7, if any exist.

Include bolded sections in your response.

Assistant: **Problem Analysis**

The problem asks for the number of possible closed trails (Eulerian circuits) in a graph with 50 nodes and 100
edges, and then analyzing the effect of adding a new node and edges on the Eulerian properties of the graph.

**Initial Graph Properties**

⟨text ommitted without sections for space⟩

**Initial Number of Eulerian Circuits**

⟨text without sections ommitted for space⟩

**Adding a New Node and Edges**

⟨text without sections ommitted for space⟩

**Conclusion**

The addition of a new node and edges to the graph does not allow for any Eulerian circuits of length 7, since
the new node introduces a constraint that cannot be satisfied. Therefore, the number of possible closed trails of
length 7 is 0.

After DPO training (3 sections chosen response / 2 sections rejected response)

User: ...assuming the graph is Eulerian, determine the number of possible closed trails of length 7 (i.e., the
number of Eulerian circuits of length 7) that the guide can choose from, if possible. (Note: A graph is Eulerian
if it has an Eulerian circuit, and it must satisfy certain conditions). If the tour guide decides to add an additional
attraction to the itinerary, represented by adding a new node and connecting it with edges to 3 existing nodes,
analyze how this change affects the Eulerian properties of the graph and determine the new possible number of
closed trails of length 7, if any exist.

Include bolded sections in your response.

Assistant: **Initial Conditions **The graph **has 50 nodes** and **100 edges**, **satisfying the condi-
tions** of an Eulerian graph **with a degree** of at least **2** at **all** nodes **except** possibly **one**.

**Eulerian Circuit Conditions**

For a graph to have an Eulerian circuit **(i.e.,** **an Eulerian path** **that** **loops** **back**
**to** **the** **starting** **node** **exactly** **once** **),** **all** **nodes** **must** **have**
**even** **degrees** **or** **the** **number** **of** **edges** **going** **into** **a** **node**
**must** **be** **equal** **to** **the** **number** **of** **edges** **leaving** **it** **exactly**
**once** **for** **each** **node** **except** **the** **starting** **and** **ending** **node** **(
**in** **the** **case** **of** **a** **closed** **trail** **or** **path** **of** **length** **greater**
**than** **2** **)** **.

**New Graph Conditions**

**After** **adding** **a** **new** **node** **and** **edges** **to** **3** **existing** **nodes**
**the** **graph** **will** **no** **longer** **be** **Eulerian** **since** **not** **all** **nodes**
**will** **have** **even** **degrees** **any** **more** **the** **new** **node** **will** **have**
**degree** **3** **and** **two** **existing** **nodes** **will** **have** **degree** **4** **and**
**the** **remaining** **46** **nodes** **will** **have** **degree** **2** **or** **more** **than**
**2** **.

**Conclusion**

The **initial** **graph** **had** **the** **potential** **for** **Eulerian** **circuits** **of**
**length** **7** **but** **the** **new** **graph** **does** **not** **satisfy** **the** **condi-
tions** **for** **an** **Eulerian** **graph** **any** **more** **the** **number** **of** **closed**
**trails** **of** **length** **7** **is** **** **0** **.**

Figure 1: DPO training massively increases the number of sections generated by the model (from 5
to 89 in this example). Most notably, the increase extrapolates beyond the number of sections (i.e.,
absolute quality) of the chosen response (3 sections).
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Ground truth solution (uncorrupted)

User: Teresa scored 70 marks in science, 80 in music, 85 in social studies, and the physics exam, which was the
hardest test that Teresa had ever taken in her entire life, she scored half as many marks as she scored in music.
Calculate the total marks Teresa scored in all the subjects.

Assistant: The total marks of science and music are 70+80 = <<70+80=150>>150

When you add the marks she scored in social studies, the full marks become 150+85 = <<150+85=235>>235.

She scored half as many marks in physics as she scored music, totaling 1/2*80 = 40 marks.

When you add the marks she scored in physics to the total marks of the other subjects, the full marks become
235+40 = <<235+40=275>>275

#### 275

Solution with 2 errors added

User: Teresa scored 70 marks in science, 80 in music, 85 in social studies, and the physics exam, which was the
hardest test that Teresa had ever taken in her entire life, she scored half as many marks as she scored in music.
Calculate the total marks Teresa scored in all the subjects.

Assistant: The total marks of science and music are 70+80 = <<70+80=151>>151

When you add the marks she scored in social studies, the full marks become 151+85 = <<151+85=236>>236.

She scored half as many marks in physics as she scored music, totaling 1/2*80 = 41 marks.

When you add the marks she scored in physics to the total marks of the other subjects, the full marks become
236+41 = <<236+41=277>>277

#### 277

Solution with 3 errors added

User: Teresa scored 70 marks in science, 80 in music, 85 in social studies, and the physics exam, which was the
hardest test that Teresa had ever taken in her entire life, she scored half as many marks as she scored in music.
Calculate the total marks Teresa scored in all the subjects.

Assistant: The total marks of science and music are 70+80 = <<70+80=151>>151

When you add the marks she scored in social studies, the full marks become 151+85 = <<151+85=236>>236.

She scored half as many marks in physics as she scored music, totaling 1/2*80 = 39 marks.

When you add the marks she scored in physics to the total marks of the other subjects, the full marks become
236+39 = <<236+39=274>>274

#### 274

Figure 2: We prompt a strong langauge model to explicitly introduce either 2 or 3 errors into the
ground truth solutions from the GSM8K training set. The resulting errors are bolded.
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