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Abstract—Visual, proximity, and tactile perception are 
essential sensing modalities for providing comprehensive 
information in interactive robotic tasks. However, integrating 
multiple sensors poses several challenges, including increased 
volume and cost, difficulties with signal synchronization and 
multi-sensor cross-interference or signal disruption. To tackle 
these challenges, we propose the vision-proximity-tactility sensor 
(VPTS), an AI-enabled, all-in-one multimodal sensor designed for 
holistic perception through efficient collaboration and 
information transfer between modalities, enabling complex, long-
sequence robotic interactions. Facilitated by a transparent 
membrane patterned with ultraviolet (UV)-excited fluorescent 
markers, VPTS utilizes a focus-adjustable monocular camera to 
switch between visual, proximity, and tactile perception modalities 
in a time-division mode. It switches modalities by toggling UV light, 
camera focus, and three corresponding dedicated deep learning 
models. VPTS achieves an F1 score of 0.9733 in visual perception, 
5.098 mm mean absolute error in proximity estimation, and 0.653 
mN root–mean square error in force sensing. Real-world 
experiments, such as a computer music game involving up to 28 
consecutive subtasks, show a cohesive pipeline where different 
sensing modalities collaboratively support such long-sequence 
manipulations, verifying VPTS’s effectiveness for intricate, 
multimodal interactive tasks. 
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I. INTRODUCTION  

Interactive robotic tasks require accurate perception across a 
wide range of sensory modalities, including vision, proximity, 
and tactile sensing [1-7]. These modalities provide essential 
information for precise manipulations [8], [9], such as object 
localization, safe motion planning, and contact force estimation. 
Current systems typically rely on separate sensors for each 
modality, resulting in increased volume and cost [10], 
difficulties with signal synchronization and alignment [11], and 
multi-sensor cross-interference or signal disruption [12], [13]. 

In this work, we propose VPTS (Vision-Proximity-Tactility 
Sensor), an all-in-one multimodal sensor that integrates visual, 
proximity, and tactile modalities into a compact, cost-effective 
design. VPTS employs a transparent membrane together with a 

focus-adjustable camera, allowing environmental perception 
when the ultraviolet (UV) light is off and the camera is set to far-
focus, and deformation sensing of fluorescent markers when the 
UV light is on and the camera is set to near-focus. Each modality 
is subsequently processed by a dedicated deep learning module, 
enabling a holistic understanding of the interaction scenario 
through object recognition, depth estimation, and force 
generation, Figure 1. VPTS offers a novel solution that 
overcomes the limitations of conventional systems and enables 
more complex, long-sequence multimodal perception 
interactive robotic tasks. 

II. SENSOR DESIGN AND ALGORITHM PIPELINE 

VPTS is primarily composed of a transparent membrane, 
UV-excited fluorescent markers, a focus-adjustable monocular 
camera, a 365 nm UV light source, Figure 1.  With the UV light 
off and the camera in far focus, VPTS captures external scenes 
for visual and proximity sensing. When the UV light is on and 
the camera switches to near focus, fluorescence from the 
markers encodes membrane deformations for tactile sensing. 
This compact design unifies multiple modalities in a single unit, 
reducing hardware redundancy and enabling smooth transitions. 

VPTS utilizes a deep learning-based algorithmic pipeline 
that seamlessly integrates visual, proximity, and tactile 
perception modules, Figure 2. For the visual perception module, 
we adopt a transformer-based architecture, whose attention 
mechanism can capture both global and local features and adapt 
to visually disturbed or noisy environments [14], [15]. For the 
proximity perception module, we adopt a hybrid strategy that 
combines classification and depth-map regression [16]. For the 
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Figure 1. AI-enabled All-in-one Multimodal VPTS for visual, 
proximity, and tactile perception. 



tactile perception module, we employ a combination of image 
preprocessing and ResNet-50 to generate detailed force 
distribution maps.  

III. RESULTS AND APPLICATIONS 

The visual perception module demonstrates high accuracy 
and robustness in both single and multiple object detection 
scenarios, achieving an F1 score of 0.9733 and effectively 
handling variations in object position and visual conditions. 
The proximity perception module enables precise monocular 
depth estimation with a mean absolute error of 5.098 mm, 
showing strong stability and generalizability across different 
distances. The tactile perception module exhibits excellent 
force estimation accuracy with a RMSE of 0.653 mN and a 
Pearson correlation of 0.9967, confirming its reliability in 
capturing distributed force for robotic manipulation, Figure 3. 

We also conduct an interactive music game, where VPTS 
plays the song "Twinkle Twinkle Little Star" on a keyboard 
based on the position of a black tile in the game, Figure 4. First, 
VPTS faces the screen and uses the vision module to identify 
the target key. Then it turns to the keyboard and locates the key 
position. After that, the proximity module estimates the 
distance. The robotic arm moves accordingly. Finally, the 
tactile module monitors the distributed force. Once the force 
threshold is reached, the system releases the key to finish. The 
system successfully completes up to 28 perception and action 
sub-tasks, Table 1, demonstrating its ability to perform intricate, 
long-sequence tasks that require continuous sensory feedback. 

IV. CONCLUSION AND FUTURE WORK 

VPTS is a powerful, compact multimodal sensor that 
combines visual, proximity, and tactile perception for robotic 
tasks. It achieves high accuracy across all modalities and 
demonstrates strong real-world applicability in tasks requiring 
continuous sensory feedback. Future work will focus on 
optimizing system size and enhancing model generalization. 

 
 

 
Figure 2. Utilization of deep learning pipeline integrating three 
perception modalities. 

Table 1 Comparison of sequential perception capability. 

Ref. 
Total 
time 
(s) 

Subtask 
count 

Average 
time (s) 

Modality 
count 

Ref [17] Task 1 8 1 8 1 

Ref [18] 
Task 1 180 4 45 3 
Task 2 105 4 26.25 3 

Ref [19] Task 1 33 1 33 2 

VPTS 
(ours) 

Task 1 26.5 3 8.83 3 
Task 2 25.5 3 8.5 3 
Task 3 372 28 13.3 3 

 

 
Figure 3. Demonstration of VPTS’s visual, proximity, and tactile 
perception capacity.  

 

Figure 4. A robotic arm equipped with VPTS playing “Twinkle 
Twinkle Little Star”. 
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