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Abstract—Visual, proximity, and tactile perception are
essential sensing modalities for providing comprehensive
information in interactive robotic tasks. However, integrating
multiple sensors poses several challenges, including increased
volume and cost, difficulties with signal synchronization and
multi-sensor cross-interference or signal disruption. To tackle
these challenges, we propose the vision-proximity-tactility sensor
(VPTS), an Al-enabled, all-in-one multimodal sensor designed for
holistic  perception through efficient collaboration and
information transfer between modalities, enabling complex, long-
sequence robotic interactions. Facilitated by a transparent
membrane patterned with ultraviolet (UV)-excited fluorescent
markers, VPTS utilizes a focus-adjustable monocular camera to
switch between visual, proximity, and tactile perception modalities
in a time-division mode. It switches modalities by toggling UV light,
camera focus, and three corresponding dedicated deep learning
models. VPTS achieves an F1 score of 0.9733 in visual perception,
5.098 mm mean absolute error in proximity estimation, and 0.653
mN root-mean square error in force sensing. Real-world
experiments, such as a computer music game involving up to 28
consecutive subtasks, show a cohesive pipeline where different
sensing modalities collaboratively support such long-sequence
manipulations, verifying VPTS’s effectiveness for intricate,
multimodal interactive tasks.

Keywords—all-in-one multimodal sensor, deep learning, force
sensing, proximity estimation, visual perception

I. INTRODUCTION

Interactive robotic tasks require accurate perception across a
wide range of sensory modalities, including vision, proximity,
and tactile sensing [1-7]. These modalities provide essential
information for precise manipulations [8], [9], such as object
localization, safe motion planning, and contact force estimation.
Current systems typically rely on separate sensors for each
modality, resulting in increased volume and cost [10],
difficulties with signal synchronization and alignment [11], and
multi-sensor cross-interference or signal disruption [12], [13].

In this work, we propose VPTS (Vision-Proximity-Tactility
Sensor), an all-in-one multimodal sensor that integrates visual,
proximity, and tactile modalities into a compact, cost-effective
design. VPTS employs a transparent membrane together with a
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Figure 1. Al-enabled All-in-one Multlmodal VPTS for visual,
proximity, and tactile perception.

focus-adjustable camera, allowing environmental perception
when the ultraviolet (UV) light is off and the camera is set to far-
focus, and deformation sensing of fluorescent markers when the
UV light is on and the camera is set to near-focus. Each modality
is subsequently processed by a dedicated deep learning module,
enabling a holistic understanding of the interaction scenario
through object recognition, depth estimation, and force
generation, Figure 1. VPTS offers a novel solution that
overcomes the limitations of conventional systems and enables
more complex, long-sequence multimodal perception
interactive robotic tasks.

II.  SENSOR DESIGN AND ALGORITHM PIPELINE

VPTS is primarily composed of a transparent membrane,
UV-excited fluorescent markers, a focus-adjustable monocular
camera, a 365 nm UV light source, Figure 1. With the UV light
off and the camera in far focus, VPTS captures external scenes
for visual and proximity sensing. When the UV light is on and
the camera switches to near focus, fluorescence from the
markers encodes membrane deformations for tactile sensing.
This compact design unifies multiple modalities in a single unit,
reducing hardware redundancy and enabling smooth transitions.

VPTS utilizes a deep learning-based algorithmic pipeline
that seamlessly integrates visual, proximity, and tactile
perception modules, Figure 2. For the visual perception module,
we adopt a transformer-based architecture, whose attention
mechanism can capture both global and local features and adapt
to visually disturbed or noisy environments [14], [15]. For the
proximity perception module, we adopt a hybrid strategy that
combines classification and depth-map regression [16]. For the
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Figure 2. Utilization of deep learning pipeline integrating three
perception modalities.

tactile perception module, we employ a combination of image
preprocessing and ResNet-50 to generate detailed force

distribution maps.
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III. RESULTS AND APPLICATIONS

The visual perception module demonstrates high accuracy
and robustness in both single and multiple object detection
scenarios, achieving an F1 score of 0.9733 and effectively
handling variations in object position and visual conditions.
The proximity perception module enables precise monocular
depth estimation with a mean absolute error of 5.098 mm,
showing strong stability and generalizability across different
distances. The tactile perception module exhibits excellent
force estimation accuracy with a RMSE of 0.653 mN and a
Pearson correlation of 0.9967, confirming its reliability in
capturing distributed force for robotic manipulation, Figure 3.

We also conduct an interactive music game, where VPTS
plays the song "Twinkle Twinkle Little Star" on a keyboard
based on the position of a black tile in the game, Figure 4. First,
VPTS faces the screen and uses the vision module to identify
the target key. Then it turns to the keyboard and locates the key
position. After that, the proximity module estimates the
distance. The robotic arm moves accordingly. Finally, the
tactile module monitors the distributed force. Once the force
threshold is reached, the system releases the key to finish. The
system successfully completes up to 28 perception and action
sub-tasks, Table 1, demonstrating its ability to perform intricate
long-sequence tasks that require continuous sensory feedback.

IV. CONCLUSION AND FUTURE WORK
VPTS is a powerful,

compact multimodal sensor that
combines visual, proximity, and tactile perception for robotic
tasks. It achieves high accuracy across all modalities and
demonstrates strong real-world applicability in tasks requiring
continuous sensory feedback. Future work will focus on
optimizing system size and enhancing model generalization.

Table 1 Comparison of sequential perception capability.

T.O tal Subtask Average Modality
Ref. time .
(s) count time (s) count

Ref[17] Task 1 8 1 8 1
Task 1 180 4 45 3
Ref[I8]  rask2 105 4 2625 3
Ref[19] Task 1 33 1 33 2
Task 1 26.5 3 8.83 3
?:’:ss) Task2 255 3 8.5 3
Task 3 372 28 13.3 3
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Figure 3. Demonstratlon of VPTS’s visual, proximity, and tactile
perception capacity.
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Figure 4. A robotic arm equipped with VPTS playing “Twinkle
Twinkle Little Star”.
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