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Abstract001

Despite the promising performance of Large002
Vision Language Models (LVLMs) in visual003
understanding, they occasionally generate in-004
correct outputs. While reward models (RMs)005
with reinforcement learning or test-time scal-006
ing offer the potential for improving gener-007
ation quality, a critical gap remains: pub-008
licly available multi-modal RMs for LVLMs009
are scarce, and the implementation details of010
proprietary models are often unclear. We011
bridge this gap with InternLM-XComposer2.5-012
Reward (IXC-2.5-Reward), a simple yet ef-013
fective multi-modal reward model that aligns014
LVLMs with human preferences. To ensure the015
robustness and versatility of IXC-2.5-Reward,016
we set up a high-quality multi-modal prefer-017
ence corpus spanning text, image, and video018
inputs across diverse domains, such as instruc-019
tion following, general understanding, text-rich020
documents, mathematical reasoning, and video021
understanding. IXC-2.5-Reward achieves ex-022
cellent results on the latest multi-modal reward023
model benchmark and shows competitive per-024
formance on text-only reward model bench-025
marks. We further demonstrate three key appli-026
cations of IXC-2.5-Reward: (1) Providing a su-027
pervisory signal for RL training. We integrate028
IXC-2.5-Reward with Proximal Policy Opti-029
mization (PPO) yields IXC-2.5-Chat, which030
shows consistent improvements in instruction031
following and multi-modal open-ended dia-032
logue; (2) Selecting the best response from can-033
didate responses for test-time scaling; and (3)034
Filtering outlier or noisy samples from exist-035
ing image and video instruction tuning training036
data.037

1 Introduction038

“If you don’t know where you are going, you’ll end
up some place else.”

— Yogi Berra
Reward Models (RMs) (Cai et al., 2024; Zhu et al.,039

2023; Liu et al., 2024a; Wang et al., 2024f,b; Yuan040

et al., 2024a; Lou et al., 2024; Yang et al., 2024b; 041

Yuan et al., 2024b; Shiwen et al., 2024; Wang et al., 042

2024e) provide the crucial direction guidance about 043

how well an AI model’s outputs align with human 044

preference, and benefit Large Language Models 045

(LLMs) in training and inference. During train- 046

ing, RMs are often used with reinforcement learn- 047

ing from human feedback (RLHF) (Ouyang et al., 048

2022; Bai et al., 2022b; Schulman et al., 2017; 049

Rafailov et al., 2024) to penalize undesirable model 050

behaviors and encourage outputs that align with hu- 051

man values. At inference, RMs facilitate test-time 052

scaling strategies (Snell et al., 2024; Gulcehre et al., 053

2023), such as selecting the best response from can- 054

didate outputs or providing step-by-step critiques 055

for complex reasoning tasks (Zelikman et al., 2022; 056

Hosseini et al., 2024). 057

Despite their crucial role in both training and 058

inference, multi-modal RMs for Large Vision Lan- 059

guage Models (LVLMs) remain notably underex- 060

plored compared to language-only RMs for LLMs. 061

Because current preference data is predominantly 062

text-based and skewed toward specific domains 063

(e.g., safety), data scarcity poses a significant chal- 064

lenge to training multi-modal RMs for diverse 065

modalities such as images, videos, and text. Con- 066

sequently, existing multi-modal RMs (Wang et al., 067

2024a; Xiyao et al., 2024) are largely constrained to 068

narrow domains (e.g., mitigating hallucinations) or 069

rely on prompting LVLMs with evaluation prompts, 070

effectively functioning as generative RMs (Xiong 071

et al., 2024). The limitation of multi-modal RMs 072

subsequently constrains the capabilities of open- 073

source LVLMs such as instruction following and 074

safety-should-refuse, thereby hampering user inter- 075

action experience in multi-modal chat scenarios. 076

The growing community interest in RLHF 077

and test-time scaling highlights the need for 078

multi-modal RMs, which motivates us to 079

present InternLM-XComposer2.5-Reward (IXC- 080

2.5-Reward). Instead of directly transferring uni- 081
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Figure 1: (a) To train the IXC-2.5-Reward, we construct a multi-modal preference dataset spanning diverse domains
(e.g., natural scenes, text-rich, reasoning) and modalities (image, text, video). (b) The framework of IXC-2.5-
Reward. (c) The IXC-2.5-Reward guides policy training for IXC-2.5-Chat via reinforcement learning.

modal (text) reward models (RMs) to the vi-082

sion modality, we augment the existing LVLM083

(InternLM-XComposer2.5) with an additional scor-084

ing head to predict reward scores. An effective085

multi-modal RM should ideally possess two key086

properties: (1) the ability to predict reward scores087

for both image, video, and textual inputs and (2)088

the capacity to generalize across diverse domains,089

such as instruction following, knowledge, text-rich090

images (e.g., documents), reasoning tasks, etc. To091

this end, we develop a pipeline (Fig. 1(a)) to con-092

struct multi-modal preference data, and also incor-093

porate existing high-quality datasets. This pipeline094

selects prompts across diverse domains for text, im-095

age, and video inputs, generates corresponding re-096

sponses, and then uses GPT-4o (Hurst et al., 2024)097

or verifier (Lambert et al., 2024a) to perform pref-098

erence judgments. Trained on our preference data,099

IXC-2.5-Reward effectively evaluates both visual 100

(image and video) and textual inputs (Fig. 1 (b)). 101

IXC-2.5-Reward achieves best performance on 102

multi-modal VL-RewardBench (Li et al., 2024b) 103

(70.0%) that beat all previous generative RMs 104

including Gemini-1.5-Pro (62.5%) and GPT-4o 105

(62.4%). Even on uni-modal (text) RM bench- 106

marks, IXC-2.5-Reward also demonstrates good 107

results, with an average score of 88.6% on Reward- 108

Bench (Lambert et al., 2024b) and 68.8% on RM- 109

Bench (Liu et al., 2024b). 110

We further demonstrate the effectiveness of IXC- 111

2.5-Reward in the following three aspects: 112

(1) IXC-2.5-Reward for RL training. We train 113

a chat model (IXC-2.5-Chat) using the on-policy 114

Proximal Policy Optimization (PPO) algorithm 115

with IXC-2.5-Reward to enhance its ability to 116

follow instructions and provide a better user ex- 117
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perience in multi-modal conversations. Our re-118

sults show clear improvements of IXC-2.5-Chat on119

multi-modal instruction following and in-the-wild120

chatting benchmarks, which validate the effective-121

ness of IXC-2.5-Reward for providing the reward122

signal during RL training.123

(2) IXC-2.5-Reward for Test-Time Scaling. Us-124

ing best-of-N sampling with IXC-2.5-Reward125

leads to additional performance gains compared to126

the RL-trained IXC-2.5-Chat, confirming IXC-2.5-127

Reward’s effectiveness in selecting good responses128

from candidate responses.129

(3) IXC-2.5-Reward for Data Cleaning. We ob-130

serve a strong correlation between low IXC-2.5-131

Reward scores and problematic samples, such as132

those exhibiting hallucinations or mismatched im-133

age/video and question/answer content. This sug-134

gests that IXC-2.5-Reward can effectively clean135

LVLM pre-training and post-training data.136

2 Related Work137

Reward Model in Large Language Models.138

Reward models (RMs) are crucial for both Re-139

inforcement Learning from Human Feedback140

(RLHF) (Ouyang et al., 2022; Bai et al., 2022b)141

and Test-time Scaling Laws (Snell et al., 2024;142

Hosseini et al., 2024). RMs have different imple-143

mentation forms, such as (1) discriminative RM144

(Cai et al., 2024; Zhu et al., 2023; Liu et al., 2024a;145

Wang et al., 2024f,b; Yuan et al., 2024a; Lou et al.,146

2024; Yang et al., 2024b), usually a sequence clas-147

sifier that classifies input sequences into different148

categories, such as binary classification (“good” or149

“bad,”) or on a more granular scale (Wang et al.,150

2024f,b). (2) generative RM (Kim et al., 2023;151

Yuan et al., 2024b; Shiwen et al., 2024; Wang et al.,152

2024e) that are prompted to generate the feedback153

in the form of text, often a critique or explanation154

of why a certain output is good or bad. (3) implicit155

RMs (Ivison et al., 2023; Lambert et al., 2024a)156

that are models optimized using DPO (Rafailov157

et al., 2024) that the predicted log probabilities are158

interpreted as implicit reward signal. Besides, RMs159

can also be divided into Outcome RMs (ORMs)160

(Cobbe et al., 2021) and Process RMs (PRMs) (Ue-161

sato et al., 2022; Lightman et al., 2023; Setlur et al.,162

2024). Our IXC-2.5-Reward belongs to the dis-163

criminative RM and ORM.164

Reward Model in Large Vision-Language Mod-165

els. Previous RMs for LVLMs (Wang et al., 2024a;166

Xiong et al., 2024; Xiyao et al., 2024) are lim-167

ited to specific domains (e.g., reducing hallucina- 168

tion) or developed using relatively weak base mod- 169

els, which makes the implemented models signifi- 170

cantly inferior to LLM RMs. The lack of effective 171

multi-modal RMs has created a bottleneck in vi- 172

sion RLHF, forcing researchers to merely use the 173

variants of the off-poly DPO algorithm (Rafailov 174

et al., 2024). Previous work using open-source 175

LVLMs as generative RMs (Yu et al., 2024c; Ouali 176

et al., 2025; Xiyao et al., 2024), injection of hallu- 177

cinations with data augmentation techniques (Deng 178

et al., 2024b; Favero et al., 2024; Zhou et al., 2024b; 179

Zhu et al., 2024; Pi et al., 2025; Jiang et al., 2024; 180

Deng et al., 2024a) and rule-based selection (Cao 181

et al., 2024; Liu et al., 2024f) for DPO data selec- 182

tion, which potentially compromise performance 183

compared to the on-policy RL solutions like PPO 184

(Schulman et al., 2017). Moreover, lacking multi- 185

modal RMs has also led to the reliance on human 186

annotation (Sun et al., 2023; Yu et al., 2024a) or 187

the use of proprietary models (Zhang et al., 2024a; 188

Zhao et al., 2023) like GPT4 as generative RMs 189

for DPO pair selection, which is expensive and un- 190

sustainable for large-scale applications. Although 191

open-source RMs for LVLMs have lagged behind 192

their LLM counterparts, the growing community 193

interest highlights the need for multi-modal RMs, 194

which motivates our work. In this work, we demon- 195

strate that IXC-2.5-Reward is capable of combining 196

with the PPO training and for DPO data selection 197

at a low cost. 198

Reward Model Evaluations. The development 199

of evaluation benchmarks is essential for improv- 200

ing RMs. Several comprehensive benchmarks have 201

been proposed for evaluating RMs of LLMs, such 202

as general abilities (Lambert et al., 2024b; Zhou 203

et al., 2024a; Liu et al., 2024b), multilingual (Son 204

et al., 2024; Gureja et al., 2024), RAG (Jin et al., 205

2024), and mathematical process reward (Zheng 206

et al., 2024). The limited availability of multi- 207

modal RMs has hampered the development of eval- 208

uation benchmarks, with existing benchmark (Li 209

et al., 2024b) focusing solely on generative RMs 210

and lacking the evaluation of process supervision. 211

However, given the critical importance of RMs, 212

we expect significant progress in multi-modal RM 213

benchmarking in the future. 214

3 IXC2.5-Reward 215

Data Preparation. Reward models are trained us- 216

ing pairwise preference annotations (e.g., prompts 217

3



Table 1: Overview of existing preference datasets
used in IXC-2.5-Reward.

Category Dataset

Text

IF General
Tulu-3-IF-augmented-on-policy-8b (Lambert et al., 2024a)

UltraFeedback (Cui et al., 2024)

Safety
hhh alignment (Askell et al., 2021), PKU-Safe (Dai et al., 2024a)
SHP (Ethayarajh et al., 2022), Anthropic-hhrlhf (Bai et al., 2022a)

Image

Chat WildVision-Battle (Lu et al., 2024c)

General
LLaVA-Critic (Xiong et al., 2024), VL-Feedback (Li et al., 2024c),

RLAIF-V (Yu et al., 2024b) MIA-DPO (Liu et al., 2024e)

Table 2: Overview of the source of newly collected data
used in IXC-2.5-Reward.

Category Dataset

Image

IF General
in-house (will release)

KVQA (Shah et al., 2019), A-OKVQA (Schwenk et al., 2022), PMC-VQA (Zhang et al., 2023)

Text-Rich
AI2D (Kembhavi et al., 2016), IconQA (Lu et al., 2021), TQA (Kembhavi et al., 2017)
ChartQA (Masry et al., 2022), DVQA (Kafle et al., 2018), ScienceQA (Lu et al., 2022a)

Reasoning
GeoQA (Chen et al., 2021), CLEVR-Math (Lindström and Abraham, 2022)

Super-CLEVR (Li et al., 2023), TabMWP (Lu et al., 2022b)

Video

General TrafficQA (Xu et al., 2021), FunQA (Xie et al., 2024), MiraData (Ju et al., 2024)

x with chosen responses yc and rejected responses218

yr) that reflect human preferences. While existing219

public preference data is primarily textual, with220

limited image and scarce video examples, we train221

IXC-2.5-Reward using both open-source data and222

a newly collected dataset to ensure broader domain223

coverage.224

Tab. 1 lists the open-source pairwise data used225

in IXC-2.5-Reward, primarily focused on instruc-226

tion following, safety, and general knowledge. Tab.227

2 details the source of our newly collected data,228

which is initially the supervised fine-tuning (SFT)229

data consisting of prompts x and corresponding230

chosen responses yc across diverse domains: text-231

rich document understanding, math reasoning, and232

video understanding. We also collect some in-233

house data about the instruction following, which234

will be released in the future. To obtain rejected235

responses yr, we prompt the SFT model, InternLM-236

XComposer-2.5 (IXC-2.5) (Zhang et al., 2024c) to237

generate multiple outputs for each prompt and then238

employ distinct selection criteria. For general and239

text-rich data, we use GPT-4o (Hurst et al., 2024)240

with pairwise evaluation prompts to determine the241

rejected response that was evaluated worse than242

the SFT ground-truth answer. For math reason-243

ing and instruction following data, we build veri-244

fier functions (Lambert et al., 2024a) that compare245

generated responses against ground-truth solutions246

to label the chosen and rejected data. Our newly247

collected data complements existing open-source248

data, creating a comprehensive, high-quality multi-249

modal preference dataset.250

Model Architecture. Our reward model InternLM-251

XComposer 2.5-Reward (IXC-2.5-Reward) is built252

upon the SFT model (IXC-2.5) (Zhang et al.,253

2024d). As shown in Fig. 1 (b), we use the pre-254

trained weights of IXC-2.5-Chat for most of the255

parts, such as the visual encoder and the MLP pro-256

jector, which has aligned the image and video data257

with text modalities. Thus, the IXC-2.5-Reward is258

merely required to train preference data to predict259

the reward score and avoid using other pre-training 260

data for modality alignment. 261

We replace the final linear layer of IXC-2.5 with 262

a score head f for IXC-2.5-Reward that predicts 263

the reward score. Given the input prompt x and 264

the response y, the score head f transforms the 265

averaged hidden state features of all tokens into 266

a binary scalar r(x, y). This scalar value r(x, y) 267

serves as the predicted reward score for the inputs. 268

Loss Function. Our reward model is trained via 269

the following loss function: 270

LRM = −E(log(σ(r(x, yw)− r(x, yl)))), (1) 271

where r(x, yw) and r(x, yl) denotes to the reward 272

score assigned to the prompt x with the chosen data 273

yw and rejected data yl, respectively. 274

Training Strategy. As shown in Fig. 1 (b), we 275

froze the model’s vision encoder and projector that 276

are initialized from IXC-2.5 (Zhang et al., 2024c), 277

training only the LLM (InternLM (Zhang et al., 278

2024c)) and the score head. Other components of 279

IXC-2.5, such as the dynamic image partitioning 280

mechanism for high-resolution inputs, remained 281

unchanged. 282

Length Constraints. We remove data pairs where 283

the length of the chosen response yw is significantly 284

longer than the length of the rejected response yl. 285

This helps prevent the reward model from learning 286

to associate length with quality. Notably, we found 287

that the vulnerability of LLM-based evaluation to 288

length bias, a known issue in LLMs (Dubois et al., 289

2024), has also significant implications for LVLMs. 290

Specifically, open-ended Visual Question Answer- 291

ing (VQA) benchmarks that employ LVLMs (e.g., 292

GPT-4o) as judges are susceptible to inflated scores 293

from overly long responses. Consequently, remov- 294

ing the length constraint on the reward model re- 295

sulted in improved PPO policy performance. A 296

detailed analysis is provided in Tab. 7. 297
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Source: ALLaVA Source: ALLaVA

Source: ALLaVA

Reward Score: -5.82

Reward Score: -3.23

Reward Score: -3.42

Source: LLaVA-Video

Reward Score: -3.48

Question:
What architectural elements stand out prominently in the
image, and how do they contribute to the overall
aesthetic of the cityscape?

Answer:
The prominent architectural elements in the image
include the towering skyscrapers with illuminated
windows and the well-lit bridge over the water. These
elements contribute to the overall aesthetic by creating a
dynamic interplay of light and shadows, forming a
visually captivating cityscape that seamlessly blends
modern urban design with natural elements.

Question:
What specific elements in the image contribute to the overall
sense of tranquility and natural beauty?
Answer:
The calm water of the lake, the lush greenery, and the presence
of a small wooden dock and rowboat all contribute to the
overall sense of tranquility and natural beauty in the scene.

Question: N/A Answer: N/A

Explain: Hallucination in response

Explain: The image and text are irrelevant

Explain: Empty question and answer

Explain: The video and text are irrelevant

Question: Why is the lady sitting on blue chair looking at a camera at the
start?\nAnswer the question using few words or phrase.

Answer: care for baby

ID:allava_laion_inst
_101919

ID:allava_laion_inst
_102122

ID:allava_laion_inst
_160758

ID: 0099-3711378974

Figure 2: Using IXC-2.5-Reward for Data Cleaning. We visualize the outlier and noisy examples detected by
IXC-2.5-Reward with low reward scores from existing image and video instruction-tuning datasets, such as ALLaVA
(Chen et al., 2024a) and LLaVA-Video-178K (Zhang et al., 2024e). The “Explain” refers to explanations of error
causes as identified by human experts, rather than outputs generated by the reward model.

4 The Applications of IXC-2.5-Reward298

In this section, we further validate three applica-299

tions of IXC-2.5-Reward for (1) RL training (Sec.300

4.1), (2) test-time scaling (Sec. 4.2), and (3) data301

cleaning (Sec. 4.3).302

4.1 IXC-2.5-Reward for RL training303

Having the reward model IXC-2.5-Reward enables304

the application of on-policy reinforcement learn-305

ing algorithms (e.g., PPO (Schulman et al., 2017),306

RLOO (Ahmadian et al., 2024), GRPO (Shao et al.,307

2024)) to optimize LVLM performance towards308

desired human preferences directly. Using the309

PPO (Schulman et al., 2017) algorithm, we sub-310

sequently train the policy model (IXC-2.5-Chat,311

πθ) to maximize expected rewards from our reward312

model (IXC-2.5-Reward) while staying close to313

the reference model (IXC-2.5, πref) for stability. A314

critic model V , initialized from IXC-2.5-Reward,315

is trained alongside πθ to reduce the variance of316

policy updates. 317

Data Prepration. Similar to findings in (Hou et al., 318

2024), we found that average reward scores differ 319

across task domains (e.g., general, text-rich, rea- 320

soning). This work focuses on improving the pol- 321

icy model’s instruction following and open-ended 322

chat abilities, which are critical for real-world ap- 323

plications such as stream chatting and human-AI 324

interaction (Zhang et al., 2024b). Simultaneously, 325

we ensure that performance in other domains (e.g., 326

text-rich, reasoning) is not degraded relative to the 327

SFT model IXC-2.5. Using our multi-modal pref- 328

erence data (which trains IXC-2.5-Reward), we 329

curate a prompt set that prioritizes general chat 330

and instruction following, while ensuring diversity 331

through the inclusion of text-rich documents, math 332

reasoning, and video understanding. 333

PPO. The PPO training begins by sampling a 334

prompt from our prompt set. Then, the policy θπ 335

model generates responses, and the reward model 336
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Table 3: Evaluation results on VLRewardBench (Li et al., 2024b). The best and second-best results for proprietary
models and open-source models are highlighted in bold and underlined, respectively.

Models #Param General Hallucination Reasoning Overall Acc Macro Acc

Proprietary Models

Gemini-1.5-Flash (2024-09-24) (Team, 2024a) - 47.8 59.6 58.4 57.6 55.3
Gemini-1.5-Pro (2024-09-24) (Team, 2024a) - 50.8 72.5 64.2 67.2 62.5
Claude-3.5-Sonnet (2024-06-22) (Anthropic, 2024) - 43.4 55.0 62.3 55.3 53.6
GPT-4o-mini (2024-07-18) (AI, 2024) - 41.7 34.5 58.2 41.5 44.8
GPT-4o (2024-08-06) (AI, 2024) - 49.1 67.6 70.5 65.8 62.4

Open-Source Models

LLaVA-OneVision-7B-ov (Li et al., 2024a) 7B 32.2 20.1 57.1 29.6 36.5
Qwen2-VL-7B (Wang et al., 2024d) 7B 31.6 19.1 51.1 28.3 33.9
Molmo-7B (Deitke et al., 2024) 7B 31.1 31.8 56.2 37.5 39.7
InternVL2-8B (Team, 2024c) 8B 35.6 41.1 59.0 44.5 45.2
LLaVA-Critic-8B (Xiong et al., 2024) 8B 54.6 38.3 59.1 41.2 44.0
Llama-3.2-11B (Team, 2024b) 11B 33.3 38.4 56.6 42.9 42.8
Pixtral-12B (Agrawal et al., 2024) 12B 35.6 25.9 59.9 35.8 40.4
Molmo-72B (Deitke et al., 2024) 72B 33.9 42.3 54.9 44.1 43.7
Qwen2-VL-72B (Wang et al., 2024d) 72B 38.1 32.8 58.0 39.5 43.0
NVLM-D-72B (Dai et al., 2024b) 72B 38.9 31.6 62.0 40.1 44.1
Llama-3.2-90B (Team, 2024b) 90B 42.6 57.3 61.7 56.2 53.9

IXC-2.5-Reward (Ours) 7B 84.7 62.5 62.9 65.8 70.0

computes the reward score rt at each state st at337

the time-step t. Given the reward score rt and338

and the critic model V , we compute the temporal339

difference error δt, the Generalized Advantage Es-340

timation (GAE) (Schulman et al., 2018) At, and341

the Returns Rt as:342

δt = rt + γ · V (st+1)− V (st),

At = δt + γ · β ·At+1,

Rt = At + V (st),

(2)343

where γ is a discount factor that determines how344

much future rewards are valued compared to imme-345

diate rewards, and β is the parameter that controls346

the trade-off between bias and variance in the ad-347

vantage estimation. The advantage A refers to how348

much better the policy model did than expected,349

and the returns R is the cumulative reward.350

Based on the advantage A, we compute the pol-351

icy gradient loss LPG to update the policy model352

πθ:353

LPG = min(
πθ
πref

·A, clip(
πθ
πref

, 1.0−ϵ, 1.0+ϵ)·A),

(3)354

where πθ
πref

is the log of the probability ratio between355

the policy model πθ and the reference model πref,356

and ϵ is a hyper-parameter that controls the clipped357

ratio.358

We further update the critic model via the Mean359

Squared Error (MSE) loss to minimize the differ-360

ence between the predicted value of a state V (st)361

and the actual return Rt obtained from state t:362

Lcritic =
∑
t

MSE(V (st), Rt). (4)363

In summary, with the help of IXC-2.5-Reward 364

and PPO, we train the IXC-2.5-Chat to generate 365

responses that improve the quality of multi-modal 366

chat and follow user instructions. The quality of 367

IXC-2.5-Chat also demonstrates the quality of IXC- 368

2.5-Reward that provides the reward scores. 369

4.2 IXC-2.5-Reward for Test-Time Scaling 370

We further demonstrate that IXC-2.5-Reward is es- 371

sential for scaling the inference-time capabilities of 372

LVLMs. We select the Best-of-N (BoN) sampling 373

technique that improves the quality of generated 374

text by using the reward model. Specifically, the 375

IXC-2.5-Chat model generates multiple (N ) dif- 376

ferent text outputs with different random seeds for 377

a given prompt. Subsequently, the reward model 378

IXC-2.5-Reward scores each of these N outputs, 379

and the output with the highest score from the re- 380

ward model is selected as the final output. 381

4.3 IXC-2.5-Reward for Data Cleaning 382

Garbage in, garbage out. Problematic samples in in- 383

struction tuning datasets negatively impact LVLM 384

training. While existing methods (Chen et al., 385

2024c) employ classifiers like CLIP (Radford et al., 386

2021) for filtering, these approaches have limita- 387

tions, particularly with long-context inputs (Zhang 388

et al., 2025a), high-resolution images, or videos. 389

As shown in Fig. 2, we observe a strong correla- 390

tion between low IXC-2.5-Reward scores and prob- 391

lematic samples, including hallucinations, empty 392

answers, and irrelevant image/video-text pairings. 393

Therefore, IXC-2.5-Reward effectively cleans both 394

pre-training and post-training data for LVLMs. 395

6



5 Experiments396

5.1 Evaluation Results of IXC-2.5-Reward397

Benchmarks. To evaluate IXC-2.5-Reward, we398

use diverse reward model benchmarks: (1) VL-399

RewardBench (Li et al., 2024b), encompassing400

1250 multi-modal problems addressing general401

understanding, hallucination, and reasoning chal-402

lenges; (2) Reward-Bench (Lambert et al., 2024b),403

with 2985 language-only problems including chat,404

chat hard, safety and reasoning; and (3) RM-Bench405

(Liu et al., 2024b), comprising 1237 language-only406

problems across chat, math, code, and safety. RM-407

Bench defines three tracks (easy, normal, hard)408

that evaluate the sensitivity of reward models to409

subtle content variations and style biases. While410

Reward-Bench and RM-Bench are designed for re-411

ward models of language-only LLMs, we evaluate412

IXC-2.5-Reward on these benchmarks to demon-413

strate that our multi-modal reward model maintains414

strong language capabilities despite also processing415

image and video inputs.416

5.1.1 Results on VL-RewardBench417

Main Results. Tab. 3 presents the evaluation418

results of various multi-modal RMs on the VL-419

RewardBench (Li et al., 2024b). Unlike previous420

multi-modal generative reward models, our IXC-421

2.5-Reward is a discriminative model that predicts422

a scalar reward. Our proposed IXC-2.5-Reward423

model, despite being an open-source 7B parame-424

ter model, outperforms all other open-source mod-425

els. Notably, IXC-2.5-Reward achieves the high-426

est overall accuracy (65.8%) among open-source427

models and the highest Macro Accuracy (70.0%)428

among all models, indicating its superior perfor-429

mance in handling diverse tasks within the VL-430

RewardBench.431

Strong Performance on General Problems. The432

results in Table 3 reveal that IXC-2.5-Reward433

achieves a significantly higher accuracy (84.7%)434

on general problems compared to other generative435

RMs. We found the reason is attributed to these436

problems presenting a considerable challenge, of-437

ten leading to tied judgments in previous LVLMs,438

whereas IXC-2.5-Reward demonstrates a greater439

ability to make correct classifications with different440

scalar scores.441

5.1.2 Results on Reward Bench and 442

RM-Bench 443

Main Results. We argue that multi-modal RMs 444

should preserve strong language processing abili- 445

ties despite the incorporation of image and video 446

data during training. Consequently, we evaluate the 447

performance of multi-modal reward models, includ- 448

ing IXC-2.5-Reward, on Reward Bench (Tab. 4) 449

and RM-Bench (Tab. 5). The results demonstrate 450

that IXC-2.5-Reward achieves considerable perfor- 451

mance and surpasses other multi-modal models on 452

this benchmark. 453

Sensitivity to Content and Style. Consistent with 454

findings in (Liu et al., 2024b), IXC-2.5-Reward 455

demonstrates sensitivity to subtle content variations 456

and style biases, an issue often overlooked in multi- 457

modal research. We believe further research is 458

needed to enhance the robustness of multi-modal 459

reward models. 460

5.2 Evaluation Results of IXC-2.5-Chat 461

Benchmarks. We select four representative bench- 462

marks for evaluating the instruction following and 463

in-the-wild chatting abilities of LVLMs. (1) The 464

WildVision bench (Lu et al., 2024c) uses prompts 465

collected from user submissions, reflecting real- 466

world multimodal interactions. (2) MIA-bench 467

(Qian et al., 2024) that is specially designed to eval- 468

uate instruction following. (3) MM-MT (Agrawal 469

et al., 2024) which is an instruction-following 470

benchmark for multi-modal models, exhibits a 471

strong correlation with LMSys-Vision ELO ratings 472

(Chiang et al., 2024). (4) MM-Vet (Yu et al., 2023) 473

that evaluate LVLMs on complex tasks such as 474

language generation. These datasets contain open- 475

ended questions and the referenced answers, and 476

evaluation is performed using an LLM-as-a-Judge 477

(Zheng et al., 2023) approach, which involves us- 478

ing a judge model like GPT-4o (Hurst et al., 2024) 479

to predict scores. 480

We also report the performance on other cat- 481

egories, such as MMBench (Liu et al., 2025), 482

MMMU (Yue et al., 2024) and MMStar (Chen 483

et al., 2024b) for general knowledge, MathVerse 484

(Zhang et al., 2025b) and MathVision (Wang et al., 485

2024c) for math reasoning, TextVQA (Singh et al., 486

2019), ChartQA (Masry et al., 2022) and OCR- 487

bench (Liu et al., 2024d) for text-rich document 488

understanding. These benchmarks utilize multiple- 489

choice questions (MCQ) or visual question answer- 490

ing (VQA), where responses are limited to short 491

7



Table 4: Evaluation results on Reward Bench (Lambert et al., 2024b). We report the performance of selective
representative language-only RMs and previous multi-modal generative RMs.

Model Name LLM Chat Chat Hard Safety Reasoning Avg Score

Language-Only Reward Models

InternLM2-7B-Reward (Cai et al., 2024) InternLM2-7B 99.2 69.5 87.2 94.5 87.6
InternLM2-20B-Reward (Cai et al., 2024) InternLM2-20B 98.9 76.5 89.5 95.8 90.2
Skyword-Reward-Llama3.1-8B (Liu et al., 2024a) Llama3.1-8B 95.8 87.3 90.8 96.2 92.5
INF-ORM-Llama3.1-70B (Yang et al., 2024a) Llama3.1-70B 96.6 91.0 93.6 99.1 95.1

Multi-Modal Reward Models

QWen2-VL-7B (Wang et al., 2024d) QWen2-7B 96.6 57.0 73.9 94.3 83.8
LLaVA-Critic-8B (Xiong et al., 2024) LLaMA3-7B 96.9 52.8 81.7 83.5 80.0

IXC-2.5-Reward (Ours) InternL2-7B 90.8 83.8 87.8 90.0 88.6

Table 5: Evaluation results on RM-Bench (Liu et al., 2024b). We classify reward models into three types:
sequence classifiers (Seq.), generative models, and implicit DPO models. Performance is reported across four
domains (Chat, Math, Code, Safety) and three difficulty levels (Easy, Normal, Hard), along with average scores.

Model Name Type Chat Math Code Safety Easy Normal Hard Avg

Language-Only Reward Models

Tulu-2-dpo-13b (Ivison et al., 2023) Implicit 66.4 51.4 51.8 85.4 86.9 66.7 37.7 63.8
InternLM2-7B-Reward (Cai et al., 2024) Seq. 61.7 71.4 49.7 85.5 85.4 70.7 45.1 67.1
InternLM2-20B-Reward (Cai et al., 2024) Seq. 63.1 66.8 56.7 86.5 82.6 71.6 50.7 68.3
Nemotron-4-340B-Reward (Wang et al., 2024f) Generative 71.2 59.8 59.4 87.5 81.0 71.4 56.1 69.5
URM-LLaMa-3.1-8B (Lou et al., 2024) Seq. 71.2 61.8 54.1 93.1 84.0 73.2 53.0 70.0
Skyword-Reward-Llama3.1-8B (Liu et al., 2024a) Seq. 69.5 60.6 54.5 95.7 89.0 74.7 46.6 70.1

Multi-Modal Reward Models

IXC-2.5-Reward (Ours) Seq. 65.5 55.9 51.7 93.8 87.5 71.3 47.4 68.8

Table 6: Evaluation results of our IXC-2.5-Chat model against previous SOTA proprietary and open-source models
≤10B (results are copied from OpenVLM Leaderboard and Open LMM Reasoning Leaderboard, accessed
01-Jan-2025). Best and second best results are highlighted.

Category Benchmark Evaluation Proprietary API Open-Source Model (≤10B)
Previous-SOTA Previous-SOTA IXC-2.5 IXC-2.5-Chat

Instruction WildVision(0617) (Lu et al., 2024c) Open 89.2 (Hurst et al., 2024) 67.3 (Xiong et al., 2024) 37.5 74.6
Following MIA(val) (Qian et al., 2024) Open 88.6 (Hurst et al., 2024) 80.7 (Wang et al., 2024d) 80.4 84.0
& Chat MM-MT(val) (Agrawal et al., 2024) Open 7.72 (Hurst et al., 2024) 5.45 (Wang et al., 2024d) 3.85 5.70

MM-Vet v2(0613) (Yu et al., 2023) Open 71.8 (Anthropic, 2024) 58.1 (Chen et al., 2024d) 45.8 54.8

Knowledge MMBench(v1.1) (Liu et al., 2025) MCQ 85.7 (SenseTime, 2024) 82.7 (Lu et al., 2024b) 79.4 79.0
MMMU(val) (Yue et al., 2024) MCQ 70.7 (Hurst et al., 2024) 56.2 (Chen et al., 2024d) 42.9 44.1
MMStar (Chen et al., 2024b) MCQ 72.7 (SenseTime, 2024) 63.2 (Chen et al., 2024d) 59.9 59.6

Reasoning MathVista(mini) (Lu et al., 2023) VQA 78.4 (SenseTime, 2024) 66.5 (Lu et al., 2024a) 63.7 63.4
MathVerse(vision-only) (Zhang et al., 2025b) VQA 54.8 (Google, 2024) 26.6 (Liu et al., 2024c) 16.2 19.0
MathVision(full) (Wang et al., 2024c) VQA 43.6 (Google, 2024) 22.0 (Liu et al., 2024c) 17.8 18.8

Text-Rich TextVQA(val) (Singh et al., 2019) VQA 82.0 (Megvii, 2024) 78.5 (Li et al., 2024a) 78.2 81.3
ChartQA(test) (Masry et al., 2022) VQA 81.2 (Megvii, 2024) 82.4 (Yao et al., 2024) 82.2 80.5
OCRBench (Liu et al., 2024d) VQA 89.4 (SenseTime, 2024) 82.2 (Chen et al., 2024d) 69.0 70.0

keywords and evaluated based on string matching.492

Results on Instruction Following & Chat. Tab.493

6 shows that IXC-2.5-Chat outperforms previous494

SOTA models across multiple benchmarks (Wild-495

Vision, MIA, and MM-MT), demonstrating signifi-496

cant improvements in multi-modal understanding497

with instruction following ability and providing498

more comprehensive information for in-the-wild499

chat scenarios.500

Results on Other Categories. On other categories501

(Knowledge, Reasoning, and Text-Rich), IXC-2.5-502

Chat performs comparably to the supervised fine-503

tuned (SFT) model IXC-2.5, demonstrating that RL504

training with IXC-2.5-Reward improves instruction505

following and conversational ability without sacri-506

ficing performance in these areas. 507

6 Conclusion and Future Work 508

We present IXC-2.5-Reward, a multi-modal reward 509

model that is capable of multi-modal RL training, 510

test-time scaling, and data cleaning. Using IXC- 511

2.5-Reward, we further trained IXC-2.5-Chat via 512

RLHF techniques to optimize the multi-modal user 513

chat experience, focusing on providing detailed 514

explanations and in-depth answers. We believe 515

that exploring multi-modal reward models with 516

on-policy reinforcement learning algorithms holds 517

significant promise for future research, such as ex- 518

ploring reward benchmarks and RL algorithms for 519

video alignment. 520
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7 Limitations521

The limitation of our work stems from the com-522

position of our training data, which is primarily523

sourced from English language corpora. This re-524

liance on English-centric data potentially limits the525

multilingual capabilities of our reward model. The526

English language datasets may reflect specific cul-527

tural viewpoints and societal biases prevalent in528

English-speaking communities. Future research529

should consider the incorporation of multilingual530

datasets to mitigate these limitations and enhance531

the generalizability and fairness of the multi-modal532

reward model.533
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Appendix1136

A More Experimental Results1137

Implementation Details For IXC-2.5-Reward,1138

the learning rates were set at 1e-5 with a batch size1139

of 256. As for IXC-2.5-Chat, the learning rates1140

were set at 5e-5 with a batch size of 256. We set1141

the PPO hyper-parameters γ = 0.99, β = 0.95,1142

and ϵ = 0.2.1143

Table 7: Ablation Studies of the impact of response
length constraints of reward models that guided training
IXC-2.5-Chat.

Avg Wild
MIA MM-MT

MM-Vet
Tokens Vision v2

w/o Length Constraints 361 76.2 87.0 5.86 56.6
IXC-2.5-Chat 274 74.6 84.0 5.70 54.8

The Impact of Length Constraints To prevent1144

the chat model from generating overly long re-1145

sponses to artificially inflate rewards, we introduce1146

length constraints on the ratio of chosen to rejected1147

responses during training reward model IXC-2.5-1148

Reward. The ablation study results of length con-1149

straints are present in Tab. 7. On the WildVision1150

benchmark, we compute the average token length1151

of the model’s responses. We observe a substan-1152

tial increase in average token length, from 274 to1153

361, when length constraints were not applied. Sur-1154

prisingly, removing length constraints yielded sub-1155

stantial improvements in open-ended benchmarks,1156

achieving state-of-the-art results. Such observa-1157

tion is because these benchmarks do not penalize1158

length in their evaluation prompts, judge models1159

(e.g., GPT-4) tend to favor longer responses, even if1160

they contain unnecessary details that detract from1161

the user experience. As our focus is on optimizing1162

user experience, not benchmark scores, we retain1163

the length constraints. Following the precedent set1164

by language-only benchmarks (e.g., (Dubois et al.,1165

2024)), we believe multi-modal Chat Arena and1166

dialogue benchmarks should also address potential1167

length and style biases in their evaluation protocols1168

in future work.1169

Results on Test-Time Scaling According to Tab.1170

8, we observe that the Best-of-N sampling further1171

improves the results. The averaged tokens is in-1172

creased slightly (from 274 to 283), demonstrate that1173

the improvements is bring from the high-quality1174

response, rather than hacking the length bias in Tab.1175

7.1176

Table 8: Results of Best-of-N (BoN) sampling for test-
time scaling with IXC-2.5-Reward.

N
Avg Wild

MIA MM-MT
MM-Vet

Tokens Vision v2

IXC-2.5-Chat 274 74.6 84.0 5.70 54.8
IXC-2.5-Chat + BoN 4 283 77.7 87.3 6.03 56.3

Visualization Results We present the visualiza- 1177

tion examples of IXC-2.5-Chat on a series of topics, 1178

such as instruction following (Fig. 3) and open- 1179

ended questions (Fig. 4). These figures reveal that 1180

IXC-2.5-Chat demonstrates several key advantages, 1181

including superior organization and presentation, 1182

more comprehensive and in-depth answers, and 1183

more detailed explanations. These strengths sig- 1184

nificantly enhance IXC-2.5-Chat’s effectiveness in 1185

multi-modal chat interactions. 1186
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IXC-2.5 :
[
"NVIDIA Corporation", 137.71, 54.43],
[
"Intel Corporation", 21.49, -9.26],
[
"Tesla, Inc.", 426.50, 116.21],
[
"MARAHoldings, Inc.", 19.91, 23.99],
[
"Apple Inc.", 229.98, 37.89]

]

Please output the name, price, P/E ratio of all rising stocks in json format.

IXC-2.5-Chat:
```json
[
{
"name": "NVIDIA Corporation",
"price": 137.71,
"pe_ratio": 54.43
},
{
"name": "Intel Corporation",
"price": 21.49,
"pe_ratio": null
},
{
"name": "Tesla, Inc.",
"price": 426.50,
"pe_ratio": 116.21
},
{
"name": "MARAHoldings, Inc.",
"price": 19.91,
"pe_ratio": 23.99
},
{
"name": "Apple Inc.",
"price": 229.98,
"pe_ratio": 37.89
}
]
```

**Note:**
- The P/E ratios for Rigetti Computing, Inc., Plug Power Inc., and
Intel Corporation are not available.

Name

Price

P/E ratio

All rising stocks

JSON Format

IXC-2.5 IXC-2.5-Chat

✅

✅

✅

✅

✅

✅

✅

✅

❌

❌

Figure 3: Visualizations of multi-modal dialogues generated by IXC-2.5-Chat on instruction following abilities.
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How can I redesign this to make it look more professional?

IXC-2.5:
To redesign the room to make it look more
professional, consider the following steps:
1.Color Scheme: Introduce a cohesive color scheme
that complements the books. This could involve
painting the walls a neutral color like light gray or
beige, which would help the books stand out without
overwhelming the space.
2.Book Arrangement: Organize the books by genre,
author, or size to create a visually appealing and
functional layout. Grouping similar books together
can make the room appear more organized and
professional.
3.Shelving: Consider upgrading the shelving to a
more modern and sturdy design. This could include
using metal or glass shelving units that reflect light
and give the room a more open and airy feel.
4.Lighting: Improve the lighting by adding
adjustable track lighting or recessed lighting. This
will not only enhance the visibility of the books but
also create a more inviting and professional
atmosphere.
5.Furniture: Introduce a desk or table in the center
of the room to serve as a focal point. This can be used
for reading, working, or displaying decorative items
that complement the room's theme.
6.Flooring: Consider replacing the carpet with
hardwood or laminate flooring. This will give the
room a more polished and professional appearance.
7.Wall Decor: Add artwork or framed prints that are
related to literature or the subjects of the books. This
will create a thematic connection and add visual
interest to the room.
8.Storage Solutions: Incorporate additional storage
solutions such as cabinets or drawers to keep the
room clutter-free and maintain a professional
appearance.
By implementing these changes, the room can be
transformed into a more professional and
aesthetically pleasing space that reflects the
importance of the books and the activities that take
place within the room.

IXC-2.5-Chat:
Redesigning a room to look more professional often involves a combination of
organization, aesthetic appeal, and functional improvements. Here are some steps
you can take to enhance the professional look of this room:
1. Bookshelf Arrangement:
• Consistency: Ensure that all bookshelves have a uniform look by using the
same type of shelves and consistent spacing between books.

• Labelling: Label the shelves with categories or genres for easy navigation.
• Presentation: Organize books by size and color to create a visually appealing
gradient effect.

2. Storage Solutions:
• Bookends: Use uniform bookends to maintain a neat appearance.
• Storage Boxes: For overflow items, consider using uniform storage boxes that
blend with the room's color scheme.

3. Office Equipment:
• Printer Placement: Relocate the printer to a corner or a dedicated desk area to
keep it out of the way of the bookshelves.

• Cables: Use cable management solutions to keep cables tidy and out of sight.
4. Lighting:
• Task Lighting: Add a desk lamp or a floor lamp near the printer for better task
lighting.

• Natural Light: If possible, maximize natural light by ensuring the window is
clean and unobstructed.

5. Color Scheme:
• Neutral Colors: Use a neutral color palette for the walls, shelves, and furniture
to create a clean and professional look.

• Color Accents: Add a pop of color with a few well-chosen decorative items or
artwork.

6.Wall Decor:
• Artwork: Consider adding framed artwork or prints that are relevant to the
room's purpose (e.g., a map for a study room, a motivational quote for a
creative space).

• Bulletin Board: A bulletin board can be useful for keeping important notes and
reminders organized.

7. Floor Space:
• Clear Space: Ensure there is enough open floor space to make the room feel
less cluttered.

• Area Rugs: If the floor is bare, consider adding an area rug to define the
workspace and add warmth.

8. Personal Touches:
• Plants: Incorporate a few low-maintenance plants to add life to the room
without overwhelming the space.

• Personal Items: Keep personal items to a minimum to maintain a professional
atmosphere.

9. Cleanliness:
• Dust and Clutter: Regularly clean the room to ensure it looks well-maintained
and professional.

• Declutter: Remove any unnecessary items that do not contribute to the room's
purpose.

By implementing these changes, you can transform the room into a more
organized, functional, and visually appealing space that exudes professionalism.

Figure 4: Visualizations of multi-modal dialogues generated by IXC-2.5-Chat on open-ended questions.
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