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Abstract— Establishing an execution time certificate in de-
ploying model predictive control (MPC) is a pressing and
challenging requirement. As nonlinear MPC (NMPC) results
in nonlinear programs, differing from quadratic programs
encountered in linear MPC, deriving an execution time cer-
tificate for NMPC seems an impossible task. Our prior work
[1] introduced an input-constrained MPC algorithm with the
exact and only dimension-dependent (data-independent) number
of floating-point operations ([flops]). This paper extends it to
input-constrained NMPC problems via the real-time iteration
(RTI) scheme, which results in data-varying (but dimension-
invariant) input-constrained MPC problems. Therefore, apply-
ing our previous algorithm can certify the execution time based
on the assumption that processors perform fixed [flops] in
constant time. As the RTI-based scheme generally results in
MPC with a long prediction horizon, this paper employs the
efficient factorized Riccati recursion, whose computational cost
scales linearly with the prediction horizon, to solve the Newton
system at each iteration. The execution-time certified capability
of the algorithm is theoretically and numerically validated
through a case study involving nonlinear control of the chaotic
Lorenz system.

Index Terms— Nonlinear model predictive control, real-time
iteration, iteration complexity, Riccati recursion, execution time
certificate

I. INTRODUCTION

Model predictive control (MPC) is a model-based optimal
control technique, which at each sampling time, handles
the current feedback state information by solving an online
constrained optimization formulated from a dynamical pre-
diction model and user-specified constraints and objectives.

Hence, a question arises—can the adopted MPC algorithm
finish the optimization task handling the current feedback
state information before the next feedback state information
arrives? An execution-time certificate that guarantees that
the MPC returns a control action before the next sampling
time, is a necessity when deploying MPC in production
environments. In addition, theoretical execution time analysis
can guide the trade-off of MPC settings, such as sampling
time, adopted model complexity, and prediction horizon
length, instead of using extensive simulations such as with
the heavy calibration work of embedded MPC [2].
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This execution-time certificate requirement has garnered
increasing attention within recent years and is still an active
research area [3]-[7]. All these works analyze the worst-
case iteration bound of their proposed algorithms to derive a
worst-case execution time based on the assumption that the
adopted computation platform performs a fixed number of
floating-point operations ([flops]) in constant time. That is,

total [flops] required by the algorithm

execution time = s).
average [flops] processed per second

This article also follows this assumption to certify the
execution time of input-constrained nonlinear MPC (NMPC)
problems.

Linear MPC is formulated using a linear process model,
which leads to solving a convex quadratic program (QP)
that can be efficiently solved using methods such as interior-
point methods (IPM) [8], active set methods [9], and first-
order methods [10]-[12]. NMPC instead adopts a nonlinear
model, which results in a nonlinear program (NLP). NLPs
not only have a higher computational burden but are also
nearly impossible to derive the worst-case of required [flops]
for their solution. For this reason, previous works [3]-[7] on
executive-time certificates focused on linear MPC problems.
A straightforward idea to develop an execution-time certified
NMPC algorithm is to apply these previous algorithms [3]—
[7] to some nonlinear-to-linear transformation techniques in
the MPC field, such as successive online linearization or real-
time iteration (RTT) [13].

However, this idea is impractical because online linearized
MPC problems (online linearization or RTI scheme-based
MPC) have time-changing problem data, e.g., the time-
changing Hessian matrix. In [3]-[5], their derived computa-
tion complexity analysis is data-dependent, namely depend-
ing on the data of the resulting optimization problem. In
[6], [7], their worst-case computation complexity certifica-
tion relies on the complicated and computation-heavy (thus
offline), which also limits their use in online linearized MPC
problems. Thus, to the best of the authors’ knowledge, no
work extends these algorithms [3]-[7] to NMPC problems.

Our recent work [1] for the first time proposes a box-
constrained QP (Box-QP) algorithm with an exact and only
dimension-dependent (data-independent) number of itera-
Tog an + 1, where n denotes the

. N V2n+v2-1
problem dimension and e denotes the constant (such as

1 x 107%) stopping criterion. Therefore, our algorithm is
ideally suited for online linearized-based NMPC schemes to
certify the execution time.

tions N =
—2log
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Unlike the successive online linearization scheme, which
only linearizes at the current point, the RTI scheme linearizes
the whole previous trajectory and results in a linear time-
varying model along the prediction horizon, thus providing
a better nonlinear model approximation. More importantly,
the high-approximation RTI scheme does not increase the
computational time thanks to the Preparation-Feedback Split,
in which the computation time is only marginally larger
than linear MPC. Easy-to-understand tutorials with a detailed
proof of nominal stability are available [13]-[15].

Therefore, this paper adopts the RTI scheme for nonlin-
ear input-constrained MPC problems and then applies our
previous algorithm [1] can certify the execution time by
analyzing the total required [flops]. Our previous work [16]
also employed the data-driven Koopman operator, which lifts
the nonlinear system to a higher but linear system [17] for
nonlinear input-constrained MPC problems to certify the ex-
ecution time by using our previous algorithm [1]. Compared
to the data-driven Koopman operator, the advantage of the
RTI-based scheme is the ability to use existing first-principles
continuous-time models from physical laws, such as found
in chemical engineering and robotics. As such, this work
is a complementary approach to applications where a first-
principles continuous-time model is available.

A. Contributions

This work, for the first time, develops an execution-time-
certified algorithm for RTI-based input-constrained NMPC
problems. The RTI-based scheme performs well, with a small
sampling time and a long time horizon [13], which results
in MPC problems with a long prediction horizon. Then we
employ an efficient factorized Riccati recursion character-
ized by a computational cost that scales linearly with the
prediction horizon, facilitating the solution of the Newton
system at each iteration. Additionally, as a byproduct, the
utilized factorized Riccati recursion eliminates the need for
computing the Hessian matrix, thereby reducing both the
computational time and the implementation complexity of
the preparation phase.

B. Notation

R™ denotes the space of n-dimensional real vectors, R} ,
is the set of all positive vectors of R", and N is the set of
positive integers. For a vector z € R”, its Euclidean norm
is l2ll = /ZZ+ 23+ + 22 [zl = Yo |zl diag(2) -
R™ — R™ ™ maps an vector z to its corresponding diagonal
matrix, and 22 = (22,22,---,22)T. A function is defined
as ||lz]|3 = =" Q. Given two arbitrary vectors z,y € R’} .,
their Hadamard product is 2y = (211, 22Y2, " » Zn¥n) |
() = (i) VE = (Vaym o y/om)
The vector of all ones is denoted by e = (1,---,1)". [2]
maps x to the least integer greater than or equal to x. For

z,y € R, let col(z,y) = [zT,y"]".

II. RTI-BASED INPUT-CONSTRAINED NMPC

In this article, we consider the tracking input-constrained
NMPC problem NLP = NLP(#;, x'f ui*f):

NLP £ arg min %Hl‘t,N - xf%f”%ﬂ/zv

N-1
+ > Sllwer — e, + 3wk — ik,
k=0 1)
S.t. Ty,0 = Ty,
. N—1
Tt k+1 = F(zt,kaut,k)7 k S ZO B

u<up <4, kezy ™,

where N is the prediction horizon length; Z; is the feedback
state at time ¢; x5, € R™ and u;;, € R™ are the kth
state and control input along the prediction horizon length at
time ¢, respectively; x'°f and ul*! are the given reference
trajectories at time ¢; and F'(-) denotes the discrete-time
nonlinear dynamics, which is obtained from continuous-time
nonlinear dynamics via the Runge-Kutta 4 (RK4) method.
The constraints [u, @] come from the physical limitations on
the control inputs (e.g., actuators).

Apart from using sequential quadratic programming meth-
ods to solve NLP(Z, x*f, ui*), a well-known and successful
technique is the RTI scheme. This scheme reduces the com-
putational time of an NMPC problem to that of linear MPC,
while providing nominal stability [15]. The key ingredients
of RTI-based NMPC are

1) Single Full Newton Step:
At the time ¢, assuming that a good initial guess

(x5"%, uf"™) is given, the full Newton step

guess

(Xt, llt) < (Xt ,ufuess) + (AXt, Aut)

provides an excellent approximation of the fully
converged NMPC solution, where (Ax;, Aug) is
the solution of the QP problem QPyype =
QPywpe (&, x4, uf™™, xf, uf") in (2).

Here the trajectories Ax; = (A, -+, Az, n) and
Auw; = (Augo,- -+, Aug ) are the deviation between
the system trajectories x;, u; and the guess trajectories

guess __guess
t [ 7 ’

_ guess _ guess N-1
Axy g =Ty — Ty g JAU = Upp — Uy k€ Zy

and A; j, By i, 7t stem from linearizing the discrete-
time nonlinear dynamic F' at time ¢,

OF (z,u)
N—-1
At,k == 781‘ 5 k S ZO 5
OF (z,u) (3)

N—-1
By = —F—"-+ , keZy

6'& guess  guess

Tk Uik
_ guess  guessy _ guess N—1
Ttk = F<xt,k » Ug ke ) Lt k11> kelZy .

ii) Shifting Initialization based on Previous Solution:
A very good initial guess at time ¢ can be constructed
from the shifting of a good solution obtained at the
previous time ¢ — 1. Let (x;_1,us—1) be the solu-
tion of QPyypc at time ¢ — 1, then the initial guess
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uess
)

guess
t

5, g ref __ref
QPnwpc (24, X5 y X 5 Uy

. T T
) £ arg min %”Awt,N”%/VN + Az, Wy (z

ref
t N

guess

t,N

T T guess ref 1 T guess ref
+ Az W, (27 — o)) + sl Aug ][, + Aut,kW (Wi —uik)
guess 2)
st Az =3 — a5 0 s
N-1
Azy 1 = A pAxy g + B pAug g + 1o, kK E€Zg
u—upy < Augy < -y kezy
(x", uf"™) is constructed from Procedure 1 Computing Ay, Bi.k, Ttk
_ . gue§§ gllCQq gueS§ : : :
xfukess = 21pq1, k€ Zév 17 Input: Tig s Upg > Tp i1 the number of discretization
guess N_2 steps Ny, the discretization time ¢; = %, fo () and f,(-).
U = Ut—1,k+1 ke
t.k +1 0 ’ (4)
guess guess __,.guess guess _ _
PNl = USNLy = U1 N1, l.x—xtk,u—ut),C ,A=1,B=0
guess guess guess 2. for j = 1 NS do
tN = (xt,N—hut,N—l)'
2.1. k(1) « f(:c,u)

Note that shifting the given reference trajectories
(xf, u®) to construct the initial guess could lead to
poor performance when the actual system trajectory is
not in the neighborhood of the reference.
Preparation-Feedback Split:

The RTI-based NMPC and the linear MPC both only
require solving one QP problem online, but their differ-
ence is that the QP of linear MPC is constructed offline
once whereas the resulting QP of RTI-based NMPC is
constructed online. To further reduce the computational
delay, RTI-based NMPC splits the online computation
into two phases,

iif)

— A preparation phase, completing the part of compu-
tations related to the QPyypc construction as much
as possible before the arrival of the feedback state ;

— A feedback phase, finishing the QP construction and
solving the QPyypc upon the feedback state &4 arriv-
ing.

In this manner, the computational time of RTI-based

NMPC is only marginally larger than linear MPC.

A. Computing the sensitivities {At,k,Bt,k,Tt,k}iV:}l from
continuous-time systems

In the context of NMPC, the nonlinear model is usually
derived from physical laws as a continuous-time nonlinear
differential equation,

o(t) = f(x(t), u(t))- (5)
In this case, computing the sensitivities { Ay ., By k, rtyk}kN:})l
from (3) is not straightforward. For example, the discrete-
time nonlinear dynamic F' is obtained from continuous-
time f via the RK4 method to preserve both integration
accuracy and computation efficiency. Here, we illustrate how
to compute the sensitivities {At,k,Bt’kmt’k}é\!@l without
resorting to defining F' explicitly. Denote

fa(x(t),u(t) = W 7
z=x(t),u=u(t)

of (z,u)
fulz(t),u(?)) = —— ’
ou r=xz(t),u=u(t)

2.2.
2.3.

ke (1), (V)] = fa(z,w)[A, Bl + [0, fu(z, u)]
£(2) + f(z+ Stin(1),u)

2.4. [/@E(Q) ku(2)] + folx + tn( ), u)[A + tnx(l)
B+ Stikg(1)] + [0, fu(33+ stirn(1),u)]

2.5. k(3 )(—f(x—|— tn(?) u)

2.6. [kz(3),ku(3)] < fulz + tli( ), u)[A + t/%(Q)
B+ 1t;k,(2)] + [0, fu(x+ 1tik(2),u)]

2.7. k(4) « f(z+t;x(3),u)

2.8. [kz(4), ku(4)] + fo(x+t:k(3),u)[A+tik(3), B+
tiku(3)] + [0, fulz + tik(3), u)]

29. x4+ 4 o (K (1)+2n()+2m(3) k(4))

2.10. [A, B] « [A Bl % ([a (1), wu(1)]+2[r2(2), £ (2)]
+2[k2(3), Ku(3)] + [z (4), Ku(4)])

3. end.

4. At,k — A,Bt’k — B,Tt,k; — T — ,’E%uzil

Output: A; i, By i, 7t k-

and consider the N, integration steps over the sampling time
At resulting in t; = At discretization time, Procedure 1
shows how to compute the kth sensitivities Ay i, By g, Ttk
from the continuous-time dynamic f via the RK4 method.
Procedure 1 needs to be executed N times to calculate all
{A¢k, Bk, rtk},]j:_ol in the preparation phase.

Lemma 1: Let my,my_,my, denote the flops required
by the evaluation of f(-), f.(-), fu(:), respectively. Then
the flops required by the computation of the sensitivities
{At,k,Bt,kﬂ“t,k}}]cV;(f is

N x (ng +ny + Ng(dmy +dmy, +dmy, + 8n3 + 8n2n,
+ 1002 + 100,y + 160,) + 12 + ngng + ng).

B. QPpypc construction

By using a condensing construction that eliminates the
states, QPyyvpe (2) can be formulated as a box-constrained
QP (Box-QP). Our time-certified IPM algorithm (see Section
II) is tailored for the Box-QP with the unit box constraint
[—e, e]. After generating {A; x, Bt , rt,k}g:_ol, we first scale

5541

Authorized licensed use limited to: MIT. Downloaded on May 15,2025 at 13:56:38 UTC from IEEE Xplore. Restrictions apply.



the control inputs Awuy i subject to [—e, ], denoted as Aty g,
through

Auy j, = DAU ; + dy i, (6)
where
D = § diag(u — ),
dop = Y@ +w -, kezyt.
Then, the associated terms are updated as
P N-1
By = By D, keZy -, ®)

_ N-1
Ttk = Ttk + Bt,kdt,lm ke ZO .

Define z £ col(Adyg,---,Aligy—1) € R", where
n — Nnus Q £ diag(Wzv"'vwszWN)s R =
diag(DW, D, ---, DW, D), and

Bio 0 0

At,0Bt0 B 0

95}
1>
~
=
N>

N-1 _ N—2 _
IT AiwBio  I1 AexBin
k=0 k=0

By n—1

Then construct QPyype (2) as the scaled Box-QP

2* =argminJ(z) =3z "Hz+2"h (10a)
st. —e<z<e, (10b)
where the Hessian matrix is given by
H=R+S'QS, a1
and the gradient vector is given by
DWu(%@' +u) — Uffg)
h=5"Qg+ ; , (12
DW,(3(a+u) — ugh_,)
in which the vector g = g1 + g2 and
Tt,0
AT+ T
i N Xfuess _ Xftef + ,
N-1
A pTeo+ -+ Tenv-1
k=1
(13a)
At
A1 440
pe| i |- (13b)
N-1
IT Ak
k=0

Lemma 2: The computation of {Bt,kaft,k}é\’:_ol requires
N (3n,n, +n,) flops, the computation of S requires (N? —
N)ngn2 flops, the computation of H requires (2N3 +
N? + N)n2n,, + Nn? flops, the computation of g; requires
2Nn, + 2(N — 1)n2 flops, the computation of go requires
nz+2Nn? flops, and the computation of h requires 2Nn?2 +
(N? + N)ngny, + (N? — N)ng +ny + N(2n, +n?2) flops.

Remark 1: By Lemma 2, the computation of H domi-
nates, especially when N is considerably larger than n,
and n,,. Consequently, circumventing the computation of H
has the potential to diminish the computational time of the
preparation phase. The subsequent section demonstrates that
the Riccati recursion technique not only eliminates the need
to compute H but also lowers the cost associated with the
Newton step.

III. TIME-CERTIFIED RICCATI-BASED IPM ALGORITHM

Based on the path-following full-Newton IPM, our recent
work [1] proposed an direct optimization algorithm to solve
the Box-QP (10). Its Karush—-Kuhn-Tucker (KKT) conditions
are

Hz4+h+~v-60=0, (14a)
z+a—e=0, (14b)
z—w+e=0, (14c)

v =0, (14d)
0y =0, (14e)
(7,0, ,w) > 0. (14f)

A positive parameter 7 was introduced by the path-following
IPM to replace (14d) and (14e) by

(15a)
(15b)

7(775 = 7_263
6y = 72e.

As 7 tends to 0, the path (z,7v;,0,,¢r,1;) converges
to a solution of (14). The feasible variants of the path-
following IPM algorithm boast the best theoretical O(y/n)
iteration complexity [18]. Therefore, our algorithm is based
on feasible IPM in which all iterates are required to be
strictly in the feasible set

FO 2 {(2,7,0,6,9)| (14)-(14c) hold, (7,0, ¢, ) > 0}.

A. Strictly feasible initial point

In our recent work [1], a cost-free initialization strategy
was proposed to find a strictly feasible initial point that
also satisfies the specific conditions. A strictly feasible initial
point is
2" =0,7" = lhlloo = 57, 0° = [hlloo + 55, ¢° = €,9° =,
where |||l = max{|hi], |ha|, -, |hn|}. It is straightfor-
ward to show that the above initial point strictly lies in F°.

Remark 2 (Initialization strategy): For h = 0, the optimal

solution of problem (10) is z* = 0; for h # 0, first scale the
objective (10a) (which does not change the optimal solution)

as
2\ 2\
min 12" (H)Z +27 (h) .
= 27 \lhllso 12l
With the definitions H = —+—H and h = ~—h, ||h]lec =
[P l1Alloo
1 and (14a) can be replaced by

OAHz +2X\h+~ — 0 =0,

5542

Authorized licensed use limited to: MIT. Downloaded on May 15,2025 at 13:56:38 UTC from IEEE Xplore. Restrictions apply.



and the initial points

=0, 7"=1-Xh, ° =147k, ¢" =¢, ¥° =e (16)
can be adopted, where \ = \/%H It is straightforward to
verify that (16) lies in F©. The reason to use the scale factor
is to make the initial point satisfy the neighborhood

h |oo
see 1, Lemma 4 .

requirements, e.g.,
B. Newton direction

Denote v = col(7y,6) € R?" and s = col(¢, 1)) € R?".
Then replace (15a) and (15b) by vs = 72e to obtain the new
complementary condition,

Vs = Vr2e. (17)

From Remark 2, (z,v,s) € F° and a direction (Az, Av, As)
can be obtained by solving the system of linear equations,

IAHAz + QAv =0, (18a)
QT Az 4+ As =0, (18b)
\/>Av + \/>As =2(1e — V/vs), (18c)
where Q = [I, —I] € R"*?", Letting
'Y 'Y
Ay = AZ+2(\/7T6— ), (19a)
Y P P Y
A i Az+2 i e— 0 (19b)
= — — —T€e — s
¥ (0
Ap = —Az (19¢)
A = Az (19d)

reduces (18) into a more compact system of linear equations,

o
_2<\/>Te_\fw+w e)

(20)

C. Implementation of the Newton step via factorized Riccati
recursion

Solving the linear system (20) typically requires O(N3n3)
flops. In general, the RTI-based NMPC scheme demonstrates
effective performance provided that the sampling time At is
short and the time prediction horizon T}, is long [13]. This
often leads to a prolonged prediction horizon length N = Z Z,
e.g., of 20,40, and 60 in practical applications.

This article adopts the Riccati recursion to solve the linear
system (20) efficiently when the ratio Z—Z is not large and the
prediction horizon N is long. Subsequently, we illustrate how
the Riccati recursion not only minimizes the flops needed to
solve (20) but also circumvents the computation of H.

The linear system (20) is equivalent to the formulation

min %AZT (2)\1{1 + diag (;) + diag(i)) Az
—2AzT (\/37‘6 — \/ZTe +v - 9) .

2L

Let col(Adg,---,Aliy_1) = Az col(AZy, -+, Ady)
SAZ AZo =0, and Qp41 2 HhH Wa,k € Z) 72, Qn
Thil H Wy, for k € Zév !, Exploiting the structure of S in

(9) and H in (11), gives that

2\ 0
R, 2 =2 _DW D+d1ag( + ) :
172/l oc ¢ Y ka1t

gk:_2<ﬂz7'€—\/z7'€+'7—9> .
kny+1:(k4+1)n,

The above formulation (21) is equivalent to the unconstrained
linear quadratic regulator problem,

1> >

v

N—
min Y (%nmkngk + g Ay + %HA@WII%M)
k=0

s.t. Azg=0,

= Ay Ay + By pAdy, keZ)
(22)

which can be solved efficiently by Riccati recursion. Instead

of adopting the classical Riccati recursion, this article adopts

the factorized Riccati recursion to further reduce the compu-

tational cost [19], e.g., as shown in Procedure 2.

Adpy

Procedure 2 Implementation of the Newton step via factor-
ized Riccati recursion

Input: {A; ., Bk, Qr, By, gr}0 ', Qn

Ly — chol(QN)

PN 0

for k=N—-1,---,0do
[LTBt ks LTAt k} <~ Lk;Jrl ‘dtrmm [Bt k> At k}
O+ [LTBt ke L Ap i) T dsyrk[L By i, L Ar i

[]1\\4]; L}j <« choly, ((9 + {Rk Qk])
ar  (ApA) ™

(B, xpri1 + Gr)

P Al — MiAj gr
end
A{io 0
for k=0,---,N—1do

A’[Lk — —A;TM]IA.@‘]Q — qk
Ai‘k_;,_l — At7kA.fk + BtﬁkAﬁk
end
Output: Az + col(Aug,- -,

Atn_1)

Lemma 3 (See [19]): Procedure 2 requires a total of
N(%ni+4ninu+2n$n + 2 n 3)+ N(8n2 +8nyn, +2n2)
[flops].

D. Iteration complexity and algorithm implementation

The complete RTI-based input-constrained MPC scheme
is summarized as Algorithm 3. Next, we derive the iteration
complexity. Denote 5 = ./vs and define the proximity
measure as

¢(8,7) = Al (23)
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Lemma 4 (See [1]): Let £ := &(B8,7) < 1. Then the full
Newton step is strictly feasible, i.e., vy > 0 and sy > 0.

Lemma 5 (See [1]): After a full Newton step, let vy =
v+ Av and sy = s+ As; then the duality gap is

v]sy < (2n)7?
Lemma 6 (See [1]): Suppose that f = ¢(B,7) < 1 and
7+ = (1 —n)7 where 0 < 1 < 1. Then,

— < 52 Tlv2"
§+ =By, 74) < /1 e +
; 1 V21 1
Furthermore, lff < ﬁ and n= m, then f.t,_ < ﬁ

Lemma 7 (See [1]): The value of £ ﬁ,
iteration is denoted as &V = 5 (B°, (1—n)T

7) before the first
O If(1-n)r° =1

anq A= \/m, then £0 < L and E(B,w) < % are always
satisfied.
Lemma 8 (See [1]): Let 1 = rfwl, - and 70 = 1,
Algorithm 3 exactly requires
log 20
N = LB — 7|t 1 (24)
—2log e

iterations, the resulting vectors being vlis<e.

Lemmas 1, 2, 3, 8 imply the totals in Theorem 1.

Theorem 1: In the preparation phase of Algorithm 3, Step
1 takes Nng+ Nn, +my [flops], Step 2 takes N (ng +n,+
Ng(dmyg+4my, +4my, +8n3 +8n2n, +10n2 +10n,n, +
16n,) +n2 +nzn, +n,) [flops], Step 3 takes n, + Nn,, +
N(2ngny, +ng) + (N? — N)ngn2 4+ 2Nn, + 2(N — 1)n2
[flops]; In the feedback phase of Algorithm 3, Step 1 takes
N +4ANN2 + (N2 +N)ngn, +(N? = N)ng +n, +N(2n, +
ni) [flops], Step 2 takes Nn,, [flops], Step 3 takes 5Nn,,+3
[flops], Step 4 takes N'(14+N (5n3+4n2n,+2n,n2+3nd )+
N(8n2 +8n,ny, +2n2)+15Nn, +5n,) [flops], Step 5 takes
ng [flops], Step 6 takes N (2n, + n2 +ngyny, + 2n;) [flops],
Step 7 takes (N + 1)n, + Nn,[flops].

IV. NUMERICAL EXAMPLE: CHAOTIC LORENZ
STABILIZATION

The Lorenz system is a well-known nonlinear dynamical
system to model convective hydrodynamic flows [20]. The
consequence of chaos is that, under certain parameteriza-
tions, the trajectories of the deterministic Lorenz system be-
come arbitrarily sensitive to small perturbations in the initial
conditions. Slightly different trajectories separate vastly over
long horizons, which is popularly coined as the butterfly
effect. In this work, we address the stabilization task of
applying affine control signals to each coordinate of the
Lorenz system,

=0y —x)+ ug,
y:x(p_z)_y—’_uya
Z=uzy— Bz +us,

(25)

where (z,y,z) are the states, and (ug,uy,u,) € [—3,3]
are the control inputs. The parameters ¢ = 10, p =
28, 3 = 8/3 are chosen so that 25 exhibits chaotic behavior

Algorithm 3 A time-certified IPM algorithm for RTI-based
input-constrained MPC (2) at sampling time ¢

Preparation phase: performed over the time interval [t —
At t]
Input: previous solution (x;_1,u;_1), reference (xif, ule’),
continuous-time dynamic f(-), and its partials f,(-), fu(-);
1. Construct (x"*, uf"") according to (4) from the pre-
vious solution (X—1,us—1);
2. Calculate {AM,Bt,k,n,k}JkV:_Ol by performing Proce-
dure 1 V& € Zévfl;
3. Calculate the scaling factors D,{dt,k}]kvz_ol from (7),
(B, 7ex}n g from (8), S from (9), and g; from (13a)
return D, {d; s }0 o' { Ak, B rertn—g and S, g1

Feedback phase: performed at time t upon arrival of &y
Input: the feedback states &, D, {dt,k}]kvz_ol, {A¢k, Bk
, Ft’k}g;ol, S, g1, the stopping tolerance ¢; the required exact

log = 2n

number of iterations N = ——|+1
—2log
1. Calculate g5 from (13b) and h from (12) based on

j:fm S7 g1,
2. if |h|loc =0, z < 0 and go to Step 5; otherwise,
3. Initialize (2,7,6,®,%) from (16) where A\ <+ ———,

n+1
V2-—1 d 1.
\/%Jr\f lan T<—1—n’
4. forzfl, -, N do

41. 7+ (1 —n)7;

4.2. Obtain Az by performing Procedure 2;

4.3. Calculate (Avy, Af, Aa, Aw) from (19);

44, 2+ 24+ Az, 7+ 7+Ay, 0 + 0+ A0, a + a+Aa,
w4+ w+ Aw;

guess,
5. Awpo &y — a3 s

6. fork:0,1,~--,N—1
Aut,k — Dzknu-ﬁ—l:knu-‘rnu + dt,k
Azt 1 — A kAT i + Bt kZkny +1:kng+ny T Tk

guess

7. Apply the full Newton step (x¢, uy) < (x5, uf**) +
(AXt, Aut)

return NMPC solution (x;, uy)

with two strange attractors, (£1/B8(p — 1), £/B(p — 1), p—
1). Stabilizing the chaotic system to one of its at-
tractors (6\@,6\/5, 27) is a nontrivial task due to its
fractal-like trajectories and heightened sensitivity to small
perturbations. Here, the desired reference is :13?2 =
col(6v/2,6v/2,27), ulff = col(0,0,0),k € Z{~'. The
weight matrices were chosen as Wy = W, = I and
W, = 0.1I for the states and control inputs, respectively.
The sampling time is At = 0.01 s, and the time prediction
horizon is T}, = 0.2 s, so the prediction horizon length is
N = T— = 20. Additionally, we opt for Ny = 2 integration
steps to calculate the sensitivities.

Before closed-loop simulation, we can exactly calculate
the flops required by the preparation phase and feedback
phase of Algorithm 3 at each sampling time. The dimension
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Fig. 1.

Closed-loop simulation of the chaotic Lorenz system with the RTI-based input-constrained MPC. The blue and red lines represent the results of

uncontrolled and MPC controlled, respectively. Left: phase trajectory. Middle: time evolution of the three coordinates. Right: the three control inputs.

of the Box-QP (10) is n = 3xN = 3x20 = 60, and we
adopt the stopping criteria e = 1075, so Algorithm 3 will ex-
2X60
10-6
—2log X
in the feedback phase. The Lorenz system flux expressions
f(), fz(+), and f,,(-) take my = 10, my, =4, and my, =0
(since in f,(-) only 4 elements vary and f,(-) = [1,1,1]T)
[flops], respectively. Thus, by Theorem 1, the preparation
phase requires a total of 4.05x10* [flops] and the feedback
phase requires a total of 2.23x10% [flops]. Altogether, the
algorithm execution requires a wall time of 0.0025 s on a
personal laptop with 1 Gflop/s computing power. Hence, the
execution time certificate that the execution time will be less
than the adopted sampling time of At = 0.01 s, is obtained.
Algorithm 3 is executed in MATLAB2023a via a C-mex
interface, and the closed-loop simulation was performed on a
MacBook Pro with 2.7 GHz 4-core Intel Core i7 processors
and 16GB RAM. The number of iterations is exactly 252,
and the execution time of the two phases adds up to about
0.002 s which is less than At = 0.01 s. The closed-loop
simulation results are depicted in Fig. 1, which illustrates that
the MPC effectively stabilizes the chaotic Lorenz system to
the specified attractor, in stark contrast to the butterfly effect
trajectories of the uncontrolled case. The three control inputs
do not violate [—3, 3] and eventually converge to zeros.

log

actly perform N = + 1 = 252 iterations

V. CONCLUSION

This article proposes an execution-time-certified algorithm
for RTI-based input-constrained NMPC problems. To address
the MPC setting with a long prediction horizon that RTI-
based NMPC often results in, the factorized Riccati recur-
sion, whose computation cost scales linearly to the prediction
horizon, is used to efficiently solve the Newton system at
each iteration. In the future, we will continue work on exten-
sions to general execution-time-certified NMPC algorithms
including both input and state constraints.
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