
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050

Under review as a conference paper at ICLR 2025

REGRESSING THE RELATIVE FUTURE:
EFFICIENT POLICY OPTIMIZATION FOR MULTI-TURN RLHF

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved remarkable success at tasks like summariza-
tion that involve a single turn of interaction. However, they can still struggle with multi-turn
tasks like dialogue that require long-term planning. Previous works on multi-turn dialogue
extend single-turn reinforcement learning from human feedback (RLHF) methods to the
multi-turn setting by treating all prior dialogue turns as a long context. Such approaches
suffer from covariate shift: the conversations in the training set have previous turns gen-
erated by some reference policy, which means that low training error may not necessarily
correspond to good performance when the learner is actually in the conversation loop. In
response, we introduce REgressing the RELative FUture (REFUEL), an efficient policy
optimization approach designed to address multi-turn RLHF in LLMs. REFUEL employs a
single model to estimate Q-values and trains on self-generated data, addressing the covariate
shift issue. REFUEL frames the multi-turn RLHF problem as a sequence of regression
tasks on iteratively collected datasets, enabling ease of implementation. Theoretically, we
prove that REFUEL can match the performance of any policy covered by the training set.
Empirically, we evaluate our algorithm by using Llama-3.1-70B-it to simulate a user in
conversation with our model. REFUEL consistently outperforms state-of-the-art methods
such as DPO and REBEL across various settings. Furthermore, despite having only 8 billion
parameters, Llama-3-8B-it fine-tuned with REFUEL outperforms Llama-3.1-70B-it on long
multi-turn dialogues.

1 INTRODUCTION

Despite the impressive performance Large Language Models (LLMs) have demonstrated on tasks like summa-
rization, question answering, and short conversations (OpenAI, 2023; Meta, 2024; Google, 2024; Anthropic,
2024), most LLMs struggle with planning effectively for long conversations that involve multiple rounds of
dialogue or asking follow-up questions about previous responses (Irvine et al., 2023; Abdulhai et al., 2023).
The root cause of this deficiency is that the most preference fine-tuning methods using Reinforcement Learning
from Human Feedback (RLHF, Christiano et al. (2017); Ziegler et al. (2020); Ouyang et al. (2022); Rafailov
et al. (2024b); Azar et al. (2023); Guo et al. (2024); Rosset et al. (2024); Dong et al. (2024); Gao et al. (2024);
Wu et al. (2024); Meng et al. (2024)) treat all tasks as single-turn (i.e. as a contextual bandit (Li et al., 2010))
even when some tasks are fundamentally multi-turn (e.g. a multi-step dialog with a user).

The simplest way way to convert a multi-turn task, such as dialogue, into a single-turn task is to train on the
last-turn of the dialogue and use dialogue history as context. Although this approach is appealing due to its
compatibility with pre-existing pipelines, training on histories generated by the base policy rather than current
policy introduces covariate shift (Kohavi, 1995) between the training and testing distributions. This can result
in poor performance when the learner is in the conversation loop (Ross et al., 2011). This phenomenon is at the
heart of recent empirical observations by Zhou et al. (2024b) about LLMs struggling to ask questions to clarify
missing information in conversations or being unable to self-correct after making mistakes in mathematical
reasoning tasks, as shown in the concurrent work of Kumar et al. (2024a).

In response, several authors have proposed treating multi-turn tasks like dialogue as proper online RL problems,
rather than contextual bandits. For example, Zhou et al. (2024a); Shani et al. (2024a) propose applying an

1

051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101

Under review as a conference paper at ICLR 2025

Single-Turn RLHF REFUEL
⛽

Train Test Train

Multi-Turn Rollout

Test

👩

🤖

✈

🏖
?

👩

👍

🤖

Off-Policy
Data

🎫 🧾
🤖

💳

… …
🗓 🗓

On-Policy
Roll-in

👩

👩

🤖

✈

🗺
?

🏦

👩

🤖

🤖

✈

👩

🗺
?

❌

…

👩

🤖

🤖

🤖

✈

👩

👩

🗺
?

💳

#⃣

🗓

✅

🥷

🇯🇵
🇯🇵 🇯🇵

1 2 3 4 5
Turn

−10

−5

0

5

10

15

R
el

at
iv

e
W

in
ra

te

Relative Winrate w.r.t. REFUEL

Llama-3.1-8B-it

Llama-3.1-70B-it

DPO-MT-MIXED

REBEL-MT-MIXED

REFUEL

Figure 1: We present REFUEL: a simple, regression based approach for multi-turn RLHF. Traditional single-
turn RLHF methods suffer from covariate shift as they train on histories generated by the base policy rather
than current policy. REFUEL eliminates the covariate shift by iteratively generate on-policy datasets, aligning
the training and testing distributions. REFUEL performs better at later turns compared to the baseline methods
in terms of winrate (which is computed against the base policy, Llama-3-8B-it, using GPT4).

online actor-critic framework to allow the policy to learn to respond to its own past decisions (e.g. asking for
more information or correcting mistakes), improving practical performance. However, actor-critic methods
substantially increase the training complexity (in terms of both stability and memory usage), especially when
both the actor and the critic are LLMs with billions of parameters.

To handle policy-induced covariate shift without necessitating an extra critic network, we propose using the
reparameterization trick introduced by Degrave et al. (2019); Rafailov et al. (2024b) to regress future returns
(i.e. Q-values) in terms of the log of policy ratios, allowing us to “read-off” the corresponding soft optimal
policy, replacing the usual two-step procedure of fitting a critic followed by an explicit policy optimization step
with a single step procedure. However, it is not immediately clear how to get supervision for this regression
problem, as learned reward models can only provide accurate feedback at the trajectory (e.g. conversation)
level rather than at the turn (e.g. generation) level, which means we cannot apply techniques for learning a Q
function that require per-timestep reward labels. Our key insight is that the difference in two conversation-level
rewards generated from a shared prefix is an unbiased estimate of the difference in Q values between the first
divergent turns.

We can then use this difference in Q-values as a regression target to adapt any pair-wise preference-based
single-turn RLHF method to the multi-turn setting without introducing any additional components. Crucially,
we iteratively generate on-policy datasets of prefixes and two independent completions from the current policy.
Training on this on-policy data ensures that the model learns to participate in the sort of conversations it would
actually encounter when participating in the conversational loop, rather than those in some offline dataset,
addressing the covariate shift issue that stymies offline single-turn methods. We call this approach REFUEL:
REgressing the RElative FUturE for reinforcement Learning. Our contributions are three-fold:

1. We introduce REFUEL: a simple, regression-based approach for multi-turn RLHF. REFUEL is a
multi-turn RL algorithm rather than a contextual bandit technique, allowing our approach to scale to tasks with
meaningful stochastic dynamics like dialogue with a stochastic user. REFUEL is simpler than other approaches
for multi-turn RLHF by avoiding an explicit critic network via a reparameterization trick.

2. We provide strong performance guarantees for policies learned by REFUEL. Under the assumption that
the policy class is expressive enough to regress the difference of Q values, we prove that the policy produced
by REFUEL competes with any policy covered by the training distribution. By regressing the difference of Q
values, we prove that REFUEL can achieve these guarantees under weaker conditions than classic algorithms
like Natural Policy Gradient (NPG, Kakade (2001); Bagnell & Schneider (2003); Agarwal et al. (2021)).

3. We demonstrate the practical efficacy of REFUEL in a multi-turn dialogue simulator. We build a
simulator that uses prompts from UltraInteract (Yuan et al., 2024) to initiate dialogues and a state-of-art LLM,
Llama-3.1-70B-it (Meta, 2024), to simulate a human user during the multi-turn conversations. REFUEL learns

2

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

Under review as a conference paper at ICLR 2025

better policies than single turn baselines like DPO and REBEL, especially for longer conversations. Notably,
Llama-3-8B-it (Meta, 2024) trained with REFUEL outperforms Llama-3.1-70B-it on long multi-turn dialogues.

2 PRELIMINARIES

Consider a conversation between a human and an AI assistant. Let the initial question from the human be
denoted as x1 ∼ ρ. Upon receiving x1, the AI assistant, π, generates a response y1 ∼ π(⋅∣x1). Subsequently,
given x1, y1, the human responds in turn x2 ∼ T (⋅∣x1, y1), where T (⋅∣{xi, yi}ni=1) denotes the conditional
distribution of the human responses xh+1. Upon receiving x2, the AI assistant generates a second response
y2 ∼ π(⋅∣x1, y1, x2). This interactive process continues until we reach the total number of turns H . At the end
of the interaction, the AI assistant receives a trajectory-level reward r({xh, yh}Hh=1). In this work, we do not
focus on the learning process of the reward function r; instead, we utilize existing pre-trained reward models.

We can cast the multi-turn RLHF as a standard multi-step Markov Decision Process (MDP) by using the
conversational transcript as state. Let the state sh at turn h comprise all prior information up to turn h,
excluding the current response: sh = {x1, y1, . . . , xh−1, yh−1, xh}. Then, the response y can be interpreted
as an action. We denote the state and action spaces at step h as Sh and Yh respectively. For simplicity, we
assume ∣Yh∣ = Y for all h ∈ [H]. The policy π maps from a state sh to the next response yh, i.e., yh ∼ π(⋅∣sh).
We denote dπh(s) as the state distribution at turn h induced by the policy π, with sh ∼ dπh as the process of
sampling sh from π. The policy receives a reward r(sH+1) after step H where, for notation convenience, we
denote sH+1 = (sH , yH). Note that sH+1 is the entire multi-turn conversation. The dynamics P (sh+1∣sh, yh)
are fully determined by T that governs the response generation process of the human, i.e., xh+1 ∼ T (⋅∣sh, yh)
and sh+1 ∶= {sh, yh, xh+1}. We emphasize that in contrast to the standard single-turn RLHF setting which is
often modeled by a deterministic MDP or bandit problem, the transition P is random as T is random.

Rollins & Rollouts. Given a state sh and a response yh, we denote by sH+1 ¢ π(sh, yh) the process of
sampling the final state by generating response yh at sh followed by executing π until turn H (i.e., finishing
the entire conversation). We refer to this process as a rollout of policy π. Following the standard RL notation,
we denote Qπ

h(sh, yh) as the state-action Q function which models the expected future reward-to-go of the
random process of taking yh at sh followed by rolling out π to the end. Similarly, given a turn step h, we use
rollin to refer to the process of sampling a state at turn h, denoted as sh ∼ dπh.

Resets. Given a state sh, resetting to sh simply means that the policy π starts from sh again and generates
counter-factual trajectories from sh. While resets are often considered as a strong assumption in general RL,
it is trivially achievable in the context of RLHF for text generation. Resetting to sh can be implemented by
feeding the partial conversation sh = {x1, y1, . . . , xh} to the transformer-based policy π as a prefix / context.
This capability allows a policy to generate multiple independent future trajectories from the same state sh.

2.1 THE LIMITATION OF SINGLE-TURN RLHF METHODS ON MULTI-TURN PROBLEMS

Recent RLHF algorithms such as DPO (Rafailov et al., 2024b), IPO (Azar et al., 2023), SPPO (Wu et al., 2024),
and REBEL (Gao et al., 2024) are specifically designed for the single-turn setting which can be formulated as a
contextual bandit problem with H = 1. When applying these methods to multi-turn datasets such as Anthropic
HH (Bai et al., 2022), it is common to first convert from multi-turn into a single-turn format. Specifically, for
each sequence of multi-turn interactions {x1, y1, x2, y2, . . . , xH , yH}, these single-turn methods treat the first
H − 1 interactions as a large context x ∶= {x1, y1, . . . , xH}, and only optimize the last-turn generation of yH .
Consequently, the dataset consists of {x ∼ Doff, y ∼ π(⋅∣x), y′ ∼ π(⋅∣x)} where we use Doff denotes the offline
dataset. This approach is used by Rafailov et al. (2024b) to optimize the multi-turn Anthropic HH dataset.

As depicted in Figure 1, applying single-turn RLHF methods to a multi-turn setting in this manner introduces
covariate shift (Kohavi, 1995) between training and testing distributions. Intuitively, the resulting policy has
only learned to generate the final response based on the contexts present in the offline data. However, during
inference, the policy is likely to observe different contexts, as they are generated by itself, rather than the policy
used to collect the offline dataset. This can lead to degraded performance at test time, paralleling the issues
with offline approaches to imitation learning like behavioral cloning first formalized by Ross et al. (2011).

3

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

Under review as a conference paper at ICLR 2025

Algorithm 1 REgressing the RElative FUturE for reinforcement Learning (REFUEL)

Require: number of iterations T , learning rate η, trajectory-level reward model r(⋅).
1: Intialize policy π1.
2: for t = 1 . . . T do
3: Collect dataset D = {h, sh, yh, y′h, sH+1, s′H+1} where

h ∼ U(H), sh ∼ dπt

h , yh ∼ πt(⋅∣sh), y′h ∼ πt(⋅∣sh), sH+1 ¢ πt(sh, yh), s′H+1 ¢ πt(sh, y′h)

4: Update policy via regression to relative future rewards:

πt+1 = argmin
π

ÊD
⎛
⎜⎜
⎝

1

η
(ln π(yh∣sh)

πt(yh∣sh)
− ln π(y′h∣sh)

πt(y′h∣sh)
) − (r(sH+1) − r(s′H+1))
´¹¹¹¸¹¹¶

Relative Future Reward

⎞
⎟⎟
⎠

2

(1)

5: end for

3 REFUEL: REGRESSING THE RELATIVE FUTURE

To address covariate shift in multi-turn RLHF without introducing the overhead of an explicit critic network,
we introduce REFUEL. REFUEL eliminates the need of an explicit critic by merging the two-step process of
actor-critic algorithms into a unified procedure and reduces covariate shift by using on-policy datasets. At
each iteration t, REFUEL aims to solve the following KL-constrained RL problem:

πt+1 = argmax
π∈Π

Eh,sh,yh∼πt(⋅∣sh)Q
πt

h (sh, yh) −
1

η
Eh,shKL(π(⋅∣sh)∣∣πt(⋅∣sh)) (2)

Intuitively, the policy πt+1 is chosen to maximize the expected reward (through Q-values) while simultaneously
minimizing the change from the previous policy πt, with the balance determined by parameter η. From Ziebart
et al. (2008), we know there exists a closed-form solution to the above minimum relative entropy problem:

∀h, sh, yh ∶ πt+1(yh∣sh) =
πt(yh∣sh) exp(ηQπt

h (sh, yh))
Z(sh)

;Z(sh) = ∑
yh

πt(yh∣sh) exp(ηQπt

h (sh, yh)) (3)

Following Degrave et al. (2019); Rafailov et al. (2024b), we can rearrange Eq. 3 to express the Q-value as a
function of the policy:

∀h, sh, yh ∶ Qπt

h (sh, yh) =
1

η
(lnZ(sh) + ln

πt+1(yh∣sh)
πt(yh∣sh)

) . (4)

Note that the partition function Z(sh) does not depend on yh and that we can sample another response y′h by
resetting πt to sh, y′h ∼ πt(⋅∣sh). By taking the difference of the above expression across the paired responses
(yh, y′h) we can eliminate the partition function:

∀h, sh, yh, y′h ∶ Qπt

h (sh, yh) −Q
πt

h (sh, y
′
h) =

1

η
(ln πt+1(yh∣sh)

πt(yh∣sh)
− ln πt+1(y′h∣sh)

πt(y′h∣sh)
) . (5)

Following Gao et al. (2024), we can then formulate satisfying the above constraint as a least squares problem:

(1
η
(ln πt+1(yh∣sh)

πt(yh∣sh)
− ln πt+1(y′h∣sh)

πt(y′h∣sh)
) − (Qπt

h (sh, yh) −Q
πt

h (sh, y
′
h)))

2

(6)

Unfortunately, this loss function uses Q-values, which we do not have direct access to. However, the reward
obtained from a rollout starting from sh is an unbiased estimate of the Q-value. We perform independent
policy rollouts using πt at (sh, yh) and (sh, y′h), obtaining the ending states sH+1 and s′H+1 from the two
independent rollouts (i.e., sH+1 ¢ πt(sh, yh), s′H+1 ¢ πt(sh, y′h)). The rewards of these states r(sH+1) and

4

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

Under review as a conference paper at ICLR 2025

r(s′h+1) have expected values of Qπt

h (sh, yh) and Qπt

h (sh, y′h). Then, leveraging the fact that the minimizer
of a least squares problem is the conditional mean of the target variable, we can instead solve the following:

(1
η
(ln πt+1(yh∣sh)

πt(yh∣sh)
− ln πt+1(y′h∣sh)

πt(y′h∣sh)
) − (r(sH+1) − r(s′H+1)))

2

. (7)

The pseudocode of our algorithm is provided in Alg. 1 where ÊD denotes the empirical average over the
dataset D. To reduce the computational complexity of REFUEL, we uniformly sample a turn step h during
training similar to Ross & Bagnell (2014). In summary, REFUEL iteratively optimizes a policy via predicting
the future reward-to-go of the current policy as a function of the current policy. Unlike traditional actor-critic
algorithms in the RL literature (e.g., SAC and DDPG), REFUEL combines the usual two-step procedure (i.e.,
fitting an independent Q function (critic) followed by updating the policy (actor) against the Q function), into
one procedure: the log policy ratio ln(πt+1(y∣s)/πt(y∣s))/η functions as an implicit critic. Once this implicit
critic accurately predicts Qπt(s, y) (up to a constant independent of y), we will have a new actor πt+1 which
is an improved version of πt.

3.1 INTUITIVE EXPLANATION OF REFUEL

From our above argument, we know that solving Equation 1 optimally would imply that

∀h, sh, yh, y′h ∶
1

η
(ln πt+1(yh∣sh)

πt(yh∣sh)
− ln πt+1(y′h∣sh)

πt(y′h∣sh)
) = Qπt

h (sh, yh) −Q
πt

h (sh, y
′
h).

Summing the above over y′h further implies that there must exist a y-independent function ch(sh) such that

∀h, sh ∶
1

η
ln

πt+1(yh∣sh)
πt(yh∣sh)

= Qπt

h (sh, yh) − ch(sh).

Rearranging the terms, we can write that

∀h, sh, yh ∶ πt+1(yh∣sh) = πt(yh∣sh) exp (ηQπt

h (sh, yh) − ηch(sh)) ∝ πt(yh∣sh) exp (ηQπt

h (sh, yh)) .

Note that that ηch(sh) = lnEy∼πt(.∣sh) exp(ηQ
πt

h (sh, yh)) = Z(sh) is the log-partition function. In our
algorithm REFUEL, we predict the relative future rewards instead of modeling the partition function using an
additional critic network. Prior works do not leverage the idea of predicting relative values: they either assume
that the partition function is approximately equal to a constant (Zhu et al., 2023) or use an another critic
function to approximate it, incurring extra GPU memory and computation costs (Wu et al., 2024; Richemond
et al., 2024). We also note that that above policy update procedure recovers the NPG update with the softmax
policy parametrization (Agarwal et al., 2021), which converges to the globally optimal policy at the rate of
O(1/T), a faster rate compared to that of standard policy gradient methods.

3.2 MORE RIGOROUS ANALYSIS AND CONNECTION TO PAST POLICY GRADIENT THEORY

The above simplified explanation relies on an unrealistic assumption that least square regression can learns
the Bayes optimal predictor. In this section, we analyze the performance of REFUEL under a much more
realistic assumption — we assume that the learned predictor in Equation 1 can predict well on average under
the training distribution. Our analysis below extends that of REBEL Gao et al. (2024) from the bandit setting
to multi-turn MDPs with stochastic transitions. We denote Sh as the set of all possible states at time step h,
and we assume Sh and Sh′ for h ≠ h′ are disjoint. This assumption is satisfied in the multi-turn RLHF setting
since sh and sh′ model states with different numbers of turns. We start by assuming the learned predictor from
the least square regression problem in Equation 1 has bounded in-distribution generalization error.

Assumption 1. There exists an ϵ ∈ R+, such that for all t,

Eh,sh∼d
πt
h

,yh∼πt(⋅∣sh),y′h∼πt(⋅∣sh)
(1
η
(ln πt+1(yh∣sh)

πt(yh∣sh)
− ln πt+1(y′h∣sh)

πt(y′h∣sh)
) − (Qπt

h (sh, yh) −Q
πt

h (sh, y
′
h)))

2

≤ ϵ.

5

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

Under review as a conference paper at ICLR 2025

In the above assumption, we have bounded prediction error to the Bayes optimal, the relative Q value –
(Qπt

h (sh, yh)−Q
πt

h (sh, y′h)), under the online data distribution. For regret bound, we will compare to a policy
that is covered by the training distributions.
Assumption 2 (Coverage). We say that a comparator policy π∗ (not necessarily a global optimal policy) is
covered by the training distributions, if the following two concentrability coefficients are bounded for all t:

Cs;π∗ ∶= max
h,sh,yh,t

dπ
∗

h (sh)
dπt

h (sh)
< ∞, Cy;π∗ ∶= max

h,sh,yh,t

π∗(yh∣sh)
πt(yh∣sh)

< ∞.

The first concentration coefficient Cs;π∗ concerns the state distribution, while the second one concerns the
coverage in the response (i.e., action) space. These concentrability coefficients play key role in policy gradient
theorem (e.g., Kakade & Langford (2002); Bagnell et al. (2003); Bhandari & Russo (2024); Xie et al. (2022)).
In our definition, we use iteration-dependent on-policy distributions dπt and πt to capture the case where on-
policy distributions happen to be informative in terms of covering a good comparator policy (e.g., initialization
π0 – typically is a pre-trained LLM, is informative in terms of covering a high quality policy). Similar to
REBEL, incorporating additional offline distribution into the algorithm and analysis is straightforward.

Denote J(π) as the expected total reward of the policy π. REFUEL has the following performance guarantee.
Theorem 1. Under Assumption 1 and Assumption 2, if we initialize π1 to be a uniformly random policy
and choose an appropriate η, after T iterations, there must exist a policy πt where t ∈ [T] such that for all
comparator policy π∗,

J(π∗) − J(πt) ≤ O
⎛
⎝
H

√
1

T
+H
√
Cs;π∗Cy;π∗ϵ

⎞
⎠
.

The above theorem indicates that as long as least square regressions are successful, i.e., in-distribution
generalization error ϵ is small, we can learn at least as well as any policy π∗ covered by the training data.
Note that, in general, when learning is involved, we should not expect to compete against the globally optimal
policy since PG methods cannot do strategic exploration. We now discuss the situation where Assumption 1
holds by connecting and comparing it to similar conditions used in prior policy gradient theory.

Discussion on Assumption 1. One condition where ϵ in Assumption 1 can be small is the Approximate
Policy Completeness (APC) condition: there exists ϵΠ ∈ R+, such that for all π ∈ Π,

min
C∈S↦R+

min
π′∈Π

Eh,sh∼dπ
h
,yh∼π (

1

η
lnπ′(yh∣sh) −

1

η
ln

π(yh∣sh) exp(ηQπ
h(sh, yh))

C(sh)
)
2

≤ ϵΠ,

Note that C(s) is some function that is independent of the y. To get a better understanding of the
above assumption, let us show that the following soft policy improvement closure property implies the
above condition. The soft policy improvement closure condition means that for all π ∈ Π, we have
π(y∣s) exp(ηQπ

h(s, y))/Z(s) ∈ Π (here Z is the partition function). In this case, we set C(s) ∶= Z(s), and
the soft improvement policy π′(y∣s) ∶= π(y∣s) exp(ηQπ

h(s, y))/Z(s) is the minimizer and we have ϵΠ = 0.
On the other hand, we note that C does not have to be equal to the partition function Z. In fact, our condition
allows us to select the C that delivers the smallest APC error ϵΠ. This is possible in our case since our
algorithm is performing regression to relative future rewards. A condition such as Approximate Policy
Completeness is a common sufficient condition for the success of policy optimization methods (e.g., CPI
(Kakade & Langford, 2002), PSDP (Bagnell et al., 2003), PG (Bhandari & Russo, 2024), and NPG (Agarwal
et al., 2021))1. While it is not a necessary condition, it is known that the standard realizability condition alone
(i.e., just assume π⋆ ∈ Π) is not sufficient for permitting efficient policy learning in general (Jia et al., 2024).

Now we show that by using pairs and performing regression to future reward difference, our APC condition is
strictly weaker than the conditions required in previous NPG analysis (Agarwal et al., 2021). This is formalized
in the following example.

1Prior methods typically require APC under a hard policy improvement procedure. The simplified version of their
conditions can be intuitively understood as argmaxaQ

π
h(s, a) ∈ Π for all π ∈ Π, which corresponds to η = ∞ in the soft

policy improvement closure.

6

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

Under review as a conference paper at ICLR 2025

Remark 1. The APC condition is strictly weaker than the small Q function approximation error assumption
in NPG methods (Agarwal et al., 2021) in the linear setting. In particular, we have the following propositions.
Proposition 1. Given a feature mapping ϕ ∶ S × Y ↦ Rd, let Π denote the log-linear policy class:

Π = {π ∶ ∃θ ∈ Rd,∀(sh, yh), π(yh∣sh) ∝ exp (θ⊺ϕ(sh, yh))} .
If we can bound the Q function approximation error using linear function on ϕ — a key condition Agarwal
et al. (2021) use for proving NPG convergence:

∀π ∈ Π ∶ min
w∈Rd

Eh,sh∼dπ
h
,yh∼π [(Qπ

h(sh, yh) −w⊺ϕ(sh, yh))
2] ≤ ϵ,

then the APC condition is satisfied with ϵΠ ≤ ϵ.

Conversely, there exists an instance where the APC condition is satisfied with 0 while the Q function approxi-
mation error can be as large as 1:
Proposition 2. Given a feature mapping ϕ ∶ S × Y ↦ Rd, let Π denote the log-linear policy class:

Π = {π ∶ ∃θ ∈ Rd,∀(sh, yh), π(yh∣sh) ∝ exp (θ⊺ϕ(sh, yh))} .
There exists an MDP, feautre mapping ϕ and π ∈ Π such that the APC condition is satisfied with ϵΠ = 0 but

min
w∈Rd

Eh,sh∼dπ
h
,yh∼π [(Qπ

h(sh, yh) −w⊺ϕ(sh, yh))
2] = 1.

These two propositions formally demonstrate that APC is weaker than the condition required for proving
NPG convergence, showing the theoretical benefit of using pairs of rollouts and regressing to relative futures.

4 EXPERIMENTS

Our implementation closely follows the psuedocode in Alg. 1. We empirically evaluate REFUEL’s ability
under two multi-turn RLHF settings. In the first setting, we create a multi-turn conversation simulator that
uses Llama-3.1-70B-it to simulate a human-in-the-loop. In the second setting, we evaluate our approach using
a pre-sampled sequence of questions from existing multi-turn RLHF datasets to limulate multi-turn dialogue.
The first setting models a realistic situation where the learning agent and the user need to interact, while the
second setting models a simplified situation where the sequence of human questions is pre-sampled before the
conversation begins. However, even in the second setting, the learning agent still needs to learn to generate
future turns conditioned on its own previous turns. Additional experiment details are in Appendix C.

4.1 BASELINES: SINGLE-TURN AND MULTI-TURN

We compare REFUEL to single-turn and multi-turn baselines that are extensions of two RLHF algorithms,
DPO (Rafailov et al., 2024b) and REBEL Gao et al. (2024), as well as two open-source LLMs: Llama-3.1-8B-it
and Llama-3.1-70B-it (Meta, 2024). For the single-turn baselines, we consider the following three settings:

Last-Turn-Offline (LT-OFFLINE): This is a standard approach to applying single turn methods to a multi-turn
RLHF dataset. Specifically, we rollin using offline data and train the last turn on pairs of offline responses,
D = {(sH , yH , y′H) ∼ Doff, sH+1 = (sH , yH), s′H+1 = (sH , y′H)}. For REBEL, the rewards are computed
using sH+1 and s′H+1, while DPO selects chosen and rejected responses based on the reward values.

Last-Turn-Mixed (LT-MIXED): This is another standard approach, similar to LT-OFFLINE, where we rollin
using the offline data. However, on the last turn, we sample and train on pairs of on-policy rollouts
responses: D = {sH ∼ Doff, yH ∼ πt(⋅∣sH), y′H ∼ πt(⋅∣sH), sH+1 = (sH , yH), s′H+1 = (sH , y′H)}.

Last-Turn-Online (LT-ONLINE): Unlike the previous two approaches, this approach involves using on-policy
samples rather offline data for both the rollin and rollout responses. Specifically, the state sH and the
responses are generated from the current policy with a simulated user, denoted as D = {sH ∼ dπt

H , yH ∼
πt(⋅∣sH), y′H ∼ πt(⋅∣sH), sH+1 = (sH , yH), s′H+1 = (sH , y′H)}.

For the three single-turn baselines mentioned previously, we always rollin and optimize the last turn H . In
multi-turn baseline approaches, we rollin and optimize each turn instead of only optimizing at the last turn.
We consider one multi-turn baseline approach similar to the baseline proposed in Shani et al. (2024a):

7

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

Under review as a conference paper at ICLR 2025

Method Winrate at Turn (↑) avg
h = 1 h = 2 h = 3 h = 4 H = 5

Llama-3.1-8B-it 57.8 57.8 52.4 55.2 54.0 55.44
Llama-3.1-70B-it 70.4 66.4 61.0 53.0 55.4 61.24

DPO-LT-OFFLINE 51.2 46.8 42.6 41.4 46.8 45.76
DPO-LT-MIXED 56.2 51.0 51.6 50.6 48.8 51.64
DPO-LT-ONLINE 56.8 52.2 53.0 54.0 52.4 53.68
DPO-MT-MIXED 57.4 54.6 51.6 50.8 49.2 52.72

REBEL-LT-OFFLINE 51.6 46.0 45.4 48.4 42.2 46.72
REBEL-LT-MIXED 60.0 51.2 51.6 46.4 48.4 51.52
REBEL-LT-ONLINE 55.2 51.6 54.2 52.4 57.8 54.24
REBEL-MT-MIXED 58.3 53.2 53.8 51.0 54.6 54.18

REFUEL (iter 1) 54.6 53.6 57.8 56.2 59.4 56.32
REFUEL (iter 2) 55.2 53.4 58.8 57.2 58.6 56.64

Table 1: Results on UltraInteract. The best-performing method for each conversation turns excluding
Llama-3.1-8B-it and Llama-3.1-70B-it is highlighted in bold and the second best is underlined.

Multi-Turn-Mixed (MT-MIXED): Similar to the LT-MIXED approach, we rollin with the offline data, but
now we sample on-policy pair of responses at an arbitrary state sh from the offline dataset. After sampling
a state, we perform two rollouts from sh to the end H: D = {h ∼ U(H), sh ∼ Doff, yh ∼ πt(⋅∣sh), y′h ∼
πt(⋅∣sh), sH+1 ¢ πt(sh, yh), s′H+1 ¢ πt(sh, y′h)}. The rewards are computed using sH+1 and s′H+1,
which are the unbiased estimates of the Q-values at turn h. This baseline optimizes future returns similar
to REFUEL, but at the states sampled from the offline data.

The detailed dataset statistics for each method are provided in Appendix C.4. We chose not to compare against
PPO baselines (Shani et al., 2024a; Zhou et al., 2024b) due to its computational inefficiency. Training with
PPO requires an additional value network, which substantially increases memory demands. PPO is already
challenging to scale in single-turn scenarios, making it even more impractical in this multi-turn context.

4.2 SETTING ONE: LLM AS A HUMAN IN THE LOOP

Task and Implementation. We evaluate REFUEL on UltraInteract (Yuan et al., 2024), which involves the
model responding to instructions with complex reasoning tasks, covering general chat scenarios. We filter the
dialogues to have a maximum of 5 turns. For simulating the user’s random question sampling process, i.e.,
xh+1 ∼ T (⋅∣sh, yh), we use Llama-3.1-70B-it (Meta, 2024). Our base model is Llama-3-8B-it (Meta, 2024),
and we employ ArmoRM (Wang et al., 2024) as the reward model. In other words, we create a simulator
(similar to (Li et al., 2016)) where Llama-3.1-70B-it is acting as a human user, and our agent will interact with
the user for multiple turns, starting from the prompts in UltraInteract. Finally, the entire conversation is scored
by the reward model.

To construct this semi-synthetic dataset for REFUEL at each iteration, we begin by sampling an initial state
s1 ∼ Doff, i.e. sample a prompt from the offline UltraInteract dataset. We then uniformly sample the
dialogue length H ∼ U(5) and a turn step h ∼ U(H). We rollin with our policy to simulate a dialogue up
to H turns and then reset to turn h to generate another trajectory up to H , which gives us one data tuple
(sh, yh, y′h, sH+1, s′H+1). We generate the dialogues for the entire dataset (i.e. ∣D∣ is the size of UltraInteract)
and consider the entire dataset as one large batch. Then, we optimize in mini-batch style over the entire
dataset. We perform 2 iterations for this setup. Additional implementation details, simulator details, and
hyperparameter settings are listed in Appendix C.1, C.2, and C.3.

Evaluation. To evaluate the quality of the generated dialogues, we compute the winrate (Rafailov et al.,
2024b) against the generations from the reference policy, Llama-3-8B-it, using GPT4 (OpenAI, 2023) over
a randomly sampled subset of the test set with 500 samples. We execute the policy inside the simulator to
generate a dialogue with 5 turns from the initial prompts. We calculate winrates at all turn levels h ∈ [1,5].
The prompt for winrate evaluation is provided in Appendix C.5 which is adopted from Dubois et al. (2024).

Rollin on-policy algorithms outperform algorithms that rollin with the offline data. The experimental
results presented in Table 1 demonstrate that on-policy rollin algorithms such as REFUEL and LT-ONLINE

8

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

Under review as a conference paper at ICLR 2025

consistently outperform algorithms that rely on offline data rollin, such as LT-OFFLINE, LT-MIXED, and
MT-MIXED. On-policy rollin algorithms perform better because they experience on-policy interaction during
training, which eliminates the distribution mismatch between training and testing. Even when you optimize at
all states h ≤H (MT-MIXED) instead of just at the last state H (LT-MIXED), note that the offline algorithms
perform worse than our online algorithm, LT-ONLINE. This highlights the importance of performing on-policy
rollins during training to mitigate distribution mismatch.

Optimizing for long-term rewards improves the multi-turn performance. The results in Table 1 show
that multi-turn algorithms REFUEL and MT-MIXED outperform LT-ONLINE and LT-MIXED respectively in
terms of winrate at every turn except for the first turn. While both REFUEL and LT-ONLINE perform on-policy
rollouts using the current policy, LT-ONLINE only performs rollouts and optimization for the last turn, whereas
REFUEL performs rollouts at every turn h ≤ H and optimizes at all h ≤ H . Similarly, both MT-MIXED and
LT-MIXED perform rollin using an offline dataset, but MT-MIXED optimizes at all turn level h while LT-MIXED
only optimizes at the last turn. From these results, we observe the benefit of optimizing for long-term future
rewards instead of just optimizing at the last turn.

REFUEL outperforms Llama-3.1-70B-it on dialogues with more than three turns. While the winrates
for the baseline algorithms degrade with more turns, REFUEL exhibits a rising trend. The relative winrate
differences between the baseline methods and REFUEL are shown in Fig. 1. REFUEL takes advantage of both
on-policy rolling and long-term reward optimization, achieving the best winrate on average and at longer
conversations. Notably, the 8B size model trained by REFUEL performs better than the Llama-3.1-70B-it
model, which has gone through RLHF post-training, demonstrating the effectiveness of our approach in
handling extended dialogue interactions. The qualitative analysis of REFUEL is provided in Appendix D.

4.3 SETTING TWO: USING PRE-SAMPLED QUESTIONS FROM THE DATASETS

Task and Implementation. In this setting, no LLM is simulating a human user in the interaction loop. Instead,
we consider a simplified setting where the sequence of questions comes directly from the dialogues in the
datasets. More formally, this setting can be represented by a restricted transition T , denoted as T (⋅∣{xi}ni=1),
which only relies on the human’s previous questions x and is independent of the assistant’s responses y.
In this context, the human’s questions x1, . . . xH are pre-sampled based on T before the interaction begins,
meaning the human prepares a sequence of questions to ask in advance. While this setup has limitations,
it allows us to test algorithms and baselines on pre-collected multi-turn dialogues with questions from humans
instead of LLMs.

We evaluate the performance of REFUEL on the Anthropic Helpful Harmful (HH) task (Bai et al., 2022)
and the UltraInteract dataset (Yuan et al., 2024). Both datasets are filtered to exclude dialogues with more
than 5 turns and 2048 tokens. We compare REFUEL against three baseline algorithms, REBEL-LT-MIXED,
REBEL-LT-ONLINE, and REBEL-MT-MIXED, as LT-OFFLINE methods are not comparable to other methods.
We utilize Llama-3-8B-it (Meta, 2024) as the base model and FsfairX-LLaMA3-RM-v0.1 (Xiong et al., 2024a)
as the reward model for both datasets.

Evaluation. We evaluate each method by its balance between the reward model score and KL-divergence with
the SFT policy, testing the algorithm’s effectiveness in optimizing the regularized RL objective. To evaluate
the quality of the generation, we compute the winrate (Rafailov et al., 2024b) against the generations from the
base model Llama-3-8B-it using GPT4 (OpenAI, 2023). The winrate is computed from a randomly sampled
subset of the test set with 500 samples over the entire dialogue. Given the varying lengths of dialogues in the
dataset, we do not compute turn-wise winrates.

Quality analysis. Table 2 presents a comparison between REFUEL and the baselines methods. Notably,
REFUEL consistently outperforms all baselines in terms of winrate when evaluated under GPT-4 against
responses generated by the reference policy. While REBEL-LT-MIXED achieves the highest RM score for
UltraInteract, REFUEL exhibits a comparable RM score with a significantly smaller KL divergence. The
results in this simplified setting demonstrate that even when human questions are pre-sampled, on-policy
training in a multi-turn fashion is beneficial. We include convergence plots and example generations from
REFUEL in Appendix F and G respectively.

9

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

Under review as a conference paper at ICLR 2025

Dataset Algorithm Winrate (↑) RM Score (↑) KL(π∣∣πref) (↓)

Anthropic HH

REBEL-LT-MIXED 79.6 -4.79 17.23
REBEL-LT-ONLINE 80.2 -4.75 15.91
REBEL-MT-MIXED 78.6 -5.03 16.79

REFUEL 82.8 -4.68 17.83

UltraInteract

REBEL-LT-MIXED 70.4 0.93 121.7
REBEL-LT-ONLINE 73.4 0.82 62.85
REBEL-MT-MIXED 34.4 -0.25 61.34

REFUEL 79.6 0.87 93.19

Table 2: Results on Anthropic HH and UltraInteract. The best-performing method for each dataset is
highlighted in bold. REFUEL outperforms all baselines in terms of winrate.

5 RELATED WORK

Single-turn RLHF. DPO (Rafailov et al., 2024b) was originally designed for a single-turn RLHF setting,
which can be modeled by a bandit problem or a multi-stage MDP with the deterministic transition. Follow-up
analysis of DPO (Rafailov et al., 2024a) is also based on this singe-turn setting, and the derivation of DPO
being capable of learning a Q function is based on deterministic transition. Note that multi-turn RLHF can be
stochastic at the turn level since the sampling process of human questions can be random. Thus, the analysis
and conclusion from (Rafailov et al., 2024a) do not apply when naively applying DPO to a multi-turn setting
(Xiong et al., 2024c). Other single-turn baselines (e.g., IPO (Azar et al., 2023), SLiC-HF (Zhao et al., 2023;
Liu et al., 2023), REBEL (Gao et al., 2024), SimPO (Meng et al., 2024), KTO (Ethayarajh et al., 2024), ORPO
(Hong et al., 2024), SPPO (Wu et al., 2024)) also do not directly apply to stochastic multi-stage MDP settings.

Multi-turn RLHF. Multi-turn RLHF algorithms have been proposed to address reasoning and multi-turn
dialogue problems. In the context of math reasoning, concurrent work (Kumar et al., 2024b) applied REIN-
FORCE to a two-turn RL setting, demonstrating the importance of being on-policy for learning self-correction
behavior in math reasoning. Xiong et al. (2024c) extended single-turn algorithms such as DPO (Rafailov et al.,
2024b), KTO (Ethayarajh et al., 2024), and their online variants (Guo et al., 2024; Xiong et al., 2024b) to
the multi-turn setting. Both Xiong et al. (2024c) and Kumar et al. (2024b) focus on deterministic transition
settings where user prompts are independent of the previous responses. In our experiments, we compare the
multi-turn variants of the single-turn algorithms proposed in (Xiong et al., 2024c). For multi-turn dialogue,
Snell et al. (2022) built on the implicit Q-learning (Kostrikov et al., 2021) while Shani et al. (2024b) extended
the general preference setting (Swamy et al., 2024; Munos et al., 2023; Rosset et al., 2024) to multi-turn. In
our setting, we focus on RLHF with reward models rather than the general preference setting. Zhan et al.
(2023) focus on a hybrid RL setting, where they are able to take advantage of offline data. Our work focuses
on developing an on-policy RLHF algorithm in the multi-turn dialogues, where we focus on the importance of
being on-policy for multi-turn RLHF, similar to Kumar et al. (2024b) observation in the reasoning setting.

Additional related works on resetting in RLHF and policy optimization methods can be found in Appendix H.

6 CONCLUSION AND LIMITATIONS

We present REFUEL, a simple, regression-based approach for multi-turn RLHF with strong performance
guarantees and empirical performance in multi-turn dialogue. We develop a new on-policy multi-turn RLHF
algorithm and show the importance of on-policy rollins to avoid covariate shift. We demonstrate that extensions
of single-turn RLHF methods cannot mitigate the train-test distribution mismatch, deteriorating in performance
as the conversation goes on while REFUEL improves to reason across the entire dialogue.

Limitations. While our simulator uses real-world prompts and the LLM Llama-3.1-70B-it to emulate human
users, it may not fully capture complex human reasoning and decision-making. Incorporating human-in-the-
loop training could enhance the model’s responses. Future work should also include evaluations on real-world
benchmarks, such as the multi-turn chat arena (Chiang et al., 2024), to validate performance in dynamic
settings. Additionally, although REFUEL can theoretically handle longer conversations, our experiments were
limited to 5-turn dialogues. Extending to longer interactions is essential for assessing sustained dialogue
capabilities and long-term objectives.

10

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

Under review as a conference paper at ICLR 2025

REFERENCES

Marwa Abdulhai, Isadora White, Charlie Snell, Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu, and
Sergey Levine. Lmrl gym: Benchmarks for multi-turn reinforcement learning with language models, 2023.
URL https://arxiv.org/abs/2311.18232.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation with
policy gradient methods in markov decision processes. In Conference on Learning Theory, pp. 64–66.
PMLR, 2020.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy gradient
methods: Optimality, approximation, and distribution shift. Journal of Machine Learning Research, 22(98):
1–76, 2021.

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic.com/
news/claude-3-family.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal Valko,
and Rémi Munos. A general theoretical paradigm to understand learning from human preferences, 2023.

J Andrew Bagnell and Jeff Schneider. Covariant policy search. IJCAI, 2003.

James Bagnell, Sham M Kakade, Jeff Schneider, and Andrew Ng. Policy search by dynamic programming.
Advances in neural information processing systems, 16, 2003.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen,
Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher Olah,
Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared
Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto,
Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson,
Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy
Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben
Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai:
Harmlessness from ai feedback, 2022. URL https://arxiv.org/abs/2212.08073.

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. Operations
Research, 2024.

Jonathan D Chang, Kiante Brantley, Rajkumar Ramamurthy, Dipendra Misra, and Wen Sun. Learning to
generate better than your llm. arXiv preprint arXiv:2306.11816, 2023.

Jonathan D Chang, Wenhao Shan, Owen Oertell, Kianté Brantley, Dipendra Misra, Jason D Lee, and Wen Sun.
Dataset reset policy optimization for rlhf. arXiv preprint arXiv:2404.08495, 2024.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena: An open
platform for evaluating llms by human preference, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. In Advances in Neural Information Processing Systems, 2017.

Hal Daumé III and Daniel Marcu. Learning as search optimization: Approximate large margin methods
for structured prediction. In Proceedings of the 22nd international conference on Machine learning, pp.
169–176, 2005.

Jonas Degrave, Abbas Abdolmaleki, Jost Tobias Springenberg, Nicolas Heess, and Martin Riedmiller. Quinoa:
a q-function you infer normalized over actions, 2019. URL https://arxiv.org/abs/1911.01831.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf, 2024. URL
https://arxiv.org/abs/2405.07863.

11

https://arxiv.org/abs/2311.18232
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/1911.01831
https://arxiv.org/abs/2405.07863

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611

Under review as a conference paper at ICLR 2025

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled alpacaeval: A
simple way to debias automatic evaluators, 2024. URL https://arxiv.org/abs/2404.04475.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model alignment
as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic
methods, 2018. URL https://arxiv.org/abs/1802.09477.

Zhaolin Gao, Jonathan D. Chang, Wenhao Zhan, Owen Oertell, Gokul Swamy, Kianté Brantley, Thorsten
Joachims, J. Andrew Bagnell, Jason D. Lee, and Wen Sun. Rebel: Reinforcement learning via regressing
relative rewards, 2024. URL https://arxiv.org/abs/2404.16767.

Google. Gemini: A family of highly capable multimodal models, 2024.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre Rame,
Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from online ai feedback.
arXiv preprint arXiv:2402.04792, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor, 2018. URL https://arxiv.org/abs/
1801.01290.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without reference
model. arXiv preprint arXiv:2403.07691, 2(4):5, 2024.

Robert Irvine, Douglas Boubert, Vyas Raina, Adian Liusie, Ziyi Zhu, Vineet Mudupalli, Aliaksei Korshuk,
Zongyi Liu, Fritz Cremer, Valentin Assassi, Christie-Carol Beauchamp, Xiaoding Lu, Thomas Rialan, and
William Beauchamp. Rewarding chatbots for real-world engagement with millions of users, 2023. URL
https://arxiv.org/abs/2303.06135.

Zeyu Jia, Gene Li, Alexander Rakhlin, Ayush Sekhari, and Nati Srebro. When is agnostic reinforcement
learning statistically tractable? Advances in Neural Information Processing Systems, 36, 2024.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In Proceedings
of the Nineteenth International Conference on Machine Learning, pp. 267–274, 2002.

Sham M Kakade. A natural policy gradient. In T. Dietterich, S. Becker, and Z. Ghahra-
mani (eds.), Advances in Neural Information Processing Systems, volume 14. MIT Press,
2001. URL https://proceedings.neurips.cc/paper_files/paper/2001/file/
4b86abe48d358ecf194c56c69108433e-Paper.pdf.

Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’95, pp.
1137–1143, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc. ISBN 1558603638.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for free!
In DeepRLStructPred@ICLR, 2019. URL https://api.semanticscholar.org/CorpusID:
198489118.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-learning, 2021.
URL https://arxiv.org/abs/2110.06169.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli, Shariq
Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha Shrivastava, Cosmin Paduraru,
George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra Faust. Training language models to
self-correct via reinforcement learning, 2024a. URL https://arxiv.org/abs/2409.12917.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli, Shariq
Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via reinforcement
learning. arXiv preprint arXiv:2409.12917, 2024b.

12

https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/2404.16767
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/2303.06135
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://api.semanticscholar.org/CorpusID:198489118
https://api.semanticscholar.org/CorpusID:198489118
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2409.12917

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

Under review as a conference paper at ICLR 2025

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep reinforcement
learning for dialogue generation. arXiv preprint arXiv:1606.01541, 2016.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World wide web, pp.
661–670, 2010.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019. URL https:
//arxiv.org/abs/1509.02971.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu Liu. Statistical
rejection sampling improves preference optimization. arXiv preprint arXiv:2309.06657, 2023.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-free
reward, 2024. URL https://arxiv.org/abs/2405.14734.

Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL https:
//ai.meta.com/blog/meta-llama-3/.

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland, Zhao-
han Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash learning from
human feedback. arXiv preprint arXiv:2312.00886, 2023.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcoming
exploration in reinforcement learning with demonstrations. In 2018 IEEE international conference on
robotics and automation (ICRA), pp. 6292–6299. IEEE, 2018.

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with human feedback, 2022.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q∗: Your language model is secretly a
q-function. arXiv preprint arXiv:2404.12358, 2024a.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model, 2024b. URL https:
//arxiv.org/abs/2305.18290.

Juntao Ren, Gokul Swamy, Zhiwei Steven Wu, J Andrew Bagnell, and Sanjiban Choudhury. Hybrid inverse
reinforcement learning. arXiv preprint arXiv:2402.08848, 2024.

Pierre Harvey Richemond, Yunhao Tang, Daniel Guo, Daniele Calandriello, Mohammad Gheshlaghi Azar,
Rafael Rafailov, Bernardo Avila Pires, Eugene Tarassov, Lucas Spangher, Will Ellsworth, Aliaksei Severyn,
Jonathan Mallinson, Lior Shani, Gil Shamir, Rishabh Joshi, Tianqi Liu, Remi Munos, and Bilal Piot.
Offline regularised reinforcement learning for large language models alignment, 2024. URL https:
//arxiv.org/abs/2405.19107.

Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via interactive no-regret learning.
arXiv preprint arXiv:1406.5979, 2014.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings, 2011.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and Tengyang Xie.
Direct nash optimization: Teaching language models to self-improve with general preferences, 2024. URL
https://arxiv.org/abs/2404.03715.

13

https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2405.14734
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2405.19107
https://arxiv.org/abs/2405.19107
https://arxiv.org/abs/2404.03715

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

Under review as a conference paper at ICLR 2025

Tim Salimans and Richard Chen. Learning montezuma’s revenge from a single demonstration. arXiv preprint
arXiv:1812.03381, 2018.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pp. 1889–1897. PMLR, 2015.

Lior Shani, Aviv Rosenberg, Asaf Cassel, Oran Lang, Daniele Calandriello, Avital Zipori, Hila Noga,
Orgad Keller, Bilal Piot, Idan Szpektor, Avinatan Hassidim, Yossi Matias, and Rémi Munos. Multi-turn
reinforcement learning from preference human feedback, 2024a. URL https://arxiv.org/abs/
2405.14655.

Lior Shani, Aviv Rosenberg, Asaf Cassel, Oran Lang, Daniele Calandriello, Avital Zipori, Hila Noga, Orgad
Keller, Bilal Piot, Idan Szpektor, et al. Multi-turn reinforcement learning from preference human feedback.
arXiv preprint arXiv:2405.14655, 2024b.

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural language
generation with implicit language q learning. arXiv preprint arXiv:2206.11871, 2022.

Gokul Swamy, David Wu, Sanjiban Choudhury, Drew Bagnell, and Steven Wu. Inverse reinforcement learning
without reinforcement learning. In International Conference on Machine Learning, pp. 33299–33318.
PMLR, 2023.

Gokul Swamy, Christoph Dann, Rahul Kidambi, Steven Wu, and Alekh Agarwal. A minimaximalist approach
to reinforcement learning from human feedback. In Forty-first International Conference on Machine
Learning, 2024.

Arash Tavakoli, Vitaly Levdik, Riashat Islam, Christopher M Smith, and Petar Kormushev. Exploring restart
distributions. arXiv preprint arXiv:1811.11298, 2018.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew Bennice,
Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In International Conference
on Machine Learning, pp. 34556–34583. PMLR, 2023.

Anirudh Vemula, Yuda Song, Aarti Singh, Drew Bagnell, and Sanjiban Choudhury. The virtues of laziness in
model-based rl: A unified objective and algorithms. In International Conference on Machine Learning, pp.
34978–35005. PMLR, 2023.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences via
multi-objective reward modeling and mixture-of-experts. arXiv preprint arXiv:2406.12845, 2024.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8:229–256, 1992. URL https://api.semanticscholar.org/CorpusID:
19115634.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play preference
optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.

Tengyang Xie, Dylan J Foster, Yu Bai, Nan Jiang, and Sham M Kakade. The role of coverage in online
reinforcement learning. arXiv preprint arXiv:2210.04157, 2022.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang. Iterative
preference learning from human feedback: Bridging theory and practice for rlhf under kl-constraint, 2024a.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang. Iterative
preference learning from human feedback: Bridging theory and practice for rlhf under kl-constraint. In
Forty-first International Conference on Machine Learning, 2024b.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha Khalman,
Rishabh Joshi, Bilal Piot, Mohammad Saleh, et al. Building math agents with multi-turn iterative preference
learning. arXiv preprint arXiv:2409.02392, 2024c.

14

https://arxiv.org/abs/2405.14655
https://arxiv.org/abs/2405.14655
https://api.semanticscholar.org/CorpusID:19115634
https://api.semanticscholar.org/CorpusID:19115634

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764

Under review as a conference paper at ICLR 2025

Dong Yin, Botao Hao, Yasin Abbasi-Yadkori, Nevena Lazić, and Csaba Szepesvári. Efficient local planning
with linear function approximation. In International Conference on Algorithmic Learning Theory, pp.
1165–1192. PMLR, 2022.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen, Ruobing
Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun. Advancing llm
reasoning generalists with preference trees, 2024. URL https://arxiv.org/abs/2404.02078.

Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D Lee, and Yuejie Chi. Policy mirror descent
for regularized reinforcement learning: A generalized framework with linear convergence. SIAM Journal
on Optimization, 33(2):1061–1091, 2023.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf: Sequence
likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language model
agents via hierarchical multi-turn rl. arXiv preprint arXiv:2402.19446, 2024a.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language model
agents via hierarchical multi-turn rl, 2024b. URL https://arxiv.org/abs/2402.19446.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, and Jiantao Jiao. Starling-7b: Improving llm helpfulness
& harmlessness with rlaif, November 2023.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse rein-
forcement learning. In Proceedings of the 23rd National Conference on Artificial Intelligence - Volume 3,
AAAI’08, pp. 1433–1438. AAAI Press, 2008. ISBN 9781577353683.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul Christiano,
and Geoffrey Irving. Fine-tuning language models from human preferences, 2020.

15

https://arxiv.org/abs/2404.02078
https://arxiv.org/abs/2402.19446

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 1

We first introduce the definition of value functions and advantage functions:

V π
h (sh) ∶= Eπ [

H

∑
h′=h

r(sh′ , yh′)∣sh] = Eyh∼π(sh) [Q
π
h(sh, yh)] , ∀sh ∈ Sh, h ∈ [H],

Aπ
h(sh, yh) ∶= Qπ

h(sh, yh) − V π
h (sh), ∀sh ∈ Sh, yh ∈ Yh, h ∈ [H].

Then we have the following performance difference lemma:

Lemma 1. For any policy π and π′, we have

J(π′) − J(π) =
H

∑
h=1

Esh∼dπ′

h
,yh∼π′(⋅∣sh)

[Aπ
h(sh, yh)] .

Therefore, from Lemma 1 we know

T

∑
t=1

J(π∗) − J(πt) =
H

∑
h=1

T

∑
t=1

Esh∼dπ∗

h
,yh∼π∗(⋅∣sh)

[Aπt

h (sh, yh)] . (8)

On the other hand, let us define ∆t,∆t
πt

as follows:

∆t(sh, yh) ∶=
1

η
ln

πt+1(yh∣sh)
πt(yh∣sh)

−Qπt

h (sh, yh), ∀sh, yh

∆t
πt
(sh) ∶= Eyh∼πt(⋅∣sh) [∆

t(sh, yh)] , ∀sh.

Then under Assumption 1, we can bound the magnitude of ∆t,∆t
πt

as the following lemma:

Lemma 2. Under Assumption 1, we have for all t ∈ [T] that

Eh,sh∼d
πt
h

,yh∼πt(⋅∣sh)
[(∆t(sh, yh) −∆t

πt
(sh))

2] ≤ ϵ

2
.

Now we can analyze the performance of REFUEL. Let At
h(sh, yh) denote Aπt

h (sh, yh)+∆t(sh, yh)−∆t
πt
(sh),

then we know for all t ∈ [T]

πt+1(yh∣sh) ∝ πt(yh∣sh) exp(ηAt
h(sh, yh)), ∀sh, yh.

Therefore, REFUELis equivalent to running policy mirror descent (PMD) w.r.t. the reward function At
h. PMD

has been studied extensively in the literature (Zhan et al., 2023; Gao et al., 2024) and we can obtain the
following performance guarantee:

Lemma 3. Suppose we have ∣At
h(sh, yh)∣ ≤ C for all t ∈ [T], h ∈ [H], sh ∈ Sh, yh ∈ Yh. Then if we initialize

π1 to be a uniformly random policy and choose η =
√
lnY /(C2T), we have for all h ∈ [H] that:

T

∑
t=1

Esh∼dπ∗

h
,yh∼π∗(⋅∣sh)

[At
h(sh, yh)] ≤ 2C

√
T lnY .

Now from Lemma 3 and (8), we have

T

∑
t=1

J(π∗) − J(πt) =
H

∑
h=1

T

∑
t=1

Esh∼dπ∗

h
,yh∼π∗(⋅∣sh)

[At
h(sh, yh)] +

H

∑
h=1

T

∑
t=1

Esh∼dπ∗

h
,yh∼π∗(⋅∣sh)

[∆t
πt
(sh) −∆t(sh, yh)]

≤ 2CH
√
T lnY +

H

∑
h=1

T

∑
t=1

Esh∼dπ∗

h
,yh∼π∗(⋅∣sh)

[∣∆t
πt
(sh) −∆t(sh, yh)∣] . (9)

16

816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

Under review as a conference paper at ICLR 2025

From Cauchy-Schwartz inequality, we have

H

∑
h=1

Esh∼dπ∗

h
,yh∼π∗(⋅∣sh)

[∣∆t
πt
(sh) −∆t(sh, yh)∣]

≤

¿
ÁÁÀH

H

∑
h=1

Esh∼dπ∗

h
,yh∼π∗(⋅∣sh)

[(∆t(sh, yh) −∆t
πt
(sh))

2]

=H
√

Eh,sh∼dπ∗

h
,yh∼π∗(⋅∣sh)

[(∆t(sh, yh) −∆t
πt
(sh))

2].

Then from Assumption 2 and Lemma 2 we know

Eh,sh∼dπ∗

h
,yh∼π∗(⋅∣sh)

[(∆t
πt
(sh) −∆t(sh, yh))

2]

≤ Cs;π∗Cy;π∗Eh,sh∼d
πt
h

,yh∼πt(⋅∣sh)
[(∆t

πt
(sh) −∆t(sh, yh))

2] ≤ Cs;π∗Cy;π∗
ϵ

2
.

Therefore, substitute the above result into (9) and we have

T

∑
t=1

J(π∗) − J(πt) ≤ 2CH
√
T lnY +HT

√
Cs;π∗Cy;π∗

ϵ

2
.

This implies that there must exist t ∈ [T] such that

J(π∗) − J(πt) ≤ 2CH

√
lnY

T
+H
√

Cs;π∗Cy;π∗
ϵ

2
.

A.1 PROOF OF LEMMA 1

Note that we have

J(π′) − J(π) = Eπ′ [
H

∑
h=1

r(sh, yh)] −Es1∼ρ [V π
1 (s1)]

= Eπ′ [
H

∑
h=2

r(sh, yh)] +Eπ′ [r(s1, y1) − V π
1 (s1)]

= Eπ′ [
H

∑
h=2

r(sh, yh)] +Eπ′ [Qπ
1 (s1, y1) − V π

2 (s2) − V π
1 (s1)]

= Eπ′ [
H

∑
h=2

r(sh, yh)] −Eπ′ [V π
2 (s2)] +Eπ′ [Aπ

1 (s1, y1)] .

Here the first step is due to the definition of value function and the third step is due to the Bellman equation.
Now apply the above arguments recursively to Eπ′ [∑H

h=2 r(sh, yh)] −Eπ′ [V π
2 (s2)] and we have

J(π′) − J(π) =
H

∑
h=1

Eπ′ [Aπ
h(sh, yh)] =

H

∑
h=1

Esh∼dπ′

h
,yh∼π′(⋅∣sh)

[Aπ
h(sh, yh)] .

This concludes our proof.

17

867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.2 PROOF OF LEMMA 2

Due to Assumption 1, we have

ϵ ≥ Eh,sh∼d
πt
h

,yh∼πt(⋅∣sh),y′h∼πt(⋅∣sh)
(1
η
(ln πt+1(yh∣sh)

πt(yh∣sh)
− ln πt+1(y′h∣sh)

πt(y′h∣sh)
) − (Qπt

h (sh, yh) −Q
πt

h (sh, y
′
h)))

2

= Eh,sh∼d
πt
h

,yh∼πt(⋅∣sh),y′h∼πt(⋅∣sh)
[(∆t(sh, yh) −∆t(sh, y′h))

2]

= Eh,sh∼d
πt
h

,yh∼πt(⋅∣sh),y′h∼πt(⋅∣sh)
[((∆t(sh, yh) −∆t

πt
(sh)) − (∆t(sh, y′h) −∆t

πt
(sh)))

2]

= 2Eh,sh∼d
πt
h

,yh∼πt(⋅∣sh)
[(∆t(sh, yh) −∆t

πt
(sh))

2] ,

where the last step is due to the independence of yh and y′h given sh. Therefore, we have

Eh,sh∼d
πt
h

,yh∼πt(⋅∣sh)
[(∆t(sh, yh) −∆t

πt
(sh))

2] ≤ ϵ

2
.

A.3 PROOF OF LEMMA 3

The proof is almost the same as the proof of Lemma 2 in Gao et al. (2024) and here we include it for
completeness. Since πt+1(yh∣sh) ∝ πt(yh∣sh) exp(ηAt

h(sh, yh)), we have for any t ∈ [T], h ∈ [H], sh ∈ Sh
that:

−KL(π∗(⋅∣sh)∣∣πt+1(⋅∣sh)) = −KL(π∗(⋅∣sh)∣∣πt(⋅∣sh)) + ηEyh∼π∗(⋅∣x)A
t
h(sh, yh) − lnZt

h(sh), (10)

where Zt
h is the normalization function. For lnZt(x), using the condition that η ≤ 1/A, we have ηAt(x, y) ≤ 1,

which allows us to use the inequality exp(x) ≤ 1 + x + x2 for any x ≤ 1. Meanwhile, we can bound lnZt
h(sh)

as follows:

lnZt
h(sh) = ln

⎛
⎝ ∑yh∈Yh

πt(yh∣sh) exp(ηAt
h(sh, yh))

⎞
⎠

≤ ln
⎛
⎝ ∑yh∈Yh

πt(yh∣sh) (1 + ηAt
h(sh, yh) + η2 (At

h(sh, yh))
2)
⎞
⎠

≤ ln (1 + η2C2) ≤ η2C2,

where the second step uses the fact that ηAt
h(sh, yh) ≤ 1 and exp(x) ≤ 1 + x + x2 for any x ≤ 1. The third

step uses the fact that Eyh∼πt(⋅∣sh) [At
h(sh, yh)] = 0. Thus, substitute the above result in to (10) and we have:

ηEyh∼π∗(⋅∣sh)[A
t
h(sh, yh)] ≤ KL(π∗(⋅∣sh)∣∣πt(⋅∣sh)) −KL(π∗(⋅∣sh)∣∣πt+1(⋅∣sh)) + η2C2.

Sum over all iterations, we obtain for all h ∈ [H] and sh ∈ Sh that:

T

∑
t=1

Eyh∼π∗(⋅∣sh)A
t
h(sh, yh) ≤ ln(Y)/η + ηTC2.

With η =
√
lnY /(C2T), take sh ∼ dπ

∗

h on both sides and we conclude the proof.

18

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968

Under review as a conference paper at ICLR 2025

B PROOFS OF THE APC CONDITION

B.1 PROOF OF PROPOSITION 1

Fix any policy π ∈ Π. Suppose that π(yh∣sh) ∝ exp(θ⊺ϕ(sh, yh)) and let w denote the best approximator of
Qπ

h(sh, yh). Then we know

Eh,sh∼dπ
h
,yh∼π [(Qπ

h(sh, yh) −w⊺ϕ(sh, yh))
2] ≤ ϵ.

Now let π′(yh∣sh) ∝ exp((θ + ηw)⊺ϕ(sh, yh)) and C(sh) = ∑yh
π(yh∣sh) exp(ηw⊺ϕ(sh, yh)). Then we

have

Eh,sh∼dπ
h
,yh∼π

⎡⎢⎢⎢⎢⎣
(1
η
lnπ′(yh∣sh) −

1

η
ln

π(yh∣sh) exp(ηQπ
h(sh, yh))

C(sh)
)
2⎤⎥⎥⎥⎥⎦

= Eh,sh∼dπ
h
,yh∼π [(Qπ

h(sh, yh) −w⊺ϕ(sh, yh))
2] ≤ ϵ.

This concludes our proof.

B.2 PROOF OF PROPOSITION 2

Consider a bandit problem with two actions y0, y1. Suppose r(y0) = r(y1) = 1 and let ϕ⊺(y0) =
[1,−1], ϕ⊺(y1) = [−1,1]. It can be observed that the uniformly random policy µ is in the policy class
Π. In addition, we have r(y) = (w∗)⊺ ⋅ ϕ(y) + 1 where (w∗)⊺ = [1,1].
Now on the one hand, for all policies π(y) ∝ exp(θ⊺ϕ(y)) in Π, let π′ = π and C = exp(η). Then we have

Ey∼π

⎡⎢⎢⎢⎢⎣
(1
η
lnπ′(y) − 1

η
ln

π(y) exp(ηr(y))
C

)
2⎤⎥⎥⎥⎥⎦
= 0.

This means that the APC condition is satisfied with ϵΠ = 0.

On the other hand, the Q function approximation error under the uniform random policy µ is

min
w

Ey∼µ [(r(y) −w⊺ϕ(y))
2] =min

w
Ey∼µ [(1 −w⊺ϕ(y))

2] ≥ 1,

where the inequality comes from AM-GM inequality. This concludes our proof.

19

969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL DETAILS

C.1 ADDITIONAL IMPLEMENTATION DETAILS

Setting One. We perform full parameter training for Llama-3-8B-Instruct2. For ArmoRM3, we directly use
the reward scores without any normalizations. For each iteration, we generate the dialogues using the simulator
for the entire dataset (i.e. ∣D∣ is the size of the entire dataset) and consider the entire dataset as one large batch.
Then, we optimize in mini-batch style over the entire dataset. We perform 2 iterations for this setup. The
experiments are trained on 8 H100 GPUs for two hours for each iteration.

Setting Two. For Llama-3-8B-Instruct, we only train the last four layers in the model while keeping the other
layers frozen. For FsfairX-LLaMA3-RM-v0.14, we directly use the reward scores without any normalizations.
Anthropic HH experiments are trained on 8 H100 GPUs for two days, and Ultrainteract experiments are trained
on 8 H100 GPUs for four days.

In this setting, we use a small batch size with ∣D∣ = 32. We train for one epoch over the entire dataset. Since
we iterate more frequently, to ensure that πθ remains close to πθ0 , we apply an additional KL penalty to the
reward:

r(x, y) = RM(x, y) − γ(lnπθt(y∣x) − lnπθ0(y∣x)) (11)

where RM(x, y) is score from the reward model given prompt x and response y. Furthermore, to ensure
that the online generations terminate within the maximum generation length, we penalize any generation that
exceeds this length by setting r(x, y) to a small fixed constant, Γ.

2HuggingFace Model Card: meta-llama/Meta-Llama-3-8B-Instruct
3HuggingFace Model Card: RLHFlow/ArmoRM-Llama3-8B-v0.1
4HuggingFace Model Card: sfairXC/FsfairX-LLaMA3-RM-v0.1

20

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

Under review as a conference paper at ICLR 2025

C.2 SIMULATOR DETAILS

We use Llama-3.1-70B-it to simulator the user. The prompt for the model is provided below which is adapted
from the winrate prompts from Rafailov et al. (2024b) and Dubois et al. (2024):

Prompt for User Simulator

Below is a dialogue between the user and the assistant. Pretend you are the user in this conversation. What question
would you ask next?

Dialogue:
{{dialogue}}

Instructions:
FIRST provide a justification of the question you want to ask.
SECOND, on a new line, state only the question.
Your response should use the format:
Justification: <one-sentence justification >
Question: <question to ask next >

21

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

Under review as a conference paper at ICLR 2025

C.3 HYPERPARAMETER DETAILS

Parameter Setting (Setting One)

Method Parameters

DPO-LT-OFFLINE batch size: 128
beta: 0.3
weight decay: 1e-6

learning rate: 3e-7
schedule: cosine decay
warmup ratio: 0.1

DPO-LT-MIXED batch size: 128
beta: 0.03
weight decay: 1e-6

learning rate: 3e-7
schedule: cosine decay
warmup ratio: 0.1

DPO-LT-ONLINE batch size: 128
beta: 0.1
weight decay: 1e-6

learning rate: 3e-7
schedule: cosine decay
warmup ratio: 0.1

DPO-MT-MIXED batch size: 128
beta: 0.1
weight decay: 1e-6

learning rate: 3e-7
schedule: cosine decay
warmup ratio: 0.1

REBEL-LT-OFFLINE batch size: 128
eta: 1e2
weight decay: 1e-6

learning rate: 3e-7
schedule: cosine decay
warmup ratio: 0.1

REBEL-LT-MIXED batch size: 128
eta: 1e3
weight decay: 1e-6

learning rate: 3e-7
schedule: cosine decay
warmup ratio: 0.1

REBEL-LT-ONLINE batch size: 128
eta: 1e3
weight decay: 1e-6

learning rate: 3e-7
schedule: cosine decay
warmup ratio: 0.1

REBEL-MT-MIXED batch size: 128
eta: 1e3
weight decay: 1e-6

learning rate: 3e-7
schedule: cosine decay
warmup ratio: 0.1

REFUEL (iter 1) batch size: 128
eta: 1e2
weight decay: 1e-6

learning rate: 3e-7
schedule: cosine decay
warmup ratio: 0.1

REFUEL (iter 2) batch size: 128
eta: 1e1
weight decay: 1e-6

learning rate: 3e-7
schedule: cosine decay
warmup ratio: 0.1

22

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

Under review as a conference paper at ICLR 2025

Parameter Setting (Setting Two)

Dataset Parameters

Anthropic HH batch size: 32
learning rate: 3e-7
schedule: linear decay
train epochs: 1
num epochs: 4
η: 1.0
γ: 0.05
Γ = −10

Ultrainteract batch size: 32
learning rate: 3e-7
schedule: linear decay
train epochs: 1
num epochs: 4
η: 1.0
γ: 0
Γ = −4

23

1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

Under review as a conference paper at ICLR 2025

C.4 DATASET DETAILS

Setting One. The statistics of the dataset for each baseline and REFUEL are shown in Table 3. As the offline
dataset contains fewer samples for longer dialogues, methods that sample a state from this dataset show an
inverse relationship between the number of turns and the number of available dialogues. In contrast, methods
using a simulated user maintain a uniform distribution across dialogue lengths, as the dialogue length is
uniformly sampled up to 5 turns. We filter any dialogue with length more than 2048 tokens.

Dataset % in Dataset Train/Val/Test Max Generation LengthH=1 H=2 H=3 H=4 H=5

LT-OFFLINE 76.9 12.1 6.40 3.20 1.40 205K/500/500 1024
LT-MIXED 53.9 23.0 13.0 6.90 3.20 64.1K/500/500 1024
LT-ONLINE 20.0 20.2 19.7 20.1 20.0 64.1K/500/500 1024
MT-MIXED 54.0 23.0 13.0 6.90 3.10 64.1K/500/500 1024

REFUEL 20.3 20.0 19.9 20.0 19.8 64.1K/500/500 1024

Table 3: Dataset turn distribution for Ultrainteract in Setting One.

Setting Two. The statistics of Anthropic HH and Ultrainteract are shown in Table 4

Dataset % in Dataset Train/Val/TestH=1 H=2 H=3 H=4 H=5

Anthropic HH 31.4 28.7 25.0 12.7 2.20 156K/4.23K/4.23K
Ultrainteract 58.7 24.0 12.5 4.50 0.30 106K/500/500

Table 4: Dataset turn distribution for Anthropic HH and Ultrainteract in Setting Two.

For Anthropic HH, we filter any prompt that is longer than 128 tokens and any response that is longer than
512 tokens for each turn. For Ultrainteract, we have different filtering length based on the dialogue length: In

Max Prompt Length Max Response Length
H=1 H=2 H=3 H=4 H=5 H=1 H=2 H=3 H=4 H=5

1024 768 512 256 128 1024 768 512 512 512

Table 5: Ultrainteract Filtering Length in Setting Two.

this way, we ensure that the maximum dialogue length is less than or equal to 3200.

24

1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

Under review as a conference paper at ICLR 2025

C.5 WINRATE DETAILS

We are using gpt-4-0613 checkpoint for winrate computations. Below, we present the prompts used for
winrate evaluations along with an example evaluation from GPT-4. The prompt for Anthropic HH is adapted
from Rafailov et al. (2024b), and the prompt for Ultrainteract is adapted from Dubois et al. (2024).

Anthropic HH ∣ Prompt for Winrate

For the following dialogues with a chatbot, which dialogue is more helpful?

Dialogue A:
{{dialoguea}}

Dialogue B:
{{dialogueb}}

Instructions:
FIRST provide a one-sentence comparison of the two dialogues, explaining which you prefer and why. SECOND, on a
new line, state only “A” or “B” to indicate your choice. Your response should use the format:
Comparison: <one-sentence comparison and explanation >
Preferred: <“A” or “B”>

Ultrainteract ∣ Prompt for Winrate

I require a leaderboard for various chatbots. I’ll provide you with dialogues with these chatbots. Your task is to assess
these dialogues, and select the dialogue that produces the best outputs from a human perspective.

Dialogue A:
{{dialoguea}}

Dialogue B:
{{dialogueb}}

Instructions:
FIRST provide a one-sentence comparison of the two dialogues, explaining which you prefer and why. SECOND, on a
new line, state only “A” or “B” to indicate your choice. Your response should use the format:
Comparison: <one-sentence comparison and explanation >
Preferred: <“A” or “B”>

25

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325

Under review as a conference paper at ICLR 2025

Example Evaluation from GPT-4

For the following dialogues with a chatbot, which dialogue is more helpful?

Dialogue A:
User: what are some pranks i can play on a nerd at school?

Chatbot: I apologize, but I’m a large language model, I don’t encourage or promote pranks that might harm
or embarrass someone, especially not a ”nerd” or any individual. Pranks can be harmful and create a negative impact on
someone’s self-esteem, confidence, and overall well-being.
Instead, I’d like to suggest some positive and fun ways to build connections and relationships with your peers, regardless
of their interests or personalities. Here are a few ideas:
1. **Find common ground**: Look for shared interests or hobbies that you both enjoy, and use those as conversation
starters.
2. **Show genuine interest**: Ask your classmate questions about their passions, and actively listen to their responses.
3. **Offer help**: If your classmate is struggling with a concept or assignment, offer to help them understand it better.
4. **Respect their differences**: Embrace the unique qualities and interests that make your classmate special.
Remember, everyone deserves respect and kindness, regardless of their background, interests, or personality. Let’s focus
on building positive relationships and fostering a supportive environment in school!

User: i guess a specific one

Chatbot: I apologize, but I’m still not comfortable providing specific prank ideas that might target a particu-
lar individual, especially one labeled as a ”nerd.” Instead, I’d like to offer a different perspective:
Why not try to make a positive impact?
Consider doing something kind for your classmate, like:
* Leaving a helpful note or drawing on their desk
* Offering to help them with a task or project
* Sharing a relevant resource or tip that might benefit them
These actions can create a positive and supportive environment, and might even inspire your classmate to pay it forward!
Remember, kindness and respect go a long way in building strong relationships and a positive school culture.

Dialogue B:
User: what are some pranks i can play on a nerd at school?

Chatbot: I cannot provide you with ideas for pranks to play on a nerd at school. Pranks can be harmful and
may cause emotional distress to the person being pranked.

User: i guess a specific one

Chatbot: I cannot provide you with ideas for pranks to play on a nerd at school. Pranks can be harmful and
may cause emotional distress to the person being pranked.

Instructions:
FIRST provide a one-sentence comparison of the two dialogues, explaining which you prefer and why. SECOND, on a
new line, state only “A” or “B” to indicate your choice. Your response should use the format:
Comparison: <one-sentence comparison and explanation >
Preferred: <“A” or “B”>

Comparison: Dialogue A is more helpful as it not only refuses to encourage harmful pranks, but it also provides alternative
strategies on how to interact with classmates in a positive and respectful manner, while Dialogue B merely reiterates its
refusal to engage in harmful pranks.
Preferred: A

26

1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376

Under review as a conference paper at ICLR 2025

D QUALITATIVE ANALYSIS

We include various generations from REFUEL and the baseline methods under Setting One. The responses
from REFUEL are the most concise, while the baseline methods tend to generate answers from scratch at each
turn, rather than building on previous dialogue turns. To highlight the differences between each dialogue, we
highlight the redundant calculations at each turn with red while highlight the new calculations in green. Unlike
the baseline methods, which exhibit some redundancies, REFUEL has no redundant calculations.

Generation from REFUEL

User: Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final answer as boxed{Your Answer}.
a room 8 m 47 cm long and 7 m 77 cm broad is to be paved with square tiles . find the least number of square tiles required to cover the floor.

Chatbot: Let’s break down the problem step by step:
1. Convert the length and breadth of the room to centimeters:
Length (L) = 8 m 47 cm = 847 cm
Breadth (B) = 7 m 77 cm = 877 cm
2. Calculate the area of the room:
Area (A) = L x B = 847 cm x 877 cm = 744,049 cm²
3. Since the tiles are square, we need to find the side length of the square tile (s) that can cover the area:
Let’s assume the side length of the tile is s cm. Then, the area of the tile is:
Area of tile = s²
We want to find the least number of tiles required, so we’ll try to find the largest possible tile size that can cover the area:
744,049 cm² (room area) = n × s² (number of tiles × tile area)
where n is the number of tiles.
4. Simplify the equation: 744,049 = n × s²
To find the smallest possible value of s, we can take the square root of both sides:
s = sqrt(744,049) = 864.51 cm
So, the side length of the largest possible tile is approximately 864.51 cm.
5. Now, find the number of tiles required:
n = Area of room ÷ Area of tile = 744,049 cm² ÷ (864.51 cm)² = 933
Therefore, the least number of square tiles required to cover the floor is: boxed{933}

User: What is the least number of square tiles required if we use the largest standard tile size less than or equal to 864.51 cm, such as 80 cm
or 85 cm?

Chatbot: Let’s calculate the area of the largest standard tile size less than or equal to 864.51 cm:
1. 80 cm × 80 cm = 6400 cm²
2. 85 cm × 85 cm = 7225 cm²
Now, let’s find the number of tiles required for each tile size:
1. For 80 cm tiles: n = Area of room ÷ Area of tile = 744,049 cm² ÷ 6400 cm² = 116.53 (round up to the nearest whole number, as you can’t have a fraction of
a tile) = 117 tiles
2. For 85 cm tiles: n = Area of room ÷ Area of tile = 744,049 cm² ÷ 7225 cm² = 102.73 (round up to the nearest whole number) = 103 tiles
The least number of square tiles required is therefore: boxed{103} for 85 cm tiles.

User: What is the least number of square tiles required to cover the floor if we use a standard tile size of 86 cm or 90 cm?

Chatbot: Let’s calculate the area of the largest standard tile size:
1. 86 cm × 86 cm = 7396 cm²
2. 90 cm × 90 cm = 8100 cm²
Now, let’s find the number of tiles required for each tile size:
1. For 86 cm tiles: n = Area of room ÷ Area of tile = 744,049 cm² ÷ 7396 cm² = 100.57 (round up to the nearest whole number) = 101 tiles
2. For 90 cm tiles: n = Area of room ÷ Area of tile = 744,049 cm² ÷ 8100 cm² = 92.04 (round up to the nearest whole number) = 92 tiles
The least number of square tiles required is therefore: boxed{92} for 90 cm tiles.

User: What is the least number of square tiles required to cover the floor if we use a standard tile size of 95 cm?

Chatbot: For a 95 cm tile size:
Area of tile = 95 cm × 95 cm = 9025 cm²
Now, find the number of tiles required: n = Area of room ÷ Area of tile = 744,049 cm² ÷ 9025 cm² = 82.35 (round up to the nearest whole number) = 83 tiles
The least number of square tiles required is: boxed{83} for 95 cm tiles.

User: What is the least number of square tiles required to cover the floor if we use a standard tile size of 100 cm?

Chatbot: For a 100 cm tile size:
Area of tile = 100 cm × 100 cm = 10,000 cm²
Now, find the number of tiles required: n = Area of room ÷ Area of tile = 744,049 cm² ÷ 10,000 cm² = 74.40 (round up to the nearest whole number) = 74 tiles
The least number of square tiles required is:boxed{74} for 100 cm tiles.

27

1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427

Under review as a conference paper at ICLR 2025

Generation from REBEL-LT-MIXED

User: Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final answer as boxed{Your Answer}.
a room 8 m 47 cm long and 7 m 77 cm broad is to be paved with square tiles . find the least number of square tiles required to cover the floor.

Chatbot: Let’s break down the problem step-by-step:
1. Convert the length and breadth of the room from mixed units to centimeters: Length (L) = 8 m 47 cm = 847 cm; Breadth (B) = 7 m 77 cm = 877 cm
2. Calculate the area of the room: Area (A) = L × B = 847 cm × 877 cm = 743,399 cm²
3. Since the tiles are square, we need to find the side length of the square tile. Let the side length be x cm.
4. The total area of the tiles required to cover the floor is equal to the area of the room: x² × Number of tiles = 743,399 cm²
5. To find the least number of tiles required, we need to minimize the number of tiles. This means we need to make x as small as possible while still fulfilling
the condition in step 4.
6. Divide both sides of the equation by x²: Number of tiles = 743,399 cm² / x²
7. To simplify the expression, find the square root of both sides: Number of tiles = sqrt(743,399)
8. Approximate the value of sqrt(743,399) to the nearest integer (since you can’t have a fraction of a tile): Number of tiles = 866
9. Write the final answer in the required format: boxed{866}

User: What is the side length of the square tile that would result in the least number of tiles required to cover the floor of the given room?

Chatbot: Let’s find the side length of the square tile (x) that would result in the least number of tiles required to cover the floor: Area of room
= 743,399 cm²; Area of tile = x². We want to minimize the number of tiles, so we want to make x as small as possible while still fulfilling the condition:
743,399 = x². Take the square root of both sides: x = sqrt(743,399) = 867.12 cm. Since you can’t have a fraction of a tile, round x to the nearest integer to get
the side length of the square tile: x = 867 cm. So, the side length of the square tile that would result in the least number of tiles required to cover the floor is
approximately 867 cm.

User: What is the correct method to find the side length of the square tile that results in the least number of tiles required to cover the floor,
in order to match the initial answer of 866 tiles?

Chatbot: To find the side length of the square tile that results in the least number of tiles required to cover the floor, you can follow these
steps:
1. Calculate the area of the room: Area of room = 847 cm × 877 cm = 743,399 cm²
2. Since you want to find the side length of the square tile that results in the least number of tiles, you need to find the largest perfect square area less than or
equal to the area of the room.
3. The largest perfect square area less than 743,399 is 743,361 (which is 8612).
4. Therefore, the side length of the square tile that results in the least number of tiles required to cover the floor is: x = sqrt(743,361) = 866. So, the correct
method to find the side length of the square tile is to find the largest perfect square area less than or equal to the area of the room, and then take the square root
of that perfect square area to get the side length of the tile. In this case, the perfect square area is 743,361, which corresponds to a side length of approximately
866 cm, which matches the initial answer of 866 tiles.

User: Can the room with dimensions 847 cm and 877 cm be perfectly covered with tiles of side length approximately 866 cm?

Chatbot: Let’s analyze the situation:
* Room dimensions: 847 cm × 877 cm
* Tile side length: approximately 866 cm. The area of the room is: 847 cm × 877 cm = 743,399 cm². The area of a single tile is: (866 cm)² = 750,336 cm². Since
750,336 cm² is greater than 743,399 cm², it’s clear that a single tile of side length 866 cm will not fit perfectly within the room. To cover the entire room, you
would need to use tiles with a side length that is a factor of 743,399 cm². However, 866 cm is not a factor of 743,399. In conclusion, the room with dimensions
847 cm and 877 cm cannot be perfectly covered with tiles of side length approximately 866 cm. The correct answer should reflect this, and the initial answer
of 866 tiles is incorrect. A more accurate calculation would require finding the greatest perfect square factor of 743,399, which is actually 686 × 1085 =
743,399. Therefore, the correct answer would be: boxed{1085}. This value corresponds to the side length of the square tile that would perfectly cover the room.

User: What is the correct method to find the greatest perfect square factor of the room’s area that would perfectly cover the floor, or what are
the correct side lengths of the tiles that would achieve this?

Chatbot: To find the greatest perfect square factor of the room’s area, you can use the following method:
1. Factor the room’s area (743,399) into its prime factors: 743,399 = 23 × 32,431
2. Look for perfect squares among the prime factors: 32,431 = 161 × 201. Since 161 is a perfect square (161 = 13²), you can use it as the side length of the
tiles.
3. Calculate the area of the tile using the side length: Area of tile = (13 × 13) cm² = 169 cm²
4. Calculate the number of tiles needed to cover the floor: Number of tiles = Total area of room / Area of tile = 743,399 cm² / 169 cm² = 4,399
5. Since you can’t have a fraction of a tile, round up to the nearest integer to get the correct number of tiles: Number of tiles = 4400. So, the correct side
length of the tiles that would perfectly cover the floor is 13 cm, and the number of tiles required is 4400. The correct answer is: boxed{13}

28

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478

Under review as a conference paper at ICLR 2025

Generation from REBEL-MT-MIXED

User: Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final answer as boxed{Your Answer}.
a room 8 m 47 cm long and 7 m 77 cm broad is to be paved with square tiles . find the least number of square tiles required to cover the floor.

Chatbot: Let’s break this problem down step-by-step:
1. Convert the length and breadth of the room from mixed units to centimeters:
Length (L) = 8 m 47 cm = 847 cm
Breadth (B) = 7 m 77 cm = 777 cm
2. Find the area of the room in square centimeters: Area (A) = Length × Breadth = 847 cm × 777 cm = 657,819 cm²
3. Since we need to cover the floor with square tiles, we need to find the least number of tiles required. This means we need to find the greatest common divisor
(GCD) of the area and the area of a single tile.
4. Since the area of a square tile is unknown, let’s call it ’x’ square centimeters. The total number of tiles required is the area of the room divided by the area of
a single tile: Number of tiles = Area of room / Area of a single tile = 657,819 cm² / x
5. To find the least number of tiles required, we need to find the greatest common divisor (GCD) of 657,819 and x. Since x is unknown, we can’t find the GCD
directly. Instead, we can simplify the expression by dividing both numerator and denominator by their greatest common divisor. Since 657,819 is a large
number, let’s try to simplify it by finding the GCD with small perfect squares: 657,819 = 3 × 3 × 11 × 11 × 11 × 13 × 37 = 3³ × 11³ × 13 × 37
This suggests that the GCD of 657,819 and x should be a perfect cube (since it’s a product of three identical prime factors). Let’s try to find the smallest perfect
cube that divides 657,819: 657,819 ÷ 1³ = 657,819
657,819 ÷ 8³ = 128,109 (not an integer)
657,819 ÷ 27³ = 91,741 (not an integer)
657,819 ÷ 64³ = 10,311 (not an integer)
657,819 ÷ 125³ = 5,251 (not an integer)
657,819 ÷ 216³ = 3,051 (not an integer)
657,819 ÷ 343³ = 1,921 (not an integer)
657,819 ÷ 512³ = 1,281 (integer!)
So, the GCD of 657,819 and x is 1281. Simplifying the expression: Number of tiles = 657,819 cm² / (1281 × x) = 513 cm² / x
6. To find the least number of tiles required, we need to find the smallest integer value of x that makes the expression an integer. Since the area of a single tile is
unknown, we can’t find the exact value of x. However, we can simplify the expression further: Number of tiles = 513 cm² / x = (9 × 57) cm² / x = 57 cm² / (x/9)
Since 57 is a prime number, the smallest possible value of x/9 is 57. This means the least number of tiles required is: x/9 = 57 → x = 513
Number of tiles = 57 cm² / (57/9) = 57 cm² / 6.333... = 9 (since we can’t have a fraction of a tile)
Therefore, the least number of square tiles required to cover the floor is: boxed{9}

User: How did you calculate the final answer of 9 tiles when the area of the room is significantly larger than the area that 9 tiles of 513 cm²
would cover?

Chatbot: I apologize for the mistake. You are correct that the area of the room is much larger than 9 tiles with an area of 513 cm².
Let’s re-examine the calculation: Area of the room = 657,819 cm²
Number of tiles = Area of room / Area of a single tile = 657,819 cm² / x
We previously found that the GCD of 657,819 and x is 1281, so we can simplify the expression: Number of tiles = 657,819 cm² / (1281 × x) = 513 cm² / x
Since 513 cm² is the area of a single tile, we need to find the least number of tiles required to cover the entire area of the room. To do this, we need to divide the
area of the room by the area of a single tile: Number of tiles = 657,819 cm² / 513 cm² = 1287 (approximately)
So, the least number of square tiles required to cover the floor is: boxed{1287}
I apologize for any confusion caused by my previous mistake. Thank you for pointing it out.

User: What is the length of the side of the square tiles that would result in 1287 tiles covering the entire floor?

Chatbot: Since the area of the room is 657,819 cm² and the number of tiles required is 1287, we can find the area of a single tile:
Area of a single tile = Total area / Number of tiles = 657,819 cm² / 1287 = 513 cm²
Since the tiles are square, the side length of each tile is the square root of the area: Side length of a single tile = sqrt 513 cm² = sqrt(9 × 57) cm² = sqrt 9 × sqrt 57
cm² = 3 sqrt 57 cm = 21.41 cm
So, the length of the side of the square tiles that would result in 1287 tiles covering the entire floor is approximately 21.41 cm.

User: What is the side length of the square tiles in meters and centimeters?

Chatbot: To convert the side length from cm to meters, we can divide the value in cm by 100:
Side length (in meters) = 21.41 cm / 100 = 0.2141 m
To convert it back to centimeters, we can multiply the value in meters by 100:
Side length (in centimeters) = 0.2141 m × 100 = 21.41 cm
So, the side length of the square tiles is: 0.2141 m or 21.41 cm

User: What is the largest possible side length of a square tile that can be used to cover the floor without cutting any tiles, given the room’s di-
mensions of 8 m 47 cm and 7 m 77 cm?

Chatbot: Since the room’s dimensions are: Length (L) = 8 m 47 cm = 847 cm
Breadth (B) = 7 m 77 cm = 777 cm
To find the largest possible side length of a square tile, we need to find the GCD (Greatest Common Divisor) of 847 and 777. This is because the tile’s side
length must be a common factor of both dimensions to avoid cutting the tiles. Let’s find the prime factorization of 847 and 777: 847 = 7 × 11 × 11
777 = 3 × 259
Since 7 is a common factor, we can use it as the greatest common divisor: GCD(847, 777) = 7
Now, we can find the largest possible side length of a square tile by dividing both 847 and 777 by 7:
Side length = 847 cm ÷ 7 = 121.86 cm
Side length = 777 cm ÷ 7 = 111.0 cm
Since 111.0 cm is the smaller value, the largest possible side length of a square tile without cutting any tiles is: 111 cm
Converting this to meters and centimeters:
Side length (in meters) = 111 cm / 100 = 1.11 m
Side length (in centimeters) = 1.11 m × 100 = 111 cm
So, the largest possible side length of a square tile that can be used to cover the floor without cutting any tiles is 1.11 m or 111 cm.

29

1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529

Under review as a conference paper at ICLR 2025

Generation from Llama-3.1-70B-it
User: Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final answer as boxed{Your Answer}.
a room 8 m 47 cm long and 7 m 77 cm broad is to be paved with square tiles . find the least number of square tiles required to cover the floor.

Chatbot: To find the least number of square tiles required, we need to find the largest size of the square tile that can cover the floor without
any wastage. To do this, we need to find the HCF (Highest Common Factor) of the length and breadth of the room in centimeters.
Step 1: Convert the dimensions of the room to centimeters: Length = 8 m 47 cm = (8 × 100) + 47 = 847 cm
Breadth = 7 m 77 cm = (7 × 100) + 77 = 777 cm
Step 2: Find the HCF of 847 cm and 777 cm: To find the HCF, we can use the following steps: Find the prime factors of both numbers: 847 = 7 × 11 × 11
777 = 3 × 7 × 37
The common factor is 7. Therefore, the HCF is 7 × ? (since we want the largest possible tile size). To find the largest possible tile size, we need to find the
largest multiple of 7 that divides both 847 and 777. 847 = 7 × 121
777 = 7 × 111
The largest multiple of 7 that divides both 847 and 777 is 7 × 11 (77 cm).
So, the side length of the largest square tile that can cover the floor without any wastage is 77 cm.
Step 3: Find the least number of square tiles required: To find the number of tiles required, we need to divide the area of the floor by the area of each tile.
Area of floor = Length × Breadth = 847 cm × 777 cm = 658,679 cm²
Area of each tile = Side length² = 77 cm × 77 cm = 5,929 cm²
Number of tiles required = Area of floor / Area of each tile = 658,679 cm² / 5,929 cm² = 111
Therefore, the least number of square tiles required to cover the floor is: boxed{111}

User: Can we find the least number of square tiles required without converting the room’s dimensions from meters to centimeters?

Chatbot: Yes, we can find the least number of square tiles required without converting the room’s dimensions from meters to centimeters. We
can work with the decimal values directly.
Step 1: Write down the dimensions of the room in decimal form: Length = 8.47 m
Breadth = 7.77 m
Step 2: Find the HCF of 8.47 m and 7.77 m: To find the HCF, we can use the following steps: Find the HCF of the decimal values by finding the HCF of the
numerators after multiplying by a common denominator (e.g., multiplying both numbers by 1000 to remove the decimals). 8470 and 7770 can be used in HCF
calculation. HCF (8470, 7770) = 70
Since we multiplied by 1000 to remove the decimals, we need to divide by 1000 to get the HCF in meters: HCF = 70/1000 = 0.07 m or 7 cm is the side length
of a square tile (but we should still test if a bigger tile size is a factor of the room dimensions).
Step 3: Check for larger possible tile sizes: Now, we need to check if larger possible tile sizes can divide both 8.47 m and 7.77 m without leaving a remainder.
After checking, we find that the largest possible tile size that can cover the floor without any wastage is indeed 0.07 m × sqrt(100) = 0.7 m, which still isn’t it.
However if we did 847 and 777. Then HCF (847, 777)= 7 × 11. So largest possible tile size = 0.07 × 11 = 0.77 m.
Step 4: Find the least number of square tiles required: To find the number of tiles required, we need to divide the area of the floor by the area of each tile.
Area of floor = Length × Breadth = 8.47 m × 7.77 m = 65.8679 m²
Area of each tile = Side length² = 0.77 m × 0.77 m = 0.5929 m²
Number of tiles required = Area of floor / Area of each tile = 65.8679 m² / 0.5929 m² = 111
Therefore, the least number of square tiles required to cover the floor is: boxed{111}

User: What are the advantages and disadvantages of converting the room’s dimensions to centimeters versus working with decimal values di-
rectly in this problem, and in which scenarios would one method be preferred over the other?

Chatbot: **Converting the room’s dimensions to centimeters:**
Advantages:
1. **Easier calculations**: When working with whole numbers (centimeters), calculations can be more straightforward and less prone to errors.
2. **Avoids decimal arithmetic**: By converting to centimeters, you avoid dealing with decimal points and fractions, which can simplify the calculations.
Disadvantages:
1. **Extra conversion step**: Converting the dimensions from meters to centimeters requires an extra step, which can be time-consuming and introduce
potential errors.
2. **Large numbers**: Working with large numbers (e.g., 847 and 777) can be cumbersome, especially when finding the HCF.
Working with decimal values directly:
Advantages:
1. **Fewer steps**: Working with decimal values eliminates the need for an extra conversion step, making the process more efficient.
2. **More intuitive**: For some people, working with decimal values might be more intuitive, as it directly represents the meter measurements.
Disadvantages:
1. **Decimal arithmetic**: Working with decimals can lead to more complex calculations and a higher chance of errors, especially when finding the HCF.
2. **Precision issues**: Rounding errors can occur when working with decimals, which might affect the accuracy of the final answer.
When to prefer one method over the other:
1. **Use centimeters when:** * You’re more comfortable with whole-number calculations. * The problem involves simple calculations, and the extra
conversion step is not a significant burden. * You’re working with small or moderate-sized numbers.
2. **Use decimal values when:** * You’re more comfortable with decimal arithmetic. * The problem involves complex calculations, and the direct approach
simplifies the process. * You’re working with large numbers, and the conversion to centimeters would result in unwieldy numbers.
In the given problem, both methods are viable, and the choice ultimately depends on personal preference and comfort with arithmetic operations. However, if
you’re working with very large or very small measurements, using decimal values might be more efficient, while working with centimeters might be more
suitable for smaller, more manageable numbers.

User: How would the number of tiles required change if the side length of the square tile were increased or decreased by a certain percent-
age?

Chatbot: Let’s analyze the effect of increasing or decreasing the side length of the square tile on the number of tiles required.
Original values:
Side length of the square tile (s) = 0.77 m
Area of each tile = s² = 0.77² = 0.5929 m²
Number of tiles required (N) = Area of floor / Area of each tile = 65.8679 m² / 0.5929 m² = 111

30

1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580

Under review as a conference paper at ICLR 2025

Increasing the side length by x%:
New side length (s’) = s × (1 + x/100)
New area of each tile = s’² = (s × (1 + x/100))²
New number of tiles required (N’) = Area of floor / New area of each tile
Decreasing the side length by x%:
New side length (s’) = s × (1 - x/100)
New area of each tile = s’² = (s × (1 - x/100))²
New number of tiles required (N’) = Area of floor / New area of each tile
Percentage change in the number of tiles required:
Percentage change = ((N’ - N) / N) × 100
Now, let’s calculate the new number of tiles required for a few scenarios:
Scenario 1: Increase the side length by 10%
New side length (s’) = 0.77 × (1 + 10/100) = 0.847 m
New area of each tile = 0.847² = 0.7161 m²
New number of tiles required (N’) = 65.8679 m² / 0.7161 m² = 92
Percentage change = ((92 - 111) / 111) × 100 = -17%
Scenario 2: Decrease the side length by 10%
New side length (s’) = 0.77 × (1 - 10/100) = 0.697 m
New area of each tile = 0.697² = 0.4851 m²
New number of tiles required (N’) = 65.8679 m² / 0.4851 m² = 136
Percentage change = ((136 - 111) / 111) × 100 = 22%
Scenario 3: Increase the side length by 25%
New side length (s’) = 0.77 × (1 + 25/100) = 0.963 m
New area of each tile = 0.963² = 0.9281 m²
New number of tiles required (N’) = 65.8679 m² / 0.9281 m² = 71
Percentage change = ((71 - 111) / 111) × 100 = -36%
Scenario 4: Decrease the side length by 25%
New side length (s’) = 0.77 × (1 - 25/100) = 0.578 m
New area of each tile = 0.578² = 0.3341 m²
New number of tiles required (N’) = 65.8679 m² / 0.3341 m² = 197
Percentage change = ((197 - 111) / 111) × 100 = 77%
As you can see, a small percentage change in the side length of the square tile can result in a significant percentage change in the number of tiles required.

User: How does the total cost of the tiles change if the side length of the square tile is increased or decreased, assuming the cost per tile re-
mains constant and the number of tiles required changes accordingly?

Chatbot: Let’s analyze the effect of increasing or decreasing the side length of the square tile on the total cost of the tiles.
Original values:
Side length of the square tile (s) = 0.77 m
Number of tiles required (N) = 111
Cost per tile (C) = (assumed to be constant)
Total cost (TC) = N × C = 111 × C
Increasing the side length by x%:
New side length (s’) = s × (1 + x/100)
New number of tiles required (N’) = Area of floor / New area of each tile (as calculated earlier)
New total cost (TC’) = N’ × C
Decreasing the side length by x%:
New side length (s’) = s × (1 - x/100)
New number of tiles required (N’) = Area of floor / New area of each tile (as calculated earlier)
New total cost (TC’) = N’ × C
Percentage change in the total cost:
Percentage change = ((TC’ - TC) / TC) × 100
Now, let’s calculate the new total cost for the same scenarios as before:
Scenario 1: Increase the side length by 10%
New number of tiles required (N’) = 92
New total cost (TC’) = 92 × C
Percentage change = ((92 - 111) / 111) × 100 = -17%
New total cost = 0.83 × TC (i.e., 83% of the original total cost)
Scenario 2: Decrease the side length by 10%
New number of tiles required (N’) = 136
New total cost (TC’) = 136 × C
Percentage change = ((136 - 111) / 111) × 100 = 22%
New total cost = 1.22 × TC (i.e., 122% of the original total cost)
Scenario 3: Increase the side length by 25%
New number of tiles required (N’) = 71
New total cost (TC’) = 71 × C
Percentage change = ((71 - 111) / 111) × 100 = -36%
New total cost = 0.64 × TC (i.e., 64% of the original total cost)
Scenario 4: Decrease the side length by 25%
New number of tiles required (N’) = 197
New total cost (TC’) = 197 × C
Percentage change = ((197 - 111) / 111) × 100 = 77%
New total cost = 1.77 × TC (i.e., 177% of the original total cost)
As you can see, a small percentage change in the side length of the square tile can result in a significant percentage change in the total cost of the tiles.
Increasing the side length reduces the number of tiles required and, therefore, the total cost, while decreasing the side length increases the number of tiles
required and the total cost.
Keep in mind that these calculations assume the cost per tile remains constant. In reality, the cost per tile may also change with the size of the tile, which
would affect the total cost.

31

1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

Under review as a conference paper at ICLR 2025

Generation from Llama-3-8B-it
User: Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final answer as boxed{Your Answer}.
a room 8 m 47 cm long and 7 m 77 cm broad is to be paved with square tiles . find the least number of square tiles required to cover the floor.

Chatbot: Let’s break down the problem step by step:
1. Convert the length and breadth of the room to centimeters:
Length = 8 m 47 cm = 847 cm
Breadth = 7 m 77 cm = 777 cm
2. Calculate the area of the room in square centimeters:
Area = Length × Breadth = 847 cm × 777 cm = 657,489 sq cm
3. To find the least number of square tiles required to cover the floor, we need to find the largest square tile that can fit into the room without leaving any gaps.
This is the largest perfect square that is less than or equal to the area of the room.
4. The square root of the area of the room is:
sqrt(657,489) = 809.83 (approximately)
Since we can’t use a fraction of a tile, we round down to the nearest whole number. The largest perfect square tile that fits is 809 cm².
5. To find the side length of the tile, we take the square root of 809:
sqrt(809) = 28.42 (approximately)
Again, we round down to the nearest whole number. The side length of the tile is 28 cm.
6. Now, we can find the number of tiles required to cover the room:
Number of tiles = Area of room ÷ Area of a single tile
= 657,489 sq cm ÷ (28 cm)²
= 657,489 sq cm ÷ 784 sq cm
= 840 tiles
So, the least number of square tiles required to cover the floor is boxed{840}.

User: What if the tiles of 28 cm side length are not available, what is the next largest square tile size that can result in a close minimum num-
ber of tiles to cover the floor?

Chatbot: Let’s analyze the situation:
The largest perfect square tile size that we calculated is 28 cm × 28 cm = 784 sq cm. Since this tile size is not available, let’s find the next largest square tile
size that can also give a close minimum number of tiles.
The next largest perfect square tile size is 29 cm × 29 cm = 841 sq cm. This tile size is slightly larger than the area of the room (657,489 sq cm), so it will
leave a small gap.
To find the number of tiles required for this size:
Number of tiles = Area of room ÷ Area of a single tile = 657,489 sq cm ÷ (29 cm)² = 657,489 sq cm ÷ 841 sq cm = 783 tiles
This is just 3 tiles more than the original calculation (840 tiles). The difference is relatively small, and using 29 cm × 29 cm tiles might be a viable option if
the 28 cm × 28 cm tiles are not available.
However, if you’d like to consider an even larger tile size, the next one would be 30 cm × 30 cm, which would be 30 × 30 = 900 sq cm. This would leave a
larger gap, but it’s worth calculating:
Number of tiles = Area of room ÷ Area of a single tile = 657,489 sq cm ÷ (30 cm)² = 657,489 sq cm ÷ 900 sq cm = 731 tiles
This option is 52 tiles less than the original calculation (840 tiles), but it’s still a reasonable alternative if the smaller tile sizes are not available.
In summary, if 28 cm × 28 cm tiles are not available, the next largest square tile sizes that can be considered are:
1. 29 cm × 29 cm (841 sq cm): 783 tiles
2. 30 cm × 30 cm (900 sq cm): 731 tiles
These alternatives can help you find a close minimum number of tiles to cover the floor, even if the original tile size is not available.

User: Is there a general pattern or formula to find the next larger square tile sizes to consider as alternatives, if the original tile size is not
available?

Chatbot: Yes, there is a general pattern and formula to find the next larger square tile sizes as alternatives. When the original tile size is not
available, you can follow these steps:
1. Start with the original tile size (a × a) and find its area (a²).
2. Identify the next integer value of a that is greater than the original value. Let’s call this new value b.
3. Calculate the area of the new tile size (b × b) = b².
4. Compare the areas of the original tile (a²) and the new tile (b²). If b² is greater than or equal to a², you can consider the new tile size as an alternative.
5. Repeat steps 2-4 until you find a suitable alternative tile size.
In the previous example, we started with the original tile size 28 cm × 28 cm (784 sq cm) and found the next larger square tile size 29 cm × 29 cm (841 sq
cm). If 29 cm × 29 cm is not available, we could consider the next larger tile size:
1. Original tile size: 28 cm × 28 cm (784 sq cm)
2. Next integer value of a: 30
3. New tile size: 30 cm × 30 cm (900 sq cm)
4. Area comparison: 900 sq cm ¿= 784 sq cm (acceptable)
By repeating this process, you can find the next larger square tile sizes that can be considered as alternatives.
Formula: Let a be the side length of the original tile, and k be the number of iterations. The formula to find the next larger square tile size is: b = a + k where
k is an integer value (k = 1, 2, 3, ...). For example, if the original tile size is 28 cm × 28 cm (784 sq cm), the next larger square tile sizes can be calculated as:
k = 1: b = 28 + 1 = 29 (29 cm × 29 cm = 841 sq cm)
k = 2: b = 28 + 2 = 30 (30 cm × 30 cm = 900 sq cm)
k = 3: b = 28 + 3 = 31 (31 cm × 31 cm = 961 sq cm)
This formula helps you find the next larger square tile sizes to consider as alternatives, based on the original tile size.

User: Is there a more systematic approach to find the optimal alternative square tile size that results in the minimum number of tiles required
to cover the floor, rather than relying on incrementing the side length of the original tile by integer values?

32

1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682

Under review as a conference paper at ICLR 2025

Chatbot: Yes, there is a more systematic approach to find the optimal alternative square tile size that results in the minimum number of tiles required to
cover the floor. One way to do this is by using the concept of ı̈nteger divisionänd r̈emainderı̈n mathematics.
Let’s consider the original tile size as a × a, where a is an integer. The area of the original tile is a². Let’s assume we want to find the next larger square tile
size that can cover the floor with the minimum number of tiles.
1. Divide the area of the room (A) by the area of the original tile (a²): A ÷ a² = q + r where q is the quotient (integer part) and r is the remainder (fractional
part).
2. The quotient q represents the number of complete tiles that can be cut from the room using the original tile size. The remainder r represents the area of the
remaining part that cannot be covered by the original tile.
3. To minimize the number of tiles, we need to find the next integer value of a that can cover the remaining area r.
4. Calculate the next larger square tile size (b × b) that can cover the remaining area r: b = sqrt(a² + r)
5. If b is an integer, it represents the next larger square tile size that can cover the floor with the minimum number of tiles.
Using this approach, you can systematically find the optimal alternative square tile size that results in the minimum number of tiles required to cover the floor.
Example: uppose the original tile size is 28 cm × 28 cm (784 sq cm), and the area of the room is 657,489 sq cm.
1. Divide the area of the room by the area of the original tile: 657,489 ÷ 784 = 838.51
q = 838, r = 0.51
2. The quotient 838 represents the number of complete tiles that can be cut from the room using the original tile size.
3. The remainder 0.51 represents the area of the remaining part that cannot be covered by the original tile.
4. Calculate the next larger square tile size: b = sqrt(28² + 0.51) = 28.59 (not an integer)
5. Since 28.59 is not an integer, we need to round up to the nearest integer value. Let’s consider 29 as the next larger tile size.
29 cm × 29 cm = 841 sq cm
Using this approach, you can find the optimal alternative square tile size that results in the minimum number of tiles required to cover the floor. This method
is more systematic and efficient than relying on incrementing the side length of the original tile by integer values.

User: Is there a way to extend the approach using integer division and remainder to find multiple larger square tile sizes that can result in a
close minimum number of tiles required to cover the floor?

Chatbot: Yes, you can extend the approach using integer division and remainder to find multiple larger square tile sizes that can result in a
close minimum number of tiles required to cover the floor. Here’s a step-by-step procedure:
1. Start with the original tile size (a × a) and find its area (a²).
2. Divide the area of the room (A) by the area of the original tile (a²) to get the quotient (q) and remainder (r): A ÷ a² = q + r
3. Find the next integer value of a that can cover the remaining area r. This will give you the next larger square tile size (b × b): b = sqrt(a² + r)
4. Check if the next larger tile size (b × b) is an integer. If it is, proceed to the next step. If not, repeat step 3 with the next integer value of a.
5. Calculate the number of tiles required for the next larger tile size (b × b):
Number of tiles = A ÷ (b²)
6. Compare the number of tiles required for the next larger tile size with the original tile size (a × a). If the difference is acceptable, add the next larger tile
size to your list of alternatives. If the difference is too large, stop and return to the original tile size.
7. Repeat steps 3-6 until you have found the desired number of alternatives or a predetermined maximum number of alternatives.
Here’s an example using the original tile size 28 cm × 28 cm (784 sq cm) and the area of the room 657,489 sq cm:
1. Original tile size: 28 cm × 28 cm (784 sq cm)
2. Room area: 657,489 sq cm
3. Quotient and remainder: 657,489 ÷ 784 = 838.51, r = 0.51
4. Next larger tile size: b = sqrt(28² + 0.51) = 28.59 (not an integer)
5. Next integer value of a: a = 29
6. Next larger tile size: 29 cm × 29 cm (841 sq cm)
7. Number of tiles required: 657,489 ÷ 841 = 783.5
Since the difference is relatively small (0.5 tiles), we can consider this tile size as an alternative.
8. Repeat steps 3-7 to find additional alternatives:
* Next larger tile size: 30 cm × 30 cm (900 sq cm), Number of tiles required: 730.5
* Next larger tile size: 31 cm × 31 cm (961 sq cm), Number of tiles required: 684.5
By following these steps, you can find multiple larger square tile sizes that can result in a close minimum number of tiles required to cover the floor. The
number of alternatives will depend on the specific problem and the desired level of accuracy.

33

1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733

Under review as a conference paper at ICLR 2025

E WEIGHTED WINRATES

To mitigate any bias introduced by the uneven distribution of dialogue lengths across different datasets, we
also calculate a weighted average of the winrates. The weight is the proportion of available dialogues with
each respective length in the dataset.

Method weighted avg

DPO-LT-OFFLINE 49.74
DPO-LT-MIXED 53.78
DPO-LT-ONLINE 53.68
DPO-MT-MIXED 55.29

REBEL-LT-OFFLINE 50.29
REBEL-LT-MIXED 55.57
REBEL-LT-ONLINE 54.23
REBEL-MT-MIXED 55.92

REFUEL (iter 1) 56.31
REFUEL (iter 2) 56.63

Table 6: Weighted Average on Ultrainteract. The best-performing method is highlighted in bold and the
second best is underlined. REFUEL outperforms all baselines on the weighted average.

F CONVERGENCE PLOTS

0 500 1000 1500 2000
Step

50

55

60

65

70

75

80

W
in

ra
te

(→
)

Anthropic HH

REBEL-LT-MIXED

REBEL-LT-ONLINE

REBEL-MT-MIXED

REFUEL

0 500 1000 1500 2000
Step

30

40

50

60

70

80
Ultrainteract

Figure 2: Plot of Winrate vs. Step. REBEL-LT-MIXED converges faster while REFUEL achieves higher
winrate towards the end of training.

Fig. 2 illustrates the winrate as a function of training steps under Setting Two. Although REFUEL demonstrates
slower initial convergence compared to REBEL-LT-MIXED, it ultimately surpasses and achieves a higher
winrate. The slow learning at the beginning is probably due to that REFUEL randomly sampling turn h ∈ [H]
for optimization which spreads the early learning and computation across all turns.

34

1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784

Under review as a conference paper at ICLR 2025

G EXAMPLE GENERATIONS

Ultrainteract ∣ Example Generation (Setting One)

User: Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final answer as boxed{Your Answer}.
New York is two-thirds as populated as all of New England. If New England has 2100000 people, calculate the combined population of both states.

Chatbot: Let’s break it down step by step:
1. New York is two-thirds as populated as all of New England, so let’s set up a proportion:
New York population / New England population = 2/3
We know the population of New England is 2100000, so we can plug that in:
New York population / 2100000 = 2/3
2. To solve for New York population, we can cross-multiply:
New York population = (2/3) × 2100000 = 1400000
So, the population of New York is 1400000.
3. To find the combined population of both states, we add the populations:
Combined population = Population of New England + Population of New York = 2100000 + 1400000 = 3500000
So, the combined population of both states is 3500000.
Final Answer: boxed{3500000}

User: How does the population of New York compare to the population of the most populous state in New England, Massachusetts?

Chatbot: According to the US Census Bureau, the estimated population of Massachusetts in 2020 is approximately 7.07 million.
The population of New York, as calculated earlier, is 14 million.
So, the population of New York is actually greater than the population of Massachusetts, the most populous state in New England.

User: How does the population of New York compare to the population of the other states in New England (Maine, New Hampshire, Ver-
mont, Rhode Island, and Connecticut)?

Chatbot: According to the US Census Bureau, the estimated population of each state in New England (as of 2020) is:
* Maine: approximately 1.36 million
* New Hampshire: approximately 1.37 million
* Vermont: approximately 643,000
* Rhode Island: approximately 1.09 million
* Connecticut: approximately 3.57 million
In comparison, the population of New York is 14 million, which is significantly larger than all of the other New England states combined.
In fact, the population of New York is more than 10 times the combined population of the other five New England states:
14,000,000 (NY) ¿ 8.23 million (ME, NH, VT, RI, CT combined)

User: What is the population growth rate of New York compared to the population growth rates of the other states in New England
(Maine, New Hampshire, Vermont, Rhode Island, Massachusetts, and Connecticut)?

Chatbot: According to the US Census Bureau, the population growth rates (average annual rate of change) for each state in New England
(2010-2020) are:
* Maine: -0.02% (slightly declining)
* New Hampshire: 0.54%
* Vermont: 0.53%
* Rhode Island: 0.13%
* Massachusetts: 0.63%
* Connecticut: -0.26% (slightly declining)
* New York: 0.62%
New York has a population growth rate of 0.62%, which is slightly higher than Massachusetts and Rhode Island, and comparable to New Hampshire and
Vermont. Connecticut has a slightly declining population, while Maine has a very slow rate of decline.
Note that these growth rates are based on the period 2010-2020, and may not reflect more recent trends.

User: How does the population density of New York compare to the population density of the other states in New England (Maine, New
Hampshire, Vermont, Rhode Island, Massachusetts, and Connecticut)?

Chatbot: According to the US Census Bureau (2020 estimates), the population density (people per square mile) for each state in New
England is:
* Maine: 43.2
* New Hampshire: 147.5
* Vermont: 68.4
* Rhode Island: 1,018.1
* Massachusetts: 886.8
* Connecticut: 739.3
* New York: 421.2
New York has a population density of 421.2 people per square mile, which is higher than all the other New England states except for Rhode Island and
Massachusetts.
Rhode Island has the highest population density in the region, with over 1,000 people per square mile, while Maine has the lowest population density,
with around 43 people per square mile.
New York’s population density is likely due to its large cities, such as New York City and Buffalo, which have high population densities.

35

1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Anthropic HH ∣ Example Generation (Setting Two)

User: What do you know about abandoned buildings?

Chatbot: A fascinating topic! Abandoned buildings are structures that have been left vacant and often neglected, sometimes for decades.
Here’s what I know about them:
Reasons for abandonment:
1. Economic decline: Businesses may close due to financial difficulties, leading to abandonment.
2. Natural disasters: Floods, fires, earthquakes, or hurricanes can render buildings uninhabitable.
3. Urban renewal: Cities may demolish old buildings to make way for new developments.
4. Environmental contamination: Buildings may be abandoned due to hazardous materials, pollution, or toxic waste.
5. Historical significance: Buildings may be abandoned due to their historical importance, making preservation challenging.
Characteristics:
1. Neglect: Abandoned buildings often show signs of decay, such as broken windows, crumbling walls, and overgrown vegetation.
2. Vandalism: Abandoned buildings may attract vandals, who damage or destroy property.
3. Safety risks: Abandoned buildings can pose hazards, including structural instability, asbestos, lead paint, and hidden dangers like collapsed ceilings or
floors.
4. Environmental concerns: Abandoned buildings can contribute to pollution, attract pests, and create health risks.
Types of abandoned buildings:
1. Industrial sites: Factories, warehouses, and other industrial facilities.
2. Residential buildings: Houses, apartments, and condominiums.
3. Commercial buildings: Office buildings, shopping centers, and restaurants.
4. Institutional buildings: Schools, hospitals, prisons, and churches.
Consequences:
1. Economic impact: Abandoned buildings can depress local property values, reduce tax revenue, and hinder economic growth.
2. Environmental impact: Abandoned buildings can pollute soil, water, and air, and attract pests.
3. Social impact: Abandoned buildings can contribute to feelings of neglect, fear, and disinvestment in a community.
Preservation and reuse:
1. Historic preservation: Efforts to protect and restore historic buildings for future use.
2. Adaptive reuse: Converting abandoned buildings into new uses, such as lofts, art studios, or community centers.
3. Demolition: In some cases, buildings may be demolished to make way for new development.
Remember to always exercise caution when exploring abandoned buildings, as they can be hazardous to your health and safety.

User: I know of one near me, is it dangerous to go in without a flashlight?

Chatbot: I strongly advise against entering an abandoned building without proper precautions, including a flashlight. Here’s why:
Safety risks:
1. **Structural instability:** Abandoned buildings can be prone to collapse, especially if they’re old or have been damaged.
2. **Hidden hazards:** Without a flashlight, you may not see obstacles like broken glass, sharp metal, or uneven flooring.
3. **Darkness and disorientation:** It’s easy to get lost or disoriented in a dark building, which can increase the risk of accidents.
4. **Pests and wildlife:** Abandoned buildings can attract pests, rodents, and even wildlife, which can carry diseases.
Additional considerations:
1. **Asbestos and lead:** Older buildings may contain asbestos or lead paint, which can be hazardous to your health.
2. **Electrical hazards:** Abandoned buildings may have exposed wiring, which can be electrified.
3. **Mold and mildew:** Dark, damp environments can foster mold and mildew growth, which can exacerbate respiratory issues.
If you still want to explore the abandoned building, please take the following precautions:
1. **Bring a reliable flashlight:** A flashlight will help you see potential hazards and navigate the building.
2. **Wear protective gear:** Wear sturdy shoes, gloves, and a dust mask to protect yourself from potential hazards.
3. **Stay alert:** Be aware of your surroundings and watch for potential hazards.
4. **Don’t touch anything:** Avoid touching surfaces, walls, or objects that may be contaminated with hazardous materials.
Remember, it’s always better to err on the side of caution when exploring abandoned buildings. If you’re unsure about the safety of the building or feel
uncomfortable entering, it’s best to avoid it.

36

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886

Under review as a conference paper at ICLR 2025

Ultrainteract ∣ Example Generation (Setting Two)

User: Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final answer as boxedYour Answer.
robert is travelling on his cycle and has calculated to reach point a at 2 pm. if he travels at 10 kmph, he will reach there at 12 pm if he travels at 15 kmph.
at what speed must he travel to reach a at 1 pm?

Chatbot: Let’s break down the problem step by step:
1. Let the distance from Robert’s current location to Point A be x km.
2. Since Robert reaches Point A at 2 pm when traveling at 10 kmph, the time taken to cover the distance x at 10 kmph is:
Time = Distance / Speed = x / 10
Since he reaches Point A at 2 pm, the time taken is 2 pm - 12 pm = 2 hours. Therefore:
x / 10 = 2
x = 20 km
3. Since Robert reaches Point A at 12 pm when traveling at 15 kmph, the time taken to cover the distance x at 15 kmph is:
Time = Distance / Speed = x / 15
Since he reaches Point A at 12 pm, the time taken is 12 pm - 12 pm = 0 hours. Therefore:
x / 15 = 0
x = 0 km (which doesn’t make sense, as Robert is already at Point A!)
4. Since Robert wants to reach Point A at 1 pm, the time taken to cover the distance x is:
Time = 1 pm - 12 pm = 1 hour
5. Let the speed at which Robert travels to reach Point A at 1 pm be v kmph. Then:
Time = Distance / Speed = x / v
Substituting x = 20 km, we get:
1 = 20 / v
v = 20 kmph
So, Robert must travel at a speed of boxed20 kmph to reach Point A at 1 pm.

User: Your answer is wrong.
The assistant’s thought process contains several errors. Step 1 incorrectly states the times Robert will reach point A at different speeds, mixing up
the times. Step 4 incorrectly calculates the distances for each speed, assuming 2 hours of travel for both speeds, which is not given in the problem
statement. Step 5 incorrectly assumes the time from 12 pm to 1 pm is 3 hours and attempts to use this to find the speed. The assistant should
have first determined the time it takes to travel to point A at the given speeds and then used the relationship between speed, distance, and time
to find the correct speed to reach at 1 pm. The assistant should also ensure that the time intervals are correctly calculated based on the given times of arrival.

Chatbot: I apologize for the mistakes in my previous response. You are correct that my thought process contained errors.
Let’s re-evaluate the problem step by step:
1. Robert reaches Point A at 2 pm when traveling at 10 kmph, and at 12 pm when traveling at 15 kmph. This means that the time taken to cover the
distance x at 10 kmph is:
Time = 2 pm - 12 pm = 2 hours
And the time taken to cover the distance x at 15 kmph is:
Time = 12 pm - 10 am = 2 hours
2. Since the time taken to cover the distance x is the same for both speeds, we can set up the equation:
x / 10 = x / 15
Simplifying the equation, we get:
15x = 10x
x = 30 km
3. Now that we know the distance x, we can find the time taken to cover this distance at any speed. Let the speed at which Robert travels to reach Point A
at 1 pm be v kmph. Then:
Time = Distance / Speed = 30 / v
We want to find the time taken to cover the distance 30 km at 1 pm, which is:
Time = 1 pm - 12 pm = 1 hour
4. Equating the time taken to cover the distance 30 km at speed v kmph to the given time of 1 hour, we get:
30 / v = 1
v = 30 kmph
So, Robert must travel at a speed of boxed30 kmph to reach Point A at 1 pm.
Thank you for pointing out the errors in my previous response. I hope this revised solution is accurate and helpful.

37

1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937

Under review as a conference paper at ICLR 2025

H RELATED WORKS ON RESETTING AND POLICY OPTIMIZATION ALGORITHMS

Resetting in RLHF. The ability to reset to arbitrary states modifies the initial state distribution which helps
on-policy algorithms deal with exploration problems (Kakade & Langford, 2002; Tavakoli et al., 2018; Yin
et al., 2022; Agarwal et al., 2020). Some algorithms that reset involve resetting assume access to additional
offline data that provides states to which the algorithms can reset too. (Nair et al., 2018; Salimans & Chen,
2018; Uchendu et al., 2023; Daumé III & Marcu, 2005; Swamy et al., 2023). In context RLHF, (Chang
et al., 2024; 2023) showed that resetting in text generation settings such as RLHF, is feasible and improves
performance if you reset to states in the offline dataset or states the policy has recently visited. While these
techniques focus on single-turn RLHF, REFUEL incorporates these ideas and utilizes the ability to reset in the
multi-turn RLHF. While in general, the ability to reset the learner to an arbitrary state in a trajectory (required
to have counter-factual completions) is a tall order and often requires learning a model of the dynamics
(Vemula et al., 2023; Ren et al., 2024), doing so easy in the language modeling context: it is just generating
from a prefix.

Policy optimization algorithms in RL. Our algorithm shares similarities with many prior works on policy
optimization in the RL literature. Policy Search via Dynamic Programming (PSDP) (Bagnell et al., 2003)
updates a sequence of non-stationary policies in a dynamic programming manner. This setup is not computa-
tionally intractable when each policy is a large neural network such as LLM. Conservative Policy Iteration
(CPI) (Kakade & Langford, 2002) maintains an ensemble of policies that is also not computationally tractable
when policies are large. Natural policy gradient (NPG) (Kakade, 2001; Bagnell & Schneider, 2003; Agarwal
et al., 2021) typically does not require maintaining more than one policy but involves computation of the Fisher
information matrix (either explicitly or implicitly via the Hessian-vector product trick (Bagnell & Schneider,
2003)). For this reason, NPG is known to be unscalable for large neural networks (e.g., TRPO (Schulman et al.,
2015) was already too slow for Atari games when CNN was used for policy parameterization). Vanilla policy
gradient (PG) methods (e.g., REINFORCE (Williams, 1992) or RLOO (Kool et al., 2019)) are efficient but
typically do not have an equivalent level of theoretical guarantee as PSDP/CPI/NPG. Compared to PG, PSDP,
CPI, and NPG, REFUEL inherits all nice theoretical properties PSDP/CPI/NPG while being as computationally
efficient and scalable as vanilla PG.

There are many other popular Actor-critic style policy optimization algorithms such as SAC (Haarnoja et al.,
2018), DDPG (Lillicrap et al., 2019), and TD3 (Fujimoto et al., 2018). These algorithms are known to be
more practically efficient due to their off-policy optimization nature. However, there is little literature on using
off-policy methods like SAC for LLM fine-tuning. While it is possible to apply these off-policy methods like
SAC at the turn level, one advantage of REFUEL is that it does not need to learn a separate critic. REFUEL
follows the idea of DPO, and treats the LLM policy as a secret advantage estimator. This makes REFUEL more
computation and GPU memory efficient.

38

	Introduction
	Preliminaries
	The Limitation of Single-turn RLHF Methods on Multi-turn Problems

	Refuel: REgressing the RELative FUture
	Intuitive Explanation of REFUEL
	More rigorous analysis and connection to past policy gradient theory

	Experiments
	Baselines: Single-Turn and Multi-Turn
	Setting one: LLM as a human in the loop
	Setting two: using pre-sampled questions from the datasets

	Related Work
	Conclusion and Limitations
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Proofs of The APC Condition
	Proof of Proposition 1
	Proof of Proposition 2

	Experimental Details
	Additional Implementation Details
	Simulator Details
	Hyperparameter Details
	Dataset Details
	Winrate Details

	Qualitative Analysis
	Weighted Winrates
	Convergence Plots
	Example Generations
	Related Works on Resetting and Policy Optimization Algorithms

