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Abstract
Large language models (LLMs) have shown001
great potential across various industries due to002
their remarkable ability to generalize through003
instruction tuning. However, the limited avail-004
ability of domain-specific data significantly005
hampers their performance on specialized tasks.006
While existing methods primarily focus on se-007
lecting training data from general datasets that008
are similar to the target domain, they often fail009
to consider the joint distribution of instructions,010
resulting in inefficient learning and subopti-011
mal knowledge transfer. To address these chal-012
lenges, we introduce G2IS (Gradient-based013
Graph Instruction Selection), a novel method014
that constructs a mixed gradient-based instruc-015
tion graph to capture the joint distribution and016
interdependencies between instructions. By ac-017
counting for the relationships between instruc-018
tions, G2IS improves domain adaptation effi-019
ciency. Additionally, we propose a gradient020
walk algorithm to refine the data selection pro-021
cess, enhancing both training effectiveness and022
efficiency. Our experiments demonstrate that023
G2IS outperforms traditional methods across024
various domain adaptation tasks, yielding sig-025
nificant performance gains, particularly in com-026
plex, data-scarce scenarios. These results un-027
derscore the potential of G2IS in advancing the028
development of large, domain-specific models.029

1 Introduction030

The increasing demand for personalized and031

domain-specific applications has driven the rapid032

advancement of domain-specific LLMs (Wu et al.,033

2023; Zhang and Yang, 2023). Unlike general-034

purpose models, these models should not only de-035

velop general expertise but also continuously adapt036

to evolving domain knowledge. However, the ef-037

fectiveness of these models critically depends on038

their ability to efficiently acquire and apply rele-039

vant, domain-specific knowledge.040

Instruction tuning has emerged as a crucial041

method for adapting LLMs to specialized domains042
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Figure 1: On the FLAN-V2 dataset, our method selects
1% of the data and compares it with the full dataset
across three models. In most tasks, our approach us-
ing only 1% outperforms instruction tuning on the full
dataset.

through the use of curated, task-specific instruction 043

datasets (Peng et al., 2023; Zhang et al., 2023). By 044

exposing models to domain-relevant instructions, 045

this approach significantly improves their ability 046

to generalize across various tasks, including those 047

requiring domain adaptation and complex reason- 048

ing. However, a key challenge in domain-specific 049

instruction tuning is the limited availability of high- 050

quality annotated data. Additionally,concerns such 051

as user privacy has further exacerbated the data lim- 052

itations in these domain-specific areas. To address 053

this challenge, a promising solution is data selec- 054

tion, which involves identifying, from large-scale, 055

general instruction datasets, the most relevant and 056

impactful training samples that closely align with 057

the target task (Zhao et al., 2024b). This process 058

can substantially enhance the model’s performance 059

within the target domain.Therefore, the effective- 060

ness of the data selection method is critical, as it 061

directly influences the success of domain-specific 062

instruction tuning. 063

A common approach to data selection involves 064
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choosing samples that closely resemble the valida-065

tion set (Xia et al., 2024; Joaquin et al., 2024).066

However, training data typically exhibits com-067

plex interdependencies (Yang et al., 2024; Zhao068

et al., 2024a), which previous methods overlook069

by treating relationships between data points inde-070

pendently. As a result, similarity-based selection071

methods fail to achieve optimal performance, limit-072

ing the effectiveness of instruction tuning (Hübotter073

et al., 2024) . This failure to account for interde-074

pendencies hinders the construction of an optimal075

dataset, restricting the model’s ability to general-076

ize. Fundamentally, data selection aims to identify077

the data from the training set that possesses the078

capabilities required to complete the target task. In-079

struction data distributions form joint distributions,080

where relationships between instructions should be081

considered (Zhao et al., 2024a). However,earlier082

methods (Xia et al., 2024; Joaquin et al., 2024)083

failed to account for this joint distribution, leading084

to suboptimal data selection.085

To address these challenges, we propose G2IS,086

an innovative approach leveraging gradient-based087

knowledge representation for more efficient data se-088

lection. G2IS employs a mixed instruction gradient-089

based graph that models the complex relationships090

between instructions. This graph captures the joint091

distribution of instruction data, enabling more ef-092

fective data selection. Model gradients capture093

the informational content of training samples (Park094

et al., 2023; Jain et al., 2024; Zhao et al., 2024b),095

influencing parameter updates and implicitly encod-096

ing how each sample contributes knowledge to the097

model (Hammoudeh and Lowd, 2024). Building098

on this, we enhance the robustness of the valida-099

tion set by applying Principal Component Analysis100

(PCA) (Kurita, 2021) to the gradients, extracting101

core knowledge representations that guide data se-102

lection. For the training set, we introduce a gra-103

dient walk algorithm that refines sample selection104

by leveraging these gradients. This approach con-105

siders the joint distribution of instruction data, pro-106

gressively selecting samples that align with the107

core knowledge identified in the validation set. By108

structuring the data selection process this way, we109

ensure that the selected training data is efficient and110

aligned with key knowledge, improving the overall111

quality of the training process.112

We validate G2IS across multiple domain bench-113

marks. As shown in Figure 1, our method achieves114

exceptional performance with only 1% of the train-115

ing data, outperforming full-data instruction tuning116

on most tasks. Notably, on the GSM8K dataset us- 117

ing the Gemma-7B model, our approach improves 118

accuracy by 12.66% compared to full instruction 119

tuning. These results highlight the efficiency of 120

G2IS in reducing data requirements while main- 121

taining or even surpassing baseline performance. 122

2 Gradient-based Knowledge 123

Representation 124

During instruction tuning, LLMs update their 125

parameters through gradient-based optimization, 126

making gradients a natural representation of model 127

knowledge. Gradients reflect the influence of indi- 128

vidual training samples on parameter updates, re- 129

vealing which data points contribute most to model 130

learning. In this section, we explain how gradi- 131

ents are computed for the training and validation 132

sets and how they are used to construct a gradient- 133

based graph for efficient data selection. In the next 134

section, we introduce how to utilize the Gradient- 135

based Graph for Instruction Selection. 136

2.1 Gradient-based Knowledge 137

Representation 138

Gradients not only drive parameter updates during 139

instruction tuning but also implicitly encode knowl- 140

edge about how training data influences model 141

learning (Choe et al., 2024). By capturing the di- 142

rectional influence of each sample on parameter 143

updates, gradients naturally reveal the relationships 144

between instructions. Unlike static embeddings 145

or similarity-based methods, gradients provide a 146

dynamic, task-sensitive representation of knowl- 147

edge (Hammoudeh and Lowd, 2024), effectively 148

capturing both similarities and deeper interdepen- 149

dencies within the training data. 150

This can be understood through a first-order Tay- 151

lor expansion of the loss function, where the model 152

parameters update as: 153

θ′ = θ − η∇L(z, θ), (1) 154

where η represents the learning rate, and the gra- 155

dient ∇L(z, θ) determines how each sample mod- 156

ifies the model, encapsulating its contribution to 157

learning. Thus, the relationships between gradi- 158

ents reflect the dependencies between instruction 159

data, with the similarity of instruction gradients 160

enabling joint modeling and revealing the complex 161

relationships within instruction tuning data. 162
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Figure 2: The left side illustrates the core knowledge extracted from the validation set. In the center, anchor selection
for the gradient walk is performed by identifying the most similar data points from the training set, based on the
core knowledge. These anchors are then used to conduct a gradient walk in the graph (right side), ensuring three key
conditions: No Conflict in Knowledge, Consistency with Core Knowledge, and Knowledge Coherence. Finally, a
gradient subgraph is selected in the lower-right corner, representing a subset of knowledge from the training set
(e.g., probabilistic knowledge).

2.2 Gradient Computation on Training and163

Validation Sets164

To accurately capture the knowledge representation165

of different data samples, we compute gradients166

separately for both the training and validation sets.167

For the training set, we define the momentum-168

adjusted gradient ∇Γ(z, θt), which represents169

the effective gradient used for parameter updates170

in modern LLMs trained with the Adam opti-171

mizer (Kingma, 2014). Unlike standard gradients,172

it incorporates both first-order and second-order173

momentum terms, providing a more accurate rep-174

resentation of how training samples contribute to175

model optimization. Directly computing raw gra-176

dients without considering momentum effects can177

lead to imprecise knowledge representations. To178

address this, we use the warmup method proposed179

by Xia et al. (2024); Liu et al. (2024), where the180

model is pre-trained on a small subset of instruc-181

tions to initialize the optimizer’s momentum states.182

This ensures that∇Γ(z, θt) reflects the actual opti-183

mization dynamics, improving data selection preci-184

sion and instruction representation.185

For the validation set, we compute the first-order186

gradient of the loss function with respect to model187

parameters for each sample. This gradient directly188

measures how each sample influences parameter189

updates. To avoid momentum interference, prior re-190

search (Xia et al., 2024) showed that using stochas-191

tic gradient descent (SGD) for validation gradients192

and Adam for training gradients improves data se- 193

lection accuracy. Therefore, we compute these gra- 194

dients using standard SGD without modifications. 195

Given the high computational cost of calculat- 196

ing full gradients for all model parameters, we 197

leverage LoRA (Hu et al., 2021) to compute gra- 198

dients within LoRA layers, significantly reducing 199

memory overhead while preserving key gradient 200

information. Additionally, we apply Random Pro- 201

jection (Johnson, 1984; Park et al., 2023) dimen- 202

sionality reduction techniques to efficiently extract 203

low-dimensional gradient features, ensuring com- 204

putational efficiency without sacrificing essential 205

knowledge representation. 206

2.3 Gradient-based Graph Construction 207

After obtaining gradient representations, we con- 208

struct a structured gradient-based graph, consist- 209

ing of nodes Nz and edges Rij . Each node Nz in 210

the graph is defined as: 211

Nz = ∇Γ(z, θt), (2) 212

where ∇Γ(z, θt) encapsulates the sample’s contri- 213

bution to model updates, effectively encoding its 214

role in the instruction tuning process. Edges Rij be- 215

tween nodes zi and zj are weighted by their cosine 216

similarity: 217

Rij = cos (∇Γ(zi, θt),∇Γ(zj , θt)) , (3) 218

where higher values indicate stronger alignment 219

in their learning impact, and negative values sug- 220
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gest potential conflicts. This structure captures not221

only direct similarities but also complementary and222

conflicting relationships between samples. By mod-223

eling the training data as a gradient-based graph,224

we capture the interdependencies overlooked by tra-225

ditional similarity-based methods, laying the foun-226

dation for further capturing joint training samples227

that meet specific task requirements.228

3 Gradient-based Graph for Instruction229

Selection230

Building on the gradient-based graph, as shown231

in Figure 2, we apply PCA to reduce noise in the232

validation set and extract core knowledge. Using233

this core knowledge, we identify the walk anchor234

to select the most relevant training data for the235

validation set, achieved through a walk algorithm236

for data selection.237

3.1 Core Knowledge Extraction from the238

Validation Set and Selection of Walk239

Anchors240

The validation set, which is typically small and de-241

signed to resemble the test set, is often assumed to242

be independent and identically distributed in previ-243

ous studies (Xia et al., 2024; Joaquin et al., 2024),244

where the average gradient is used as a proxy for245

the core knowledge it encapsulates. However, the246

main goal of the validation set is not only to rep-247

resent the overall knowledge but also to capture248

the essential capabilities required to solve specific249

tasks. To more accurately extract this core knowl-250

edge, we employ PCA on the gradient distribution251

of the validation set. PCA identifies the principal252

components of the gradients, which correspond to253

the most critical task-related capabilities. Based254

on these principal components, we select the most255

relevant training samples as anchors for the walk256

algorithm, using them as the starting point for the257

gradient walk. Unless otherwise stated, we use the258

first 50% of principal components in our experi-259

ments, as they capture the majority of the variance260

in the data, ensuring that the selected samples align261

with the core knowledge required for the task.262

3.2 Data Selection with a Walk Algorithm on263

the Gradient-based Graph264

To ensure that the selected training data effectively265

supports the target task, we adopt a structured data266

selection process based on a gradient-based graph,267

rather than relying solely on similarity-based meth-268

ods. By utilizing the gradient graph constructed in269

the previous section, we capture both complemen- 270

tary and conflicting knowledge structures. 271

The gradient walk algorithm begins with a an- 272

chor that closely resembles the validation set. Us- 273

ing the weights corresponding to the principal com- 274

ponents of the validation set, the number of training 275

instructions required for each core knowledge com- 276

ponent is determined. The algorithm then expands 277

the instruction set by selecting data that contributes 278

positively to model learning while maintaining con- 279

sistency with the validation set. 280

The data selection process is governed by three 281

heuristic principles. First, No Conflict in Knowl- 282

edge ensures that new samples do not introduce 283

contradictions. The similarity between the new 284

node z and all existing nodes s should be non- 285

negative. Second, Consistency with Core Knowl- 286

edge prevents the selected training data from de- 287

viating significantly from the core knowledge by 288

ensuring that the cosine similarity between the in- 289

struction set and Core Knowledge KV remains be- 290

low a threshold δ. Third, Knowledge Coherence 291

ensures that, building on the previous two princi- 292

ples, the selected data is most similar to the most 293

recent instruction s∗. Formally, the data selection 294

process is defined as: 295

z∗ = argmax
z∈Z

cos (∇Γ(z, θt),∇Γ(s∗, θt)) , (4) 296

subject to the following constraints: 297

cos (Γ(z, θt),Γ(s, θt)) ≥ 0, ∀s ∈ S, (5) 298

299∣∣ cos (Γ(S ∪ {z}, θt),KV)
∣∣ ≥

δ
∣∣ cos (Γ(S, θt),KV)

∣∣, (6) 300

where z∗ is the next selected node, Z is the nodes 301

in the gradient-based graph, S is the current in- 302

struction set, and KV is a core knowledge from 303

the validation set. The function cos(Γ(S, θt),KV) 304

represents the cosine similarity between the instruc- 305

tion set gradient and the core knowledge from the 306

validation set. s∗ refers to the most recently added 307

node in the instruction set, ensuring new selections 308

align with the evolving training set. The parame- 309

ter δ acts as a threshold controlling the allowable 310

difference in gradient similarity. Unless specified 311

otherwise, we set δ = 0.8 to balance diversity in 312

selected data with alignment to the validation set. 313

For a detailed description of the algorithm, refer 314

to Appendix C. By incorporating the joint distri- 315

bution between instructions, it maximizes consis- 316

tency with both the validation set and its inher- 317
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Llama3.1-8B Gemma-7B Mistral-7B

ratio Ins BBH GPQA GSM8K Math MMLU BBH GPQA GSM8K Math MMLU BBH GPQA GSM8K Math MMLU

BERT 63.05 30.55 56.79 20.22 61.87 49.79 34.22 53.15 20.92 60.75 56.77 24.85 43.44 13.30 58.30

1% LESS 63.46 29.94 60.65 18.66 63.15 58.95 30.96 58.45 20.02 59.85 57.93 27.49 44.05 14.04 55.26

G2IS 64.78 31.57 62.02 20.96 63.42 60.25 35.03 61.64 22.88 62.17 58.59 29.44 46.40 14.68 58.64

BERT 59.65 26.68 50.95 20.46 62.33 44.39 31.57 55.80 22.16 59.85 53.72 26.27 45.79 14.02 58.00

5% LESS 64.17 29.94 63.08 18.90 62.87 58.65 31.16 60.58 20.26 59.86 56.06 28.51 52.24 13.78 58.20

G2IS 65.07 34.22 64.06 21.00 63.36 59.38 34.42 62.70 23.00 62.13 57.40 31.57 54.44 14.14 59.28

All 64.71 29.74 58.30 20.26 62.75 58.12 28.72 63.31 23.64 59.66 56.95 29.74 52.99 18.52 58.04

ratio COT BBH GPQA GSM8K Math MMLU BBH GPQA GSM8K Math MMLU BBH GPQA GSM8K Math MMLU

BERT 63.68 28.51 53.90 16.36 63.04 58.50 28.92 57.77 21.08 59.61 56.11 23.42 40.79 12.30 57.87

1% LESS 64.29 27.90 57.70 18.54 63.42 59.47 32.18 57.47 21.28 59.43 56.38 27.49 44.81 11.54 57.04

G2IS 65.66 32.59 62.70 21.38 64.22 61.60 33.20 63.76 23.44 62.34 58.04 28.72 49.20 12.64 59.09

BERT 63.60 29.33 61.11 17.60 62.48 56.77 29.94 60.12 21.40 58.94 54.42 28.51 44.58 11.68 56.22

5% LESS 62.76 29.74 60.73 17.74 63.02 59.15 29.74 60.88 21.08 59.31 56.87 27.29 48.45 11.32 58.05

G2IS 65.14 30.55 62.47 20.68 64.01 60.44 35.23 64.90 23.10 61.85 57.68 28.92 49.41 13.36 59.48

All 60.18 30.35 60.58 17.06 60.35 56.58 29.53 60.35 19.46 59.01 54.58 27.29 51.78 10.42 57.79

ratio FLAN BBH GPQA GSM8K Math MMLU BBH GPQA GSM8K Math MMLU BBH GPQA GSM8K Math MMLU

BERT 64.03 29.53 50.99 15.58 63.50 59.88 30.75 52.16 19.14 59.95 55.60 23.01 39.50 12.50 56.89

1% LESS 64.81 28.72 51.55 14.92 60.79 57.76 32.99 56.18 21.68 59.92 56.47 26.07 37.60 12.38 51.64

G2IS 64.84 31.16 60.12 19.30 64.36 61.39 32.99 62.09 22.70 62.06 57.89 28.72 43.90 13.26 59.19

BERT 62.94 29.53 50.57 17.26 62.90 59.15 30.96 52.54 17.62 60.31 54.83 26.68 37.07 12.98 53.87

5% LESS 62.76 29.33 52.31 18.32 63.77 59.21 30.75 54.44 21.46 60.72 55.55 26.68 38.36 11.04 58.74

G2IS 65.27 30.96 62.40 20.40 64.03 60.70 34.01 63.68 22.44 61.78 59.13 27.29 48.98 13.46 59.77

All 63.52 33.2 51.71 18.70 62.88 58.29 29.94 49.43 20.88 60.80 54.29 29.94 35.63 10.74 58.99

Table 1: Performance comparison of data selected from the top 1% and 5% most beneficial samples for enhancing
BBH, GPQA, GSM8K, Math, and MMLU tasks.Experiments were conducted using Llama3.1-8B, Gemma-7B, and
Mistral-7B v0.3, fine-tuned on Infinity-Instruct, COT, and FLAN-v2 for single-task objectives.

ent knowledge, while simultaneously avoiding con-318

flicts, thereby enhancing the model’s learning effi-319

ciency.320

4 Experiment321

To validate our method, we focus on two key ar-322

eas: data selection for single-task optimization and323

gradient-based selection for multi-task instruction324

tuning. By comparing with baseline methods, we325

demonstrate the robustness and generalizability of326

our approach in both settings.327

4.1 Experimental Setup and Baselines328

To ensure a fair evaluation, we selected state-of-the-329

art language models: Llama3.1-8B (Dubey et al.,330

2024), Gemma-7B (Team et al., 2024), and Mistral-331

7Bv0.3 (Jiang et al., 2023). Details of the training 332

and testing data are provided in Appendix A. 333

We compared our method with two baselines: 334

Less (Xia et al., 2024), a leading data selec- 335

tion approach, and Sentence-BERT (Reimers and 336

Gurevych, 2019), a widely used training data se- 337

lection method. Training was performed using the 338

Llama-Factory (Zheng et al., 2024), and model 339

performance was evaluated with the Harness (Gao 340

et al., 2024), which provides a standardized assess- 341

ment methodology. Further details on experimental 342

configurations are in Appendix B. 343

4.2 Optimizing Data Selection for Single-Task 344

Performance 345

Table 1 presents a comparative analysis of G2IS 346

against baseline methods across multiple bench- 347
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mark datasets. The results show that G2IS con-348

sistently outperforms Less and Sentence-BERT, re-349

gardless of whether 1% or 5% of the training data is350

selected. Notably, our method excels on multi-task351

datasets like FLAN, which is consistent with Wang352

et al. (2023), suggesting that targeted data selection353

outperforms full-dataset instruction tuning. Com-354

pared to the other two datasets, FLAN-V2 covers355

a broader range of tasks, better simulating the pro-356

cess of extracting specific domain instructions from357

large-scale data. Furthermore, G2IS demonstrates358

significant improvements on complex reasoning359

tasks like GSM8K and BBH, showcasing the ad-360

vantages of using a gradient-based graph structure361

to jointly model instruction tuning data, leading to362

better performance on complex tasks.363

A particularly noteworthy observation is that se-364

lecting just 1% of the training data often yields365

better performance than using 5% or even the en-366

tire dataset. This suggests that a small subset of367

highly relevant data plays a crucial role in enhanc-368

ing task-specific performance, while the presence369

of excessive or irrelevant data can introduce noise370

and hinder the model’s generalization capabilities.371

Additionally, our findings show that models372

trained on the full dataset generally underperform373

compared to those trained on the top 1% and 5%374

subsets selected by G2IS. This further validates375

that blindly instruction tuning on the entire dataset376

does not yield optimal results. Instead, carefully377

curated, high-quality subsets align better with task378

requirements, especially for complex or specialized379

tasks. These results are consistent with the conclu-380

sions drawn by Tsai et al. (2024) and Zhou et al.381

(2024). They confirm the effectiveness of gradient-382

based, graph-driven data selection in enhancing383

model performance and training efficiency.384

4.3 Enhancing Multi-Task Instruction tuning385

with Gradient-based Data Selection386

To further assess the robustness of our method,387

we evaluated its performance in multi-objective388

optimization by combining the validation sets of389

GSM8K and BBH. GSM8K focuses on mathe-390

matical reasoning, requiring step-by-step problem-391

solving, while BBH is a general complex reasoning392

dataset. Although distinct, these tasks share signif-393

icant structural similarities, making them suitable394

for multi-task optimization.395

As shown in Table 2, traditional methods like396

Less struggle with multi-task optimization, show-397

ing performance degradation in multi-task scenar-398

ratio Llama3.1-8B Gemma-7B Mistral-7B

FLAN BBH GSM8K BBH GSM8K BBH GSM8K

BERT 63.74 52.16 60.82 53.15 56.37 37.53

1% LESS 64.05 53.53 56.87 53.53 56.70 39.95

G2IS 65.01 58.98 61.05 62.32 58.45 43.44

BERT 62.40 50.27 60.07 50.57 56.09 35.10

5% LESS 59.07 46.55 56.14 51.10 53.89 34.50

G2IS 65.81 57.85 61.36 59.97 58.09 46.40

All 63.52 51.71 58.29 49.43 54.29 35.63

COT BBH GSM8K BBH GSM8K BBH GSM8K

BERT 63.23 55.88 60.57 51.78 55.64 39.20

1% LESS 63.69 58.91 59.35 60.05 56.01 44.73

G2IS 64.60 60.12 61.36 62.93 58.93 49.51

BERT 63.40 59.21 56.54 58.38 55.55 46.70

5% LESS 63.46 57.16 58.65 56.48 55.24 45.03

G2IS 63.69 60.88 60.74 59.29 58.04 47.08

All 60.18 60.58 56.58 60.35 54.58 51.78

Table 2: Performance of different methods in selecting
data that simultaneously improves BBH and GSM8K
complex reasoning tasks

ios. In contrast, G2IS demonstrates robustness in 399

handling multiple objectives, consistently deliv- 400

ering strong results across both. These findings 401

confirm that our gradient-based graph approach ef- 402

fectively balances conflicting objectives, enabling 403

efficient multi-task instruction tuning. 404

5 Ablation Study 405

Building on our experimental results, we conduct 406

ablation studies to identify the key factors contribut- 407

ing to the effectiveness of our method. Specifically, 408

we examine two aspects: (1) the impact of varying 409

principal component ratios on task performance by 410

selecting different proportions of principal compo- 411

nents and analyzing their influence on the results, 412

and (2) the role of components in the structured 413

gradient-based graph. To explore this, we perform 414

controlled experiments to isolate the effects of each 415

factor. We compare our method with variants that 416

either use PCA without the graph structure or re- 417

place gradient-based representations with BERT- 418

based semantic similarity measures. 419

5.1 Impact of Principal Component Ratios 420

To investigate the impact of principal component 421

ratios on task performance, we select the top 1% of 422
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Model ratio w/o
COT FLAN

BBH GPQA GSM8K Math MMLU Avg BBH GPQA GSM8K Math MMLU Avg

Llama3.1-8B

1%

w/o graph 65.64 30.55 57.85 20.1 61.42 0.95 64.03 30.55 58.15 18.96 61.6 0.97

w/o gradient 64.57 32.53 58.91 20.24 63.94 0.97 64.75 30.14 57.01 19.12 63.84 0.98

G2IS 65.66 32.59 62.7 21.38 64.22 1.0 64.84 31.16 60.12 19.3 64.36 1.0

5%

w/o graph 64.44 30.35 55.72 18.22 58.89 0.94 64.37 28.11 53.53 17.4 60.81 0.91

w/o gradient 64.20 28.11 54.51 16.44 63.71 0.91 63.35 28.31 55.04 17.66 64 0.93

G2IS 65.14 30.55 62.47 20.68 64.01 1.0 65.27 30.96 62.4 20.4 64.03 1.0

Gemma-7B

1%

w/o graph 58.61 31.77 59.89 21.46 60.92 0.95 60.88 31.16 61.41 21.68 59.67 0.97

w/o gradient 58.93 32.79 62.62 22.5 61.45 0.98 59.48 30.14 58.38 22.58 61.71 0.96

G2IS 61.6 33.2 63.76 23.44 62.34 1.00 61.39 32.99 62.09 22.7 62.06 1.00

5%

w/o graph 58.15 31.16 56.1 20.2 60.56 0.91 59.75 33.6 56.25 21.48 60.74 0.96

w/o gradient 59.48 32.59 59.29 21.56 60.60 0.95 59.67 30.96 58.07 21.26 61.35 0.95

G2IS 60.44 35.23 64.9 23.1 61.85 1.00 60.7 34.01 63.68 22.44 61.78 1.00

Mistral-7B

1%

w/o graph 57.06 28.52 43.52 12.46 59.02 0.97 57.72 28.33 39.8 11.92 58.31 0.95

w/o gradient 55.83 25.87 43.52 12.56 58.71 0.96 57.27 27.49 43.9 12.82 58.3 0.98

G2IS 58.04 28.72 49.2 12.64 59.09 1.00 57.89 28.72 43.9 13.26 59.19 1.00

5%

w/o graph 57.28 28.51 42.3 12.44 59.01 0.95 57.1 27.24 44.35 12.34 58.99 0.95

w/o gradient 57.4 28.11 44.96 11.78 57.26 0.94 57.99 26.99 45.11 12.46 58.45 0.96

G2IS 57.68 28.92 49.41 13.36 59.48 1.00 59.13 27.29 48.98 13.46 59.77 1.00

Table 3: An ablation study was conducted on the COT and FLAN datasets using Llama3.1-8B, Gemma-7B, and
Mistral-7B models."w/o graph" refers to a variant with no graph structure,where training samples are selected
solely based on principal component analysis."w/o gradient" replaces the gradient-based representation with a
Sentence-BERT-based similarity measure for comparison.The experiment evaluates data selection for BBH, GPQA,
GSM8K, Math, and MMLU tasks."Avg" represents the average accuracy of each method relative to our approach.

data from the Infinity-Instruct dataset and evaluate423

it using the MMLU and GSM8K benchmarks. As424

shown in Figure 3, the optimal principal compo-425

nent ratio varies across tasks, though its overall426

impact remains limited. For tasks like MMLU,427

which require multi-domain knowledge and exhibit428

high noise, filtering out lower-variance components429

improves performance by reducing irrelevant or430

conflicting information. In contrast, for tasks like431

GSM8K, which focus on mathematical reasoning432

with minimal domain conflict, retaining more com-433

ponents helps preserve crucial task-related knowl-434

edge, enhancing performance. Despite these task-435

specific variations, the effect of adjusting the prin-436

cipal component ratio is constrained. In most cases,437

our method consistently outperforms traditional se-438

lection approaches, highlighting its robustness and439

effectiveness across different tasks.440

5.2 The Role of Graph Structure and 441

Gradient-based Representations 442

To assess the contributions of the two core compo- 443

nents of our method—the structured graph-based 444

framework and gradient-based knowledge repre- 445

sentation—we conduct a comparative ablation ex- 446

periment. Specifically, we introduce two ablation 447

settings: (1) w/o graph,where knowledge is ex- 448

tracted solely via PCA and selected based on gra- 449

dient similarity, and (2) w/o gradient,where the 450

gradient-based similarity measure is replaced with 451

a BERT-based semantic similarity approach. 452

The results on the COT and FLAN datasets, 453

shown in Table 3, demonstrate the necessity of both 454

structured graph modeling and gradient-based rep- 455

resentations. While both components improve per- 456

formance, the structured graph is especially critical. 457

As the number of selected knowledge elements in- 458
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Figure 3: On the Infinity-Instruct dataset, we utilize the
gradient walk algorithm based on principal components
of knowledge extracted from different proportions of
the validation set.The results of training after selecting
data that enhances MMLU (upper) and GSM8K (lower)
are presented.

creases, the graph-based approach consistently out-459

performs by capturing interdependencies between460

instructions, reducing redundancy, and optimizing461

knowledge transfer. These findings highlight the ef-462

fectiveness of our graph-based selection framework463

in enhancing instruction tuning.464

6 Related Work465

Recent studies (Park et al., 2023; Jain et al.,466

2024) have explored using model gradients for467

instruction-tuning data selection, showing that gra-468

dients capture the informational content of training469

samples. Xia et al. (2024) proposed a gradient470

similarity-based approach that selects data aligned471

with the validation set, achieving performance com-472

parable to full-data instruction tuning using only473

5% of the data. Joaquin et al. (2024) improved474

data selection for large models by leveraging the475

similarity between the training and validation sets476

in smaller models, enhancing selection efficiency.477

However, these approaches focus on similarity478

and fail to capture the deeper interdependencies479

within the training data. Previous research (Zhao480

et al., 2024a) found that instructions are not inde-481

pendent, but instead exhibit interdependencies. By 482

leveraging these dependencies, instruction tuning 483

performance can be improved. Moreover, Hübot- 484

ter et al. (2024) highlighted that similarity-based 485

selection overlooked these dependencies, limiting 486

the effectiveness of instruction tuning. 487

Several studies (Lu et al., 2023; Bhatt et al., 488

2024) enhance dataset complexity and diversity. 489

While modifying data distributions for general- 490

ization, they prioritize adaptability over domain- 491

specific optimization and omit explicit modeling of 492

relationships between training samples. 493

With the rise of domain-specific LLMs (Wu 494

et al., 2023; Zhang and Yang, 2023), instruction se- 495

lection methods should account for dependencies in 496

training data. Unlike similarity-based approaches, 497

graph-based models capture interdependencies, re- 498

duce redundancy, and enhance knowledge transfer. 499

This highlights the need for more effective selec- 500

tion strategies that extend beyond similarity, opti- 501

mizing instruction tuning for specialized domains. 502

Graph-based models, like G2IS, offer a promis- 503

ing solution by capturing complex relationships, 504

leading to improved performance. 505

7 Conclusion 506

We introduced G2IS, a gradient-based instruc- 507

tion selection method aimed at enhancing domain- 508

specific instruction tuning by constructing struc- 509

tured gradient-based graphs. Unlike traditional 510

methods, which rely on similarity measures, G2IS 511

captures the joint distribution and interdependen- 512

cies between instructions, leading to more efficient 513

data selection. Our experiments on state-of-the-art 514

models demonstrate that G2IS significantly outper- 515

forms conventional instruction tuning approaches, 516

achieving superior results with only 1% of the train- 517

ing data, especially on complex reasoning tasks 518

like GSM8K and BBH. Notably, G2IS excels in 519

selecting highly relevant data, showing that smaller, 520

carefully curated subsets outperform larger, less rel- 521

evant datasets. Ablation studies further confirm the 522

critical role of both the structured graph framework 523

and gradient-based representations in optimizing 524

knowledge transfer and improving performance. 525

These findings emphasize G2IS’s potential to en- 526

hance task-specific learning, reduce data require- 527

ments, and enable more efficient instruction-tuning 528

strategies, particularly in data-limited specialized 529

domains. 530
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8 Limitations531

In this study, we adopt the LoRA method and com-532

pute gradients only for the LoRA layers, rather than533

the full model parameters, to reduce computational534

cost.While our method demonstrates strong per-535

formance across various instruction-tuning tasks,536

we have not yet evaluated whether computing full-537

parameter gradients could further enhance data se-538

lection effectiveness. Additionally, due to compu-539

tational constraints, our experiments are primar-540

ily conducted on 7B and 8B-scale models (e.g.,541

Llama3-8B, Gemma-7B, Mistral-7B), and we have542

not yet tested our method on larger-scale LLMs543

(e.g., 13B, 65B, 175B). In future work, we plan544

to extend our study to full-gradient computation545

and larger-scale models to more comprehensively546

assess the applicability and optimization potential547

of the G2IS method.548
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A Appendix: Data Construction747

A.1 Training Data Construction748

• Infinity-Instruct We randomly selected 1749

million instruction-tuning samples from the750

InfInstruct-3M core subset for training.751

• COT (Wei et al., 2022) and FLAN-v2 (Long-752

pre et al., 2023) We used the cleaned dataset753

provided by (Xia et al., 2024) to ensure data754

quality.755

A.2 Validation and Test Data Construction &756

Evaluation Methods757

• BBH Dataset (Suzgun et al., 2022)758

– Validation set: We used the original759

dataset’s development set, which consists760

of 81 samples.761

– Evaluation method: 0-shot evaluation.762

• GPQA Dataset (Rein et al., 2023)763

– Validation set: Since the original dataset764

does not include an official development765

set, we randomly selected 55 samples766

as the validation set, with the remaining767

samples used for testing.768

– Evaluation method: 0-shot evaluation.769

• GSM8K Dataset (Cobbe et al., 2021)770

– Validation set: We randomly selected771

100 samples from the training set as the772

validation set.773

– Evaluation method: 5-shot evaluation.774

• Math Dataset (Hendrycks et al., 2021b)775

– Validation set: We randomly selected776

200 samples from the training set as the777

validation set.778

– Evaluation method: 4-shot evaluation.779

• MMLU Dataset (Hendrycks et al., 2021a)780

– Validation set: We used the original781

dataset’s dev set, which consists of 1,531782

samples.783

– Evaluation method: Default evaluation784

approach as specified in the original785

dataset.786

https://huggingface.co/datasets/BAAI/
Infinity-Instruct

To ensure consistency and fairness in the evalua- 787

tion process, we used the harness evaluation frame- 788

work (Gao et al., 2024), keeping all hyperparame- 789

ters at their default settings. 790

B Appendix: Train Setup 791

B.1 Experimental Setup 792

All experiments were conducted on an A100- 793

SMX4 GPU cluster.To ensure fair compar- 794

isons and reproducibility, we used the Llama- 795

Factory (Zheng et al., 2024) for model training 796

and followed the experimental configurations out- 797

lined in (Xia et al., 2024). 798

The model was fine-tuned using the LoRA 799

method with a rank of 128, α = 512, and a dropout 800

rate of 0.1.We employed bf16 precision and used 801

the cosine learning rate scheduler with an ini- 802

tial learning rate of 2× 10−5.The training process 803

spanned 3 epochs, with a batch size of 2 per de- 804

vice, gradient accumulation steps set to 16, and 805

a warm-up ratio of 0.3.The maximum sequence 806

length was set to 2048 tokens.For optimization, we 807

used the DeepSpeed ZeRO-2 (Rajbhandari et al., 808

2020) configuration. 809

B.2 Warmup Strategy and Random 810

Projection 811

To effectively initialize the momentum of the 812

Adam optimizer, we employed a warmup strat- 813

egy.Specifically, we randomly selected 5000 sam- 814

ples from the training dataset and conducted 4 815

epochs of training to initialize the LoRA layer pa- 816

rameters and optimizer momentum.Given the high 817

computational cost of tracking momentum at ev- 818

ery training step, we approximate the model’s mo- 819

mentum when encountering new data by using the 820

momentum accumulated after these 4 epochs.Since 821

the model sizes are similar, we adopted hyperpa- 822

rameters similar to those used in (Xia et al., 2024). 823

Due to the significant magnification of gradients 824

in the LoRA layer, we reduce the dimensionality 825

of the LoRA gradients by applying Random Pro- 826

jection (Park et al., 2023), as suggested by (Xia 827

et al., 2024), to project the gradients down to 8192 828

dimensions. 829

B.3 Computational Cost Analysis 830

The primary computational cost of this experi- 831

ment comes from gradient computation.However, 832

since we adopt the LoRA method and compute 833

11
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gradients only for the LoRA layers, the over-834

all computational overhead is significantly re-835

duced compared to full-parameter instruction tun-836

ing.Furthermore, the additional cost compared to837

existing gradient-based similarity methods is neg-838

ligible.In the construction of the gradient-based839

graph, we employ efficient sparse computation840

techniques, and the entire process can be com-841

pleted on the CPU, eliminating the need for ad-842

ditional GPU resources.Overall, G2IS introduces843

minimal additional computational cost while sig-844

nificantly improving the efficiency and accuracy of845

data selection, making it both practical and scal-846

able.847
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C Appendix:Gradient Walk Algorithm for Instruction Selection 848

Algorithm 1: Gradient Walk Algorithm for Instruction Selection
Input: Z: Training dataset, V: Validation dataset, δ: Threshold for validation consistency, k:

Principal component selection threshold (e.g., cumulative variance ratio), ratio: Percentage
of training data to be selected

Output: S: Selected instruction subset
Step 1: Compute Gradients
for each validation sample v ∈ V do

Compute validation gradient: ∇val(v) = ∇L(v, θ)
end
for each training sample z ∈ Z do

Compute training gradient: ∇train(z) = ∇Γ(z, θ) // Momentum-adjusted gradient
end
Step 2: Extract Core Knowledge from Validation Set
Perform PCA on {∇val(v)|v ∈ V}
Select top-k% principal components based on cumulative variance ratio
Represent validation core knowledge as KV
Normalize weights: αi =

ωi∑k
j=1 ωj

so that
∑k

i=1 αi = 1

Step 3: Gradient Walk Selection
for each principal component i do

Compute selection budget: Nselect,i = ratio× |Z| × αi

end
Initialize S ← ∅
for each v ∈ KV do

Initialize S ′ ← ∅
Choose s ∈ Z maximizing cos(∇train(s), v)
S ′ ← S ′ ∪ {s}
while |S ′| < Nselect,i do

Sort z∗ from Z \ S ′ in descending order by cos(∇train(z
∗),∇train(s))

Set found = False
for each sorted z∗ do

if ∀s′ ∈ S ′, cos(∇train(z
∗),∇train(s

′)) ≥ 0 and∣∣cos(∇train(S ′ ∪ {z∗}),KV)
∣∣ ≥ δ ·

∣∣cos(∇train(S ′),KV)
∣∣ then

S ′ ← S ′ ∪ {z∗}
Update s = z∗

Set found = True
break for-loop

end
end
if not found then

Choose z∗ = argmaxz∈Z\S′ cos(∇train(z),KV)
Update s = z∗

S ′ ← S ′ ∪ {z∗}
end

end
S ← S ∪ S ′

end
return S
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