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ABSTRACT

Concept-driven interpretability often relies on a fixed text pool, which limits
coverage of fine-grained and compositional concepts and weakens the coupling
between explanations and decisions. We introduce SAND-CBM, a label-free
framework that learns concepts directly from image representations in an aligned
vision–language space. SAND-CBM factorizes features into a signed concept
dictionary W and nonnegative activations U , then applies a scale-equivalent nor-
malization that maps each activation column to [0, 1] for comparable strength across
concepts. A class-conditional sparse gate enables per-class selection over a shared
dictionary, supporting reuse without per-class redundancy. On top of the same
(U,W ), we expose two lightweight and complementary usage modes: Branch-
A concatenates image–text similarities with U in a CBM-style interface, while
Branch-B concatenates back-mapped reconstructions Z=UW ∗ with U in a CEM-
style interface. Across CIFAR–100, CUB, and SUN, SAND-CBM attains 80.52%,
80.76%, and 67.64% Acc@1, respectively, yielding an average gain of 10.14% over
all baselines. Our code is available at: https://anonymous.4open.science/r/SAND-
FA73/.

1 INTRODUCTION

Concept-driven interpretable learning—exemplified by Concept Bottleneck Models (CBM) (Koh
et al., 2020) and Concept Embedding Models (CEM) (Espinosa Zarlenga et al., 2022)—adopts a “first
recognize concepts, then decide” paradigm, exposing a clear human-semantic interface. However, in
label-free settings (Oikarinen et al., 2023), existing approaches typically rely solely on a pre-specified
text pool: they compute similarities between image representations and a set of textual concept
embeddings to obtain “concept scores.” While simple to implement, this paradigm is intrinsically
constrained by the incompleteness and bias of the text pool—human-curated concept sets struggle to
cover fine-grained and compositional semantics; long-tail and cross-domain concepts are even harder
to exhaust—leading to a cascade of issues: missing concepts, weak coupling between explanations
and decisions, and capped performance. Moreover, discretizing continuous semantics (e.g., “red hair,
light red, dark red”) into single a text embedding induces information loss, making it difficult for the
explanatory layer to faithfully capture subtle yet rich visual factors. In contrast, image-side signals
are denser and more fine-grained—one core reason current label-free pipelines remain fundamentally
limited.

Within label-free CBM variants, both post-hoc and residual styles suffer structural limitations. Post-
hoc routes (Yuksekgonul et al., 2023) often attach concept heads or residual branches to a pretrained
black box to “match” its decisions, yet the newly learned channels need not align with crisp, nameable
concepts, casting doubt on interpretability. CF-CBM (Dominici et al., 2024) introduces hierarchical
concept organization but depends on costly ontology annotations and yields high-level features with
limited specificity. Res-CBM (Shang et al., 2024) injects a small fixed quota of residual concepts
to recover accuracy, but real-world compositional semantics far exceed any preset quota, inevitably
missing key factors. More fundamentally, many methods do not truly extract concepts from images;
instead they project onto an existing textual coordinate system, rendering the explanatory space
governed by text coverage rather than by the data’s own interpretable structure.
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Figure 1: Overview of SAND-CBM. CLIP encodes images (a text pool) into features, which are
factorized into a signed concept dictionary and nonnegative activations with class-conditional gating
and normalization. Predictions use two lightweight branches: Branch-A concatenates image–text
similarity with activations, and Branch-B concatenates back-mapped concept reconstructions with
activations. Design and implementation notes and theoretical summary, please refer to Appendix A.

Classical concept extraction via Nonnegative Matrix Factorization (NMF) (Lee & Seung, 1999; Fel
et al., 2023) is also misaligned with modern aligned representations (e.g., CLIP (Radford et al., 2021))
in two ways: (i) NMF constrains both the dictionary and activations to be nonnegative, which conflicts
with signed semantic axes in aligned spaces (e.g., bright–dark, rough–smooth); even applying a bias
shift to maintain nonnegativity inflates vector similarities and disrupts directional information. (ii)
Many implementations learn concepts per class, hindering cross-class sharing, inducing redundancy,
impeding transfer, and running counter to open-vocabulary needs.

To systematically address these bottlenecks, we propose SAND-CBM (Signed-dictionary And
Nonnegative-activation Decomposition). As illustrated in Fig. 1, within CLIP’s visual–semantic
space we directly and unsupervisedly learn a signed concept dictionary W and nonnegative concept
activations U , together with class-conditional sparse gating that enables per-class selection over
a shared large dictionary. Nonnegative U endows an additive and comparable notion of concept
strength; signed W respects the bipolar semantics of aligned spaces. We further adopt scale-
equivalent normalization to map each column of U to [0, 1], establishing a unified strength scale across
concepts without sacrificing the optimal reconstruction. On the same (U,W ), SAND-CBM offers
two lightweight, complementary usage branches: Branch-A (CBM-based) constructs an image–text
similarity matrix S and concatenates it with U as

[
S
∣∣U]

, preserving interface compatibility and
auditability with textual concepts; Branch-B (CEM-based) first maps concepts back to the CLIP
semantic space via Z = UW , then concatenates with U as

[
S
∣∣Z]

to exploit the discriminative
expressivity of image-side concept synthesis. This unified design both relaxes rigid dependence on
text-pool coverage and naturally interoperates with CBM/CEM interfaces, facilitating deployment
and drop-in replacement.

Our main contributions are: (1) Image-side concept discovery: directly learning concept dictionaries
and activations in an aligned semantic space so that fine-grained and compositional semantics are
no longer bounded by manual enumeration; (2) A signed-dictionary + nonnegative-activation
factorization: decoupling “direction” (W ) from “strength” (U ), with scale-equivalent normalization
that bounds activations in [0, 1]; (3) Unified modeling of class sharing with per-class selection:
class-conditional sparse gating selects subsets from a shared dictionary, avoiding per-class redundancy
and improving transfer; (4) A dual-branch usage scheme compatible with CBM/CEM interfaces:
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retaining text alignment as an explanatory anchor (Branch-A) while strengthening discriminative
power via reconstruction back-mapping (Branch-B), yielding complementary benefits across concept
budgets and task types; (5) Consistent empirical gains with structural diagnostics: across multi-
ple datasets we observe stable improvements over representative baselines, and correlation/gating
visualizations support an atomic, low-redundancy, compositional organization of concepts.

2 RELATED WORK

Research on interpretable, concept-driven prediction has largely progressed along two threads: (i)
how concepts are used for decision-making—employing concepts as intermediate representations or
embedded features to drive classification (e.g., Concept Bottleneck Models (CBM) (Koh et al., 2020)
and Concept Embedding Models (CEM) (Espinosa Zarlenga et al., 2022)); and (ii) how concepts are
obtained and completed—evolving from explicit concept supervision toward label-free discovery,
post-hoc extraction, incremental residual completion, and coarse-to-fine hierarchical refinement (e.g.,
LF-CBM (Oikarinen et al., 2023), PH-CBM (Yuksekgonul et al., 2023), Res-CBM (Shang et al.,
2024), CF-CBM (Dominici et al., 2024)). Yet under open-vocabulary and distributionally diverse
settings, several issues remain salient: incomplete text pools, incomparable concept scales, weak
coupling between explanation and decision, and heavy reliance on quota or hierarchical priors. Our
method, SAND-CBM (§3.3– 3.5), addresses these bottlenecks from the image side via a unified
framework of a signed concept dictionary W , nonnegative activations U , and class-conditional
sparse gating.

CBM. CBM (Koh et al., 2020) decomposes prediction into “concept recognition→ label prediction,”
providing intervenability and auditability. However, when the concept set is incomplete or concept
predictions are noisy, errors cascade through the bottleneck to the final label, inducing a perfor-
mance–interpretability trade-off. In §3.5, Branch-A adopts a usage pattern that concatenates text
similarity C with concept activations U : with AT = ET (PT ) and C = AIA

⊤
T (= S), this preserves

interface compatibility with the CBM style rather than engaging in a closed-form performance
competition with the CBM family.

CEM. CEM (Espinosa Zarlenga et al., 2022) aligns concept embeddings with high-dimensional
model representations, alleviating the information bottleneck of “hard” CBM interfaces; nevertheless,
alignment quality still hinges on the coverage and fidelity of a pre-defined concept set. In §3.5,
Branch-B concatenates concept reconstruction Z = UW ∗ with activations U , functionally mirroring
CEM-style alignment/reconstruction as a usage paradigm rather than a direct objective.

In label-free and post-hoc concept completion, we contrast four routes in a unified view. LF-
CBM (Oikarinen et al., 2023) reduces labeling by leveraging weak inductive biases and self-
supervised signals together with prompts, prototypes, and clustering, but suffers from incompleteness
(text-pool coverage misses fine-grained and compositional long-tail concepts) and non-atomicity
(entangled pseudo-concepts). PH-CBM (Yuksekgonul et al., 2023) attaches concept heads post
hoc, which is model-agnostic yet decouples explanations from decision boundaries and introduces
auxiliary paths with unclear semantics. Res-CBM (Shang et al., 2024) adds residual concept channels
under a fixed budget to close accuracy gaps, but quotas miss diverse compositions and residual
semantics may drift across tasks. CF-CBM (Dominici et al., 2024) imposes hierarchical concepts,
incurring costly ontologies with poor cross-domain transfer; hierarchies can overlap, emphasize
textual and ontological design over image-side extraction, and rely on high-level features that are
weak for explanation. In contrast, SAND-CBM learns from the image side a signed dictionary W
with nonnegative activations U , applies a scale-equivalent normalization mapping U to [0, 1] for
comparable strength, and uses class-conditional sparse gating to select per-class subsets from a
shared dictionary (§3.3, 3.4); integrating factorization and gating end to end aligns explanatory pivots
with decisions, low-correlation regularization on W together with the additivity of U promotes atomic,
low-redundancy concepts, and avoiding small-patch extraction reduces distributional mismatch with
CLIP pretraining while enabling coarse-to-fine narrowing without explicit hierarchical labels.

For concept discovery and alignment, TCAV (Kim et al., 2018), ACE (Ghorbani et al., 2019),
and prototype networks (e.g., ProtoPNet (Chen et al., 2019)) align human semantics with model
representations for sensitivity analysis or prototype matching, but typically rely on explicit concept
sets and text, and place less emphasis on additivity and scale comparability. Meanwhile, some
methods (e.g., CF-CBM (Dominici et al., 2024)) construct concepts per class without sharing, which
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is incompatible with our “unified dictionary + class-conditional gating” setting and thus not directly
applicable for a fair comparison. On interpretable factorization, NMF, dictionary learning, and sparse
coding (Lee & Seung, 1999; Aharon et al., 2006) promote part-based, additive explanations. We
extend this line into CLIP’s signed semantic space: nonnegative activations U preserves additivity,
the signed dictionary W matches directional structure in CLIP, and scale equivalence establishes a
unified strength coordinate (§3.3).

3 METHOD

3.1 NOTATION AND PROBLEM SETUP

Definition of CBM. A CBM can be formalized as a pair (h, f) consisting of a concept extractor
h : X→Rk and a classifier f : Rk→Y . In our framework, h operates on the CLIP (Radford et al.,
2021) representation of an input x and returns concept values via similarities to pre-specified text
vectors; f then predicts a label y∈Y from these concept values.

Data and Encoders. Given images X = {x1, . . . , xn}, the CLIP image encoder EI(·) yields

a d-dimensional feature matrix AI = EI(X) =

a
⊤
1
...
a⊤n

 ∈ Rn×d, where d = 512 for the default

ViT-B/16 backbone (Dosovitskiy et al., 2021) (and changes accordingly for other backbones). The
i-th row ai is the d-dimensional CLIP representation of xi. Notably, for computational convenience
and stable similarity computation, the output of EI(·) is L2-normalized, i.e., ai ← ai/∥ai∥2. Thanks
to CLIP’s vision–language alignment, AI and text features lie in a shared semantic space, enabling
textual “probes” to retrieve and name concepts in images.

Concept Factorization and Constraints. Within the CLIP representation space we learn a concept

activation matrix and a concept dictionary: U =

u
⊤
1
...
u⊤
n

 ∈ Rn×k
≥0 , W ∈ Rk×d, where k is

the number of concepts (a hyperparameter). Each ui∈Rk
≥0 encodes the nonnegative strength of k

concepts for sample xi, while each row of W parameterizes a concept as a signed direction/weight
vector in CLIP’s semantic space (allowing positive/negative entries to respect CLIP’s bipolar axes).

Optional Text Pool and Vision–Language Similarity. When incorporating language concepts, we
encode a pre-specified text set PT = {T1, . . . , Tm} (Dominici et al., 2024) via the CLIP text encoder:
AT = ET (PT ) ∈ Rm×d, and compute the (L2-normalized dot-product) image–text similarity matrix
S = AI A

⊤
T ∈ Rn×m. Because images and texts share a semantic coordinate system, S serves as

a concept signal that can complement the semantics captured by h(x).

Classes and Gating. For c-way classification, we enable cross-class concept sharing with within-
class selectivity via class-conditional gating: λ ∈ Rc×k, gy = σ(λy) ∈ (0, 1)k, where σ(·)
is the elementwise sigmoid and gy is a (sparse) selection vector for class y. For a labeled sample
(xi, yi), gating on the activation side realizes “shared dictionary + class-specific sparse subsets,”
which plugs naturally into a downstream linear head to complete the “concept→ label” mapping.

3.2 MOTIVATION AND OVERVIEW

Existing label-free and zero-shot CBM pipelines (Oikarinen et al., 2023) rely only on a human-
curated text pool PT , which leads to incomplete concepts and missing fine-grained/compositional
constructs. Concretely, if K denotes the latent universe of concepts but the text-induced set is a
strict subset KT ⊊K, then many true concepts cannot be enumerated or named. A toy example on
CUB: the pool may include red beak, black head, white tail, but omit finer concepts like
white tail-tip or conjunctive ones like red beak & black head, degrading zero-shot
alignment to the concepts present in the image. To mitigate this, we learn from the image side
an unsupervised concept dictionary W together with nonnegative activations U in CLIP’s visual
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space (Radford et al., 2021), producing reusable and interpretable concept representations; we then
perform class-conditional sparse gating to select class-specific subsets from a unified dictionary.
Finally, we instantiate two unsupervised branches that mirror CBM- and CEM-style usage.

Label-free CBM with CLIP: a baseline. In the traditional label-free setup, one first encodes PT

to obtain AT = ET (PT ) ∈ Rm×d (Radford et al., 2021). For any image x, we get image feature
AI = EI(x), the dot product yields a text-driven concept vector h(x) = AI A

⊤
T ∈ Rm, which feeds

a linear (or zero-shot) classifier f . This baseline is simple but its expressivity is entirely bounded by
PT : if PT does not cover K (e.g., missing white tail-tip or the conjunction red beak &
black head), h(x) cannot represent concepts that truly exist in the image. We therefore introduce
image-side concept extraction to address incompleteness.

3.3 IMAGE-SIDE CONCEPT EXTRACTION

Compared to a limited text pool, images carry richer fine-grained and compositional signals. We
therefore mine latent concepts directly from image representations, avoiding hard dependence on
text coverage (Olshausen & Field, 1996; Aharon et al., 2006; Mairal et al., 2010; Tibshirani, 1996).
Classical NMF (Lee & Seung, 1999) constrains U≥0 and W ≥0, which (i) cannot capture bipolar
semantics on the same CLIP axis (e.g., bright–dark), and (ii) often leads to per-class concept learning
with weak cross-class sharing. We instead impose nonnegativity only on U (to preserve additive
strength semantics), while allowing W to be signed so as to fully exploit CLIP’s directional structure.

Base Factorization and Training. In SAND-CBM, we decompose AI = EI(Xtrain) from the
training set into a nonnegative activation matrix U and a concept dictionary W by minimizing the
reconstruction loss

Utrain, Ŵ = min
U≥0, W

1

n

∥∥AI − UW
∥∥2
F
, (1)

yielding Utrain∈Rn×k
≥0 and Ŵ ∈Rk×d. Nonnegativity on Utrain ensures additive concept strengths:

ai ≈
k∑

j=1

uij wj , uij ≥ 0, (2)

where uij quantifies the nonnegative “activation strength” of concept j on sample i. The dictionary
Ŵ is unconstrained in sign, enabling bipolar semantics in CLIP space. A toy illustration: suppose

w1 encodes “bright” and w2 encodes “dark”, w1 =

[
1

0.5

]
, w2 =

[
−0.8
0.3

]
, ui =

[
0.6, 0.2

]
,

then ai ≈ 0.6w1 + 0.2w2 =

[
0.6
0.3

]
+

[
−0.16
0.06

]
=

[
0.44
0.36

]
. Here the activation ui is additive (0.6

for “bright,” 0.2 for “dark”), while the signed w2 introduces a negative contribution along one feature
dimension, capturing bipolarity. Thus uij remains an intuitive nonnegative strength, and wj’s signs
encode opposing semantic directions. A training-time complexity analysis of Eq. (1) is provided in
Appendix B.

Normalization via Scale-Equivalent Transformation (0–1 Comparability). Concept columns
may differ in scale, complicating cross-concept comparison. We rescale each activation column to
[0, 1] using

sj =
1

max(∥Utrain(:, j)∥∞, ε)
, S = diag(s1, . . . , sk) ∈ Rk×k, (3)

with a small ε> 0 to avoid division by zero. Since S is diagonal, S−1 = diag(1/s1, . . . , 1/sk) is
trivial to compute.

We then apply the scale-equivalent transform

Ũ = UtrainS ∈ Rn×k
≥0 , W ∗ = S−1Ŵ ∈ Rk×d, (4)

which preserves reconstruction:

AI = UtrainŴ = (UtrainS) (S
−1Ŵ ) = ŨW ∗. (5)

5
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By construction ∥Ũ(:, j)∥∞=1, so each activation column lies in [0, 1]. We henceforth write U for
the normalized activations (U← Ũ ). For example, if a sample’s raw activations are (3.0, 0.8) and
the training-set columnwise maxima are (5.0, 0.8), then normalization by S = diag(1/5.0, 1/0.8)
yields (0.6, 1.0)—indicating that the second concept attains its training-set maximum while the
first is at 60%. The companion rescaling W ∗ = S−1Ŵ keeps UW invariant. In practice one may
factor with Ŵ and normalize U with S; both are equivalent. If a new sample exhibits an activation
exceeding the training maximum (rare under i.i.d. settings), we clip it to 1.

Proposition 1 (Scale Equivalence). For any diagonal matrix S ≻ 0, the transform (U,W ) 7→
(US, S−1W ) preserves reconstruction.

Proof. We have US · S−1W = U(SS−1)W = UW , hence the reconstruction is invariant under the
transform.

3.4 CLASS-SHARED CONCEPTS WITH CLASS-CONDITIONAL SPARSE GATING

To avoid redundant per-class concept learning and to improve cross-class reusability, we gate
activations over a shared W ∗ and introduce class-conditional gating parameters λ ∈ Rc×k. For
(ai, yi), let gyi

= σ(λyi
) ∈ (0, 1)k, ûi = ui ⊙ gyi

, where λyi
denotes the yi-th row of λ; we

then reconstruct ai ≈ ûiW
∗. A joint objective (alternating with Eq. (1)) is

U, Ŵ = min
U≥0, W, λ

1

n

n∑
i=1

∥∥ai − (
ui · diag(gyi

)
)
W

∥∥2
2
. (6)

Optimization. Given (W,λ), we update U with a few steps of projected AdamW (Loshchilov &
Hutter, 2019) (AdamW step followed by projection onto the nonnegative orthant). We then update
W given (U, λ), and update λ given (U,W ) (backpropagating through σ).

Proposition 2 (Two Equivalent Views of Gating). For any g ∈ [0, 1]k, (u⊙ g)W = u · (diag(g)W ).

Proof. Gating on activations (U -side) is representationally equivalent to absorbing it into a class-
specialized dictionary Wy = diag(gy)W . Training on the U -side stabilizes and preserves transfer-
ability of the shared W , while test-time interpretation may equivalently use Wy .

After training, we apply the normalization in §3.3 to obtain (U,W ∗), and fix W ∗ for inference and
downstream use.

Inference-time Interaction. Given a new feature a∈Rd (or batch Anew) and the fixed dictionary
W ∗, we solve the nonnegative least squares (NNLS) problem

u∗ = min
u≥0
∥a− uW ∗∥22. (7)

We approximate Eq. (7) with a few steps of projected AdamW (AdamW update followed by pro-
jection). NNLS may be used as an optional warm-start to initialize u(0); it is not on the critical
optimization path.

Proposition 3 (Properties of the NNLS Subproblem for Initialization; optional). Although we do
not rely on NNLS as the training/inference solver, when used for initialization with fixed W ∗, the
subproblem Eq. (7) is a convex quadratic program with an optimal solution. If the positive support
A of an optimum satisfies that W ∗

A has full column rank and strict complementarity holds, then the
coefficient solution is unique.

Proof. Define the linear image C := {W ∗u : u ≥ 0 } ⊂ Rd. Since the nonnegative orthant Rk
≥0

is a polyhedral cone, its image C under u 7→ W ∗u is also a polyhedral cone and hence closed and
convex. The problem

min
u≥0

1
2∥a−W ∗u∥22 ⇐⇒ min

y∈C
1
2∥a− y∥22 (8)

is the Euclidean projection of a onto a closed convex set, which admits a (unique) projected point
y∗ = projC(a). Thus the NNLS optimum is attained by some u∗≥0 with W ∗u∗ = y∗.

6
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For uniqueness of u∗, write the Lagrangian

L(u, µ) = 1
2∥a−W ∗u∥22 − µ⊤u, µ ≥ 0, (9)

with KKT conditions

(W ∗)⊤
(
W ∗u∗ − a

)
− µ∗ = 0, (10)

u∗ ≥ 0, µ∗ ≥ 0, (11)
µ∗
i u

∗
i = 0 (∀i). (12)

Let the active (positive) support be A := {i : u∗
i > 0}, I := {i : u∗

i = 0}. Complementary
slackness implies µ∗

A = 0 and µ∗
I = (W ∗

I )
⊤(W ∗

Au
∗
A − a

)
≥ 0. Eq. (10) on the active block reduces

to
(W ∗

A)
⊤(W ∗

Au
∗
A − a

)
= 0. (⋆)

A sufficient nondegeneracy condition guaranteeing uniqueness is:

(ND) Strict complementarity: u∗
A > 0, u∗

I = 0, µ∗
A = 0, µ∗

I > 0; Full column rank: W ∗
A has full

column rank (equivalently, (W ∗
A)

⊤W ∗
A≻0).

Under (ND), any feasible solution must share the same active set A; otherwise complementary
slackness is violated. With A fixed, the problem on the active face becomes the unconstrained
quadratic

min
v∈R|A|

1
2∥a−W ∗

Av∥22, (13)

whose first-order condition is (⋆). Since (W ∗
A)

⊤W ∗
A≻0, the unique solution is

u∗
A =

(
(W ∗

A)
⊤W ∗

A
)−1

(W ∗
A)

⊤a, (14)

together with u∗
I = 0, yielding uniqueness of u∗.

3.5 TWO USAGE MODES FOR CONCEPTS

After learning (U,W ∗) (and optional gy), SAND-CBM provides two complementary, lightweight
classification branches, each with a single linear head trained by cross-entropy.

Branch-A: CBM style (text alignment + concept activations). Construct the concatenated features

FA =
[
S
∣∣ U ]

∈ Rn×(m+k), S = AI ET (PT )
⊤, (15)

and predict with a linear classifier

ŷ = softmax
(
Linear(FA)

)
. (16)

Branch-B: CEM style (concept back-mapping + activations). First map concepts back to CLIP
space

Z = U W ∗ ∈ Rn×d, (17)
and (in an “absorbed” implementation) fold the gating into the class-specialized linear head (or
equivalently Wy = diag(gy)W

∗), leaving the form of Eq. (18) unchanged; the explicit variant
[(U ⊙ gy)W

∗ | U ⊙ gy] is equivalent (Proposition 3). Concatenate with activations:

FB =
[
S
∣∣ Z ]

∈ Rn×(m+d), ŷ = softmax
(
Linear(FB)

)
. (18)

Given labels {yi}ni=1, we train by cross-entropy loss ( (Shang et al., 2024; Oikarinen et al., 2023)).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluate on three benchmarks: CIFAR–100 (Krizhevsky, 2009),
CUB (Wah et al., 2011), and SUN (Xiao et al., 2010). We use 440 concepts on CIFAR–100,
312 concepts on CUB, and 102 concepts on SUN. Unless otherwise stated, all experiments adopt
ViT–B/16 (Dosovitskiy et al., 2021) as the backbone to ensure comparability.
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Hyperparameters. Unless specified, we default to Branch–B. The number of concepts is set to
k = 200. We use AdamW with learning rate 5× 10−3, weight decay 1× 10−4, batch size 128, and
train for 1000 epochs, selecting the best checkpoint by validation Top–1 accuracy. Experiments run
on Red Hat Enterprise Linux 8.8 (kernel 4.18.0) with an Intel Xeon Gold 6442Y (24 cores, 2.60 GHz),
500 GB RAM, and two NVIDIA L40S GPUs (46 GB each), CUDA 12.6, driver 550.100. Software:
Python 3.11, PyTorch 2.6.0, TorchVision 0.21.0.

Baselines. Beyond our SAND–CBM, we compare to four representative methods: CF–CBM (Do-
minici et al., 2024) (primary competitor), LF–CBM (Oikarinen et al., 2023) (no explicit concept
labels), PH–CBM (Yuksekgonul et al., 2023) (post-hoc concept heads), and Res–CBM (Shang et al.,
2024) (incremental residual completion). CF–CBM reports both high- and low-level concept results;
we use their stronger variant.

Metrics. Top–K accuracy is defined as Acc@K = 1
N

∑N
i=1 1

{
yi ∈ TopK

(
pi,K

)}
, where

TopK(pi,K) returns the set of K classes with the largest probabilities under pi. In the main
text we report Acc@1.

4.2 RESULTS

Table 1: Acc@1 on CIFAR–100, CUB, and SUN.

Dataset Res-CBM LF-CBM PH-CBM CF-CBM SAND-CBM

CIFAR-100 80.75
(−0.23)

76.58
(+3.94)

77.80
(+2.72)

77.13
(+3.39) 80.52

CUB 73.59
(+7.17)

68.76
(+12.00)

42.73
(+38.03)

77.20
(+3.56) 80.76

SUN 61.19
(+6.45)

48.95
(+18.69)

47.77
(+19.87)

61.51
(+6.13) 67.64

Note. Baseline columns show “accuracy (∆)”, where ∆ = Acc(SAND-CBM) − Acc(baseline); the
SAND-CBM column lists raw accuracies. Row-wise best is bolded. All values are percentages.

As shown in Tab. 1, across CIFAR–100, CUB, and SUN, SAND–CBM achieves consistently strong
performance, improving on average over all baselines by ≈ 8.93 and over the main competitor
CF–CBM by≈ 4.36. On CIFAR–100, it reaches 80.52, essentially on par with the strongest baseline
Res–CBM (80.75; −0.23) while improving over CF–CBM (77.13; +3.39), LF–CBM (76.58; +3.94),
and PH–CBM (77.80; +2.72); on CUB, it attains 80.76, improving over Res–CBM by +7.16, over
LF–CBM by +12.00, over PH–CBM by +38.03 (an ≈ 88.97% relative gain), and over CF–CBM by
+3.56; on SUN, it achieves 67.64, surpassing Res–CBM by +6.45, LF–CBM by +18.69, PH–CBM
by +19.87, and CF–CBM by +6.14, with gains over PH–CBM especially pronounced in scene
recognition. Overall, SAND–CBM is state-of-the-art on fine-grained (CUB) and scene (SUN)
classification while remaining competitive on generic object classification (CIFAR–100); the macro-
average (equal-weight average across datasets) advantage over CF–CBM is 4.36. Beyond accuracy,
we further examine the structural properties of the learned dictionary: Appendix C reports a correlation
analysis showing that most off-diagonal entries remain near zero, indicating low redundancy and
well-separated concept directions, and we further visualize the learned class-conditional gating
patterns in Appendix D; we complement the quantitative evaluation with a qualitative inspection of
image concept heatmaps (Appendix E), which demonstrate consistent spatial footprints and clear
between-concept separation, further validating the coherence and reusability of the learned concepts.

4.3 EFFECT OF THE DUAL-BRANCH MECHANISM

As shown in Fig. 2, three accuracy–k curves reveal a clear division of labor. For small concept
budgets (k≲40), Branch-A tends to win—its direct use of activations plus text alignment remains
effective even with few concepts—whereas Branch-B has not yet formed strong high-dimensional
compositions. As k enters the moderate regime (k∈ [50, 120]), Branch-B’s advantage emerges: on
CIFAR–100 and SUN it generally dominates for the same k and exhibits smoother trends. For large
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(a) CIFAR-100 (b) CUB (c) SUN

Figure 2: Accuracy vs. number of image concepts (k) across datasets, comparing Branch-A and
Branch-B.

k (k≥100), Branch-B reaches a higher ceiling: the best points on CIFAR–100 and SUN are from
Branch-B; on CUB, Branch-B overtakes after k≈100. Intuitively, “back-mapping” (Z=UW ∗) plus
activations composes discriminative semantics more effectively when the concept library is rich,
while Branch-A is more sensitive to noise amplification from text alignment and fluctuates at high k
on CIFAR–100. In practice, the branches are complementary: choose A for small k; choose B for
higher ceilings once k is sufficiently large. Our main results therefore report k=200.

4.4 ABLATION ON THE NUMBER OF IMAGE CONCEPTS k

As shown in Fig. 2, we vary k ∈ {10, 20, . . . , 200} on all three datasets while keeping other settings
identical to the main protocol. Overall trend. Accuracy increases with k for both branches with
diminishing marginal returns; Branch-A is typically more robust at very small k (≤40), while Branch-
B tends to achieve the best final accuracy at larger k. CIFAR–100. Both curves rise with k. Branch-A
shows visible fluctuations beyond k≈130; Branch-B is more monotonic and continues improving up
to k=200, attaining the highest value. Recommendation: prefer Branch-B for mid-to-large k (higher
and smoother at equal k); Branch-A’s instability past k≳125 makes it a secondary choice unless text
alignment is required. CUB. Both curves rise quickly and plateau. Branch-A saturates around k≈110
(near 79%), whereas Branch-B leads after k>40 and still edges upward at k=200 (near 80.5%). For
fine-grained data, enlarging the concept set yields early, substantial gains, followed by slower but
steady improvements. SUN. Both curves increase steadily and flatten at high k. Branch-B starts lower
at small k, surpasses Branch-A from mid k onward, and plateaus around k≈120, finishing slightly
higher (about 67.5% vs. 66%). This aligns with the higher semantic diversity of scenes. Takeaways.
Larger k raises the ceiling but with diminishing returns; Branch-B is generally superior and smoother
in the mid-to-large k regime, while Branch-A is competitive at small k. Visual “elbow points” are
roughly: ∼ 130 on CIFAR–100, ∼ 110 on CUB, and ∼ 120 on SUN. Practitioners may pick k near
these elbows for efficiency or push larger k for marginal gains. We report k=200 for cross-dataset
consistency and peak accuracy.

5 CONCLUSION

We presented SAND-CBM, a label-free concept bottleneck framework that discovers concepts
from the image side by factorizing CLIP features into a signed dictionary W and nonnegative
activations U , followed by a scale-equivalent normalization that places each activation column in
[0, 1] for cross-concept comparability; a class-conditional sparse gate selects per-class subsets from
a shared dictionary, enabling reuse without any per-class duplication. Built on the same (U,W ),
two lightweight branches provide complementary usage modes: a CBM-style path that preserves
compatibility with text-aligned interfaces, and a CEM-style path that back-maps concepts to the
representation space to strengthen discriminative power. Experiments on CIFAR–100, CUB, and
SUN show consistent gains over representative baselines, and diagnostics on dictionary correlation
and gate patterns indicate that the model learns atomic, low-redundancy, and reusable directions that
remain selective within each class.
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LLM USAGE DISCLOSURE

We used large language models (OpenAI GPT-4o and GTP-5) as auxiliary tools for grammar checking
and language polishing of the manuscript. These models were not involved in research ideation,
experimental design, implementation, or analysis. The authors take full responsibility for all content.

A DESIGN AND IMPLEMENTATION NOTES AND THEORETICAL SUMMARY

SAND-CBM applies a linear, interpretable factorization to CLIP features: we constrain only the
activations (U≥0) while allowing a signed dictionary W in CLIP’s semantic space. This preserves
the interpretability of additive strengths (via U ) without violating CLIP’s intrinsic sign structure
(unlike NMF’s W ≥0). Thus “concept strength” is read directly from U , while “concept direction” is
encoded by W .

For cross-concept comparability, we enforce the scale-equivalent transform (U, Ŵ ) 7→ (US, S−1Ŵ )
(Eq. (4)) to map each activation column to [0, 1]. Proposition 1 guarantees that normalization
preserves the optimal reconstruction; test-time u∗ can therefore be interpreted on a normalized
strength scale established during training.

To balance sharing and specificity, we place class selectivity on the activation side via gy = σ(λy)
(§3.4), stabilizing and reusing a shared W . Proposition 3 shows that gating can be equivalently
absorbed into a class-specialized dictionary Wy = diag(gy)W , allowing flexibility in training and
visualization.

Implementation-wise, we use a small number of projected-AdamW steps as the main workhorse:
iteratively update U in Eq. (1) with AdamW followed by projection to the nonnegative orthant; at
inference, solve the fixed-W ∗ NNLS in Eq. (7) with the same scheme. NNLS is optional and used
only as a warm start.

Theoretically, Proposition 1 establishes scale equivalence; Proposition 2 formalizes the equivalence
between activation-side gating and dictionary-side absorption; Proposition 3 shows that the fixed-W ∗

subproblem is a convex QP with an attained optimum and, under standard nondegeneracy (strict
complementarity + full column rank on the active subdictionary), a unique coefficient solution.
These properties justify our choices in Eq. (1), Eq.(4), and Eq.(7) and support an efficient, stable
implementation.

B COMPUTATIONAL COMPLEXITY.

For the base factorization in Eq. (1), a single optimization step that updates U and W (i.e., one
forward reconstruction UW together with the associated gradient computations) costs O(nkd). Over
T NMF-style (projected) optimization steps, the total training complexity is O(Tnkd). Here, n
denotes the number of training samples, k the number of learned image concepts, d the CLIP feature
dimension, and T the number of optimization steps. The projection onto the nonnegative orthant for
U adds negligible overhead compared with the matrix multiplications.

C DIAGNOSING DE-CORRELATION IN THE CONCEPT DICTIONARY

To evaluate the separation and complementarity of learned concept directions, we compute the
Pearson correlation matrix of the dictionary rows R = corrcoef(W ) ∈ Rk×k and use

OffDiagCorr =
∥R− diag(R)∥2F

k(k − 1)

as a de-correlation metric (mean squared off-diagonal correlation; lower is better). With k=10,
we obtain: SUN 0.0136, CIFAR–100 0.0334, CUB 0.0377 (Fig. 3c–3b). The majority of off-
diagonal entries remain close to zero, suggesting well-separated concept directions and reduced
redundancy—consistent with our nonnegative activations U (strength) plus signed dictionary W
(direction) design in §3.3, which promotes additive, compositional representations. CUB exhibits
moderately higher correlations (e.g., color–part co-occurrences), which may reflect meaningful
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Figure 3: Row-wise correlation matrices of the learned dictionary W at k=10. OffDiagCorr is the
mean squared off-diagonal correlation (lower is better). Most off-diagonal entries are near zero,
indicating separated directions and low redundancy.
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Figure 4: Class-conditional gate heatmaps (k=10). Columns: classes; rows: concepts. Values are
post-softmax weights over concepts (brighter is larger). x–axis: class id; y–axis: concept id.

semantic relationships rather than dictionary collapse; the class-conditional gating in §3.4 can leverage
such co-occurrences as effective per-class subsets at inference. Notably, these low correlations
emerge without explicit orthogonality constraints, suggesting that SAND–CBM tends to discover
complementary directions—supporting the empirical observations in §3.5 and §3.3 that increasing k
expands representational capacity rather than duplicating concepts.

D VISUALIZING CLASS-CONDITIONAL GATING (k=10)

We apply a softmax over the concept dimension of the gating matrix and visualize the transpose
as a k × c heatmap. As shown in Fig. 4 (CUB, CIFAR–100, SUN in Subfigs. a, b, c), all three
datasets demonstrate sparse-within-class, shared-across-classes activation patterns: individual classes
activate concentrated subsets of concepts while the same concepts participate across multiple classes.
The selectivity patterns vary across datasets—with sharper peaks on CUB, moderate selectivity on
CIFAR–100, and smoother distributions on SUN—potentially reflecting different levels of inter-class
semantic overlap. These patterns align with our "shared W + class-conditional σ(λy)” design
and, combined with the directional separation observed in §C, provide evidence that the learned
representations exhibit both specialization and reusability properties.

E QUALITATIVE ANALYSIS OF IMAGE CONCEPTS AND HEATMAPS

What the heatmaps show. Each heatmap visualizes the spatial support of a learned image concept:
brighter regions indicate where the concept’s activation contributes most to the reconstruction or to
the downstream decision. This makes the heatmap a localization cue—useful for seeing which parts
of the image the model attends to for a given concept.

What the heatmaps do not show. A heatmap does not reveal the concept’s semantic content by
itself. It cannot disambiguate whether a highlighted region corresponds to color, texture, shape, or a
conjunction of attributes. Thus, heatmaps indicate where but not what; they should be read as spatial
footprints rather than direct concept definitions.
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Figure 5: Examples of image concepts with corresponding heatmaps. Brighter regions indicate higher
concept activation. Heatmaps localize where the model attends but do not specify the concept’s
semantic content, so they are best used to assess cross-image consistency of each learned concept.

Consistency check for learned concepts. Despite this limitation, heatmaps are effective for
diagnosing concept consistency. For a fixed concept, we expect similar spatial patterns across images
that truly instantiate that concept (e.g., consistent focus on beaks for bird-related concepts or on
horizon bands for scene-related concepts). Visual inspection across multiple images helps identify
whether a concept has stable localization or is diffuse and class-agnostic. In practice, we (i) inspect
per-concept grids of images with their heatmaps, (ii) look for tight, repeatable regions, and (iii)
flag concepts whose activations migrate unpredictably. Consistent spatial footprints suggest that
the learned image concept is coherent; inconsistent or scattered footprints suggest entanglement or
spurious correlations and warrant re-training or adjustment of the concept budget and gating strength.

Detailed analysis of the heatmaps in Fig. 5. Image Concept 1 shows a compact and repeatable
hotspot on the anterior head region across almost all images. The peak typically sits around the eye
stripe and crown, remains stable under pose changes, and only slightly spills to the shoulder when
the head is partially occluded. Background foliage and branches are largely suppressed. Image
Concept 2 concentrates on an elongated band that tracks the neck and the base of the bill. The
activation extends vertically along the throat and upper breast for upright perching poses, while torso
and background remain cool. This pattern holds across side views and three-quarter views, indicating
a consistent spatial footprint tied to the neck column rather than the whole body. Image Concept 3
focuses on a small region near the bill tip and gape, often when the bird is vocalizing or the mouth is
open. The hotspot stays anchored at the head centroid even under clutter and nonstandard crops, with
minimal leakage to wings or background.

Taken together, the three rows exhibit high within-concept consistency—each concept returns to a
similar, compact locus across many instances—and clear between-concept separation—head patch
versus neck column versus bill tip—resulting in limited overlap among their spatial supports. The
heatmaps indicate where each concept contributes rather than what the concept means; nonetheless,
the tight and repeatable footprints provide qualitative evidence that the learned image concepts are
coherent and reusable. This observation aligns with the low inter-row correlation of dictionary
directions reported in § C.
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