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Abstract
Event-keyed summarization (EKS) requires001
summarizing a specific event described in a002
document given the document text and an event003
representation extracted from it. In this work,004
we extend EKS to the cross-document setting005
(CDEKS), in which summaries must synthe-006
size information from accounts of the same007
event as given by multiple sources. We intro-008
duce SEAMUS (Summaries of Events Across009
Multiple Sources), a high-quality dataset for010
CDEKS based on an expert reannotation of the011
FAMUS dataset for cross-document argument012
extraction. We present a suite of baselines on013
SEAMUS—covering both smaller, fine-tuned014
models, as well as zero- and few-shot prompted015
LLMs—along with detailed ablations and a hu-016
man evaluation study, showing SEAMUS to be017
a valuable benchmark for this new task.018

1 Introduction019

Providing useful information about events re-020

quires the ability not only to extract relevant, user-021

specified information from documents, but also to022

present that information in a readable form. Draw-023

ing on this observation, Gantt et al. (2024) re-024

cently proposed event-keyed summarization (EKS),025

a task that entails summarizing a particular event,026

given a document and an event representation ex-027

tracted from it. EKS thus seeks to satisfy both028

requirements—reconciling the specific information029

needs of IE end users with the more generic outputs030

of traditional summarization models—in order to031

communicate precise information about a single032

event in a contextualized and readable form. EKS033

can thus be viewed as event-centric controllable034

summarization (Fan et al., 2018), where the con-035

trolled attributes are the event and roles of interest.036

However, adequately understanding a particu-037

lar event often requires synthesizing information038

across multiple sources—evidenced in part by the039

rapidly growing interest in retrieval augmented gen-040

eration (RAG; Lewis et al., 2020b). Accordingly,041
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Figure 1: Schematic illustration of the SEAMUS report
and cross-document event-keyed summarization tasks.
Letters represent event arguments.
this work extends EKS to the cross-document set- 042

ting (CDEKS), drawing on—and enhancing—the 043

FAMUS dataset for cross-document argument ex- 044

traction (CDAE) to do so (Vashishtha et al., 2024). 045

We summarize our contributions as follows: 046

1. We collect and release an expert reannotation 047

of the FAMUS CDAE dataset, correcting the 048

existing crowdsourced annotations. 049

2. Based on (1), we collect and release SEA- 050

MUS, an expert-annotated dataset of single- 051

and cross-document event-keyed summaries— 052

the first ever dataset for CDEKS.1 053

3. We present a suite of baselines on SEAMUS 054

using both smaller, fine-tuned models and 055

prompted LLMs, showing CDEKS to be chal- 056

lenging relative to single-document EKS. 057

4. We conduct fine-grained ablations and a hu- 058

man evaluation, detailing CDEKS demands as 059

a task as well as models’ current capabilities. 060

2 Background 061

FAMUS (Vashishtha et al., 2024) is a dataset of 062

1Data is in the supplementary materials. Code will be
available on GitHub.

1



short English Wikipedia passages (reports) paired063

with much longer, genre-diverse English source064

documents cited by those reports.2 FAMUS sup-065

ports two tasks: (1) Source Validation (SV), where066

the goal is to determine whether a candidate source067

document is valid for—i.e. describes the same068

event as—an event identified in a provided re-069

port; and (2) Cross-Document Argument Extrac-070

tion (CDAE), which entails extracting arguments071

for an identified event from both the report and a072

valid source document. SEAMUS builds on the073

FAMUS CDAE data, which contains 1,265 report-074

source document pairs (split 3:1:1 across train, dev,075

and test), and annotates arguments of the same tar-076

get event for each document in a pair using a subset077

of the FrameNet ontology restricted to frames de-078

noting events, states, or processes (Baker et al.,079

1998). A single, maximally “informative” men-080

tion is annotated for each argument, where proper081

names > nominal expressions > pronouns (see Li082

et al., 2021b). In both report and source texts, argu-083

ments may be distributed across sentences.084

Event-Centric Summarization In introducing085

EKS, Gantt et al. (2024) released MUCSUM, an086

EKS dataset based on the classic MUC-4 template087

filling dataset (Sundheim, 1992). MUCSUM con-088

tains abstractive event-keyed summaries for each089

event template in MUC-4, written so as to faith-090

fully express the role of each template argument,091

plus any minimal additional context required for092

the summary to act as a standalone account of the093

event. Gantt et al. present baselines on MUCSUM,094

and also conduct a human evaluation of model out-095

puts, which inspires our own (§5).096

Other event-centric summarization research has097

focused on timeline summarization (TLS), which098

constructs chronological lists of events, often with099

timestamps and usually based on multiple docu-100

ments (Allan et al., 2001; Chieu and Lee, 2004;101

Li et al., 2021a; Rajaby Faghihi et al., 2022, i.a.).102

Beyond TLS, S Hussain et al. (2022) use ex-103

tracted event-related keywords to condition single-104

document summarization, and integrate an event-105

oriented attention mechanism into BART to encour-106

age models to cover all events discussed. Addition-107

ally, Vallurupalli et al. (2022) introduce the POQue108

dataset, which has annotations that characterize109

the subevent structure of complex events in stories110

and the changes undergone by their participants.111

Among these annotations are process summaries,112

2All documents are from MegaWika (Barham et al., 2023).

which give high-level descriptions of a complex 113

event, and change summaries, which describe the 114

changes experienced by a participant as a result. 115

Multi-Document Summarization CDEKS is 116

an event-centric multi-document summarization 117

(MDS) task. Work on MDS has pursued a variety 118

of goals, including synthesizing reviews (Gane- 119

san et al., 2010; Chu and Liu, 2019, i.a.), summa- 120

rizing dialogues (Kraaij et al., 2005; Chen et al., 121

2021, i.a.), distilling news articles (notably, via 122

DUC3 and TAC4), and generating reports (May- 123

field et al., 2024). Event-centric MDS datasets 124

include MultiNews (Fabbri et al., 2019) and Di- 125

verseSumm (Huang et al., 2024), which focus on 126

new stories, but SEAMUS is most similar to Auto- 127

hMDS (Zopf, 2018) and WCEP (Gholipour Gha- 128

landari et al., 2020) in being built on Wikipedia 129

articles and their sources. 130

CDEKS departs from all of these, however, in re- 131

sponding to an explicit information need. It is thus 132

an event-centric form of query-oriented MDS (Ma 133

et al., 2020), where a query expressing the kind of 134

information to be summarized is provided as addi- 135

tional input. But whereas queries from prior work 136

are given in natural language—e.g. article titles 137

(Liu and Lapata, 2019) or web searches (Pasunuru 138

et al., 2021)—ours are structured event represen- 139

tations, drawing on the IE tradition of leveraging 140

event ontologies to encode information needs, and 141

enabling extraction-to-summarization pipelines. 142

Our Work We summarize three key differences 143

between prior work and our own. We focus on: 144

1. Synthesizing information about a single event 145

across multiple sources. Both multi-event (e.g. 146

TLS) and single-source (e.g. EKS) summa- 147

rization have their place, but many practical 148

information needs depend on the rich under- 149

standing of an individual event that is attain- 150

able only via cross-source synthesis. 151

2. Responding to a specific event-centric infor- 152

mation need, not generically summarizing 153

event-related content (contra S Hussain et al., 154

2022; Vallurupalli et al., 2022). 155

3. Leveraging detailed, structured event repre- 156

sentations to achieve (1) and (2)—not short, 157

unstructured queries like web searches (Pa- 158

sunuru et al., 2021) or topics (Allan et al., 159

2001; Rajaby Faghihi et al., 2022, i.a.). 160

3https://duc.nist.gov/
4https://tac.nist.gov/publications/index.html
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3 Annotation161

Annotation of SEAMUS was divided into two162

phases. In the first phase, abstractive report sum-163

maries were written for each event in FAMUS (see164

§2) based only on its report document, and were165

then annotated for event arguments (§3.1). In the166

second phase, abstractive cross-document sum-167

maries were written for each event based jointly168

on its report and source documents, and were then169

annotated for event arguments as in the first phase170

(§3.2). In both phases, annotators were instructed171

to amend spurious, missing, or otherwise incorrect172

argument annotations in the report or source doc-173

ument before writing their summary. Thus, both174

phases involve (1) correcting existing FAMUS ar-175

gument annotations; (2) writing a summary based176

on the corrected annotations; and (3) annotating ar-177

guments in the summary. The phases differ only in178

the documents on which the summaries are based179

(report only vs. report and source). All annotations180

were performed by authors of this work.5181

3.1 Phase 1: Report Summaries182

Similar to the summaries in MUCSUM (§2), the183

report summaries in SEAMUS are concise sum-184

maries of a single event as recounted in a single185

document (a FAMUS report) that aim to faithfully186

represent the role of each participant and to provide187

the minimum additional context needed to serve as188

an accurate, standalone account of the event. Al-189

though the FAMUS report documents are already190

relatively short (typically, 2-3 sentences), they of-191

ten discuss multiple events.6 Thus, the report sum-192

maries are further distilled descriptions focused on193

just one event from the report.194

Three authors completed the Phase 1 annotation,195

with each summary and its arguments singly anno-196

tated. Items from the train split were randomly and197

evenly divided among these three authors; items198

from the dev and test splits were similarly divided199

between two of them. All items were provided in200

JSON files containing the following information201

for each example: (1) a unique example ID, (2)202

the FAMUS report text; (3) the FAMUS-annotated203

frame, trigger, and arguments of the target event204

from the report; and (4) definitions of the annotated205

frame and roles as given in FrameNet. Annotators206

5Appendix E has additional details and agreement results.
6E.g. for reports in the SEAMUS train split, the MegaWika

dataset (Barham et al., 2023), from which the reports are taken,
has an average of 21.4 FrameNet frames annotated.

Report Cross-Doc

Train Dev Train Dev

Examples 759 253 759 253
Avg. Words 21.8 24.6 30.5 34.5
Avg. Sentences 1.0 1.0 1.2 1.2
Avg. Arguments 3.1 3.5 4.1 4.6

Table 1: Summary statistics for the SEAMUS report
and cross-document summaries. See Table 7 for more.

were provided with detailed instructions written 207

by the first author and completed a 10-example 208

practice task before beginning the main annotation. 209

Consistent with FAMUS, both the corrected re- 210

port arguments and the report summary arguments 211

were annotated as single, maximally informative 212

mentions (see §2). Annotators were encouraged to 213

use the same mentions in their summaries as were 214

annotated in the (corrected) report arguments, but 215

were permitted to alter them in the summary in or- 216

der to preserve clarity or naturalness. Annotations 217

were validated to ensure that (1) they were shorter 218

than the report they summarized and (2) the num- 219

ber of arguments for a given role matched between 220

each report and its summary. All initially invalid 221

annotations were then corrected. 222

3.2 Phase 2: Cross-Document Summaries 223

The cross-document summaries are intended as en- 224

riched versions of the report summaries, synthe- 225

sizing details about the target event from both the 226

report and the target event’s source document. 227

Five of the authors completed the Phase 2 an- 228

notation, with all summaries and arguments singly 229

annotated as in Phase 1. Items from all three splits 230

were randomly and evenly distributed to the five 231

annotators. Given the complexity of the Phase 2 232

task, annotation was performed in two parts, us- 233

ing adapted versions of Vashishtha et al.’s (2024) 234

interface for FAMUS CDAE annotation.7 235

In Part A, annotators corrected FAMUS argu- 236

ment annotations in the source documents and then 237

wrote the cross-document summary based jointly 238

on the report and source texts and their corrected 239

arguments. Annotators were encouraged to use the 240

most informative mention of an argument across 241

both the report and source documents, but again 242

were allowed to make alterations for clarity. 243

In Part B, annotators annotated arguments in the 244

7Interface source code was obtained from Vashishtha et al.
Screenshots are shown in Appendix E.
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Event: Clemency

Cross-Document Summary

Source
Blogger Lashing: Saudi Rejects Criticism of Badawi Case (BBC Article)

Report
Sigmar Gabriel (Wikipedia Excerpt)

Report Summary

…During a 2015 visit to King 
Salman of Saudi Arabia, Gabriel 
launched an unusual public effort to 
persuade Saudi authorities to free 
imprisoned writer Raif Badawi and 
grant him clemency, amplifying 
Germany's political voice in a region 
in which its influence had largely 
been limited to economic issues in 
years past. He had been urged by 
MPs and human rights organizations 
to take up Badawi's case before his 
trip…

During a 2015 visit to King Salman 
of Saudi Arabia, Gabriel tried to 

persuade Saudi authorities to free 
imprisoned writer Raif Badawi and 

to grant him clemency.

…Saudi Arabia has expressed "surprise and dismay" at international media reports criticising 
the flogging of a Saudi blogger for insulting Islam….

Raif Badawi was sentenced to 1,000 lashes and 10 years in jail last year….Mr Badawi's case 
has prompted international protests and was raised by several governments. Germany's 
economic affairs minister and vice-chancellor, Sigmar Gabriel, currently on a visit to Saudi 
Arabia, was urged by MPs and human rights organisations to take up Mr Badawi's case while in 
Riyadh. Before going into a meeting with King Salman, Mr Gabriel said “the harshness of this 
sentence, especially the corporal punishment, is something unimaginable for us and of course it 
weighs on our relations”….
Mr Badawi established the Liberal Saudi Network, a now-closed online forum that sought to 
encourage debate on religious and political matters in 2008. In 2012, he was arrested and 
charged with "insulting Islam through electronic channels”….

During a 2015 visit, Sigmar Gabriel tried to persuade Saudi authorities, including King Salman, 
to grant Raif Badawi clemency for insulting Islam through electronic channels.

: Executive_Authority          : Offender         : Crime          : Time          : Place

Figure 2: An example from our SEAMUS dataset. Report documents (bottom left) are Wikipedia passages that
describe some event (top right) and that cite a longer (non-Wikipedia) source article (bottom right) as evidence, with
event arguments annotated in both documents. SEAMUS features simple summaries of these events based on only
the report (top left) as well as enriched, cross-document summaries based on both the report and its source, which
typically contain additional information about the event (here, the CRIME). Appendix A has further examples.

summaries from Part A. As in Phase 1, all annota-245

tors were provided with detailed instructions and246

completed a 10-example practice annotation before247

doing the main task. Summary argument annota-248

tions were again validated for length and to ensure249

that they featured as many arguments for a given250

role as the maximum number annotated for that251

role between the report and source texts.252

Summary statistics for both the report and cross-253

document summaries can be found in Table 1254

and an example is shown in Figure 2. Both255

types of summary average roughly a sentence in256

length, though cross-document summaries tend to257

be longer and to have more arguments—consistent258

with the richer information they provide.259

4 Experiments260

4.1 Overview261

Tasks We present experiments on both the report262

(§4.2) and cross-document (§4.3) summarization263

tasks. In the report task (single-document EKS),264

both the report and its annotated event are pro-265

vided as input. The cross-document task (CDEKS)266

is analogous, but also includes the corresponding267

source document and its event annotation as input.268

Next, in §4.4, we briefly discuss some ablations on269

the input inspired by similar ones from Gantt et al.270

(2024), with full results in Appendix F. Finally, 271

§4.5 evaluates the impact of degraded argument 272

extractions on summary quality. 273

Models We benchmark SEAMUS using models 274

of two types. First, we consider several classic pre- 275

trained encoder-decoder models widely used for 276

summarization: BART (Lewis et al., 2020a), PE- 277

GASUS (Zhang et al., 2020), and T5 (Raffel et al., 278

2020), fine-tuning the large versions of all three on 279

the SEAMUS training data. Second, we consider 280

some of the latest proprietary LLMs, evaluated 281

in both the zero- and few-shot settings: GPT-4o8, 282

GPT-4o Mini (GPT-4O M in Table 2)9, Claude 283

3 Haiku (CLAUDE H)10, and Claude 3.5 Sonnet 284

(CLAUDE S)11. For the few-shot examples, we use 285

the three examples from the train split whose frame 286

matches that of the target example. Finally, we also 287

give results for a report baseline (RB) that treats 288

the report text itself as the predicted summary. 289

Metrics We report several standard summariza- 290

tion metrics, including ROUGE-1 (R1), ROUGE-2 291

(R2), and ROUGE-LCS F1 scores (RL; Lin, 2004), 292

8https://openai.com/index/hello-gpt-4o/
9https://openai.com/index/

gpt-4o-mini-advancing-cost-efficient-intelligence/
10https://www.anthropic.com/news/claude-3-haiku
11https://www.anthropic.com/news/

claude-3-5-sonnet
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Report Cross-Document

Model S R1 R2 RL BS CR A F R1 R2 RL BS CR A F

RB - 56.2 46.1 48.4 91.6 52.6 99.1 98.7 48.5 33.3 39.3 89.6 31.0 99.3 93.1
GPT-4O M ZS 62.2 42.3 51.3 93.2 58.5 86.0 75.8 51.8 29.9 39.0 91.3 39.0 81.5 88.9

FS 72.0 55.4 61.0 94.3 66.8 94.1 83.3 57.5 36.9 45.7 92.1 39.8 88.5 89.8
GPT-4O ZS 64.0 45.2 53.0 93.2 61.4∗ 83.9 74.8 58.0∗ 36.4 45.8 92.2∗ 41.3∗ 86.6 88.4

FS 72.5† 56.6† 62.3† 94.4 69.6† 94.7 81.6 61.2† 40.7† 49.4† 92.7† 42.7† 90.6 88.5
CLAUDE H ZS 64.8 46.2 54.7 93.4 58.8 84.9 77.6 57.7 36.9∗ 46.5 92.1 36.2 90.4 91.4

FS 71.7 55.9 61.1 94.3 63.2 94.8 82.5 59.4 39.5 48.6 92.1 37.2 91.0 90.5†

CLAUDE S ZS 67.4∗ 48.1∗ 56.5∗ 93.8∗ 61.1 93.0∗ 80.6∗ 56.7 34.8 45.3 91.9 35.2 93.4∗ 91.7∗

FS 72.2 54.6 61.3 94.5† 65.7 95.9† 83.9† 57.9 38.1 47.4 92.1 37.3 95.1† 90.4
BART FT 74.5 61.7 66.4 94.6 69.9 91.6 79.3 63.8 45.5 53.0 92.6 45.0 85.6 85.3
PEGASUS FT 75.2 62.5 67.0 94.7 70.0 96.1 82.2 63.7 46.2 53.2 92.5 43.7 93.9 90.5
T5 FT 76.6 64.4 68.9 95.0 74.2 98.2 85.0 64.1 46.4 52.8 92.6 44.7 92.5 90.2

Table 2: Report and Cross-Document summarization results on SEAMUS. Best overall results are bolded; ∗ and †

denote best zero- and few-shot results, respectively. S=setting; RB=report baseline; ZS=zero-shot; FS=few-shot;
FT=fine-tuned. See §4.1 for an explanation of metrics; higher is better for all. See Tables 10 and 11 for 95% CIs.
Best A and F results exclude RB, for reasons explained in Appendix F.
as well as BERTScore F1 (BS; Zhang et al., 2019).293

Given EKS’s focus on producing summaries that294

recover specific pieces of information—as repre-295

sented by an event’s roles—we report several other296

metrics that evaluate this. First, we report CEAF-297

REE F1 (CR; Du et al., 2021a), a form of argument298

F1 that allows us to compare arguments extracted299

from a predicted summary against those in a refer-300

ence summary, aligning arguments based on exact301

match.12 Following Gantt et al. (2024), we train302

the event extraction model of Xia et al. (2021)13303

on SEAMUS and use it to extract arguments from304

the predicted summaries, constraining extraction305

to arguments that fill roles of the target event only.306

The summaries in SEAMUS also make claims307

about these arguments that reflect their role in the308

target event. To evaluate these claims’ fidelity309

to the text, we report AlignScore (A; Zha et al.,310

2023), a learned metric that provides a score in311

[0, 1] that indicates how well a claim (here, a sum-312

mary) is supported by a given context (the report313

for the report task, and the concatenated report and314

source for the cross-document task). We also re-315

port FACTSCORE (F; Min et al., 2023), which uses316

LMs to (1) decompose a generation into a set of317

atomic facts, and (2) determine the % of these facts318

supported by a given knowledge source, where F319

is the average % supported over all examples. We320

use as knowledge sources the contexts used for A.321

4.2 Report Summarization322

Setup As input for BART, PEGASUS, and T5,323

we provide the full report text concatenated with324

a linearized representation of the annotated report325

12Appendix F reports a soft match variant of this metric.
13https://hub.docker.com/r/hltcoe/lome

event that contains the frame name, the event trig- 326

ger, and the role names, each followed by a list 327

of the arguments annotated for that role. We train 328

each model against a standard conditional language 329

modeling objective w.r.t. the gold report summaries 330

for a maximum of 30 epochs, using a patience of 331

5 epochs, with dev R1 as the stopping criterion.14 332

For inference, we use beam search decoding with a 333

beam size of 5 and a max of 256 new tokens. 334

For the Claude and GPT models, our system 335

prompt asks the model to analyze and summarize 336

a specific event. The user prompt provides more 337

detailed task instructions, followed by the full re- 338

port text, and a description of the target event that 339

includes (1) the frame name and definition from 340

FrameNet; (2) the trigger; and (3) a bulleted list, 341

where each item includes a role name, its defini- 342

tion, and the arguments annotated for that role. In 343

the few-shot setting, we format the three few-shot 344

examples (see §4.1) the same way, but with the 345

target summary shown at the end of each. We set 346

temperature to 0.7 and the max new tokens to 256, 347

leaving other API defaults unchanged.15 348

Results are shown in the left half of Table 2. 349

First, we find that T5 obtains the best performance 350

across all metrics, followed by PEGASUS and 351

BART, with T5 exhibiting particularly strong re- 352

sults for CR, indicating its ability to accurately 353

recover event arguments in its summaries. Second, 354

the LLMs almost universally outperform the report 355

baseline (RB)—even in the zero-shot setting (ZS), 356

where Claude Sonnet generally obtains the best re- 357

sults. Third, adding just three few-shot examples 358

14Details on training and input formats are in Appendix B.
15Appendix C has further details on models and prompts.
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Report Cross-Document

Model p R1 R2 RL BS CR A F R1 R2 RL BS CR A F

T5

0.0 76.6 64.4 68.9 95.0 74.2 98.2 85.0 64.1 46.4 52.8 92.6 46.3 92.5 90.2
0.1 75.6 62.8 67.8 93.9 71.4 97.6 84.7 62.8 45.3 51.8 91.5 47.2 92.0 89.9
0.2 74.0 61.7 66.2 93.6 69.6 98.0 84.6 62.0 44.3 50.7 91.4 43.5 89.3 88.0
0.3 72.1 60.0 64.7 93.3 67.5 98.2 83.0 60.0 42.8 49.3 91.0 43.3 87.3 89.0
0.4 70.3 57.5 62.1 92.9 66.4 95.8 83.2 58.4 40.9 47.8 90.8 44.4 87.4 86.8
0.5 68.3 55.2 60.6 92.6 63.2 96.3 83.5 56.6 39.1 46.3 90.4 43.1 87.3 88.0

CLAUDE H (FS)

0.0 71.7 55.9 61.0 94.3 63.2 94.8 82.9 57.7 36.9 45.7 92.1 36.2 91.0 90.5
0.1 67.5 51.5 56.7 93.7 59.4 94.8 83.6 57.2 37.3 45.4 91.8 37.1 82.5 88.9
0.2 65.6 48.8 55.1 93.5 55.1 94.7 83.2 56.2 37.0 45.1 91.7 37.8 79.4 88.6
0.3 64.7 47.8 54.1 93.3 52.8 94.6 84.1 56.0 36.2 44.9 91.5 32.7 82.2 89.2
0.4 64.1 47.2 54.1 93.3 52.2 95.0 83.1 54.5 34.3 43.1 91.3 31.4 85.0 89.0
0.5 63.1 46.8 54.0 93.1 52.3 94.7 83.8 54.3 34.6 43.3 91.3 33.1 86.4 89.2

GPT-4O M (FS)

0.0 72.0 55.4 61.0 94.3 66.8 94.1 83.3 57.5 36.9 45.7 92.1 39.8 88.5 89.8
0.1 69.2 52.8 59.5 94.0 64.0 94.5 81.8 58.8 38.2 46.2 92.1 42.2 74.5 90.6
0.2 67.6 50.8 57.0 93.7 59.8 94.2 84.3 56.6 36.2 45.1 91.2 39.4 75.2 89.8
0.3 66.9 50.1 57.0 93.7 59.3 94.9 81.8 56.4 36.2 44.5 91.8 37.8 77.2 90.2
0.4 65.2 48.1 54.9 93.4 56.7 93.8 84.2 54.8 34.0 42.8 91.6 36.6 77.8 90.6
0.5 65.1 47.5 54.8 93.4 55.2 95.4 82.7 54.2 33.2 42.6 91.4 34.4 80.9 90.8

Table 3: Performance of three models from Table 2 when the argument annotations for each role in the report event
(Report) or additionally in the source event (Cross-Document) are corrupted with probability p (see §4.5).

(FS) yields major gains over the zero-shot setting359

for all LLMs on all metrics. Even here, however,360

few-shot results still trail the best fine-tuned results361

(T5) by sizable margins on most metrics.362

4.3 Cross-Document Summarization363

Setup The setup for the cross-document task is364

similar to that of the report task, but adds the source365

text and its annotated event to the input alongside366

the report text and its event. As the source texts367

are full web articles, most are long (e.g. dev texts368

average almost 62 sentences and over 1,500 words).369

While this is no obstacle for the LLMs, the smaller370

models do not support contexts of this size. Thus,371

to enable a fair comparison across models, we ap-372

ply a sentence retriever to the source, using the373

report text as a query to select the top k most374

relevant sentences to use as context.16 We con-375

sider k ∈ {3, . . . , 10} and selected the maximum376

value such that ≥ 95% of the resulting dev set con-377

texts would fit untruncated in the input, yielding378

k = 7. We experimented with the dense retrievers379

all-mpnet-base-v2 (based on MPNet; Song et al.,380

2020) and e5-large-v2 (Wang et al., 2022), but381

obtained our best results with BM25 (Robertson382

et al., 2009), which we use in all experiments.17383

We use the same training and inference settings384

from §4.2; see Appendices B, C for further details.385

16This approach can also be justified by the fact that typi-
cally only a small portion of the source concerns the event.

17Models were evaluated on recall of annotated arguments
in the retrieved contexts for the dev set for fixed k. At k = 7,
BM25 recovered ∼ 76% of annotated source arguments.

Results are shown in the right half of Table 2 386

and are qualitatively similar to those for the report 387

task, with the fine-tuned models generally showing 388

the best overall numbers (R1,2,L, CR) or nearly so 389

(BS), although GPT-4o obtains the highest scores 390

on BS and Claude Sonnet on A and F. Once again, 391

nearly all models outperform the report baseline 392

across the board (ZS and GPT-4o Mini excepted). 393

Finally, we note that results on most metrics are 394

much lower in absolute terms compared to the 395

corresponding results from §4.2, testifying to the 396

greater difficulty of the cross-document task. 397

4.4 Input Ablations 398

Following Gantt et al. (2024), Appendix F consid- 399

ers ablations on the input for both tasks, in which 400

we omit the annotated events (TEXT ONLY) or the 401

texts (EVENT ONLY), and condition summary gen- 402

eration on the resulting ablated inputs. We also 403

present a novel third ablation that omits the argu- 404

ments, but leaves in information about the frame 405

and roles (TEXT+SCHEMA). Consistent with Gantt 406

et al., we find that both the text and the full event 407

annotations are needed to obtain the best results 408

(Tables 8 and 9), indicating that the SEAMUS tasks 409

are not reducible to standard summarization (TEXT 410

ONLY), structure-to-text (EVENT ONLY), or even 411

a hybrid objective (TEXT+SCHEMA). Moreover, if 412

some results in Table 2 (e.g. R{1,2,L}) appear high, 413

these ablations show that this is due in large part to 414

access to gold event structures. We next turn to the 415

case of imperfect event extractions. 416
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4.5 Impact of Extraction Quality417

Setup §4.2 and §4.3 use gold event structures in418

the input to facilitate fair cross-model comparisons.419

But in real-world scenarios, one rarely has access to420

gold arguments, and certainly not in the extraction-421

to-summarization pipelines CDEKS aims to sup-422

port. It is thus essential to understand models’ tol-423

erance to noise in the extracted events.424

To probe robustness to extraction errors in a con-425

trolled manner, we apply variable amounts of noise426

to the gold event annotations and evaluate model427

performance on the resulting inputs. Concretely,428

for each role R of each event, we edit R’s argu-429

ments with probability p. If a role is selected for430

editing, we then make one of the following edits431

with equal probability:432

1. INSERT: A new (incorrect) span from the text433

is added to the argument list for R.434

2. DELETE: An argument span is removed at435

random from the argument list for R.436

3. REPLACE: An argument span is replaced at437

random with an incorrect span from the text.438

For the cross-document task, we apply these edits439

to the event annotations for both the report and the440

source. We sample the edits to be made uniformly441

and then prompt an LLM (GPT-4o) to apply them442

by supplying in a prompt: (1) the text (report or443

source), (2) the (JSON-formatted) report or source444

event annotations, and (3) instructions for the edits445

to be made, generated automatically by populating446

templatic statements based on the edits sampled.447

The LLM is free to select an appropriate new span448

to be used for the INSERT and REPLACE operations.449

We consider p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, using the450

same sampled edits for all models for a given p.451

We evaluate one fine-tuned model (T5) and one452

model each from the Claude (Claude Haiku) and453

GPT (GPT-4o Mini) families. For T5, we use454

the same checkpoint as presented in Table 2. For455

Claude Haiku and GPT-4o Mini, we use few-shot456

prompts similar to those used in the FS setting in457

Table 2, but with two key changes. First, we alter458

the task instructions to say that the event annota-459

tions for the target example may contain errors,460

and that the model must correct these errors when461

generating its summary by consulting the text(s).462

Second, we show the model how to do this by sub-463

stituting noised versions of the event annotations464

in the few-shot examples while leaving their asso-465

ciated texts and summaries unchanged.466

p Summary

0.0 The gradual accumulation of partially decayed plant material
in a bog functions as a carbon sink.

0.1 The gradual accumulation of decayed plant material
in a bog functions as a carbon sink.

0.2 The gradual accumulation of decayed plant material
in a bog acts as a carbon sink.

0.3 The gradual accumulation of decayed plant material
in a bog functions as a carbon sink.

0.4 The gradual accumulation of decayed plant material,
including peat, in bogs functions as a carbon sink.

0.5 The gradual accumulation of decayed plant material
in a bog functions as a carbon sink.

Table 4: Example outputs from GPT-4o Mini on the
cross-document task as role annotations are corrupted
with probability p. In many cases (as here), we find
minimal degradation in quality from p = 0 to p = 0.5.

Results for both tasks are in Table 3. For all 467

models, we observe (near-)monotonic drops in per- 468

formance for most metrics as p increases. While 469

performance drops are sizable in some cases, they 470

are arguably less radical than we might expect, 471

given the destructiveness of the changes at p = 0.5, 472

where roughly half of all roles contain extraction 473

errors. This is especially evident in the results 474

for Claude Haiku and GPT-4o Mini on the cross- 475

document task, where (e.g.) R1,2,L scores decrease 476

by only about 3 points from p = 0 to p = 0.5, BS 477

by less than 1, and F showing no drop at all. Fur- 478

ther, losses on CR (the most explicit measure of 479

extraction ability) are only ∼5 points for GPT-4o 480

Mini and ∼3 points for Claude Haiku. 481

These findings are confirmed by manual inspec- 482

tion of model outputs, where we often see relatively 483

little degradation in summary quality (Table 4). 484

This suggests an intriguing strength of this task 485

relative to traditional event extraction: the ability 486

to counteract extraction errors post-hoc by using 487

imperfect event extractions as a query to locate rele- 488

vant passages in the input and then leveraging those 489

passages to avoid analogous errors in the summary. 490

5 Human Evaluation 491

Setup Lastly, we conduct a human evaluation 492

of the reference and model-generated summaries. 493

We focus our evaluation on the cross-document 494

task, comparing the summaries generated by mod- 495

els presented in Table 2 (excluding RB). For the 496

GPT and Claude models, we use the FS (few-shot) 497

summaries only, owing to their superiority over the 498

ZS results. We randomly sampled 30 test set ex- 499

amples and presented the 7 model-generated sum- 500

maries for these examples, along with the refer- 501

ences, to 3 human raters—all English-speaking 502

NLP researchers who did not participate in other 503
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Figure 3: Histograms of summary quality scores (1-5, higher is better) from our human evaluation (§5). The bottom
right plot (red) aggregates scores across all three raters; each of the other plots (blue) shows a single rater’s scores.

parts of this work. Each rater provided a single504

quality score for each summary based on the or-505

dered list of attributes used by Gantt et al. (2024):506

factuality, adequacy, coherence, relevancy, and flu-507

ency. Scores were given from 1 (low) to 5 (high),508

with half points allowed. Each rater thus provided509

30×(7+1)×1 = 240 judgments. Raters were not510

shown which model produced which summary, and511

summary presentation order was randomized.18512

Results Four sets of histograms of scores for each513

model (and the reference) are shown in Figure 3.514

The bottom right set (red) shows scores aggregated515

across annotators, while the other three (blue) each516

show scores of a single rater. For all raters, scores517

are consistently high across models and the refer-518

ence, with modes of ≥ 4 for each. Comparing pref-519

erences across raters, however, we see significant520

variability: GPT-4o achieved the highest average521

score for one rater (top right, 4.28); GPT-4o Mini522

for the second (bottom left, 4.57); and PEGASUS523

for the third (top left, 4.23).524

Looking at intra-rater distributions, however, it’s525

unclear how robust these preferences are. Using526

Wilcoxon rank-sum tests to evaluate pairwise dif-527

ferences in each rater’s scores for a given pair of528

models, we find that some of these preferences529

are reliable at α = .05 (e.g. GPT-4o > T5 with530

p = .016 for the first rater), but none holds up531

when applying the Bonferroni correction for multi-532

ple comparisons. We take these results to indicate533

that our baselines are fairly effective at producing534

18See Appendix D for further details.

good summaries, and that while they may some- 535

what differentiate themselves on individual met- 536

rics19, the best models on a more holistic picture 537

may come down to user preference, and there may 538

not be definitive bests even at this scope. This plu- 539

rality of solid modeling options is encouraging, and 540

suggests flexibility in the application of CDEKS to 541

a range of use cases. 542

6 Conclusion 543

This work has extended the task of event-keyed 544

summarization (EKS) to the cross-document set- 545

ting (CDEKS). To enable this, we provided an ex- 546

pert reannotation of the FAMUS CDAE dataset, 547

yielding high-quality event argument annotations 548

on all 1,265 examples. We then leveraged these 549

improved annotations to construct SEAMUS—a 550

collection of single- (report) and cross-document 551

summaries on top of FAMUS, further annotating 552

the summaries themselves for event arguments (§3). 553

We benchmarked SEAMUS on a diverse set of 554

baselines, including smaller fine-tuned models, as 555

well as zero- and few-shot prompted LLMs (§4.2, 556

§4.3). We then presented more detailed analysis, 557

conducting a comprehensive set of input abalations 558

(§4.4), assessing the impact of degraded event ex- 559

traction on summary quality (§4.5), and finally con- 560

cluding with a human evaluation of summary qual- 561

ity (§5). We release SEAMUS, along with our 562

baseline results, to facilitate further work on EKS 563

in both the single- and cross-document settings. 564

19See our discussion of argument recovery in Appendix F.
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Limitations565

One limitation of this work is SEAMUS’s size:566

1,265 examples is sufficient for fine-tuning smaller567

models and for conducting prompting experiments568

with larger ones, but is likely insufficient for sub-569

stantive fine-tuning of very large models.570

A second limitation is that the cross-document571

setting considers only two documents per exam-572

ple. This constraint was imposed by the choice of573

the FAMuS dataset as the basis for SEAMUS, as574

cross-document argument annotations in the former575

were provided only for pairs of report and source576

texts. Future work expanding the set of source577

texts would be valuable, and would allow both for578

richer summaries and for more robust evaluation579

of models’ ability to accurately synthesize infor-580

mation across possibly differing accounts of events581

(cf. Huang et al. (2024)), as information conflicts582

are more common outside of Wikipedia citations.583

We note, however, that addressing either limita-584

tion may require relaxing data quality standards—585

relying on crowdsourcing or LLM-powered anno-586

tation techniques—as scaling our annotation proce-587

dure to many more examples or source documents588

would demand considerable resources. It was only589

thanks to the above restrictions that we were able590

to provide expert annotations for SEAMUS.591

Finally, while the experiments in §4.5 offer a592

helpful picture of the impact of event extraction593

quality on cross-document event-keyed summaries,594

further experiments on the outputs of actual event595

extraction systems would likely provide a better596

one. Much of the difficulty of deploying CDEKS597

in practical settings undoubtedly lies in the devel-598

opment of an effective document-level event ex-599

tractor, as evidenced by the ongoing challenges600

documented by much prior work in this domain601

(Du et al., 2021b; Chen et al., 2023b; Gantt et al.,602

2023; Vashishtha et al., 2024, i.a.)603

Ethics604

As the report and source texts in SEAMUS are the605

same as those in the FAMuS dataset, and as the606

summaries in SEAMUS are simply distillations607

of (parts of) these texts, we do not believe our608

dataset introduces any novel risks as a resource.609

Nonetheless, these texts do discuss real people,610

places, and institutions, and models trained on this611

data may thus be liable to make untrue claims about612

them or otherwise misrepresent them. We intend613

SEAMUS for academic use only, as a benchmark614

to evaluate systems for single- and cross-document 615

event-keyed summarization. 616

9



References617

James Allan, Rahul Gupta, and Vikas Khandelwal. 2001.618
Temporal summaries of new topics. In Proceedings619
of the 24th annual international ACM SIGIR confer-620
ence on Research and development in information621
retrieval, pages 10–18.622

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.623
1998. The Berkeley FrameNet project. In COLING624
1998 Volume 1: The 17th International Conference625
on Computational Linguistics.626

Samuel Barham, Orion Weller, Michelle Yuan, Kenton627
Murray, Mahsa Yarmohammadi, Zhengping Jiang,628
Siddharth Vashishtha, Alexander Martin, Anqi Liu,629
Aaron Steven White, et al. 2023. Megawika: Mil-630
lions of reports and their sources across 50 diverse631
languages. arXiv preprint arXiv:2307.07049.632

Yanran Chen and Steffen Eger. 2023. MENLI: Robust633
evaluation metrics from natural language inference.634
Transactions of the Association for Computational635
Linguistics, 11:804–825.636

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang.637
2021. DialogSum: A real-life scenario dialogue sum-638
marization dataset. In Findings of the Association639
for Computational Linguistics: ACL-IJCNLP 2021,640
pages 5062–5074. Association for Computational641
Linguistics.642

Yunmo Chen, William Gantt, Tongfei Chen, Aaron643
White, and Benjamin Van Durme. 2023a. A unified644
view of evaluation metrics for structured prediction.645
In Proceedings of the 2023 Conference on Empiri-646
cal Methods in Natural Language Processing, pages647
12868–12882. Association for Computational Lin-648
guistics.649

Yunmo Chen, William Gantt, Weiwei Gu, Tongfei Chen,650
Aaron White, and Benjamin Van Durme. 2023b. Iter-651
ative document-level information extraction via im-652
itation learning. In Proceedings of the 17th Confer-653
ence of the European Chapter of the Association for654
Computational Linguistics, pages 1858–1874. Asso-655
ciation for Computational Linguistics.656

Hai Leong Chieu and Yoong Keok Lee. 2004. Query657
based event extraction along a timeline. In Proceed-658
ings of the 27th annual international ACM SIGIR659
conference on Research and development in informa-660
tion retrieval, pages 425–432.661

Eric Chu and Peter Liu. 2019. Meansum: a neural662
model for unsupervised multi-document abstractive663
summarization. In International conference on ma-664
chine learning, pages 1223–1232. PMLR.665

Xinya Du, Alexander Rush, and Claire Cardie.666
2021a. GRIT: Generative role-filler transformers667
for document-level event entity extraction. In Pro-668
ceedings of the 16th Conference of the European669
Chapter of the Association for Computational Lin-670
guistics: Main Volume, pages 634–644. Association671
for Computational Linguistics.672

Xinya Du, Alexander Rush, and Claire Cardie. 2021b. 673
Template filling with generative transformers. In Pro- 674
ceedings of the 2021 Conference of the North Amer- 675
ican Chapter of the Association for Computational 676
Linguistics: Human Language Technologies, pages 677
909–914. Association for Computational Linguistics. 678

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 679
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 680
Akhil Mathur, Alan Schelten, Amy Yang, Angela 681
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, 682
Archi Mitra, Archie Sravankumar, Artem Korenev, 683
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien 684
Rodriguez, Austen Gregerson, Ava Spataru, Bap- 685
tiste Roziere, Bethany Biron, Binh Tang, Bobbie 686
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe 687
Bi, Chris Marra, Chris McConnell, Christian Keller, 688
Christophe Touret, Chunyang Wu, Corinne Wong, 689
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al- 690
lonsius, Daniel Song, Danielle Pintz, Danny Livshits, 691
David Esiobu, Dhruv Choudhary, Dhruv Mahajan, 692
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, 693
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, 694
Emily Dinan, Eric Michael Smith, Filip Radenovic, 695
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor- 696
gia Lewis Anderson, Graeme Nail, Gregoire Mi- 697
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen, 698
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan 699
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan 700
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan 701
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, 702
Jeet Shah, Jelmer van der Linde, Jennifer Billock, 703
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, 704
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, 705
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph 706
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, 707
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate 708
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, 709
Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen- 710
ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau- 711
rens van der Maaten, Lawrence Chen, Liang Tan, Liz 712
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, 713
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, 714
Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, 715
Manohar Paluri, Marcin Kardas, Mathew Oldham, 716
Mathieu Rita, Maya Pavlova, Melanie Kambadur, 717
Mike Lewis, Min Si, Mitesh Kumar Singh, Mona 718
Hassan, Naman Goyal, Narjes Torabi, Nikolay Bash- 719
lykov, Nikolay Bogoychev, Niladri Chatterji, Olivier 720
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan 721
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Pra- 722
jjwal Bhargava, Pratik Dubal, Praveen Krishnan, 723
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao 724
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon 725
Calderer, Ricardo Silveira Cabral, Robert Stojnic, 726
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro- 727
main Sauvestre, Ronnie Polidoro, Roshan Sumbaly, 728
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar 729
Hosseini, Sahana Chennabasappa, Sanjay Singh, 730
Sean Bell, Seohyun Sonia Kim, Sergey Edunov, 731
Shaoliang Nie, Sharan Narang, Sharath Raparthy, 732
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun 733
Zhang, Simon Vandenhende, Soumya Batra, Spencer 734
Whitman, Sten Sootla, Stephane Collot, Suchin Gu- 735

10

https://aclanthology.org/C98-1013
https://doi.org/10.1162/tacl_a_00576
https://doi.org/10.1162/tacl_a_00576
https://doi.org/10.1162/tacl_a_00576
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2023.emnlp-main.795
https://doi.org/10.18653/v1/2023.emnlp-main.795
https://doi.org/10.18653/v1/2023.emnlp-main.795
https://doi.org/10.18653/v1/2023.eacl-main.136
https://doi.org/10.18653/v1/2023.eacl-main.136
https://doi.org/10.18653/v1/2023.eacl-main.136
https://doi.org/10.18653/v1/2023.eacl-main.136
https://doi.org/10.18653/v1/2023.eacl-main.136
https://doi.org/10.18653/v1/2021.eacl-main.52
https://doi.org/10.18653/v1/2021.eacl-main.52
https://doi.org/10.18653/v1/2021.eacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.70


rurangan, Sydney Borodinsky, Tamar Herman, Tara736
Fowler, Tarek Sheasha, Thomas Georgiou, Thomas737
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong738
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor739
Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent740
Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-741
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-742
ney Meers, Xavier Martinet, Xiaodong Wang, Xiao-743
qing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei744
Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine745
Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue746
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng747
Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,748
Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam749
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva750
Goldstand, Ajay Menon, Ajay Sharma, Alex Boesen-751
berg, Alex Vaughan, Alexei Baevski, Allie Feinstein,752
Amanda Kallet, Amit Sangani, Anam Yunus, An-753
drei Lupu, Andres Alvarado, Andrew Caples, An-754
drew Gu, Andrew Ho, Andrew Poulton, Andrew755
Ryan, Ankit Ramchandani, Annie Franco, Apara-756
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,757
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-758
dan, Beau James, Ben Maurer, Benjamin Leonhardi,759
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi760
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-761
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,762
Brian Gamido, Britt Montalvo, Carl Parker, Carly763
Burton, Catalina Mejia, Changhan Wang, Changkyu764
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,765
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Da-766
mon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,767
Danny Wyatt, David Adkins, David Xu, Davide Tes-768
tuggine, Delia David, Devi Parikh, Diana Liskovich,769
Didem Foss, Dingkang Wang, Duc Le, Dustin Hol-770
land, Edward Dowling, Eissa Jamil, Elaine Mont-771
gomery, Eleonora Presani, Emily Hahn, Emily Wood,772
Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan773
Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat774
Ozgenel, Francesco Caggioni, Francisco Guzmán,775
Frank Kanayet, Frank Seide, Gabriela Medina Flo-776
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee,777
Gil Halpern, Govind Thattai, Grant Herman, Grigory778
Sizov, Guangyi, Zhang, Guna Lakshminarayanan,779
Hamid Shojanazeri, Han Zou, Hannah Wang, Han-780
wen Zha, Haroun Habeeb, Harrison Rudolph, He-781
len Suk, Henry Aspegren, Hunter Goldman, Ibrahim782
Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena783
Veliche, Itai Gat, Jake Weissman, James Geboski,784
James Kohli, Japhet Asher, Jean-Baptiste Gaya,785
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen,786
Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong,787
Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill,788
Jon Shepard, Jonathan McPhie, Jonathan Torres,789
Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou790
U, Karan Saxena, Karthik Prasad, Kartikay Khan-791
delwal, Katayoun Zand, Kathy Matosich, Kaushik792
Veeraraghavan, Kelly Michelena, Keqian Li, Kun793
Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang,794
Lailin Chen, Lakshya Garg, Lavender A, Leandro795
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng796
Yu, Liron Moshkovich, Luca Wehrstedt, Madian797
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsim-798

poukelli, Martynas Mankus, Matan Hasson, Matthew 799
Lennie, Matthias Reso, Maxim Groshev, Maxim 800
Naumov, Maya Lathi, Meghan Keneally, Michael L. 801
Seltzer, Michal Valko, Michelle Restrepo, Mihir 802
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike 803
Clark, Mike Macey, Mike Wang, Miquel Jubert Her- 804
moso, Mo Metanat, Mohammad Rastegari, Mun- 805
ish Bansal, Nandhini Santhanam, Natascha Parks, 806
Natasha White, Navyata Bawa, Nayan Singhal, Nick 807
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, 808
Ning Dong, Ning Zhang, Norman Cheng, Oleg 809
Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem 810
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pa- 811
van Balaji, Pedro Rittner, Philip Bontrager, Pierre 812
Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratan- 813
chandani, Pritish Yuvraj, Qian Liang, Rachad Alao, 814
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, 815
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah 816
Hogan, Robin Battey, Rocky Wang, Rohan Mah- 817
eswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, 818
Samyak Datta, Sara Chugh, Sara Hunt, Sargun 819
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, 820
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind- 821
say, Shaun Lindsay, Sheng Feng, Shenghao Lin, 822
Shengxin Cindy Zha, Shiva Shankar, Shuqiang 823
Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agar- 824
wal, Soji Sajuyigbe, Soumith Chintala, Stephanie 825
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, 826
Sudarshan Govindaprasad, Sumit Gupta, Sungmin 827
Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, 828
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara 829
Best, Thilo Kohler, Thomas Robinson, Tianhe Li, 830
Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook 831
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria 832
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal 833
Mangla, Vítor Albiero, Vlad Ionescu, Vlad Poenaru, 834
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, 835
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will 836
Constable, Xiaocheng Tang, Xiaofang Wang, Xiao- 837
jian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo 838
Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, 839
Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, 840
Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach 841
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, 842
Zhenyu Yang, and Zhiwei Zhao. 2024. The llama 3 843
herd of models. 844

Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and 845
Dragomir Radev. 2019. Multi-news: A large-scale 846
multi-document summarization dataset and abstrac- 847
tive hierarchical model. In Proceedings of the 57th 848
Annual Meeting of the Association for Computational 849
Linguistics, pages 1074–1084. Association for Com- 850
putational Linguistics. 851

Angela Fan, David Grangier, and Michael Auli. 2018. 852
Controllable abstractive summarization. In Proceed- 853
ings of the 2nd Workshop on Neural Machine Trans- 854
lation and Generation, pages 45–54. Association for 855
Computational Linguistics. 856

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. 857
2010. Opinosis: A graph based approach to abstrac- 858
tive summarization of highly redundant opinions. In 859

11

http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/W18-2706
https://aclanthology.org/C10-1039
https://aclanthology.org/C10-1039
https://aclanthology.org/C10-1039


Proceedings of the 23rd International Conference860
on Computational Linguistics (Coling 2010), pages861
340–348. Coling 2010 Organizing Committee.862

William Gantt, Reno Kriz, Yunmo Chen, Siddharth863
Vashishtha, and Aaron White. 2023. On event indi-864
viduation for document-level information extraction.865
In Findings of the Association for Computational866
Linguistics: EMNLP 2023, pages 12938–12958. As-867
sociation for Computational Linguistics.868

William Gantt, Alexander Martin, Pavlo Kuchmiichuk,869
and Aaron Steven White. 2024. Event-keyed summa-870
rization. arXiv preprint arXiv:2402.06973.871

Demian Gholipour Ghalandari, Chris Hokamp,872
Nghia The Pham, John Glover, and Georgiana Ifrim.873
2020. A large-scale multi-document summarization874
dataset from the Wikipedia current events portal.875
In Proceedings of the 58th Annual Meeting of876
the Association for Computational Linguistics,877
pages 1302–1308. Association for Computational878
Linguistics.879

Kung-Hsiang Huang, Philippe Laban, Alexander Fab-880
bri, Prafulla Kumar Choubey, Shafiq Joty, Caiming881
Xiong, and Chien-Sheng Wu. 2024. Embrace diver-882
gence for richer insights: A multi-document summa-883
rization benchmark and a case study on summarizing884
diverse information from news articles. In Proceed-885
ings of the 2024 Conference of the North American886
Chapter of the Association for Computational Lin-887
guistics: Human Language Technologies (Volume888
1: Long Papers), pages 570–593. Association for889
Computational Linguistics.890

Diederik P. Kingma and Jimmy Ba. 2014. Adam:891
A method for stochastic optimization. CoRR,892
abs/1412.6980.893

Wessel Kraaij, Thomas Hain, Mike Lincoln, and Wil-894
fried Post. 2005. The ami meeting corpus. In Proc.895
International Conference on Methods and Techniques896
in Behavioral Research, pages 1–4.897

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan898
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,899
Veselin Stoyanov, and Luke Zettlemoyer. 2020a.900
BART: Denoising sequence-to-sequence pre-training901
for natural language generation, translation, and com-902
prehension. In Proceedings of the 58th Annual Meet-903
ing of the Association for Computational Linguistics,904
pages 7871–7880. Association for Computational905
Linguistics.906

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio907
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-908
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-909
täschel, et al. 2020b. Retrieval-augmented generation910
for knowledge-intensive nlp tasks. Advances in Neu-911
ral Information Processing Systems, 33:9459–9474.912

Manling Li, Tengfei Ma, Mo Yu, Lingfei Wu, Tian Gao,913
Heng Ji, and Kathleen McKeown. 2021a. Timeline914
summarization based on event graph compression via915

time-aware optimal transport. In Proceedings of the 916
2021 Conference on Empirical Methods in Natural 917
Language Processing, pages 6443–6456. Association 918
for Computational Linguistics. 919

Sha Li, Heng Ji, and Jiawei Han. 2021b. Document- 920
level event argument extraction by conditional gener- 921
ation. In Proceedings of the 2021 Conference of the 922
North American Chapter of the Association for Com- 923
putational Linguistics: Human Language Technolo- 924
gies, pages 894–908. Association for Computational 925
Linguistics. 926

Chin-Yew Lin. 2004. ROUGE: A package for automatic 927
evaluation of summaries. In Text Summarization 928
Branches Out, pages 74–81. Association for Compu- 929
tational Linguistics. 930

Yang Liu and Mirella Lapata. 2019. Hierarchical trans- 931
formers for multi-document summarization. In Pro- 932
ceedings of the 57th Annual Meeting of the Associa- 933
tion for Computational Linguistics, pages 5070–5081. 934
Association for Computational Linguistics. 935

Weicheng Ma, Ruibo Liu, Lili Wang, and Soroush 936
Vosoughi. 2020. Multi-resolution annotations for 937
emoji prediction. In Proceedings of the 2020 Con- 938
ference on Empirical Methods in Natural Language 939
Processing (EMNLP), pages 6684–6694. Association 940
for Computational Linguistics. 941

James Mayfield, Eugene Yang, Dawn Lawrie, Sean 942
MacAvaney, Paul McNamee, Douglas W Oard, Luca 943
Soldaini, Ian Soboroff, Orion Weller, Efsun Kayi, 944
et al. 2024. On the evaluation of machine-generated 945
reports. In Proceedings of the 47th International 946
ACM SIGIR Conference on Research and Develop- 947
ment in Information Retrieval, pages 1904–1915. 948

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, 949
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle- 950
moyer, and Hannaneh Hajishirzi. 2023. FActScore: 951
Fine-grained atomic evaluation of factual precision 952
in long form text generation. In Proceedings of the 953
2023 Conference on Empirical Methods in Natural 954
Language Processing, pages 12076–12100. Associa- 955
tion for Computational Linguistics. 956

Ramakanth Pasunuru, Asli Celikyilmaz, Michel Galley, 957
Chenyan Xiong, Yizhe Zhang, Mohit Bansal, and 958
Jianfeng Gao. 2021. Data augmentation for abstrac- 959
tive query-focused multi-document summarization. 960
Proceedings of the AAAI Conference on Artificial 961
Intelligence, 35(15):13666–13674. 962

Nima Pourdamghani, Kevin Knight, and Ulf Hermjakob. 963
2016. Generating English from Abstract Meaning 964
Representations. In Proceedings of the 9th Inter- 965
national Natural Language Generation conference, 966
pages 21–25. Association for Computational Linguis- 967
tics. 968

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 969
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 970
Wei Li, and Peter J Liu. 2020. Exploring the lim- 971
its of transfer learning with a unified text-to-text 972

12

https://doi.org/10.18653/v1/2023.findings-emnlp.862
https://doi.org/10.18653/v1/2023.findings-emnlp.862
https://doi.org/10.18653/v1/2023.findings-emnlp.862
https://doi.org/10.18653/v1/2020.acl-main.120
https://doi.org/10.18653/v1/2020.acl-main.120
https://doi.org/10.18653/v1/2020.acl-main.120
https://doi.org/10.18653/v1/2024.naacl-long.32
https://doi.org/10.18653/v1/2024.naacl-long.32
https://doi.org/10.18653/v1/2024.naacl-long.32
https://doi.org/10.18653/v1/2024.naacl-long.32
https://doi.org/10.18653/v1/2024.naacl-long.32
https://doi.org/10.18653/v1/2024.naacl-long.32
https://doi.org/10.18653/v1/2024.naacl-long.32
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.emnlp-main.519
https://doi.org/10.18653/v1/2021.emnlp-main.519
https://doi.org/10.18653/v1/2021.emnlp-main.519
https://doi.org/10.18653/v1/2021.emnlp-main.519
https://doi.org/10.18653/v1/2021.emnlp-main.519
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/P19-1500
https://doi.org/10.18653/v1/P19-1500
https://doi.org/10.18653/v1/P19-1500
https://doi.org/10.18653/v1/2020.emnlp-main.542
https://doi.org/10.18653/v1/2020.emnlp-main.542
https://doi.org/10.18653/v1/2020.emnlp-main.542
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/W16-6603
https://doi.org/10.18653/v1/W16-6603
https://doi.org/10.18653/v1/W16-6603


transformer. Journal of machine learning research,973
21(140):1–67.974

Hossein Rajaby Faghihi, Bashar Alhafni, Ke Zhang,975
Shihao Ran, Joel Tetreault, and Alejandro Jaimes.976
2022. CrisisLTLSum: A benchmark for local crisis977
event timeline extraction and summarization. In Find-978
ings of the Association for Computational Linguis-979
tics: EMNLP 2022, pages 5455–5477. Association980
for Computational Linguistics.981

Stephen Robertson, Hugo Zaragoza, et al. 2009. The982
probabilistic relevance framework: Bm25 and be-983
yond. Foundations and Trends® in Information Re-984
trieval, 3(4):333–389.985

Aafiya S Hussain, Talha Z Chafekar, Grishma Sharma,986
and Deepak H Sharma. 2022. Event oriented ab-987
stractive summarization. In Proceedings of the 19th988
International Conference on Natural Language Pro-989
cessing (ICON), pages 99–108. Association for Com-990
putational Linguistics.991

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-992
Yan Liu. 2020. Mpnet: Masked and permuted pre-993
training for language understanding. Advances in994
neural information processing systems, 33:16857–995
16867.996

Beth M. Sundheim. 1992. Overview of the fourth Mes-997
sage Understanding Evaluation and Conference. In998
Fourth Message Understanding Conference (MUC-999
4): Proceedings of a Conference Held in McLean,1000
Virginia, June 16-18, 1992.1001

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier1002
Martinet, Marie-Anne Lachaux, Timothée Lacroix,1003
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal1004
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard1005
Grave, and Guillaume Lample. 2023. Llama: Open1006
and efficient foundation language models.1007

Sai Vallurupalli, Sayontan Ghosh, Katrin Erk, Niran-1008
jan Balasubramanian, and Francis Ferraro. 2022.1009
POQue: Asking participant-specific outcome ques-1010
tions for a deeper understanding of complex events.1011
In Proceedings of the 2022 Conference on Empiri-1012
cal Methods in Natural Language Processing, pages1013
8674–8697. Association for Computational Linguis-1014
tics.1015

Siddharth Vashishtha, Alexander Martin, William Gantt,1016
Benjamin Van Durme, and Aaron White. 2024. FA-1017
MuS: Frames across multiple sources. In Proceed-1018
ings of the 2024 Conference of the North American1019
Chapter of the Association for Computational Lin-1020
guistics: Human Language Technologies (Volume1021
1: Long Papers), pages 8250–8273. Association for1022
Computational Linguistics.1023

Jiarui Wang, Richong Zhang, Junfan Chen, Jaein Kim,1024
and Yongyi Mao. 2022. Text style transferring via1025
adversarial masking and styled filling. In Proceed-1026
ings of the 2022 Conference on Empirical Methods1027
in Natural Language Processing, pages 7654–7663.1028
Association for Computational Linguistics.1029

Miriam Wanner, Seth Ebner, Zhengping Jiang, Mark 1030
Dredze, and Benjamin Van Durme. 2024. A closer 1031
look at claim decomposition. In Proceedings of the 1032
13th Joint Conference on Lexical and Computational 1033
Semantics (*SEM 2024), pages 153–175. Association 1034
for Computational Linguistics. 1035

Patrick Xia, Guanghui Qin, Siddharth Vashishtha, 1036
Yunmo Chen, Tongfei Chen, Chandler May, Craig 1037
Harman, Kyle Rawlins, Aaron Steven White, and 1038
Benjamin Van Durme. 2021. LOME: Large ontology 1039
multilingual extraction. In Proceedings of the 16th 1040
Conference of the European Chapter of the Associa- 1041
tion for Computational Linguistics: System Demon- 1042
strations, pages 149–159. Association for Computa- 1043
tional Linguistics. 1044

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu. 1045
2023. AlignScore: Evaluating factual consistency 1046
with a unified alignment function. In Proceedings 1047
of the 61st Annual Meeting of the Association for 1048
Computational Linguistics (Volume 1: Long Papers), 1049
pages 11328–11348. Association for Computational 1050
Linguistics. 1051

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe- 1052
ter Liu. 2020. Pegasus: Pre-training with extracted 1053
gap-sentences for abstractive summarization. In In- 1054
ternational conference on machine learning, pages 1055
11328–11339. PMLR. 1056

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. 1057
Weinberger, and Yoav Artzi. 2019. Bertscore: 1058
Evaluating text generation with bert. ArXiv, 1059
abs/1904.09675. 1060

Markus Zopf. 2018. Auto-hMDS: Automatic construc- 1061
tion of a large heterogeneous multilingual multi- 1062
document summarization corpus. In Proceedings of 1063
the Eleventh International Conference on Language 1064
Resources and Evaluation (LREC 2018). European 1065
Language Resources Association (ELRA). 1066

13

https://doi.org/10.18653/v1/2022.findings-emnlp.400
https://doi.org/10.18653/v1/2022.findings-emnlp.400
https://doi.org/10.18653/v1/2022.findings-emnlp.400
https://aclanthology.org/2022.icon-main.14
https://aclanthology.org/2022.icon-main.14
https://aclanthology.org/2022.icon-main.14
https://aclanthology.org/M92-1001
https://aclanthology.org/M92-1001
https://aclanthology.org/M92-1001
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2022.emnlp-main.594
https://doi.org/10.18653/v1/2022.emnlp-main.594
https://doi.org/10.18653/v1/2022.emnlp-main.594
https://doi.org/10.18653/v1/2024.naacl-long.457
https://doi.org/10.18653/v1/2024.naacl-long.457
https://doi.org/10.18653/v1/2024.naacl-long.457
https://doi.org/10.18653/v1/2022.emnlp-main.521
https://doi.org/10.18653/v1/2022.emnlp-main.521
https://doi.org/10.18653/v1/2022.emnlp-main.521
https://doi.org/10.18653/v1/2024.starsem-1.13
https://doi.org/10.18653/v1/2024.starsem-1.13
https://doi.org/10.18653/v1/2024.starsem-1.13
https://doi.org/10.18653/v1/2021.eacl-demos.19
https://doi.org/10.18653/v1/2021.eacl-demos.19
https://doi.org/10.18653/v1/2021.eacl-demos.19
https://doi.org/10.18653/v1/2023.acl-long.634
https://doi.org/10.18653/v1/2023.acl-long.634
https://doi.org/10.18653/v1/2023.acl-long.634
https://api.semanticscholar.org/CorpusID:127986044
https://api.semanticscholar.org/CorpusID:127986044
https://api.semanticscholar.org/CorpusID:127986044
https://aclanthology.org/L18-1510
https://aclanthology.org/L18-1510
https://aclanthology.org/L18-1510
https://aclanthology.org/L18-1510
https://aclanthology.org/L18-1510


A Additional Examples1067

Below, we show a few examples of the report sum-1068

maries and their corresponding cross-document1069

summaries to illustrate how the latter typically pro-1070

vide greater detail about an event of interest relative1071

to the former. We note, however, that this is not1072

always the case: sometimes the source document1073

offers no additional information about the event1074

beyond what is contained in the report.1075

Example 11076

• Frame: CAUSE TO RESUME1077

• Report: Areva renewed a uranium deal with1078

Niger in January 2008.1079

• Cross-Doc: On January 13, 2008, French1080

state-controlled nuclear reactor maker Areva1081

CEPFi said it had renewed a uranium mining1082

deal with the state of Niger and would invest1083

over 1 billion euros.1084

Exmaple 21085

• Frame: SMUGGLING1086

• Report: A woman pled guilty to possession1087

and attempting to smuggle 89 grams of heroin1088

out of Thailand.1089

• Cross-Doc: Scot Sandra Gregory pled guilty1090

to possession and attempting to smuggle 891091

grams of heroin out of Thailand in 1993 and1092

did her time in Thai jails.1093

Exmaple 31094

• Frame: HOSTILE ENCOUNTER1095

• Report: The plot of Reign of Shadows in-1096

volves players returning to the dark side of the1097

moon of Luclin to face the snake-like Shissar1098

race led by Emperor Ssraeshza.1099

• Cross-Doc: The plot of Reign of Shadows in-1100

volves players returning to the heart of the1101

dark side of the moon of Luclin to face the1102

snake-like Emperor Ssraeshza and his unyield-1103

ing throngs of insidious zealots and enslaved1104

minions to take back the ancient citadel of Vex1105

Thal and end their march.1106

B Training and Evaluation 1107

Models and Hardware The BART, T5, and 1108

PEGASUS models were all trained on a single 1109

NVIDIA Quadro RTX 6000 GPU using CUDA 1110

version 11.7. Results reported with these models 1111

are based on single runs with a fixed random seed. 1112

We fine-tune the following pretrained checkpoints 1113

available from HuggingFace: 1114

• t5-large 1115
• facebook/bart-large 1116
• google/pegasus-large 1117

Libraries Models were developed using Python 1118

3.11.9. We used the following libraries for model 1119

training, inference, and evaluation: 1120

• accelerate (0.34.2) 1121
• bert-score (0.3.13) 1122
• bm25s (0.2.1) 1123
• datasets (3.0.1) 1124
• deepspeed (0.15.1) 1125
• editdistance (0.8.1) 1126
• evaluate (0.4.3) 1127
• metametric (0.1.2) 1128
• numpy (1.26.4) 1129
• rouge-score (0.1.2) 1130
• sentence-transformers (3.1.1) 1131
• spacy (3.7.5) 1132
• torch (2.0.1+cu117) 1133
• transformers (4.45.1) 1134
• tokenizers (0.20.0) 1135

Metrics We use the implementations of ROUGE 1136

(R1,2,L) and BERTScore (BS) provided by the 1137

HuggingFace evaluate library. We implement 1138

CEAF-REE (CR) and its soft-match variant (see 1139

Tables 8, 9) using the metametric package (Chen 1140

et al., 2023a). We use the implementation of Align- 1141

Score released by the metric’s authors (Zha et al., 1142

2023).20. Lastly, for FActScore, we use the few- 1143

shot examples from Wanner et al. (2024) for decom- 1144

position and use Llama3.1-8B Instruct (Touvron 1145

et al., 2023; Dubey et al., 2024) for both atomic 1146

fact decomposition and verification. 1147

Hyperparameters BART, T5, and PEGASUS 1148

were all trained for a maximum of 30 epochs with 1149

a patience of 5 epochs, using ROUGE-1 (R1) F1 1150

score on the dev set as the evaluation criterion. We 1151

use the Adam optimizer (Kingma and Ba, 2014) 1152

with default hyperparameters (β1 = 0.9, β2 = 1153

0.99o, ϵ = 1e−8, η = 0.001) for all models. For 1154

inference, we use beam search decoding with a 1155

beam size of 5 and set the maximum tokens to 256. 1156
20https://github.com/yuh-zha/AlignScore
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Input Formats Below, we show in greater detail1157

the input format for BART, PEGASUS, and T5 for1158

the report and cross-document results reported in1159

Table 2 and Table 3. (Note: these input formats1160

were also used to obtain the BART, PEGASUS,1161

and T5 results in the TEXT+EVENT rows in Ta-1162

ble 8 and Table 9.) Here, ⟨B⟩ and ⟨E⟩ denote the1163

model’s start-of-sequence and end-of-sequence to-1164

kens, respectively (if applicable), and ⟨S⟩ denotes1165

a special token used to delineate information per-1166

taining to a particular event role. Other text set1167

between angle brackets (⟨. . .⟩) denotes a variable1168

placeholder. We add spaces between separators and1169

adjacent text to improve readability below; they are1170

not present in the actual input.1171

The input format for the report task is:1172

⟨B⟩ Report: ⟨Report Text⟩ ⟨E⟩ ⟨B⟩1173

Frame ⟨S⟩ ⟨Frame Name⟩ ⟨S⟩ Trigger ⟨S⟩1174

⟨Trigger⟩ ⟨S⟩ ⟨Role 1 Name⟩ ⟨S⟩ ⟨Arg1175

1⟩; ⟨Arg 2⟩; . . . ⟨S⟩ ⟨Role N Name⟩ ⟨S⟩1176

⟨Arg 1⟩; ⟨Arg 2⟩; . . . ⟨S⟩ ⟨E⟩1177

The input format for the cross-document task1178

is:1179

⟨B⟩ Report: ⟨Report Text⟩ ⟨S⟩ Source:1180

⟨Source Text⟩ ⟨E⟩ ⟨B⟩ Report Event:1181

Frame ⟨S⟩ ⟨Frame Name⟩ ⟨S⟩ Trigger ⟨S⟩1182

⟨Trigger⟩ ⟨S⟩ ⟨Role 1 Name⟩ ⟨S⟩ ⟨Arg1183

1⟩; ⟨Arg 2⟩; . . . ⟨S⟩ ⟨Role N Name⟩ ⟨S⟩1184

⟨Arg 1⟩; ⟨Arg 2⟩; . . . ⟨S⟩ Source Event:1185

Frame ⟨S⟩ ⟨Frame Name⟩ ⟨S⟩ ⟨Role 11186

Name⟩ ⟨S⟩ ⟨Arg 1⟩; ⟨Arg 2⟩; . . . ⟨S⟩1187

⟨Role N Name⟩ ⟨S⟩ ⟨Arg 1⟩; ⟨Arg 2⟩;1188

. . . ⟨S⟩ ⟨E⟩1189

The ablation settings presented in Table 81190

and Table 9 (TEXT ONLY, EVENT ONLY,1191

TEXT+SCHEMA) do not fundamentally change this1192

overall structure, but merely omit parts of it (e.g.1193

TEXT+SCHEMA omits all ⟨Arg N⟩).1194

C LLMs1195

GPT All GPT models were accessed through the1196

OpenAI Chat API21, via the OpenAI Python SDK1197

(openai 1.50.2). As noted in §4, we set tempera-1198

ture to 0.7 and set the maximum output tokens to1199

256 (consistent with the fine-tuned models) for all1200

experiments reported in this paper and leave the1201

21https://platform.openai.com/docs/
api-reference/chat

other API defaults unchanged (n = 1, top_p is 1202

not set, and we use no frequency penalty, presence 1203

penalty, or logit bias). For GPT-4o, we used model 1204

version gpt-4o-2024-08-06. For GPT-4o Mini, 1205

we used model version gpt-4o-mini-2024-07-18. 1206

Results reported throughout the paper are based on 1207

a single generation per prompt. 1208

Claude All Claude models were accessed 1209

through the Anthropic Messages API22 via the An- 1210

thropic Python SDK (anthropic 0.34.2). As with 1211

the GPT models, we set temperature to 0.7 for all 1212

experiments in this paper and leave the other de- 1213

faults unchanged (we do not set top_p or top_k, 1214

as recommended, and we do not set any stop se- 1215

quences). For Claude 3.5 Sonnet, we used model 1216

version claude-3-5-sonnet-20240620. For 1217

Claude 3 Haiku, we used model version 1218

claude-3-haiku-20240307. Results reported 1219

throughout the paper are based on a single gen- 1220

eration per prompt. 1221

Prompts We use the same prompts for all LLMs. 1222

Complete prompts will be available in the public 1223

GitHub repository for this work. Here, we pro- 1224

vide prompt templates used to obtain the results in 1225

Table 2 and Table 3, for both tasks (report or cross- 1226

document) and for both the zero- (ZS) and few-shot 1227

(FS) settings. Text set between angle brackets ⟨. . .⟩ 1228

denote placeholders. 1229

We use the same system prompt for both tasks: 1230

You are an expert intelligence briefer. 1231

Your task is to analyze a specific, im- 1232

portant event based ONLY on certain in- 1233

formation, and to compile a concise sum- 1234

mary of that event to be presented to a 1235

high-ranked decision maker. 1236

For the report task in the zero-shot (ZS) setting, 1237

the user prompt has the following structure: 1238

The Report text below describes a sit- 1239

uation. The Report Template provides 1240

specific details about the same situation. 1241

Focus ONLY on information relevant to 1242

the Situation Type. 1243

Please write a short, accurate summary 1244

that is one sentence long and that is based 1245

ONLY on the provided information. DO 1246

NOT include any extraneous details. DO 1247

NOT use more than one sentence. 1248

22https://docs.anthropic.com/en/api/messages
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Situation Type: ⟨Frame Name⟩ (⟨Frame1249

Def⟩)1250

Report: ⟨Report Text⟩1251

Report Template:1252

- ⟨Role 1⟩ (⟨Role 1 Def⟩): ⟨Arg 1⟩;1253

⟨Arg 2⟩; . . .1254

- . . .1255

- ⟨Role N⟩ (⟨Role N Def⟩): ⟨Arg 1⟩;1256

⟨Arg 2⟩; . . .1257

Summary:1258

The few-shot (FS) user prompt for the report task1259

had the following structure:1260

The Report text below describes a sit-1261

uation. The Report Template provides1262

specific details about the same situation.1263

Focus ONLY on information relevant to1264

the Situation Type.1265

Please write a short, accurate summary1266

that is one sentence long and that is based1267

ONLY on the provided information. DO1268

NOT include any extraneous details. DO1269

NOT use more than one sentence.1270

Here are a few examples to show you1271

how to complete the task:1272

Example 11273

————-1274

Situation Type: ⟨Frame Name⟩ (⟨Frame1275

Def⟩)1276

Report: ⟨Report Text⟩1277

Report Template:1278

- ⟨Role 1⟩ (⟨Role 1 Def⟩): ⟨Arg 1⟩;1279

⟨Arg 2⟩; . . .1280

- . . .1281

- ⟨Role N⟩ (⟨Role N Def⟩): ⟨Arg 1⟩;1282

⟨Arg 2⟩; . . .1283

Summary: ⟨summary text⟩1284

Example 21285

————-1286

⟨ same format as above ⟩1287

Example 31288

————-1289

⟨ same format as above ⟩1290

Now here is the target example for you1291

to complete:1292

Target 1293

——— 1294

⟨same format, but with summary 1295

text omitted⟩ 1296

The zero-shot user prompt for the cross-document 1297

task had the following structure: 1298

The Report text below describes a situa- 1299

tion, and the Report Template provides 1300

specific details about the same situation. 1301

The Source text provides additional con- 1302

text about this situation, and the Source 1303

Template provides additional details. Fo- 1304

cus ONLY on information relevant to the 1305

Situation Type. 1306

Please write a short, accurate summary 1307

that is preferably one sentence long 1308

(and no more than two sentences long) 1309

based ONLY on the provided informa- 1310

tion. DO NOT include any extraneous 1311

details. TRY to use one sentence and DO 1312

NOT use more than two. 1313

Situation Type: ⟨Frame Name⟩ (⟨Frame 1314

Def⟩) 1315

Report: ⟨Report Text⟩ 1316

Report Template: 1317

- ⟨Role 1⟩ (⟨Role 1 Def⟩): ⟨Arg 1⟩; 1318

⟨Arg 2⟩; . . . 1319

- . . . 1320

- ⟨Role N⟩ (⟨Role N Def⟩): ⟨Arg 1⟩; 1321

⟨Arg 2⟩; . . . 1322

Situation Type: ⟨Frame Name⟩ (⟨Frame 1323

Def⟩) 1324

Source: ⟨Source Text⟩ 1325

Source Template: 1326

- ⟨Role 1⟩ (⟨Role 1 Def⟩): ⟨Arg 1⟩; 1327

⟨Arg 2⟩; . . . 1328

- . . . 1329

- ⟨Role N⟩ (⟨Role N Def⟩): ⟨Arg 1⟩; 1330

⟨Arg 2⟩; . . . 1331

Summary: 1332

The few-shot user prompt for the cross-document 1333

task (not explicitly shown) follows exactly the same 1334

structure as the few-shot prompt for the report task, 1335

but naturally uses the cross-document example for- 1336

mat in lieu of the report format. 1337
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D Human Evaluation1338

Full instructions for the human evaluation, along1339

with a JSON file containing the items that were1340

rated, are provided in the supplementary materials.1341

E Data & Annotation1342

E.1 License1343

We release SEAMUS and our code under a CC-1344

BY-SA-4.0 license. As noted in the Ethics section,1345

we intend SEAMUS for research use only, not for1346

commercial purposes.1347

E.2 Additional Summary Statistics1348

Additional summary statistics—about the report1349

and source texts are shown in Table 71350

E.3 Inter-Annotator Agreement1351

As we note in §3, there was no redundancy in the1352

SEAMUS annotation process: corrections to the1353

FAMuS arguments, writing of summaries, and an-1354

notation of summary arguments were performed1355

by a single annotator for each example. However,1356

annotators did conduct a 10-example practice anno-1357

tation for both the report and cross-document tasks.1358

Thus, to give some (limited) sense of the inter-1359

annotator agreement, Table 5 and Table 6 present1360

pairwise comparisons of annotators’ annotations on1361

these 10 items for the report and cross-document1362

tasks (respectively) using the reference-based met-1363

rics from Table 2 (plus the edit distance version1364

of CR, CRsoft; see Appendix F). We treat anno-1365

tations produced by annotators in the P column1366

as “predictions” to be evaluated against the “refer-1367

ence” annotations produced by annotators in the R1368

column. Two important notes:1369

1. Because all of these metrics are F1 scores, the1370

distinction between P and R is moot and re-1371

versing P and R for any given pair would1372

yield the same results. In both tables, we re-1373

port results for all unordered annotator pairs,1374

as well as the average across all pairs.1375

2. Because these were practice annotations, none1376

of them were included in the final SEAMUS1377

dataset. We would thus expect the numbers1378

reported here to be an underestimate of the1379

level of agreement on the main task, had we1380

had redundancy.1381

P R R1 R2 RL BS CR CRsoft

A1 A2 67.1 44.5 52.6 93.4 72.7 86.9
A1 A3 72.4 53.9 63.1 94.4 76.4 86.5
A2 A3 77.2 60.5 62.5 94.7 75.9 89.6

Avg. 72.2 53.0 59.2 94.2 75.0 87.7

Table 5: Inter-annotator agreement on the 10 practice
examples from the SEAMUS report summary annota-
tion, as given by the reference-based metrics we report
in §4, treating annotator P ’s responses as predictions
and R’s responses as references (the reverse is equiva-
lent, since these metrics are symmetric).

P R R1 R2 RL BS CR CRsoft

A1 A2 64.8 42.4 53.3 94.0 40.5 56.6
A1 A3 64.7 43.8 51.6 93.0 50.6 65.0
A1 A4 45.8 22.7 33.0 90.7 49.8 65.2
A1 A5 69.0 48.1 58.8 94.6 46.8 62.8
A2 A3 77.7 66.8 72.4 94.9 50.6 65.6
A2 A4 55.4 33.9 40.8 91.2 50.7 66.8
A2 A5 72.0 56.1 64.9 94.1 50.6 66.9
A3 A4 55.4 33.2 41.9 90.7 51.8 69.0
A3 A5 71.0 57.2 61.8 93.6 52.6 69.8
A4 A5 48.2 27.2 37.3 90.7 52.8 69.6

Avg. 62.4 43.1 51.6 92.8 49.7 65.7

Table 6: Inter-annotator agreement on the 10 practice ex-
amples from the SEAMUS cross-document summary
annotation, as given by the reference-based metrics we
report in §4, treating annotator P ’s responses as pre-
dictions and R’s responses as references (the reverse is
equivalent, since these metrics are symmetric).

Report Source

Train Dev Train Dev

Examples 759 253 759 253
Avg. Words 59 60 1,084 1,511
Avg. Sentences 2.0 2.0 44.7 61.5
Avg. Arguments 3.1 3.5 3.8 4.2

Table 7: Summary statistics for the SEAMUS report
(left) and source documents, which are the same as those
in the FAMUS dataset, albeit with slightly different
arguments due to our corrections of the original FAMUS
argument annotations.
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E.4 Annotation Interface1382

Here, we include screenshots of the annotation in-1383

terface used to complete the Phase 2 annotation.231384

As noted in §3, the interface was adapted from1385

Vashishtha et al.’s (2024) annotation interface for1386

the FAMUS cross-document argument extraction1387

task (cf. Figures 5 and 6 in Appendix A of their1388

paper). Tasks were run via Turkle, an open-source1389

tool with similar functionality to Amazon Mechan-1390

ical Turk.241391

In the first part of the Phase 2 annotation, the1392

existing (crowdsourced) FAMUS argument anno-1393

tations for the source text were reviewed and cor-1394

rected, and the cross-document summaries were1395

written jointly on the basis of these corrected an-1396

notations and the corrected report text argument1397

annotations from Phase 1 (see Figure 4). The inter-1398

face was pre-populated with (a) the corrected report1399

text arguments from Phase 1 (in the “Report Text”1400

tab, highlighted); the report summary from Phase 11401

(in the “Report Summary” field); and (c) the uncor-1402

rected source text arguments (in the “Source Text”1403

tab). The source text arguments were reviewed and1404

corrected by toggling to the “Source Text” tab and1405

making any necessary edits to the existing selec-1406

tions. The cross-document summaries were then1407

written in the “Combined Summary” field. The UI1408

for selecting, adding, and removing arguments was1409

unchanged relative to Vashishtha et al.’s implemen-1410

tation. The major differences here are the addition1411

of the “Report Summary” and “Combined Sum-1412

mary” fields, and the inability to alter the selected1413

FrameNet frame for annotation.1414

In the second part, arguments were annotated on1415

the summaries written in the first part (Figure 5).1416

The interface is similar to the interface for the first1417

part of the Phase 2 annotation, except that the “Re-1418

port Summary” and “Combined Summary” fields1419

have been removed, and a new tab (“Summary1420

Text”) containing the cross-document summary to1421

be annotated was added. Summary arguments were1422

annotated by toggling to this tab and making argu-1423

ment selections in the same way as before. Here,1424

the corrected argument annotations for both the re-1425

port text and for the source text were pre-populated1426

for each task under their respective tabs, allowing1427

annotators to toggle between these for reference in1428

23Recall that the Phase 1 annotation, which involved correct-
ing the FAMUS report text argument annotations and writing
the report summaries, was done in JSON files.

24https://github.com/hltcoe/turkle-client

Figure 4: Interface for source text argument correction
and cross-document summary writing (the first part of
the Phase 2 annotation).
annotating the summary arguments. 1429

As can be seen in both Figure 4 and Figure 5, 1430

details about the frame for the target event, includ- 1431

ing the frame name, its definition, as well as role 1432

names and their definitions, were provided as in the 1433

original FAMUS interface. Instructions were also 1434

accessible at any time via the dropdown shown at 1435

the top of the screen. 1436

E.5 Annotation Instructions 1437

Annotation instructions for both phases are avail- 1438

able in the supplementary materials. 1439

E.6 Annotator Demographics 1440

The full set of annotators consists of six students 1441

(five graduate and one undergraduate) pursuing 1442

degrees in Computer Science (3), Linguistics (2), 1443

and Cognitive Science (1), all of whom are fluent 1444

English speakers. Only one was financially com- 1445

pensated for the annotations (at a rate of $15 per 1446

hour), as this person initially became involved with 1447

the project through a university job board posting 1448

for the task, whereas the others were members of 1449

the lab from which the project originated. The 1450

project, and the intended use of their annotations, 1451

was clearly explained to all participants in meetings 1452

before they began any annotation. 1453
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Figure 5: Interface for annotation of arguments on the
cross-document summaries (the second part of the Phase
2 annotation).

F Additional Results1454

F.1 Main Results1455

Table 10 and Table 11 contain 95% confidence1456

intervals of the results in Table 2 based on non-1457

parametric bootstraps (n = 1, 000).1458

F.2 Input Ablations1459

Here, we include the full results of the ablations on1460

the inputs introduced briefly in §4.4, which were1461

inspired by similar ones conducted by Gantt et al.1462

(2024). In the TEXT ONLY setting, we omit in-1463

formation about the target event entirely and in-1464

clude only the text in the input—either the report1465

for the report task, or both the report and source1466

for the cross-document task—effectively reduc-1467

ing the problem to standard summarization. In1468

the EVENT ONLY setting, we omit the text(s) and1469

include only information about the target event—1470

either the report event annotations for the report1471

task, or both the report and source event annota-1472

tions for the cross-document task—making this1473

ablation similar to structure-to-text tasks, such as1474

AMR-to-text (Pourdamghani et al., 2016)). In the1475

TEXT+SCHEMA setting, we omit the argument an-1476

notations, but leave in information about the frame1477

and its roles. For the fine-tuned models, we include1478

just the names of the frame and its roles. For the1479

LLMs, we additionally include the definitions of1480

the frame and roles as given in FrameNet. Finally,1481

TEXT+EVENT is the name we assign to the unab-1482

lated setting, used to obtain the results in Table 21483

and Table 3, where both the text(s) and the full1484

event annotations are present in the input. For all1485

ablation settings, BART, PEGASUS, and T5 are 1486

fine-tuned on the ablated inputs using the same set- 1487

tings for training and inference as are described in 1488

§4. For the GPT and Claude models, the examples 1489

provided in the few-shot setting are also ablated in 1490

the way called for by each ablation. 1491

Report Results for the report task are in Table 8. 1492

Here and in the cross-document results to follow 1493

(Table 9), we include a variant of CEAF-REE (CR) 1494

that we dub CRsoft, which aligns and scores pre- 1495

dicted arguments against reference arguments us- 1496

ing normalized levenshtein distance rather than ex- 1497

act match—enabling a more nuanced comparison 1498

of different models’ ability to recover event argu- 1499

ments in the summaries they produce. 1500

Across all models and most metrics, we see sig- 1501

nificant drops in performance when ablating any 1502

component of the input. Notably, a number of mod- 1503

els, especially the LLMs, fall to numbers near or 1504

below those of the report baseline (RB) on a variety 1505

of metrics. 1506

There are, however, some unsurprising excep- 1507

tions here. First, in many cases, results on CR and 1508

CRsoft in the EVENT ONLY ablation are markedly 1509

stronger than the report baseline, and are even 1510

competitive with the results in the unablated set- 1511

ting (TEXT+EVENT) for most of the zero-shot- 1512

evaluated LLMs. This echoes a similar finding 1513

by Gantt et al. (2024), who note that “the docu- 1514

ment [is not] needed to generate some string that 1515

contains all the [event] template’s arguments.” If 1516

this is correct, we would expect to see strong CR 1517

scores in the EVENT ONLY setting, even though 1518

the summaries may be poorer overall (as reflected 1519

in other metrics). 1520

An intriguing, related observation is that 1521

whereas the fine-tuned models look dominant 1522

against the LLMs on CR in the unablated setting, 1523

this advantage sharply diminishes when we turn 1524

to CRsoft. This is likely explained by the fact that 1525

the fine-tuned models are able to learn the conven- 1526

tions adopted by annotators in selecting argument 1527

spans, whereas the (prompted) LLMs do not—even 1528

though they may still be generating outputs with 1529

approximately correct spans that are nonetheless 1530

harshly penalized by an exact match. 1531

A second exception is the results on AlignScore 1532

(A) and FActScore (F) in the TEXT ONLY setting, 1533

which are competitive with—and in some cases 1534

superior to—the results in the unablated setting 1535

across models. Recall that both A and F here eval- 1536
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uate how well the report summary is supported by1537

the report text. It is thus intuitively possible, and1538

evidently quite feasible, to generate a summary that1539

is adequately supported by the text without relying1540

at all on the event annotations—which is exactly1541

what is demanded by the TEXT ONLY setting. This1542

is once again consistent with findings from Gantt1543

et al. (2024) on the NLI-based family of metrics1544

MENLI (Chen and Eger, 2023), which are broadly1545

similar to AlignScore and FActScore: “[event] tem-1546

plates are not needed to generate some summary1547

that is entailed by the document.”1548

We also note that, for the fine-tuned models, we1549

obtain A scores in the TEXT+SCHEMA ablation1550

that are comparable (T5) or higher than (BART,1551

PEGASUS) those of the unablated setting. This1552

makes sense, inasmuch as the TEXT+SCHEMA set-1553

ting contains a superset of the inputs of the TEXT1554

ONLY setting, though it is unclear why we do not1555

find a similar pattern with the LLMs.1556

Finally, note that the report baseline, which treats1557

the report text itself as the summary, should in1558

theory achieve perfect A and F scores, and thus1559

does not really represent a fair comparison with1560

the other models (note: this is also true for the1561

cross-document setting). That it does not is surely1562

a reflection of the fact that both metrics rely on1563

outputs from imperfect models. Such flaws of LM-1564

based metrics must not be overlooked.1565

Cross-Document results on the cross-document1566

task are shown in Table 9 and follow a pattern1567

that is qualitatively very similar to that of the1568

report results above. We consistently find that1569

the best results are obtained in the unablated set-1570

ting (TEXT+EVENT) for most metrics, with the1571

same exception regarding CR/CRsoft in the EVENT1572

ONLY setting as we found for the report task. Cu-1573

riously, however, the findings on A are more com-1574

plicated here: whereas we continue to see the1575

strongest results on this metric in the TEXT ONLY1576

and TEXT+SCHEMA ablations for the fine-tuned1577

models, with the LLMs, we instead see our best re-1578

sults in the unablated setting—following the trend1579

of other metrics.1580

F.3 Argument Recovery by Role1581

Table 12 and Table 13 show CR and CRsoft results1582

(respectively) on the cross-document task broken1583

down by role for the 20 roles with highest support1584

(number of annotated arguments) in the SEAMUS1585

training split.1586

Comparing the tables reveals an interesting di- 1587

chotomy. For CR, no model is consistently dom- 1588

inant across all roles, with fine-tuned models col- 1589

lectively obtaining the best results on 12 of the 20 1590

and few-shot prompted models obtaining the best 1591

results on the remaining 8. The CRsoft results, by 1592

contrast, heavily favor GPT-4O, which achieves 1593

the best scores on 13 roles. Here, the fine-tuned 1594

models are top-performing on only 4 roles. 1595

We believe the same factor discussed in sub- 1596

section F.2 explains this dichotomy: whereas CR 1597

requires exact span match—and thus will tend to 1598

favor models able to learn span boundary conven- 1599

tions through fine-tuning—CRsoft does not, and 1600

rewards spans proportional to their edit distance 1601

from the reference. Thus, CRsoft reveals the LLMs 1602

(and GPT-4O above all) to be effective in produc- 1603

ing summaries that recover the correct arguments, 1604

albeit with more lexical modifications relative to 1605

the reference. 1606

G Use of AI Assistants 1607

GitHub Copilot was used as a coding assistant 1608

for parts of model development and data analysis, 1609

though its suggestions were carefully reviewed by 1610

the authors. AI assistants were not used for other 1611

parts of this work (writing, brainstorming, etc.). 1612
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Model Ablation Setting R1 R2 RL BS CR CRsoft A F

Report Baseline - - 56.15 46.05 48.37 91.57 52.58 62.56 99.11 98.73

GPT-4O M

TEXT ONLY ZS 49.96 28.18 39.23 91.31 34.59 53.13 95.74∗ 83.11
EVENT ONLY ZS 53.11 34.04 43.67 91.51 52.13 77.37 60.98 53.42
TEXT+SCHEMA ZS 53.29 31.60 42.91 91.28 38.24 56.92 79.07 76.38
TEXT+EVENT ZS 62.18 42.32 51.26 93.17 58.48 78.71 86.04 75.80
TEXT+EVENT FS 71.98 55.35 61.03 94.34 66.80 83.66 94.06 83.32

GPT-4O

TEXT ONLY ZS 51.52 29.90 40.90 91.50 33.75 52.06 94.49 84.00∗

EVENT ONLY ZS 56.39 38.34 46.34 91.93 59.35 83.35 70.66 57.14
TEXT+SCHEMA ZS 56.57 37.19 47.08 92.00 42.37 61.50 81.66 73.05
TEXT+EVENT ZS 63.95 45.21 52.95 93.18 61.39∗ 82.60∗ 83.87 74.78
TEXT+EVENT FS 72.54† 56.59† 62.34† 94.40 69.61† 87.27† 94.72 81.58

CLAUDE H

TEXT ONLY ZS 50.41 30.39 40.53 91.11 32.35 51.46 93.10 83.77
EVENT ONLY ZS 55.03 36.37 45.71 91.79 54.36 78.25 72.15 56.29
TEXT+SCHEMA ZS 57.67 38.51 47.68 92.08 41.36 59.10 83.24 77.05
TEXT+EVENT ZS 64.75 46.19 54.67 93.44 58.75 78.92 84.87 77.57
TEXT+EVENT FS 71.73 55.86 61.05 94.29 63.21 80.95 94.82 82.54

CLAUDE S

TEXT ONLY ZS 46.98 22.83 36.24 90.78 25.68 45.88 91.31 82.41
EVENT ONLY ZS 55.66 36.89 46.21 92.13 56.38 78.54 72.15 60.37
TEXT+SCHEMA ZS 57.33 36.18 46.98 92.30 41.71 61.46 88.93 77.85
TEXT+EVENT ZS 67.38∗ 48.11∗ 56.52∗ 93.84∗ 61.07 81.35 92.96 80.59
TEXT+EVENT FS 72.16 54.64 61.29 94.54† 65.66 83.68 95.89† 83.86†

BART

TEXT ONLY FT 57.13 43.53 50.46 91.77 46.27 58.59 97.42 84.64
EVENT ONLY FT 58.34 40.96 48.51 91.83 59.82 75.34 51.17 52.41
TEXT+SCHEMA FT 62.23 49.43 55.55 92.59 52.92 65.83 95.01 83.34
TEXT+EVENT FT 74.46 61.68 66.42 94.57 69.88 82.72 91.59 79.25

PEGASUS

TEXT ONLY FT 60.33 46.19 52.44 92.13 45.95 60.40 97.45 85.20
EVENT ONLY FT 59.69 41.97 49.46 91.90 57.14 74.34 53.93 53.43
TEXT+SCHEMA FT 63.28 49.79 55.91 92.71 53.69 66.28 96.94 84.33
TEXT+EVENT FT 75.18 62.53 66.96 94.70 70.00 82.68 96.08 82.23

T5

TEXT ONLY FT 58.38 45.25 51.81 91.96 49.70 60.75 98.88 87.85
EVENT ONLY FT 63.14 45.62 52.47 92.67 64.00 80.08 68.42 62.63
TEXT+SCHEMA FT 65.82 51.90 58.46 93.11 56.18 68.42 97.92 82.93
TEXT+EVENT FT 76.64 64.44 68.90 95.02 74.20 85.22 98.15 85.02

Table 8: Input ablation results for the report summarization task. Best overall results are in bolded. ∗ and †

denote best zero- and few-shot results, respectively. See §4.1 for an explanation of metrics. See Appendix F for an
explanation of the settings.
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Model Ablation Setting R1 R2 RL BS CR CRsoft A F

Report Baseline - - 48.52 33.28 39.31 89.58 31.00 42.04 99.29 93.12

GPT-4O M

TEXT ONLY ZS 37.56 16.93 26.97 88.98 21.86 40.48 73.58 91.60
EVENT ONLY ZS 52.45 31.15 40.04 91.17 37.48 66.51 69.97 75.00
TEXT+SCHEMA ZS 41.88 20.40 30.32 89.72 24.04 44.76 76.64 89.12
TEXT+EVENT ZS 51.87 29.90 39.10 91.31 38.99 64.13 81.46 88.89
TEXT+EVENT FS 57.48 36.99 45.74 92.08 39.78 62.93 88.48 89.79

GPT-4O

TEXT ONLY ZS 41.59 19.28 30.70 89.48 21.60 42.04 69.09 92.06
EVENT ONLY ZS 54.03 33.98 42.13 91.51 41.75∗ 69.63∗ 81.02 80.55
TEXT+SCHEMA ZS 49.87 27.04 37.76 90.86 25.80 48.53 85.44 89.75
TEXT+EVENT ZS 57.97 36.42 45.89 92.22∗ 41.34 68.04 86.61 88.41
TEXT+EVENT FS 61.17† 40.62† 49.38† 92.67† 42.72† 69.27† 90.62 88.45

CLAUDE H

TEXT ONLY ZS 47.27 25.48 36.49 90.23 22.64 43.20 84.29 92.59
EVENT ONLY ZS 53.35 33.01 42.94 91.39 38.64 66.08 77.70 76.83
TEXT+SCHEMA ZS 51.79 30.45 41.04 90.87 26.38 48.02 87.10 90.87
TEXT+EVENT ZS 57.72∗ 36.88∗ 46.35∗ 92.05 36.22 60.03 90.37 91.36
TEXT+EVENT FS 59.42 39.40 48.56 92.13 37.20 59.70 90.99 90.50†

CLAUDE S

TEXT ONLY ZS 44.13 20.08 32.73 89.88 19.93 40.24 87.26 92.30
EVENT ONLY ZS 53.51 33.51 42.73 91.53 39.78 66.17 84.12 81.91
TEXT+SCHEMA ZS 51.37 29.33 40.06 90.94 28.05 49.07 88.64 89.33
TEXT+EVENT ZS 56.77 34.75 45.27 91.91 35.24 59.47 93.41∗ 91.71∗

TEXT+EVENT FS 57.95 38.05 47.53 92.09 37.32 59.31 95.09† 90.39

BART

TEXT ONLY FT 48.57 30.30 39.70 89.99 27.12 44.43 90.06 86.87
EVENT ONLY FT 56.37 37.04 45.14 91.21 39.12 62.90 56.01 68.10
TEXT+SCHEMA FT 51.67 35.12 44.15 90.42 32.31 49.47 94.45 90.52
TEXT+EVENT FT 63.77 45.50 52.98 92.59 44.97 66.36 85.55 85.27

PEGASUS

TEXT ONLY FT 50.85 33.44 42.51 90.29 30.22 47.46 97.63 91.80
EVENT ONLY FT 58.52 38.41 46.46 91.42 39.98 64.06 67.05 75.80
TEXT+SCHEMA FT 51.21 34.18 43.11 90.28 30.15 47.04 97.99 92.72
TEXT+EVENT FT 63.66 46.24 53.18 92.51 43.73 64.51 93.85 90.48

T5

TEXT ONLY FT 49.18 33.15 41.39 89.94 30.98 46.58 98.75 91.60
EVENT ONLY FT 59.96 40.55 47.51 91.84 45.30 68.85 73.73 78.98
TEXT+SCHEMA FT 53.06 35.64 44.93 90.64 31.87 50.14 94.11 91.30
TEXT+EVENT FT 64.14 46.36 52.79 92.56 44.67 65.66 92.48 90.19

Table 9: Input ablations on the cross-document summarization task.Best overall results are in bolded. ∗ and †

denote best zero- and few-shot results, respectively. See §4.1 for an explanation of metrics. See Appendix F for an
explanation of the settings.
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Report

Model S R1 R2 RL BS CR A F

GPT-4O M ZS [60.0, 64.5] [39.3, 45.2] [48.7, 54.0] [92.8, 93.6] [52.8, 60.5] [80.5, 86.9] [72.8, 78.6]
FS [69.8, 74.0] [52.5, 58.1] [58.5, 63.5] [94.0, 94.7] [60.7, 68.8] [93.4, 95.8] [80.8, 85.8]

GPT-4O ZS [61.6, 66.3] [42.4, 48.2] [50.5, 55.5] [92.8, 93.6] [54.2, 62.3] [83.0, 88.8] [71.2, 78.0]
FS [70.3, 74.9] [53.6, 59.8] [59.6, 65.0] [94.0, 94.8] [62.7, 70.5] [92.6, 95.4] [78.4, 84.5]

CLAUDE H ZS [62.7, 67.2] [43.5, 49.1] [52.4, 57.3] [93.1, 93.9] [52.5, 60.4] [81.5, 87.7] [74.1, 80.1]
FS [69.4, 73.9] [52.7, 58.7] [58.5, 63.6] [93.9, 94.7] [58.1, 66.5] [93.3, 96.1] [79.6, 85.2]

CLAUDE S ZS [65.1, 69.6] [45.3, 50.8] [54.1, 59.0] [93.5, 94.2] [55.0, 63.3] [90.8, 94.8] [77.6, 83.5]
FS [69.8, 74.4] [51.7, 57.5] [58.8, 53.8] [94.2, 94.9] [60.7, 68.6] [94.8, 96.7] [80.8, 86.5]

BART FT [71.9, 76.6] [58.7, 64.6] [63.7, 69.1] [93.3, 94.1] [64.3, 72.1] [89.2, 93.9] [76.1, 82.2]
PEGASUS FT [72.9, 77.5] [59.5, 65.4] [64.2, 69.5] [93.3, 94.1] [65.4, 72.4] [94.4, 97.5] [79.4, 85.0]
T5 FT [74.3, 78.9] [61.4, 67.3] [66.1, 71.5] [93.6, 94.4] [69.7, 76.9] [97.4, 98.8] [82.4, 87.5]

Table 10: 95% confidence intervals [low, high] from a non-parametric bootstrap (n = 1000) of the report results
given in Table 2.

Cross-Document

Model S R1 R2 RL BS CR A F

GPT-4O M ZS [49.9, 53.7] [27.8, 32.0] [37.0, 41.0] [91.0, 91.6] [35.9, 42.2] [78.5, 84.1] [86.7, 90.7]
FS [55.2, 59.7] [34.3, 39.5] [43.4, 47.8] [91.7, 92.4] [35.6, 42.9] [86.0, 90.6] [87.7, 91.6]

GPT-4O ZS [55.7, 60.0] [33.8, 38.9] [43.5, 48.1] [91.8, 92.6] [36.4, 43.5] [83.8, 89.0] [86.0, 90.6]
FS [59.0, 63.3] [38.1, 43.1] [47.1, 51.5] [92.3, 93.0] [38.0, 45.3] [88.4, 92.8] [86.3, 90.5]

CLAUDE H ZS [55.6, 59.7] [34.3, 39.2] [44.0, 48.7] [91.7, 92.4] [32.8, 39.9] [88.1, 92.3] [89.7, 92.9]
FS [57.0, 61.5] [36.7, 42.1] [46.0, 50.9] [91.8, 92.5] [33.4, 40.4] [89.0, 92.9] [88.8, 92.2]

CLAUDE S ZS [54.7, 58.9] [32.4, 37.2] [43.1, 47.7] [91.6, 92.3] [31.1, 37.9] [91.7, 95.0] [89.6, 93.4]
FS [55.6, 60.4] [35.4, 40.8] [45.2, 49.9] [91.7, 92.5] [33.9, 41.5] [94.1, 96.0] [88.5, 92.2]

BART FT [61.5, 66.1] [42.7, 48.4] [50.5, 55.6] [91.5, 92.2] [41.3, 49.1] [82.3, 88.6] [82.6, 87.7]
PEGASUS FT [61.2, 66.0] [43.1, 49.0] [50.4, 55.8] [91.3, 92.1] [40.9, 48.4] [91.7, 95.6] [88.7, 92.3]
T5 FT [61.5, 66.4] [43.6, 49.2] [50.2, 55.3] [91.3, 92.2] [40.3, 48.4] [90.1, 94.4] [88.2, 91.9]

Table 11: 95% confidence intervals [low, high] from a non-parametric bootstrap (n = 1000) of the cross-document
results given in Table 2.

Role Support GPT-4O M GPT-4O CLAUDE H CLAUDE S BART PEGASUS T5

TIME 523 39.13 40.69 34.17 37.25 42.07 44.32 47.09
PLACE 499 33.33 38.49 25.00 26.12 27.42 33.11 38.56
AGENT 240 34.67 32.89 27.40 23.13 42.38 32.43 39.74
THEME 94 49.12 44.07 43.33 35.09 40.00 39.44 39.34
ENTITY 65 29.27 35.90 35.00 35.90 30.00 35.90 41.03
PATIENT 53 41.18 30.30 50.00 34.29 43.75 51.61 48.48
GOAL 49 36.84 50.00 37.84 27.03 30.00 40.91 45.00
EVENT 43 14.81 20.69 20.69 7.14 18.75 25.00 6.45
CAUSE 42 6.45 24.24 11.43 12.12 31.25 10.81 26.67
EXPERIENCER 39 38.10 70.00 70.00 54.55 52.17 38.46 54.55
VICTIM 39 41.38 53.33 48.28 34.48 31.25 37.50 32.26
GOODS 38 26.67 75.00 0.00 28.57 50.00 50.00 14.29
PROTAGONIST 38 26.67 37.50 37.50 40.00 40.00 37.50 50.00
SOURCE 30 66.67 77.78 55.56 63.16 63.16 50.00 66.67
TOPIC 26 13.33 13.33 0.00 14.29 15.38 13.33 0.00
SPEAKER 25 50.00 50.00 66.67 50.00 50.00 70.59 58.82
ADDRESSEE 22 33.33 60.00 16.67 40.00 60.00 40.00 33.33
STIMULUS 21 15.38 30.77 33.33 33.33 46.15 33.33 50.00

Table 12: CR F1 results on test set cross-document summaries for the top 20 roles with highest support (#
arguments) in the SEAMUS training split (which has 3,004 total arguments). Results with GPT and Claude models
are from the few-shot (FS) setting. Best results for each role are bolded.
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Role Support GPT-4O M GPT-4O CLAUDE H CLAUDE S BART PEGASUS T5

TIME 523 57.37 65.22 49.22 50.52 60.54 61.40 65.43
PLACE 499 44.84 53.39 37.46 37.67 46.93 47.67 52.15
AGENT 240 65.40 67.47 59.78 50.16 66.72 57.99 62.06
THEME 94 73.21 73.96 69.22 72.96 71.75 64.71 68.59
ENTITY 65 66.33 76.13 63.16 60.07 63.34 63.12 69.44
PATIENT 53 76.28 73.52 74.41 68.62 70.88 73.28 73.36
GOAL 49 50.53 66.30 50.19 45.42 47.30 53.63 60.30
EVENT 43 52.75 63.52 52.76 42.95 45.97 52.09 35.38
CAUSE 42 47.66 52.99 39.41 42.03 43.23 43.87 49.82
EXPERIENCER 39 68.83 91.48 82.86 69.44 56.03 60.99 61.06
VICTIM 39 62.13 74.79 71.75 60.13 65.62 60.53 55.89
GOODS 38 42.77 79.33 33.35 50.68 61.94 57.46 24.39
PROTAGONIST 38 60.13 72.52 54.02 66.03 66.57 67.63 61.24
SOURCE 30 78.00 84.13 60.54 65.55 66.80 55.03 69.62
TOPIC 26 19.06 19.06 17.75 20.42 21.70 35.80 12.96
SPEAKER 25 58.21 61.41 71.85 64.91 64.92 73.03 66.28
ADDRESSEE 22 44.60 89.49 40.21 52.63 63.63 73.95 41.94
STIMULUS 21 38.61 70.46 54.55 66.70 53.39 74.75 57.65

Table 13: CRsoft (distinct from CR; see §F.2) F1 results on test set cross-document summaries for the top 20 roles
with highest support (# arguments) in the SEAMUS training split (which has 3,004 total arguments). Results with
the GPT and Claude models are from the few-shot (FS) setting. Best results for each role are bolded.
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