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ABSTRACT

Honesty alignment—the ability of large language models (LLMs) to recognize
their knowledge boundaries and express calibrated confidence—is essential for
trustworthy deployment. Existing methods either rely on training-free confi-
dence estimation (e.g., token probabilities, self-consistency) or training-based
calibration with correctness annotations. While effective, the latter demands
costly, large-scale labeling. We introduce Elicitation-Then-Calibration (EliCal),
a two-stage framework that first elicits internal confidence using inexpensive self-
consistency supervision, then calibrates this confidence with a small set of correct-
ness annotations. This design substantially reduces annotation requirements while
improving generalization across tasks. To support a large-scale study, we release
HonestyBench, a benchmark covering ten free-form QA datasets with 560k train-
ing and 70k evaluation instances annotated with correctness and self-consistency
signals. Experiments show that EliCal achieves near-optimal alignment with only
1k correctness annotations (~0.18% of full supervision) and better alignment per-
formance on unseen MMLU tasks than the calibration-only baseline, offering a
scalable solution toward universal honesty alignment in LLM:s.

1 INTRODUCTION

Honesty alignment—the ability of large language models (LLMs) (Brown et al., 2020;/Ouyang et al.,
2022;|Achiam et al} 2023)), to accurately recognize their knowledge boundaries (i.e., knowing what
they know and what they do not) and faithfully express their confidence—is critical for trustworthy
Al deployment. Honesty is one of the “HHH” criteria in alignment: helpful, harmless, and hon-
est (Askell et al.| 2021)). Ideally, such self-assessment should occur before generation. This enables
models to give the answer when confidence is high and to abstain or seek external assistance (e.g.,
triggering retrieval-augmented generation) when uncertain.

Existing research on honesty alignment falls into two categories: training-free and training-based
methods. Training-free methods typically estimate confidence in three ways: 1) token-level gener-
ation probabilities (Guo et al.l [2017; Jiang et al., 2021); 2) prompting models to verbally express
confidence (Ni et al., [2024a; [Yin et al.l 2023); and 3) self-consistency, i.e., measuring semantic
consistency across multiple responses (Manakul et al., |2023; Zhang et al., [2023). Among them,
self-consistency achieves the strongest alignment with actual correctness (See Figure ).

By contrast, training-based methods leverage correctness annotations to calibrate model confi-
dence (Lin et al., 2022; [Zhang et al., 2024} |Yang et al.l |2023). While generally more effective,
these methods require large volumes of human-labeled ground-truth answers, which are expensive
to obtain. Moreover, models trained with limited correctness annotations often underperform strong
training-free baselines. This raises a key question: Do LLMs truly require so many correctness
annotations to achieve optimal honesty alignment?

We posit that correctness annotations serve two roles: first, teaching models to express internal
confidence, and second, calibrating this expressed confidence against correctness. If confidence
can be elicited from models using inexpensive supervision—e.g., self-consistency signals—then
only a small amount of correctness-labeled data may be needed for calibration. This motivates our
proposed annotation-efficient framework: Elicitation-Then-Calibration (EliCal).
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Figure 1: The model’s confidence in answering a question is represented by the confidence of its
most confident answer, computed via self-consistency as the proportion of generations agreeing with
the greedy-search answer (Top). The model’s capability is reflected by the proportion of correct
responses, measured as the fraction of generations matching the ground-truth answer (Bottom).
These two signals show high correlation across questions.

As illustrated in Figure [3] EliCal operates in two stages. In Stage I: Confidence Elicitation, the
model learns to express internal confidence from self-consistency-based supervision. This enables
one-shot confidence expression without repeated sampling. Because self-consistency confidence
aligns reasonably well with correctness and is inexpensive to collect at scale, this stage provides
a solid foundation. In Stage 2: Confidence Calibration, a much smaller set of correctness anno-
tations is sufficient to align confidence with actual accuracy. The two stages resemble a pretrain-
ing—finetuning paradigm, explaining why EliCal is more annotation-efficient than calibration-only
(finetuning-only) approaches, hereafter abbreviated as Cal-Only. With less reliance on correctness
annotations, EliCal also generalizes better to unseen tasks.

To facilitate large-scale training and evaluation, we introduce HonestyBench, a benchmark designed
for universal honesty alignment across tasks. HonestyBench consolidates ten widely used free-form
factual QA datasets, offering over 560k training samples, 38k in-domain evaluation samples, and
33k out-of-domain evaluation samples. For each model-question pair, HonestyBench includes
twenty sampled responses and one greedy-search response of three representative LL.Ms, annotated
with both correctness and self-consistency confidence. This benchmark facilitates large-scale
pretraining and cross-task finetuning, advancing honesty alignment toward a universal model and
moving beyond the traditional in-domain evaluation paradigm (Yang et al.} 2023;Ni et al.| 2025)).

Extensive experiments on HonestyBench demonstrate three key findings: 1) Both EliCal and Cal-
Only achieve upper-bound alignment across ten QA tasks when trained with all 560k+ correctness
annotations, outperforming the best training-free baseline by over 17%. 2) EliCal achieves approxi-
mately 98% of this upper bound using only 1k labeled samples (~0.18%). 3) EliCal trained on Hon-
estyBench consistently yields significantly better alignment performance on MMLU (Hendrycks
et al.,[2020) tasks compared to Cal-Only, confirming its superior generalization capability.

2 RELATED WORK

Research on model honesty alignment largely focuses on how to measure and calibrate confidence,
which can be categorized into training-free and training-based approaches.

2.1 TRAINING-FREE CONFIDENCE INVESTIGATION

Early works linked confidence to token probabilities (Guo et al.,2017; Desai & Durrett, 20205 Jiang
et al., |2021), but these signals are often miscalibrated in free-form generation where probabilities
can be dominated by semantically irrelevant tokens. To address this, self-consistency-based methods
measure confidence from the semantic consistency of multiple generations (Manakul et al., |2023)),
achieving the most reliable results among training-free methods. Another line explores verbalized
confidence, where LL.Ms explicitly their confidence in words (Lin et al., 2022} [Yin et al.l 2023}, [Tian
et al.,[2023)), though these models often remain overconfident.
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2.2 TRAINING-BASED CONFIDENCE CALIBRATION

These studies leverage correctness annotations to calibrate model confidence, achieving better per-
formance than training-free methods, and can be broadly divided into two categories. One line
leverages LLMs’ internal states to predict confidence either after or even before generation (Azaria
& Mitchell, 2023} (Chen et al., 2024; Wang et al., 2024). Another line trains models to verbalize
confidence reliably (Lin et al. 2022} |Zhang et al.| 2024). All these methods rely on correctness
annotations, and achieving optimal performance requires high annotation costs. Although some
works (Zhang et al.| 2024; [Tjandra et al., 2024) exploit LLMs’ internal uncertainty as a supervi-
sion signal, it is only used to determine abstention rather than to teach models to express their own
confidence. Apart from that, all the above methods are trained only on small-scale datasets.

In contrast, this paper frames honesty alignment as a two-stage learning problem and proposes an
annotation-efficient method EliCal. EliCal first elicits the model to express its internal confidence es-
timated via self-consistency on a large scale question set, and then calibrates the elicited confidence
to true correctness using a small amount of annotations. In addition, we introduce HonestyBench
which establishes a pathway toward achieving the upper bound of performance for universal models
across diverse tasks. Due to space limitations, more related works can be found in

3 PRELIMINARY

In this section, we formalize the task of LLM honesty alignment and introduce confidence measure-
ment through self-consistency.

3.1 TASK FORMULATION OF HONESTY ALIGNMENT

We aim to enable the model to output its confidence for a given question before response gener-
ation, which can accurately reflect the probability of a correct response. For example, if a model
reports 80% confidence, its answer should have an 80% chance of being correct. Given a question
¢, a model with parameters ¢, and a decoding policy 7, the model defines a distribution pj (r | ¢)
over outputs, with » € R denoting the set of all possible responses. The model’s capability on g can
be represented by the expected accuracy over all its possible responses. Let G(g) C R denote the
set of all correct responses for g, we define the correctness indicator of a response r as:

Accuracyy(q,r) = 1[r € G(q)] € {0,1}, (1
if r € G(q), it is deemed as correct; Otherwise, r is wrong. The model’s actual capability can be
reflected by the expected accuracy of all possible responses in R:

Accuracy,(q) £ E,~pg(-|g)[Accuracyy(g,7)] = Z pp (1 | q) Accuracy, (g, 7). (2)
reR

Honesty Alignment Objective. For question g, we aim to optimize an optimal target confidence
score Confidencej(g) which ranges from 0 to 1 (i.e., € [0, 1]) that reflects its ability to provide a
correct answer, satisfying

Confidencey(q) = Accuracy,(q). 3)

Objective Approximation. Since obtaining all possible responses R is impractical in real-world
scenarios, Accuracy,(q) is usually approximated based on R, a set of k responses sampled under 7.

1
Accuracy,(q) £ E,pg (g Accuracyy(g,7) ] ~ Z Z Accuracy,(q, ). “4)
reR

3.2 CONFIDENCE ESTIMATION BASED ON SELF-CONSISTENCY

A model’s confidence in correctly answering a question ¢ can be reflected by the generation proba-
bility of the model’s most confident response ¥ = arg max,cr pj (7 | q), which is defined as:

Confidencey(q) = pj (7 | q) (5)
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Recent studies (Manakul et al.} 2023} [Zhang et al., |2023)) propose self-consistency as a state-of-the-
art training-free method for confidence estimation. It evaluates a model’s confidence in a response r
by checking whether the model consistently generates responses with the same semantics as r across
multiple generations. We define s(r, 7) to represent whether r is semantically consistent with 7 as:

s(r,7) = [ Consistent(r, 7)] € {0,1}, (6)

where s(r, 7) = 1 if the two responses are semantically consistent; Otherwise, s(r,7) = 0. pj (7 | q)
can be represented by E,.,x[s(r,7)]. Since it is infeasible to obtain all possible generations in

practice, pj (7 | ¢) is computed via self-consistency based on a sampled set R which consists of &
responses sampled under the decoding policy 7.

PG 1 0) £ Erogg s P)] = Y0050 @)s(r, ) % 1 3 sl 7). )

reR rerk

Self-consistency confidence vs. semantic uncertainty. Semantic uncertainty (Kuhn et al., [2023)
captures a model’s uncertainty about a question as a proxy for confidence. For a given question,
it clusters all possible responses into semantic groups (with equivalent responses grouped together)
and computes the entropy across these groups to quantify uncertainty. However, this value does
not provide a concrete notion of confidence, as it is not restricted from O to 1. To obtain a more
interpretable measure, we use self-consistency to estimate the generation probability of the most
likely semantic cluster, which is conceptually related to semantic uncertainty.

4 ELICAL:ELICITATION-THEN-CALIBRATION

In this section, we introduce EliCal (Elicitation-Then-Calibration), a two-stage training framework
for honesty alignment, which first activates the model to express its internal confidence on a question,
and then leverages a small amount of correctness annotations for further calibration. An overview
of EliCal is shown in Figure[3]

4.1 OVERVIEW

Although consistency-based confidence estimation achieves
strong alignment performance and is state-of-the-art (SOTA)
among training-free approaches, it requires extensive sampling
to reliably estimate confidence. To address this inefficiency,
we propose a one-shot alternative: eliciting the model’s inter-
nal confidence by training it with unsupervised, consistency-

Spearman p = 0.789
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" cunns St ey Coniorcancrac based confidence signals. Because this estimation and ex-
pression depend solely on the model’s internal representations,
such confidence elicitation is inherently learnable. In Figure[2]
we show a comparison between self-consistency confidence
and the model’s true capabilities. It can be seen that the model
is generally overconfident, but self-consistency confidence is highly correlated with true capabilities.

Figure 2: Self-consistency con-
fidence vs. correctness on TQ
(Qwen2.5-7B-Instruct).

For enhanced honesty alignment, it is crucial to use correctness annotations to project and calibrate
the model’s expressed confidence against its actual accuracy in answering questions. Unlike tra-
ditional calibration methods that attempt to adjust confidence from scratch, our proposed method,
EliCal, first teaches the model to articulate its inherent confidence. This foundational step enables
subsequent calibration to be more precise and annotation-efficient, requiring far fewer correctness
labels than calibration-only approaches.

4.2 MODEL ARCHITECTURE

To ensure that training the model for honesty does not compromise its original capabilities (e.g., QA
performance), we freeze the model parameters 6 and introduce Low-Rank Adaptation (LoRA) (Hu
et al.l 2022) modules into all linear layers, enabling rich interaction with the internal states. An
additional linear head is attached to the final layer to predict the confidence score.
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Figure 3: EliCal reframes honesty alignment as a two-stage learning problem: 1) Confidence Elic-
itation, which constructs training data from a large set of questions with labels derived through
self-consistency; 2) Confidence Calibration, which constructs correctness annotation using a small
set of QA pairs to bridge the gap between the model’s expressed confidence and its actual accuracy.

Consider an LLM with L transformer layers and hidden dimension d. For an input question ¢ =

.. ) d .
e , t
(@1 gr) containing T tokens, let h;” € R® denote the internal state of token ¢; at layer ¢ €
1,..., L}. The internal states are generated by the frozen backbone parameters 6 together with the
g y P 4

trainable LoRA parameters 0 ,ra. On top of the final layer, we attach a linear head fy : RY 5 R

that maps the internal state of the last question token h(TL) (0, OL0rA) into a confidence score:

¢ = fo(hy(0,01000)) = W B (0, Orowa) + b, ®)
where ¢ = {w, b} are the parameters of the linear head.

During training, only 8 ,ra and ¢ are updated, while 6 remains frozen. The supervision signal is
given by confidence targets c, and the objective is mean squared error (MSE):

N

1
L£(9,bora) = P GCETA 9)

i=1

where N is the number of training samples. Detailed application of LoRA can be found in §D]

4.3 TwoO STAGES OF ETC

The two stages of ETC construct the target confidence in different ways.

Stage 1-Confidence Elicitation. The goal of this stage is to train the model to elicit its internal
confidence. For a model with frozen backbone parameters 6, given a large question set Q annotated
with self-consistency signals, we define the self-consistency target for each question ¢ € Q as
Confidencey(¢) (See equation . The LoRA parameters and linear head are initialized as 6  , and

¢°, and the internal state used is h'" (6, 69 ¢ , ).
These parameters are trained using the MSE objective:

L(¢°,00 ) > (é(q) — Confidences(q))”, (10)
qeQ

-1
Q|

where ¢(q) = f¢o(h(TL) (6,09 x4)) is the predicted confidence and |Q| means the count of samples
in Q. After this stage, we obtain ¢! and 0] ..

Stage 2-Confidence Calibration. The goal of this stage is to calibrate the model’s confidence
using a small set of QA pairs Qqa With correctness annotations. Starting from the parameters ¢
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and 0}, obtained from Stage 1, we fine-tune the LoORA modules and the linear head to predict the
correctness score Accuracy,(q) (See equation for each ¢ € Qgman. The internal state used is now:

h{™ (6,61 z,). and the MSE objective is

1

= o] (&) - ACCUY&CY@(Q))27 (1n

qE Qsmall

£(¢17 eﬁoRA)

where ¢(q) = fu (h(TL) (0,0 ,ra)) is the predicted score and |Qgmai| means the count of samples in
Qgman- After this stage, the parameters are updated to ¢? and HE()R A

Dicussions. Elicitation-Then-Calibration can be viewed as a pretraining—finetuning paradigm
specifically tailored for honesty alignment, with the elicitation stage providing a solid foundation.
Self-consistency confidence is inherently learnable, requires no human annotation, and could offer
strong generalization by externalizing internal signals rather than fitting domain-specific labels. Fol-
lowing confidence elicitation, the model equipped with ¢2 and 67 , can predict confidence prior
to generation, avoiding the overhead of repeated sampling and consistency checking.

5 HONESTYBENCH

To advance toward a universal model with strong honesty alignment across tasks, we introduce
HonestyBench (See Table|[I), a large-scale benchmark that consolidates 10 widely used public free-
form factual question-answering datasets. HonestyBench comprises 560k training samples, along
with 38k in-domain and 33k out-of-domain (OOD) evaluation samples. It establishes a pathway
toward achieving the upper bound of performance for universal models across diverse tasks, while
also serving as a robust and reliable testbed for comparing different approaches.

Table 1: The number of training and evaluation samples is as follows. For ParaRel, we randomly
sample 3,000 instances as the test set and use the rest for training. For the other datasets, we use the
train set for training and, if available, the test set for evaluation; otherwise, we use the dev set.

Training Data In-Domain Evaluation OOD Evaluation
Datasets  Set Count Datasets Set Count Datasets Set Count
NQ Train 87,925 NQ Test 3,610 Squad Dev 10,570
TQ Train 87,622 TQ Dev 11,313 WQ Test 2,032
HQ Train 90,447 HQ Dev 7,405 CWQ Dev 3,519

2Wiki Train 167,454 2Wiki Dev 12,576 MuSiQue Dev 2,417
ParaRel  Split 134,199 ParaRel Split 3,000 PopQA Dev 14,267

Total / 567,647 Total /37,904 Total /32,805

LLMs. We obtained the correctness annotations and self-consistency confidence of three represen-
tative open-source LLMs: Qwen2.5-7B-Instruct (Qwen et al., 2025), Qwen2.5-14B-Instruct (Qwen
et al.,[2025)), and Llama3-8B-Instruct (Dubey et al., [2024).

HonestyBench-Train. The training portion of HonestyBench integrates the training sets of
five widely used QA datasets—Natural Questions (NQ) (Kwiatkowski et al. 2019), TrivialQA
(TQ) Woshi et al., 2017), 2WikiMultihopQA (2Wiki) (Ho et al., 2020), HotpotQA (HQ) (Yang
et al. 2018)), and ParaRel (Elazar et al., [2021). These datasets cover single-hop, multi-hop, and
template-generated questions, amounting to over 560k QA pairs. For each question, the model
generates one greedy response and & (i.e., k = 20) sampled responses (temperature=1). Sampled
responses are annotated for semantic consistency with the greedy response, and all answers are
annotated for correctness.

HonestyBench-Eval. HonestyBench-Eval provides evaluation across both in-domain and OOD
scenarios. In-domain evaluation uses the test or development splits of the five datasets in-
cluded in HonestyBench-Train. Out-of-domain (OOD) evaluation covers five additional factual QA
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datasets—SQuAD (Rajpurkar et al.,2016), WebQuestions (WQ) (Berant et al., 2013)), ComplexWe-
bQuestions (CWQ) (Talmor & Berant, |2018)), MuSiQue (Trivedi et al., [2022)), and PopQA (Mallen
et al.,|2022)—spanning single-hop, multi-hop, and template-generated questions in diverse domains.
The in-domain evaluation contains approximately 38k QA pairs, while the out-of-domain evaluation
contains approximately 33k QA pairs. As in training, each question is annotated with both consis-
tency and correctness scores.

Details. For answer generation, we use the prompt shown in Figure[I5] For correctness evaluation
and semantic consistency checking, to ensure accuracy as much as possible, we employ the powerful
LLM Qwen2.5-32B-Instruct (Qwen et al.| [2025), with the specific prompts provided in Figure
and Figure [I2] respectively.

6 EXPERIMENTAL SETUP
In this section, we introduce the evaluation metrics, baselines, datasets, and implementation details.

Metrics. For QA performance, we measure accuracy by verifying whether the model’s greedy
search output matches any ground-truth answer using Qwen2.5-32B-Instruct (scored as 1 if correct,
0 if incorrect). To evaluate honesty alignment, we adopt the widely used AUROC (Hanley & Mc-
Neil, |1982) (Area Under the Receiver Operating Characteristic Curve) metric. AUROC measures
a model’s ability to distinguish correct from incorrect predictions: higher values indicate that the
model assigns higher confidence to correct answers. It is computed as the area under the curve plot-
ting the true positive rate against the false positive rate at varying confidence thresholds. A value
of 1 represents perfect discrimination, while 0.5 corresponds to random guessing. We also evaluate
honesty alignment using ECE (Guo et al.,|2017) in §E}

Baselines. We compare EliCal with six representative training-free baselines and two training-
based baselines. The training-free methods include three types, each with two variants: 1) Proba-
bilistic confidence (Prob): sequence-level generation probability, with length-normalized version
(N-Prob); 2) Self-consistency (Consis) (Manakul et al., 2023; |Ho et al.,|2020): measured via lex-
ical similarity (Consis-Lex) or an LLM for semantic similarity (Consis-Sem); 3) Verbalized con-
fidence (Verbal) (Xiong et al.,2023): model expresses confidence in natural language, in zero-shot
(Verbal-0) and few-shot (Verbal-10) settings. The training-based baselines are: 1) Elicitation-Only
(Eli-Only): learning from Consis-Sem, and 2) Calibration-Only (Cal-Only) (Yang et al.| 2023):
learning from correctness from scratch. Implementation details are in §E]

Datasets. EliCal and Eli-Only perform elicitation using all questions in HonestyBench-Train with
self-consistency confidence. We randomly sample correctness annotations of varying sizes (from 1k
to over 560k) from HonestyBench to examine how the performance of EliCal and Cali-Only scales
with the amount of annotated data. All methods are evaluated on HonestyBench-Eval. Details of the
parameter settings and implementation details are provided in

7 RESULTS AND ANALYSIS

We evaluate ARUOC scores of all training-free methods. The
y results are shown in Figure [] indicating that: Consis-Sem
” : provides the most accurate confidence estimation among
training-free methods. As shown in Figure 4, Consis-Sem
g achieves the highest AUROC. That is why we use it for internal
- confidence estimation. In addition, Prob and N-Prob compute
response generation probabilities at the token level, whereas
Consis-Lex measures token-level similarity, which is nega-
tively affected by semantically irrelevant tokens. The model’s
ability to express confidence in words is limited, although few-
shot prompting provides a slight improvement.

Prob N-Prob  Verbal-0 Verbal-10 Consis-Lex Consis-Sem
Methods

Figure 4: Average performance
of training-free methods across all
models in the in-domain setting. The AUROC scores of different methods for Qwen2.5-7B-
Instruct are reported in Table [2] while results for the other models are provided in Table [ of
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We vary the amount of annotated data from 1k to over 560k, with the results under in-domain set-
ting presented in Figure [5] Results under the OOD setting can be found in Figure [8] The main
conclusions are summarized as follows.

Table 2: AUROC scores on Qwen2.5-7B-Instruct. The numbers in () indicate the amount of anno-
tated data used. Bold denotes the best scores, and the second-best scores are underlined.

In-Domain Evaluation OOD Evaluation

Category Methods
NQ TQ HQ 2Wiki Pararel Avg. Squad WQ CWQ MSQ PopQA Avg.
Prob 56.79 7026 5429 4173 5871 5548 56.63 6130 6834 61.85 7130 64.94
N-Prob 66.11 7296 6196 5933 6167 6475 60.72 66.06 70.51 6593 7473  68.58
Training-free Verbal-0 64.02 7022 6649 65.02 7081 6722 6576 7041 59.56 60.54 70.64 67.12
8 Verbal-10 68.82 6235 70.53 7324 7150 6890 72.54 6820 6325 6444 7340 71.05
Consis-Lex 65.02 7498 6898 67.82 6635 69.80 62.12 6543 7259 61.07 77.07 69.87
Consis-Sem 80.68 90.20 80.12 5540 6293 73.62 66.16 7626 77.50 70.76 70.44  70.20
Eli-Only 7786 8623 7727 5436 6205 71.19 60.66 76.61 7477 66.56 7460  69.66
Training-based — Cal-Only (1k) 72.19 6875 7434 76.17 78.61 7341 7159 7148 69.33 6696 86.13 77.32
EliCal (1k) 82.38 87.51 8448 82.05 8431 8436 7848 80.11 79.85 78.09 91.74 8447
Upper Bound Cal-Only (560k) 84.89 8896 85.64 8397 88.07 8620 81.19 8130 8045 79.58 92.11 85.75
Pr EliCal (560k) 85.16 89.09 86.09 84.19 8889 8649 81.04 81.10 81.02 80.68 92.11 8583

—o— EliCal ~o- Cal-Only
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Figure 5: AUROC of EliCal and Cal-Only as the scale of annotated data varies.

HonestyBench establishes a pathway toward achieving the upper bound of performance for
universal models across diverse task. As shown in Table [2) both EliCal and Cal-Only achieve
very high AUROC scores after leveraging all annotated data in HonestyBench, significantly outper-
forming all training-free methods. Figures [5|and Figure [§|further show that for both in-domain and
OOD settings, the performance of the two methods tends to saturate as the amount of annotated
data increases. This is the first time that honesty alignment has been trained and validated on such a
large-scale dataset to explore its upper bound.

EliCal is annotation-efficient, achieving about 98 % of the performance of Cal-Only trained on
over 560k annotations using only 1k annotated samples. Table [2| shows that with just 1k cor-
rectness annotations, EliCal significantly outperforms all baseline methods and achieves the highest
AUROC on nearly all datasets. In comparison, Cal-Only (1k) fails to outperform the best training-
free methods on many datasets, such as NQ and HQ. As shown in Figure[5] in the in-domain setting,
EliCal generally outperforms Cal-Only, especially when annotated data is limited. This indicates
that large-scale confidence elicitation provides a strong foundation for subsequent calibration, re-
ducing the reliance on correctness annotations.

EliCal demonstrates strong generalization. As shown in Table [2| EliCal (1k) achieves strong
performance in OOD settings. Figure [§] further shows that in standard OOD scenarios, where ques-
tion formats resemble the training data, EliCal generally outperforms Cal-Only, with the two con-
verging when sufficient annotations are available. In both in-domain and OOD settings, we observe
very similar phenomena, which may be attributed to their shared question format (free-form ques-
tions) and the fact that most QA pairs are constructed from Wikipedia. To test more challenging
cases, we evaluate on MMLU (Hendrycks et al.| 2020), a multi-choice benchmark that differs sub-
stantially from the free-form questions used in training. As shown in Figure[5] even with over 560k
annotations, Cal-Only lags behind EliCal. These results indicate that leveraging the model’s internal
signals at scale, rather than relying solely on task-specific labels, leads to better generalization.
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LLMs can be taught to express their internal confidence. As shown in Table |2} Eli-Only per-
forms on par with Consis-Sem, indicating that LLMs can be taught to express their internal confi-
dence. Unlike Consis-Sem, Eli-Only does not require multiple generations and, without any anno-
tated data, can reduce the cost of estimating model confidence during inference.

—o— Elical -0~ Cal-Only

807Qwen2.5-7B (In-Domain) 80 Qwen2.5-14B (In-Domain) 80- Llama3-8B (In-Domain) 75.0- Qwen2.5-7B (MMLU)
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Annotation Data Size (k) Annotation Data Size (k) Annotation Data Size (k) Annotation Data Size (k)

Figure 6: Alignment of EliCal and Cal-Only as the scale of annotated data varies.

The confidence output by EliCal can be binarized to determine whether the model answers
correctly. In addition to AUROC, we use alignment (N1 et al., [2024a)) to directly measure how re-
liably the model’s confidence reflects correctness. Alignment is defined as the proportion of predic-
tions whose binarized confidence matches their true correctness. For each test set, 20% of samples
(random selected) are used to select the threshold that maximizes alignment, and the remaining 80%
for evaluation. The results are shown in Figure [6] and Figure 0] The alignment of EliCal signifi-
cantly outperforms Cal-Only. In the in-domain setting, Cal-Only is comparable to EliCal when a
large amount of annotations is available, while in MMLU, EliCal consistently leads. This demon-
strates that EliCal provides reliable confidence estimates for real-world scenarios requiring binarized
decisions, such as determining whether to perform retrieval augmentation.

7.1 ABLATION

Effects of training size for elicitation. To study the im-

pact of training data size for elicitation, we apply con- 7
fidence elicitation to Qwen2.5-7B-Instruct using varying N 3
amounts of training data. Average results across all in- /
domain datasets are shown in Figure[/} It can be observed s /
that as the training data increases, the elicitation perfor- %60 /
mance improves, with the rate of improvement gradually —~ o
slowing down, eventually approaching Consis-Sem. 55 /
50 'I
Training on a linear head. Since more trainable pa- pp »

Data Size for Confidence Elicitation (k)

rameters require more data for a cold start, we conduct an

ablation study using a lighter network. We fix the model Figure 7: The impact of training size
and train only a linear head that maps the final-layer hid-  on elicitation performance of Qwen2.5-
den state of the last question token to a confidence score, 7B-Instruct in the in-domain setting.
with all other settings as in §6 Results, shown in Fig-

ure[T0] indicate that honesty performance improves with more labeled data, and EliCal consistently
outperforms Cal-Only, especially when data is limited. However, using only a linear head limits
interaction and expressiveness, leading to lower performance than in Figure [3

8 CONCLUSION

In this paper, we propose EliCal, an annotation-efficient two-stage training framework for honesty
alignment, and introduce HonestyBench, a large-scale benchmark enabling universal honesty train-
ing and comprehensive evaluation. Our results demonstrate that EliCal significantly improves model
confidence expression with minimal labeled data, while HonestyBench supports the development of
models that excel across diverse tasks. This work sets the stage for scalable, high-performance, and
data-efficient honesty alignment in real-world Al applications.
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ETHICS STATEMENT

All models used in this paper are open-source, and all datasets are publicly available factual QA
datasets that do not contain harmful information. Furthermore, this work is dedicated to improving
model honesty and does not involve the generation of harmful content.

REPRODUCIBILITY STATEMENT

First, the models we use are open-source, and our datasets are constructed from publicly available
sources. In Section [5} we describe in detail the construction of HonestyBench and the prompts
used. In Section [E] we explain the implementation of each method, and in Section [C| we provide
the experimental parameter settings. We believe that the results in this paper are easy to reproduce.
Moreover, since our training is based on LoRA rather than directly fine-tuning the full model, re-
production does not require extensive GPU resources. In addition, we will open-source all code,
HonestyBench, and all trained models.
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A RELATED WORK

Honesty is evaluated by whether the model’s confidence aligns with its actual ability, where actual
ability is typically measured by the correctness of its answers. Existing research focuses on how to
measure and calibrate confidence, which can be broadly categorized into the two series.

A.1 TRAINING-FREE CONFIDENCE INVESTIGATION

1) Probability-based Confidence. A common approach links model confidence to the probabilities
assigned during token generation (Guo et al., 2017; [Desai & Durrett, 2020; Jiang et al., 2021} |[Ka-
davath et al.| |2022; |Si et al., 2022} |Kuhn et al., 2023). Early work (Guo et al.,|2017) revealed that
modern neural networks such as ResNet (He et al.,[2016) tend to produce overconfident predictions,
and introduced temperature scaling as a correction. Later, |Desai & Durrett (2020) showed that pre-
trained language models such as BERT (Devlin, |2018)) achieve more reliable calibration compared
to models without pretraining. As generative models became prominent, Jiang et al.| (2021) reported
that TS5 (Raffel et al.| 2020) still exhibited miscalibration, often being more confident than warranted.
Recent studies highlight that LLMs appear well calibrated in structured tasks (e.g., multiple-choice
QA) under suitable prompting (Kadavath et al., 2022} Si et al., [2022)), but their probabilities deviate
substantially from correctness in free-form generation.

2) Consistency-based Confidence. Since raw token probabilities cannot always capture semantic
reliability, and may not be accessible for black-box APIs, another line of work infers confidence
from agreement across multiple responses (Fomicheva et al., 2020; Manakul et al., 2023} [Kuhn
et al.|[2023} Zhang et al.}|2023};Ding et al.,[2024). The intuition is that confident models should yield
stable answers across repeated generations. Early methods (Fomicheva et al., 2020) used surface-
level similarity to assess agreement, while subsequent efforts employed semantic measures with
NLI models or LLMs (Manakul et al.,[2023}; |Kuhn et al., [2023)). Recognizing that consistency alone
does not guarantee correctness, |Zhang et al.|(2023) proposed cross-model agreement, leveraging the
observation that different models often err differently. More recently, |[Ding et al|(2024) generalized
this idea across multiple languages.

3) Verbalized Confidence. Another direction enables LLMs to explicitly articulate their confidence
in natural language (Lin et al., 2022} [Yin et al.| 2023} |Tian et al.l 2023 Xiong et al.| 2023} [Zhang
et al., 2024; |Yang et al., 2023 [Ni et al.| [2024a)). |Yin et al.| (2023) and |Ni et al.| (2024a)) examined
whether models can judge the answerability of questions, showing partial success but frequent over-
confidence. Beyond coarse judgments, Tian et al.| (2023) and Xiong et al.|(2023) studied fine-grained
verbalization: the former proposed generating multiple candidate answers at once to aid confidence
expression, while the latter systematically evaluated black-box models.

A.2 TRAINING-BASED CONFIDENCE CALIBRATION

A more recent stream of research investigates whether the internal representations of LLMs encode
signals about factual correctness (Azaria & Mitchell, 2023; Su et al.| [2024; [Chen et al., [2024}; |Wang
et al., 20245 N1 et al., [2025). |Azaria & Mitchell (2023)) showed that hidden states can reflect factu-
ality judgments. Building on this, Su et al.|(2024) and |Chen et al.|(2024) found that post-generation
activations capture whether a model’s own outputs are factual. More recently, Wang et al.| (2024);
N1 et al.| (2025) demonstrated that pre-generation states already carry predictive cues, enabling esti-
mation of correctness before the answer is fully produced.

In parallel, some approaches explicitly train models to verbalize confidence reliably (Lin et al.,2022;
Yang et al., 2023} Zhang et al., 2024), with |Lin et al.| (2022)) being the first to introduce this idea.
These methods typically evaluate a model’s ability and then use answer correctness as supervision.
Although some studies (Zhang et al., 2024; Tjandra et al., 2024) leverage the model’s internal uncer-
tainty as a supervision signal, they use it only to decide whether to abstain from answering, rather
than to teach the model to express its own confidence. Moreover, these studies do not consider sub-
sequent calibration and are limited to small-scale datasets. In contrast, this paper frames honesty
alignment as a two-stage learning problem: first, large-scale self-consistency confidence is used to
activate the model’s ability to express internal confidence, and then a small amount of supervised
data is employed to calibrate this confidence.
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Table 3: QA performance across all models and datasets.

Models NQ TQ HQ 2Wiki Pararel Squad WQ CWQ MSQ PopQA Avg.
Qwen-7B 41.33 60.04 3336 31.53 49.93 32.17 58.02 3447 1274 20.73 35.74
Qwen-14B 5191 71.31 40.19 34.06 60.43 39.00 64.67 38.28 1655 2696 4249
Llama-8B  51.88 70.53 39.07 29.71 61.47 3391 66.04 36.89 16.05 3242 41.81
B FURTHER ANALYSIS USING ECE
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Figure 8: AUROC of EliCal and Cal-Only with different amounts of annotated data.
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In addition to evaluating whether the model’s confidence can distinguish between questions it can
and cannot answer correctly, we also hope that the confidence values themselves are meaningful,
i.e., that confidence reflects accuracy. This is also why we do not consider entropy-based methods,
since the value of entropy itself does not represent a confidence score between 0 and 1, and its value
does not provide a direct characterization of ability. We use ECE (Expected Calibration Error) to

Annotation Data Size (k)

Annotation Data Size (k)

Annotation Data Size (k)

Figure 9: Alignment of EliCal and Cal-Only with different amounts of annotated data.

measure this, which can be formulated as:

where the predictions are partitioned into M = 10 bins according to their confidence scores, By,
denotes the set of samples in the m-th bin, and n is the total number of samples. For each bin,
acc(B,,) is the empirical accuracy of the predictions and conf(B,,) is their average confidence.
The absolute difference |acc(B,,,) — conf(B,,)| quantifies the miscalibration in that bin, and the
overall ECE is obtained as the sample-size-weighted average across bins. As shown in Figure[TT]
EliCal and Cal-Only achieve similarly low ECE in most cases, indicating that both learn calibrated

M ‘B |
ECE = ) =™ |acc(B,,) — conf(By,)] ,
n
m=1
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Figure 10: Alignment of EliCal and Cal-Only with different amounts of annotated data. Both meth-

ods just train a linear head.
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Figure 11: ECE of EliCal and Cal-Only with different amounts of annotated data.

confidence overall. However, when labeled data is limited (Figure [5), Cal-Only shows worse AU-
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Table 4: AUROC performance of different methods across all models and datasets. Bold denotes
the best scores across each model. The second-best value is underlined.

In-Domain Evaluation OOD Evaluation
NQ TQ HQ 2Wiki Pararel Avg. Squad WQ CWQ MSQ PopQA Avg.

Training-free Methods

Models Methods

Prob 56.79 70.26 5429 41.73 5871 5548 56.63 6130 6834 61.85 71.30 64.94
N-Prob 66.11 7296 6196 5933 61.67 6475 60.72 66.06 70.51 6593 7473  68.58
Verbal-0 64.02 70.22 6649 6502 70.81 6722 6576 7041 59.56 60.54 70.64 67.12
Verbal-10 68.82 6235 70.53 7324 7150 6890 7254 6820 6325 6444 7340 71.05
Consis-Lex 65.02 7498 6898 67.82 66.35 69.80 62.12 6543 7259 61.07 77.07 69.87
Qwen-7B Consis-Sem 80.68 90.20 80.12 5540 6293 73.62 66.16 76.26 77.50 70.76 70.44  70.20
Training-based Methods
Eli-Only 77.86 8623 77.27 5436 6205 71.19 60.66 76.61 7477 6656 74.60 69.66
Cal-Only (1k) 72.19 68775 7434 7617 78.61 7341 7159 7148 69.33 6696 86.13 77.32
EliCal (1k) 8238 87.51 8448 82.05 8431 84.36 7848 80.11 79.85 78.09 91.74 8447
Upper Bound
Cal-Only (560k) 84.89 8896 85.64 8397 88.07 8620 81.19 8130 8045 79.58 92.11 8575
EliCal (560k) 85.16 89.09 86.09 84.19 88.89 86.49 81.04 81.10 81.02 80.68 92.11 85.83
Training-free Methods
Prob 61.44 77.66 6733 4607 63.02 6246 60.72 64.07 7347 6621 7411 68.52
N-Prob 65.83 78.62 70.55 5889 67.63 6841 6504 6578 7462 6841 7939 72.60
Verbal-0 6533 74.89 70.87 7144 7211 71.83 7321 6891 61.61 63.55 7644 7239
Verbal-10 6570 73.04 70.00 75.61 71.35 7246 7221 7218 63.52 6474 75.84 7230
Consis-Lex 68.65 80.88 7543 6691 69.38 73.11 6586 6583 75.56 67.90 7830 72.46
Qwen-14B  Consis-Sem 7777 88.63 81.12 57.02 66.87 7392 6637 73.17 7460 73.08 73.33 71.19
Training-based Methods
Eli-Only 7692 8495 76.61 56.00 6559 7142 60.67 73.33 7238 62.86 7490 69.06
Cal-Only (1k) 69.62 7245 7535 7677 76.50 74.50 7051 6693 69.99 6577 8531 76.32
EliCal (1k) 80.46 85.85 8348 81.89 82,54 8330 7896 76.07 7849 75.04 8895 82.79
Upper Bound
Cal-Only (560k) 83.95 8830 85.66 83.57 8824 8580 81.56 80.07 80.90 79.63 90.32 85.06
EliCal (560k) 84.57 88.66 8571 8397 87.89 86.08 81.96 79.86 8146 80.68 9035 8533
Training-free Methods
Prob 5553 6589 5879 4587 59.46 5636 5430 59.84 6521 60.02 7038 6323
N-Prob 64.25 6931 6641 5676 6486 6375 61.80 62.05 6405 6682 73.17 67.37
Verbal-0 61.72 67.67 5819 58.66 6412 6198 6574 6450 5877 5537 7196 66.86
Verbal-10 56.08 50.44 62.54 58.79 62.13 57.03 6326 63.01 59.10 58.84 7442 67.33
Consis-Lex 6532 70.14 6692 5788 67.19 6475 6440 6237 68.19 69.04 7559 69.89
Llama-8B  Consis-Sem 80.50 9043 83.63 61.10 77.84 7743 7425 7425 79.60 7595 80.15 77.52
Training-based Methods
Eli-Only 7421 8496 78.07 5566 74.16 72.01 7074 7351 7431 66.80 79.69 74.90
Cal-Only (1k) 68.48 74.67 7588 77.12 7132 7486 7222 68.18 66.55 6455 81.57 74.86
EliCal (1k) 7486 85.08 81.65 7480 78.90 79.54 7559 75.09 7522 7040 85.67 79.52
Upper Bound

Cal-Only (560k) 78.97 86.01 83.62 81.80 83.57 8328 7836 7599 7639 75.04 86.89 8147
EliCal (560k) 7922 8570 83.26 8194 84.67 8328 7814 76.19 75.06 74.16 86.70 81.12

ROC, suggesting that it captures only global trends (e.g., confidence close to average accuracy) but
lacks fine-grained discriminative ability.

C IMPLEMENTATION DETAILS

We use Qwen2.5-32B-Instruct to measure consistency between two responses (See Figure [12).
Yang et al.| (2023) show that full-parameter fine-tuning for honesty alignment can negatively im-
pact the model’s QA performance. To avoid affecting the model’s original capabilities, we train
with LoRA (Hu et al.| [2022)) and a linear head to output a confidence score, where we set rank=8
and a=16. We use AdamW (Loshchilov & Hutter, 2017) as the optimizer, MSE (Mean Square Er-
ror) as the loss function and conduct training with the SFTTrainer from trﬂ using a batch size of 16
and accumulation steps of 8. For answer generation, we use VLL For each question, we generate
one greedy answer with temperature = 0, and sample 20 answers with temperature = 1, top-p = 0.95,
and top-k = 50. Checkpoints for all training methods are selected using the in-domain test set. All
other parameters are kept at their default settings. All the prompts can be seen in §G|

"https://huggingface.co/docs/trl/sft_trainer
>https://docs.vllm.ai/en/latest/
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D DETAILS OF LORA

Consider an LLM with L transformer layers and hidden dimension d. For an input question ¢ =

(q1,---,q7) where T is the count of tokens in g, let hy) € R? denote the hidden state of token x;
atlayer £ € {1,..., L}. Each layer contains multiple linear transformations, including the attention
projections

q= WQh, k= WKh, vV = th, 0o = Woz, (13)

and the feed-forward projections:
u= Vanh, I= Wouta(u)7 (14)

where Wo, Wi, Wy, Wo € R and W, € R4 W, € Rxn,

For any linear transformation y = Wh, we apply a low-rank trainable update AW:
W' =W + AW =W + Z4B, (15)
r

where A € R%*" B € R™¥9%u, r < min(di,, doy) is the LoRA rank, and « is a scaling factor.
Only A and B are trainable, while W remains frozen. We denote all LoRA parameters across the L
layers as 61 ora-

n ﬂ)u are a helpful assistant. Are the following two Question-Answer(QA) pairs \
lp semantically equivalent?

f: If you are sure they are semantically equivalent, answer "certain”. Otherwise, answer
"uncertain”. Given ONLY the judgement ("certain" or "uncertain"), no other words or
explanation.

Question: who got the first nobel prize in physics

Answer: Henri Becquerel

nswer: Hendrik Lorentz.

\Question: who got the first nobel prize in physics
A -

( B

Uncertain.

Figure 12: An example prompt for judging whether two responses are semantically consistent.

E DETAILS OF BASELINES

In this section, we describe how each training-free baseline method is implemented. For the question

q, suppose the greedy answer generated by the model is 7 and the set of sampled answers is R. R
contains 20 responses in our paper. Using the token generation probabilities of the model to represent
confidence is a common approach (Guo et al., 2017} Desai & Durrett, [2020; Jiang et al., 2021} N1
et al.,[2024b); in this work, we implement two versions.

Prob It computes the confidence Confidence(q) as the product of the generation probabilities of
each token in the greedy answer:

T
Confidence(q) = exp (Z log pg (7 | q,f<t)> ; (16)

t=1

where T is the count of tokens in 7.
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! 1
! 1
: ﬂ You are a helpful assistant. Judge whether you can provide a correct answer for the \ 1
1 P given question. Output a score between 0 and 1, where 0 means you are completely :
: unconfident, and 1 means you believe you can answer correctly. Just give your score ]
1 without any other words. :
1 . . . . .

i Question: who got the first nobel prize in physics? !
: \ o
! 1
1

1 4 ~ :
1 =

L @3 | 05 :
! U 1
1

I \_ )
[}

g
ﬂ ﬁu are a helpful assistant. Judge whether you can provide a correct answer for the \
g given question. Output a score between 0 and 1, where 0 means you are completely
f: unconfident, and 1 means you believe you can answer correctly. Just give your score

without any other words.
Question: when does a wrinkle in time come out in Canada
0.35.

0.0.

Qlestion: who got the first nobel prize in physics? J

|

[}

1

|

}

|

|

}

|

|

}

|

| cee
1 . . . .
I Question: what is the minimum wage in france per hour
}

|

|

}

|

|

}

|

[}

1

|

1

1

|

Figure 14: An example prompt for asking the model to generate confidence with 10 examples.

N-Prob Since Prob decreases as the sequence length increases, N-Prob normalizes Prob by se-
quence length to eliminate the effect of output length:

T

1 o
¢ = exp| =) logpj (7| g, 7<) |- (17)
t=1

With the development of LLMs, models have been found capable of expressing their confidence in
natural language. We implement both zero-shot and few-shot versions.

Verbal-0 asks the model to express its find-grained confidence in answering a question correctly
in natural language; the prompt is shown in Figure[I3]

Verbal-10 Unlike Verbal-0, Verbal-10 includes 10 examples in the prompt. Since some datasets
lack corresponding training sets, we randomly select 10 examples from the test set of each dataset
to construct the prompt. The same 10 examples are used for all questions in a given test set. As each
dataset contains several thousand questions, selecting 10 has minimal impact on the results. The
prompt can be seen in Figure

Consis-Lex The greedy answer 7 is compared with 20 sampled responses in R by computing the
ROUGE score for each pair, and the average score is taken as the model’s confidence. ROUGE-L
score is computed as: Given a candidate answer C' with length |C| and a reference answer R with
length |R|, let LCS(C, R) denote the length of their longest common subsequence. The precision
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Mo - T T - - - T T T oo oSS oSS S-S S oo oo - - - - - - - -
: 4 N
: gﬂ You are a helpful assistant. Answer the following question. :
! f— Question: who got the first nobel prize in physics? ]
: ]
1 S J
' I
1

1 a2 ~ :
: =P The first Nobel Prize in Physics was awarded in 1901, and it went to Wilhelm Conrad :
: Rontgen of Germany \"in recognition of the extraordinary services he has rendered by ]
1 the discovery of the remarkable rays (a new form of electromagnetic radiation). :
! ]
1

i ]

Figure 15: An example QA prompt. For this question, the correct answer is Wilhelm Conrad
Rontgen.

gﬂ ﬂl are a helpful assistant. We are assessing the quality of answers to the followinA

f: question: who got the first nobel prize in physics.

The expected answers to this question are: ['Wilhelm Conrad Réntgen’].
Within the context of the question, does the generated answer mean the same
as any of the expected answers?
The generated answer is: The first Nobel Prize in Physics was awarded in 1901, and
it went to Wilhelm Conrad Réntgen of Germany in recognition of the extraordinary
services he has rendered by the discovery of the remarkable rays (a new form of
electromagnetic radiation). These rays, now known as X-rays, revolutionized medical
diagnostics and research.
If the answer is correct, say "certain". If not, please say "uncertain”. Just give

your judgement without any other words.
Q&stion: who got the first nobel prize in physics? J
( )
=
Certain.
g J

Figure 16: An example prompt for judging whether a generated answer is correct.

P, recall R, and F1 score F}, of ROUGE-L are defined as:
LCS(C, R LCS(C, R 2-P-R
LRy LG 2R (18)
|C| |R| P+ R
Consis-Sem Unlike Consis-Lex, where similarity between two responses is measured using
ROUGE-L, here it is evaluated with Qwen2.5-32B-Instruct, which captures consistency more from
a semantic perspective. Using LLMs to measure semantic similarity is a widely adopted and empir-
ically validated approach (Achiam et al., 2023} Kuhn et al., 2023)). The similarity between each pair
of responses is binary (0 or 1), and the model score is obtained by averaging the similarities between
the greedy answer and the 20 sampled answers.

F THE USE OF LARGE LANGUAGE MODELS

We used LLMs for grammar correction, polishing sentences, and assisting with some repetitive
plotting code. The content and experiments in the paper were entirely conducted by humans, and all
model-polished text was manually reviewed.

G PRrROMPTS

In this section, we show all the prompts used in this paper. They are shown in Figure ??, Figure[14]

Figure[T3] Figure[16] and Figure
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