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Abstract

We are born with the ability to learn concepts by
comparing diverse observations. This helps us
to understand the new world in a compositional
manner and facilitates extrapolation, as objects
naturally consist of multiple concepts. In this
work, we argue that the cognitive mechanism of
comparison, fundamental to human learning, is
also vital for machines to recover true concepts
underlying the data. This offers correctness guar-
antees for the field of concept learning, which, de-
spite its impressive empirical successes, still lacks
general theoretical support. Specifically, we aim
to develop a theoretical framework for the identi-
fiability of concepts with multiple classes of ob-
servations. We show that with sufficient diversity
across classes, hidden concepts can be identified
without assuming specific concept types, func-
tional relations, or parametric generative models.
Interestingly, even when conditions are not glob-
ally satisfied, we can still provide alternative guar-
antees for as many concepts as possible based on
local comparisons, thereby extending the appli-
cability of our theory to more flexible scenarios.
Moreover, the hidden structure between classes
and concepts can also be identified nonparametri-
cally. We validate our theoretical results in both
synthetic and real-world settings.

1. Introduction
Humans possess an innate ability to learn concepts, i.e.,
conceptual factors underlying the observational world, by
comparing diverse classes of observations, a process foun-
dational to cognitive development (Rosch, 1973; Fodor &
Pylyshyn, 1988). For example, a child distinguishes be-
tween different types of animals not by memorizing each
species separately, but by observing and comparing dif-
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Figure 1: The class “shark ” has concepts like “predator
,” “sleek body ,” and “ocean .” The class “turtle ” has

concepts like “shell ” and “ocean .” A child may learn to
distinguish between these classes by focusing on the unique
concepts specific to each—such as ”predator ” and ”sleek
body ” for ”shark ,” and ”shell ” for ”turtle .”

ferences between various species, thereby identifying the
unique concepts that define each group (e.g., Fig. 1). This
mechanism of learning through comparison has been exten-
sively studied and verified across various fields, including
psychology and neuroscience, affirming its universality and
effectiveness (Bruner et al., 1957).

Meanwhile, in machine learning, the extraction of concep-
tual features is crucial for the development of robust and
interpretable models, illustrating the integration of cognitive
principles into machine intelligence (Valiant, 1984; Mitchell,
1997). Recent research has achieved notable success in
deriving human-interpretable concepts from various data
modalities with different formulations of the problem (Bau
et al., 2017; Radford et al., 2017; Alvarez Melis & Jaakkola,
2018; Kim et al., 2018; Zhou et al., 2018; Yeh et al., 2020;
Koh et al., 2020; Du et al., 2021; Bai et al., 2022; Achtibat
et al., 2022; Crabbé & van der Schaar, 2022; Liu et al., 2023;
Park et al., 2023; Jiang et al., 2024). These concepts have
proven beneficial for tasks such as extrapolation (Janner
et al., 2022; Lachapelle et al., 2023; Du & Kaelbling, 2024),
explanation (Alvarez Melis & Jaakkola, 2018; Sreedharan
et al., 2020; Leemann et al., 2023; Poeta et al., 2023), and
decision-making (Grupen et al., 2022; Zabounidis et al.,
2023; Delfosse et al., 2024). Furthermore, advancements
in this domain have significantly contributed to scientific
discovery, particularly in healthcare (Jia et al., 2022).

While numerous methods have been developed to extract
concepts from data, most provide only empirical support
and lack theoretical guarantees concerning the correctness
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of the recovered concepts (Marconato et al., 2024b). With
the help of specific parametric assumptions, a few studies
have explored the identifiability of concept learning. For
example, with the linear representation hypothesis that con-
cepts are linearly related, recent research (Rajendran et al.,
2024; Reizinger et al., 2024; Marconato et al., 2024a) has
shown that the concept space can be identified up to a linear
transformation. Another line of research has tackled object-
centric learning, attempting to identify individual objects
as groups of pixels (slots), such as trees or dogs, while ex-
cluding more abstract concepts like lighting and styles. In
addition to these concept type restrictions, further assump-
tions are also required for identifiability, such as no occlu-
sion between objects (each observed variable is influenced
by only one concept) (Brady et al., 2023; Wiedemer et al.,
2024) or the additivity of the generating process (Lachapelle
et al., 2023; Wiedemer et al., 2024). These studies mark
significant exploration toward understanding concept learn-
ing. At the same time, the constraints imposed on concept
types and functional relationships may limit the confidence
to fully account for the empirical success observed in con-
cept learning from real-world scenarios. Therefore, despite
significant empirical progress, a fundamental question in
concept learning remains unanswered:

In the general setting, which concepts can we reliably
recover with theoretical guarantees?

We address this question by grounding our approach in a
fundamental cognitive mechanism: humans learn concepts
by contrasting diverse classes of observations. Classic stud-
ies have shown that concept formation relies on detecting
distinctions across examples: Bruner et al. (1957) empha-
sized learning through contrasts between exemplars and
non-exemplars; Gibson (Gibson, 1963; 1969) proposed dif-
ferentiation as a basis of perceptual learning in infants; and
Gentner & Namy (1999) demonstrated that direct compari-
son enables children to abstract category-defining features.
This principle is further supported by extensive literature
across cognitive science, reinforcing that it is only through
discerning the differences between classes that humans can
unravel and understand previously unseen concepts. As a
result, in the most general setting, the essential information
for provably learning hidden concepts must pertain to the
diversity present among different classes.

Inspired by this cognitive process of learning by comparison,
we establish a set of theoretical guarantees on concept learn-
ing in the general setting. We show that hidden concepts can
be identified without relying on assumptions about the na-
ture of the concepts or specific parametric models, provided
there is sufficient diversity across classes. Specifically, we
first prove that for any pair of classes, the unique part of the
concepts for each class can be disentangled from the remain-

ing concepts (Thm. 1). This pairwise comparison1 serves
as a foundational prototype for learning concepts, enabling
the flexible identifiability of as many concepts as possible,
given that they exhibit enough diversity, even when others
do not. We then extend the pair-wise identifiability to learn
unique concepts from an arbitrary subset of classes (Cor. 1).
Given that most works rely on global assumptions for all
concepts and fail to offer guarantees when assumptions are
partially violated for some concepts, the proposed flexible
identifiability by local comparisons provides unique practi-
cal value, since real-world scenarios often do not perfectly
conform to ideal conditions for all concepts.

Furthermore, with sufficient diversity across different
classes of observations, we prove the nonparametric identifi-
ability for all class-related hidden concepts up to an element-
wise transformation and permutation (Thm. 2). For other
invariant background concepts, such as “chromatic” that re-
main consistent across all classes, we can also identify them
under appropriate structural diversity conditions (Prop. 1).
Consequently, we introduce, to the best of our knowledge,
one of the first frameworks for concept identifiability in the
general setting that does not confine itself to specific con-
cept types or parametric generative models. Moreover, the
connective structure between classes and concepts can also
be recovered in a nonparametric way (Prop. 2). Our theo-
retical results are substantiated through empirical validation
on synthetic data and five different real-world datasets.

2. Preliminaries
We first introduce the problem setting as well as some essen-
tial notation. Fig. 2 illustrates the key notation and relations
of the considered setting. We also provide a structured
summary of notation in Appx. A for a quick reference.

Data-generating process. Let x = (x1, . . . ,xm) ∈ X ⊆
Rm be a vector representing observed variables. We assume
that the observation x is generated by latent concept vari-
ables z = (zA, zB) ∈ Z ⊆ Rn. The generating process is
as follows, with Fig. 2 serving as a concrete example:

x := f(z), (1)

where z consists of class-dependent part zA =
(z1, . . . , znA

) ∈ ZA ⊆ RnA and class-independent part
zB = (znA+1, . . . , zn) ∈ ZB ⊆ RnB , nB = n − nA.
These two parts are conditionally independent given ob-
served class variables c = (c1, . . . , cu) ⊆ Ru, i.e.,
p(z|c) = p(zA|c)p(zB). Since zA depends on the classes
c, we represent zA := g(c, θ), where θ denotes other fac-
tors including potential noise. All densities are smooth and
positive, and domains are path-connected.

1Learning by comparison serves as an inspiration for identifia-
bility theory, rather than being a specific estimation method.
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Figure 2: The problem setting. Consider images of aquatic
animals, where the observed variables x represent image
pixels. The different animal types (e.g., “shark ” and
“turtle ”) correspond to class variables c. Class-dependent
concept variables zA might include attributes like “predator

,” “sleek body ,” “ocean ” and “shell ” (see, e.g., Fig.
1), while class-independent concept variables zB could be
“lighting ” and “temperature .” The hidden generative
process of each image depends on all of these concepts,
though only some are specific to each class (encoded by the
structure M , which is a binary adjacency matrix). The goal
is to identify z based on observed variables x and classes c.

The generating function f is an unknown diffeomorphism
onto its image, capturing complex mixing in observational
data without imposing specific distributional assumptions,
such as Gaussian, on latent concepts z. This allows for a
broad formulation that encompasses diverse concepts and
nonparametric generative models. Equation 1 can also be
extended to the additive noise setting through a standard
deconvolution technique (Khemakhem et al., 2020a).

Technical notation. Throughout this work, for any matrix
S, we use Si,· for its i-th row and S·,j for its j-th column.
We denote the first k dimensions of the i-th row as Si,·k
and the remaining as Si,k+1·. Similarly, the first k dimen-
sions of the j-th column are S·k,j and the remaining Sk+1·,j .
For any set of indices I ⊂ {1, . . . ,m} × {1, . . . , n},
analogously, we have Ii,· := {j | (i, j) ∈ I} and
I·,j := {i | (i, j) ∈ I}. We define the support of
S ∈ Ra×b as supp(S) := {(i, j) | Si,j ̸= 0}, and also
extend supp(·) to a matrix-valued function S(·), defining
supp(S) := {(i, j) | ∃θ ∈ Θ,S(θ)i,j ̸= 0}. Then we de-
fine D as the support of Dcg, where Dcg represents the
partial derivative of g w.r.t. c.
Example 1. Consider the matrices

S =

1 0 3
0 0 5
4 0 0

 , S(θ) =

θ 0 3
0 0 5θ
4 0 0

 .

The support of the matrix S is supp(S) =
{(1, 1), (1, 3), (2, 3), (3, 1)}. For the matrix-valued
function S(θ), the support supp(S) remains the same as
long as some θ ̸= 0 makes those entries nonzero.

Connective structure. Based on these, we define the
structure M as a binary matrix with the support D·nA,·.
The class-dependent part zA can be further represented as

p(zA|c) =
nA∏
i=1

p(zi|Mi,· ⊙ c), (2)

where Mi,· is the i-th row of M . The operator ⊙ denotes the
element-wise (Hadamard) product. Since classes c are not
connected to class-independent part zB , M illustrates the
connective structure between classes c and concepts z. The
conditional independence provides a form of modularity
commonly adopted in prior work on identifiable latent
variable models (Hyvärinen & Morioka, 2016; Khemakhem
et al., 2020a; Sorrenson et al., 2020; Lachapelle et al.,
2022; Hyvärinen et al., 2024). It may be particularly
natural in our class-concept framework; for example,
while the concepts “wings” and “feathers” are related,
they become conditionally independent given the class
variable “bird.” Moreover, we define Ai as the index set
of concepts corresponding to class ci, with the associated
concepts represented as zAi . Likewise, zAi\Aj

refers to the
difference in the concept sets between classes ci and cj .
Example 2. Consider the example in Fig. 2, we have
zA = (z1 , z2 , z3 , z4 ) and classes c = (c1 , c2 ).
Then we have zA1

= {z1, z2, z3} and zA2
= {z3, z4}, and

zA1\A2
= {z1, z2}. The connective structure M is a binary

matrix:

M =

[
1 1 1 0
0 0 1 1

]⊤
.

Observational equivalence. All of our identifiability re-
sults are rooted in the observational equivalence between
the ground truth and the estimated model. This equivalence
can be achieved in the large-sample limit using maximum
likelihood estimation, which is estimator-agnostic and can
be facilitated by methods such as normalizing flows.

Definition 1 (Observational Equivalence). Two models
(g, pz,M) and (ĝ, pẑ, M̂) are observationally equivalent if
and only if px̂|c(x|c) = px|c(x|c).

3. Identifiability Theory
Without any assumptions on specific concept types, func-
tional relations, or parametric generative models, to what
extent can we provably learn hidden concepts from diverse
classes of observations?

To answer this, in Sec. 3.1, we first prove that the unique
concepts in any pair of classes can be disentangled from
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the remaining ones (Thm. 1). Based on this, we can fully
leverage the diversity in the data and provide flexible
identifiability for any subset of concepts, as long as there
exists sufficient diversity for local comparison (Cor. 1).
For the global identification, in Sec. 3.2, we prove the
nonparametric identifiability for all class-dependent hidden
concepts (Thm. 2) under the structural diversity condition
(Assump. 1). Together with a sparsity condition for the
remaining class-independent part, all hidden concepts
can be identified up to trivial indeterminacy (Prop. 1).
Furthermore, in Sec. 3.3, we recover the hidden connective
structure between classes and concepts (Prop. 2), providing
further insights into the latent compositional relations.

Figure 3: Structure in
Running Example 3.

To enhance technical under-
standing, we provide a de-
tailed discussion in each sec-
tion on connections to tech-
niques from the broader identi-
fiability literature. Additional
concrete examples and discus-
sions are available in Appx. D.

Example 3. We introduce a running example (Fig. 3)
to illustrate key implications and insights throughout the
paper. The lines depict the connective structure between
classes and concepts, distinguishing class-dependent con-
cepts, zA = (z1, z2, z3), from class-independent vari-
ables, zB , enclosed within the blue dotted square.

3.1. Learning Concepts by Local Comparison

Humans learn concepts by leveraging the diversity across
classes. We argue that the fundamental mechanism in this
cognitive process is learning through pair-wise comparison,
since any two classes can only be distinguished by identify-
ing their unique concepts. Pairwise comparison thus serves
as the basic unit for concept learning across multiple classes,
as comparisons among any set of classes can be reduced
to pairs. In the following theorem, we prove that the unique
concepts between any pair of classes can be disentangled
from the remaining concepts. The proof is in Appx. B.1.

We first introduce some additional notation. Let us define T
as a matrix with the same support of T(·) in Dcĝ = TDcg,
where T(·) is a matrix-valued function. In addition, given a
subset S ⊆ {1, . . . , n}, the subspace Rn

S is defined as:

Rn
S := {s ∈ Rn | si = 0 if i /∈ S}, (3)

where si is the i-th element of the vector s.
Example 4. Intuitively, Rn

S consists of all vectors in Rn

where only the coordinates indexed by S can vary, while the
remaining coordinates are fixed at zero. For Example 3, if
n = nA = 3 and S = D̂·:i = {1, 3}, then RnA

D̂·:i
= R3

{1,3}

consists of vectors of the form (s1, 0, s3), where s1, s3 ∈ R
are free to take any real values.

Theorem 1 (Learning by pairwise comparison). Consider
two observationally equivalent (Defn. 1) models (g, pz,M)
and (ĝ, pẑ, M̂) as in Sec. 2. Suppose, with an ℓ0 regu-
larization on Dcĝ (|D̂| ≤ |D|), there exist a set of points
{(c, θ)(ℓ)}|D·,i|

ℓ=1 , such that

1. {Dcg((c, θ)
(ℓ))·,i}

|D·,i|
ℓ=1 , are linearly independent;

2.
[
TDcg((c, θ)

(ℓ))
]
·,i ∈ RnA

D̂·,i
.

Then for any pair of classes ci and cj , there exists a per-
mutation π such that the unique concepts of each class

are disentangled with other concepts, i.e.,
∂ẑπ(Ai\Aj)

∂zAj
and

∂ẑπ(Aj\Ai)

∂zAi
equal to zero.

Insights. For Example 3, given classes c1 and c3, Thm.
1 ensures that for any pair of classes, such as c1 and c2,
the concept unique to c1, z1, can be disentangled from
the other concepts {z2, z3}. Similarly, the concept unique
to c3, z2, can be disentangled from the other concepts
{z1, z3}, up to a standard permutation indeterminacy.

We have also extended the guarantees for pairwise com-
parisons to arbitrary class sets, facilitating more efficient
learning in complex scenarios with its proof in Appx. B.2

Corollary 1 (Learning by local comparison). Consider two
observationally equivalent (Defn. 1) models (g, pz,M) and
(ĝ, pẑ, M̂) as in Sec. 2. Suppose that the assumptions in
Thm. 1 hold. Then, for a set of classes cI and its corre-
sponding concept sets zAI

with a set of indices I , there
exists a permutation π such that the unique concepts for
the class ci are disentangled with concepts associated with

other classes, i.e.,
∂ẑπ(Ai\AI\i)

zAI\i
= 0.

Insights. For Example 3, given a set of classes cI =
{c2, c3, c4}, Cor. 1 ensures that for any class in the set,
e.g., c4 ∈ cI , the unique concept z1 can be disentangled
from the concepts associated with others, i.e., {z2, z3},
where cI can be a arbitrary subset of all classes.

Discussion on nondegenerate sample space. A key
imprint of the nonparametric generating process in obser-
vational data is its structure. The assumption helps ensure
the possibility of capturing the connective structure by the
Jacobian in the nonlinear cases, following the similar spirit
in (Lachapelle et al., 2022; Zheng et al., 2022). In general, it
avoids pathological cases where all samples originate from
highly restricted sub-populations that only cover a degener-
ate subspace. The first part makes sure that there are at least
|D·nA,i| data points such that the Jacobian function spans the
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support space, which is almost always guaranteed asymptot-
ically. The second part

[
TDcg((c, θ)

(ℓ))
]
·,i ∈ RnA

D̂·,i
is also

mild since D̂·,i = TDcg((c, θ)
(ℓ)) always resides in RnA

D̂·,i
.

Even in some rare cases where the matrix does not fit the
support due to some generic combination of values, the
assumption is still almost always satisfied asymptotically,
since it only necessitates the existence of one matrix in the
entire space with the same support of T(·). Meanwhile, the
non-degeneracy assumption excludes linear transformations
with constant Jacobians, as linear Gaussian models are
non-identifiable and linear non-Gaussian models have
already been extensively studied. An illustrative example
is provided as Example 5 in Appx. D.2.

Partial identifiability benefits applicability. Besides
being the foundation for the learning process, the principles
of local comparisons in both Thm. 1 and Cor. 1 also enable
partial identifiability for a subset of concepts when diversity
is not universally satisfied for all. Previous theoretical stud-
ies on concept learning often assume universal conditions
like linearity or additivity. Nevertheless, such assumptions
rarely hold for all in complex, unpredictable real-world sce-
narios and fail to guarantee identifiability under any degree
of violation. This challenge of handling partial assumption
violations persists in the broader identifiability literature
(Hyvärinen & Morioka, 2016; Khemakhem et al., 2020a;
Taeb et al., 2022; Zheng et al., 2022; Hyvärinen et al., 2024;
Zhang et al., 2024; Zheng et al., 2025). Fortunately, with
the proposed theory based on local comparisons (Thm. 1
and Cor. 1), we can leverage the structure to recover the
hidden system as much as possible, even when the degree
of diversity does not support global identifiability. For in-
stance, while shared concepts across similar classes remain
unidentifiable, sufficient diversity ensures identifiability
for other concepts. Crucially, these new flexible guarantees
require no additional restrictive assumptions on concept
types, functional forms, or parametric models.

3.2. Learning Concepts by Global Comparison

Inspired by the mechanism of local comparison, we have
shown that it is possible to fully leverage the diversity among
different classes of observations to recover hidden concepts
as much as possible. This naturally leads us to consider the
conditions required for identifying all hidden concepts in
a global manner. We first prove that, under the condition
of Structural Diversity (Assump. 1), all class-dependent
concepts are identifiable up to a composition of a permu-
tation and an element-wise invertible transformation (Thm.
2). The proof is included in Appx. B.3.
Assumption 1. (Structural Diversity) For any zi ∈ zA,
there exists a set of indices J (|J | > 1) and j ∈ J where
Mi,j ̸= 0 and Mi,k = 0 for all k ∈ J , k ̸= j, and Mi,J\{j}
is the only row with all zero entries in M·,J\{j}.

Theorem 2 (Learning by global comparison). Consider two
models (g, pz,M) and (ĝ, pẑ, M̂) as in Sec. 2. Under the
assumptions in Thm. 1 and Assump. 1, suppose that for any
set Az ⊆ Z with non-zero probability measure and which
cannot be expressed as BzB

×zA for any BzB
⊆ ZB , there

exist two values of c, i.e., c(k) and c(v) (which may vary
across different Az), that∫

z∈Az

p(z | c(k))dz ̸=
∫
z∈Az

p(z | c(v))dz.

If (g, pz,M) and (ĝ, pẑ, M̂) are observationally equivalent
(Defn. 1), then:

1. (Element-wise Identifiability) For any zi ∈ zA, there
exists a permutation π and invertible functions hi :
R → R s.t. ẑi = hi(zπ(i));

2. (Block-wise Identifiability) For zB , there exists an in-
vertible function h : RnB → RnB s.t. ẑB = h(zB).

Insights. For Example 3, element-wise identifiability
ensures all class-dependent concepts can be identified up
to permutation, i.e., concept z1, z2, and z3 can be indi-
vidually disentangled from each other. The block-wise
indeterminacy makes sure that the class-independent con-
cepts zB = (z4, . . . , zn) as a block (group of variables)
can be disentangled from the class-dependent concepts
zA. These two types of identifiabilities are standard in the
literature (Hyvärinen & Morioka, 2017; Lachapelle et al.,
2022; Von Kügelgen et al., 2021; Zheng & Zhang, 2023).

Discussion on structural diversity. Assumption 1, termed
Structural Diversity, ensures sufficient diversity across dif-
ferent classes of observations for the nonparametric identifi-
ability of all class-dependent concepts. Without imposing
parametric constraints on concept types, functional rela-
tions, or generative models, the only exploitable informa-
tion is the inherent connective structure between classes
and concepts. As discussed earlier, when classes lack diver-
sity on their corresponding concepts, identifying individual
class-dependent concepts becomes impossible without extra
knowledge. Thus, Structural Diversity is crucial for guar-
anteeing correctness across all concepts without relying on
parametric assumptions or auxiliary information.

Insights. Structural diversity suggests that for each class-
dependent concept zi, there exists a set of classes such
that zi is unique to one of these classes. For Example 3,
the corresponding matrix M is as Fig. 4. Consider i = 1
(z1), there exists a set of class indices J = {1, 3} s.t.
M1,1 ̸= 0 and M1,3 = 0. Meanwhile, Mi,J\{j} = M1,3

is the only row with all zero entries in M·,J\{j} = M·,3.
Thus, the structural diversity holds for concept z1.
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Figure 4: Example of
Structural Diversity.

The structural difference in the
example above implies that z1
can be distinguished by con-
sidering these classes. Simul-
taneously, we have sufficient
information for all the remain-
ing concepts, as the submatrix
M·,J\1 encompasses the other
concepts. Then it is possible
to uniquely identify z1 among all the class-dependent hid-
den concepts. Coupled with this sufficient diversity for
other concepts, we have the Structural Diversity assumption
for the nonparametric identifiability of all class-dependent
hidden concepts in a structural view.

Comparison with pervious conditions. Different from
various assumptions encouraging the sparsity of the struc-
ture in the identifiability literature (Rhodes & Lee, 2021;
Moran et al., 2021; Zheng et al., 2022; Zheng & Zhang,
2023), our assumption only ensures necessary variability
on the dependency structure and could also hold true with
relatively dense connections. At the same time, we per-
mit arbitrary structures between the class-dependent hidden
concepts and the observed variables, while previous work
has to assume a sparse structure on the generating process
between latent and observed variables. This flexibility ac-
commodates a general generative process, thereby distin-
guishing our assumptions from others. Additionally, another
standard identification strategy requires 2nA + 1 distinct
domains or classes to achieve latent variable identifiabil-
ity (e.g., (Hyvärinen & Morioka, 2017; Khemakhem et al.,
2020a; Kong et al., 2022)), a condition we do not impose.

Limitations. Of course, since we aim for the general non-
parametric identifiability for all class-dependent concepts,
there are scenarios where it is impossible to fully recover
every hidden concept, even with the help of the Structural
Diversity condition. For example, if all dog breeds are
defined by overlapping features like ”barks” and ”furry,”
a learner could not distinguish breeds without unique
distinguishing traits. Here, the lack of unique concepts
violates Structural Diversity, preventing identifiability
from observational data alone. In such scenarios, prior
assumptions from provable concept learning—like disjoint
concept representations (e.g., non-overlapping Jacobians),
linearity, or additive generating functions—remain essential
to resolve ambiguities (Brady et al., 2023; Lachapelle et al.,
2023; Wiedemer et al., 2024). Therefore, our assumption
does not supersede the previous ones; rather, it offers a new
direction that can be helpful for learning hidden concepts
with minimal prior knowledge about the system.

Discussion on distributional variability. The other as-
sumption introduced in Thm. 2 requires the existence of
distributional variability for the block-wise identifiabilty of

zB . It necessitates at least two classes with differing condi-
tional distributions. As discussed and empirically verified
in (Kong et al., 2022), the likelihood of all classes having
identical probability measures is exceedingly slim. Interest-
ingly, these two classes may also vary across different Az.
Therefore, this assumption is highly likely to be satisfied
in real-world scenarios, as it is virtually impossible for the
measures corresponding to all classes (e.g., all kinds of ani-
mals in a zoo) to be almost identical. A concrete example
(Example 6) is provided in Appx. D.2. Furthermore, prior
proof techniques typically require at least nA + 1 domains
or classes to establish block-wise identifiability (Zheng &
Zhang, 2023; Li et al., 2024), and Kong et al. (2022) require
2nA + 1. In contrast, two domains often suffice in Thm. 2,
an interesting technique that can also benefit other tasks.

Generalized concept learning and beyond. Extending
the results on a subset of concepts (Thm. 1 and Cor. 1),
Thm. 2 provides guarantees for learning all class-dependent
hidden concepts. Unlike prior work restricted to parametric
constraints (e.g., disjointness, linearity), our framework re-
lies on Structural Diversity between classes and concepts,
enabling broader applicability with sufficient diversity. This
aligns with cognitive processes of learning by compari-
son, ensuring nonparametric recovery of latent structures.
Beyond hidden concept learning, our theory also offers
insights into latent variable models without prior knowl-
edge, as it builds solely on their basic generative struc-
ture. Consequently, some findings may interest disentangle-
ment (Hyvärinen et al., 2024), causal representation learning
(Schölkopf et al., 2021), object-centric learning (Mansouri
et al., 2024), and generalization (Du & Kaelbling, 2024).

Identifying class-independent concepts. After identify-
ing class-dependent concepts, one may still be interested in
how to provably uncover the remaining class-independent
concepts, even though they may not stand out in the
cognitive process due to their invariance. To address
this, we present the following informal result with its
formal version and proof in Appx. B.4, which identifies all
concepts—both class-dependent and class-independent—in
a nonparametric manner.

Proposition 1 (Learning class-independent concepts; Infor-
mal). Consider two observationally equivalent (Defn. 1)
models (g, pz,M) and (ĝ, pẑ, M̂) as in Sec. 2. Under the
assumptions in Thm. 2, further assume structural conditions
on the connective structure between zB and x and an ℓ0 reg-
ularization. Then for any zi ∈ z, there exists a permutation
π and invertible functions hi : R → R s.t. ẑi = hi(zπ(i)).

To avoid introducing parametric assumptions, we still
mainly rely on conditions on the connective structures.
Since classes c are not connected to those class-independent
concepts zB , the proposed structural condition on M does
not help identify zB . Thus, we leverage the structural condi-
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tion between these concepts and the observed variables, as
proposed in (Zheng et al., 2022). Consequently, if needed,
we can provide nonparametric guarantees under appropriate
structural conditions for both zA and zB in general settings.

3.3. Learning Structure Between Classes and Concepts

Furthermore, we show that the hidden structure M , which
encodes the dependency relations between classes and con-
cepts, can also be identified based on multiple classes of ob-
servations (Prop. 2). This process parallels human learning,
where distinguishing between classes involves recovering
underlying structures, such as aligning concepts with their
corresponding classes. While hidden structure identifica-
tion in complex systems remains an open challenge (Spirtes
et al., 2000), our findings provide potential insights toward
its resolution. The proof is included in Appx. B.5.

Proposition 2 (Learning class-concept structure). Consider
two observationally equivalent (Defn. 1) models (g, pz,M)
and (ĝ, pẑ, M̂) as in Sec. 2. Suppose all assumptions in
Thm. 1 hold, except Assump. 1. Then M̂ = PM for a
permutation matrix P .

Insights. In Example 3, the theory from previous sections
ensures the identifiability of all latent concepts. With Prop.
2, we can now provably identify the connective structure
M between classes and concepts remains unknown, align-
ing the identified concepts with the corresponding classes.

All assumptions have been discussed in the previous sec-
tions. Compared to the previous theories on the identifiabil-
ity of latent concepts, the recovery of the hidden connective
structure does not necessitate the structural diversity assump-
tion (Assump. 1). This allows us to uncover the structure in
even more general scenarios, if the identification of latent
concepts might not be of particular interest.

Connection with structure learning. In addition to re-
vealing the hidden class-concept structure, if we consider
the class variables c as exogenous to the system and the
underlying concept variables z as general hidden variables,
the dependency structure between exogenous noises and
hidden variables encodes most of the structural information
in the system, even if dependencies exist among hidden
variables (e.g., a hidden directed acyclic graph (DAG)). In
structure learning, similar strategies have been applied to
recover the DAG among observed variables by first recov-
ering the structure of how exogenous noises influence the
system in both linear (Shimizu et al., 2006) and nonlinear
(Reizinger et al., 2022) cases—the DAG constraint ensures
the correspondence between the Jacobian of the mixing
function (Zheng et al., 2022) and the adjacency matrix. It
is worth noting that identifying the hidden structure in a
general nonlinear system from purely observational data
(i.e., without interventions) is a challenging problem that

has been open for decades (Spirtes et al., 2000; Zheng et al.,
2023; 2024b;a). Although this is not the focus of our work,
the insights provided here are of independent interest to
researchers exploring this longstanding challenge.

4. Experiments
In order to show the identification of hidden concepts based
on the proposed nonparametric identifiability theory, we con-
duct experiments on both synthetic and real-world datasets.
It is noteworthy that an extensive body of research has em-
pirically verified the ability to learn hidden concepts from
various data modalities (Bau et al., 2017; Radford et al.,
2017; Alvarez Melis & Jaakkola, 2018; Kim et al., 2018;
Yeh et al., 2020; Koh et al., 2020; Bai et al., 2022; Achtibat
et al., 2022; Crabbé & van der Schaar, 2022; Liu et al.,
2023). Furthermore, the application range of concept learn-
ing is expanding significantly with recent advancements in
foundation models (Park et al., 2023; Rajendran et al., 2024;
Jiang et al., 2024). Our results complement previous empiri-
cal findings by verifying the proposed theory, and we refer
to the extensive previous research outlined above for more
applications of concept learning across various scenarios.

Setup. In the considered setting, different samples may
correspond to different classes selected by a mask. We
structure the dataset as {(x, c)(i)}Ni=1, where N denotes
the sample size, and c(i) is a multi-hot vector represent-
ing the classes for the data point x(i). A mask Mi,: ⊙ c(i)

is applied to account for the specific class for each sam-
ple. We employ a regularized maximum-likelihood method
during estimation, following the standard approach in (Sor-
renson et al., 2020). The objective function is defined as
L(θ) = E(x,c)[− log pf̂−1(x | Mi,:⊙c)+λR], where λ is
the regularization parameter, and R represents the ℓ1 norm
applied to M̂ and, if estimating class-independent concepts,
also to Dẑf̂ . Following previous work, we use Mean Corre-
lation Coefficient (MCC) to measure the alignment between
the ground-truth and the recovered latent concepts. The
results are from 10 random trials. Additional details and
results are provided in Appx. C, such as identification with
general noises and supplementary evaluation metrics across
various settings.

Synthetic datasets. We conduct experiments on various
synthetic datasets to verify the proposed identifiability
theory. Specifically, we focus on two settings: learning all
class-dependent concepts (Fig. 5) and learning all concepts
including class-independent ones (Fig. 6), under appropriate
conditions. For Ours, the observations are generated accord-
ing to the assumptions required for the theory; while for
Base, no structural conditions on either M or F have been
imposed, and the other settings stay the same. Comparison
with other baselines and more details are included in Appx.
C. To measure the element-wise identifiability, we use the
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Figure 5: Identification of class-dependent concepts
w.r.t. different numbers of concepts.
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Figure 6: Identification of all concepts w.r.t. different
numbers of concepts.

standard Mean Correlation Coefficient (MCC) between the
ground-truth and estimated concepts.

The results (Figs. 5 and 6) demonstrate that our models
achieve higher MCCs compared to the base model in both
settings. This suggests that it is possible to identify hidden
concepts from purely observational data without making
assumptions about the concept type, functional relationships,
or parametric generative models. Meanwhile, our models
also provide lower variances across different runs, which
further verifies our theoretical findings. As indicated by
these results, hidden concepts can be identified up to an
element-wise transformation and a permutation under our
conditions, while the base model fails to disentangle and
recover most concepts from data, further suggesting the
necessity of the proposed conditions.

Real-world datasets. To assess the applicability of our pro-
posed structural condition in complex practical contexts, we
performed experiments on five different real-world datasets,
i.e., the Fashion-MNIST (Xiao et al., 2017), EMNIST (Co-
hen et al., 2017), AnimalFace (Si & Zhu, 2011), Flower102
(Nilsback & Zisserman, 2008) , and FFHQ (Karras et al.,
2019) datasets. We highlight the identified concepts with
the largest standard deviations (SDs) for Fashion-MNIST
(Figs. 7 and 8), EMNIST (Fig. 12 in Appx. C.2), Animal-
Face (Fig. 9), and FFHQ (Figs. 13, 14, and 15 in Appx.
C.2). Each row in the figures shows reconstructed images
with the corresponding concept value varying to illustrate
its effect. Additionally, the rightmost column features a heat
map depicting the absolute pixel differences to visualize the
influence. Clearly, the semantics of the identified concepts

Figure 7: Results on Fashion-MNIST. The rows correspond
to different concepts of a pullover: “sleeve length,” “torso
length,” and “shoulder width,” respectively.

Figure 8: Results on Fashion-MNIST. The rows correspond
to different concepts of an ankle boot: “heel height,” “ankle
width,” and “toe box width,” respectively.

align with our understanding of the corresponding classes.
For Flower102, we test the robustness of the recovered con-
cept by comparing the same concept across different angles
and environments. As seen in Fig. 10, the concept can
be consistently identified from the same class across var-
ious conditions, further supporting our theory. Therefore,
these results indicate that hidden concepts can be identified
from observational data alone without the need to specify
the generative model, underscoring the practical viability.
Moreover, certain concepts are inherently entangled across
classes (e.g., Figs. 13, 14, and 15 in Appx. C.2), making it
impossible to disentangle them individually without addi-
tional assumptions. This further highlights the practical sig-
nificance of our partial identification by local comparison.

5. Conclusion
Drawing inspiration from the fundamental cognitive
mechanism of learning through comparison, we establish a
set of theoretical guarantees for learning concepts in general
nonparametric settings. We provide a theoretical framework
that potentially explains the impressive empirical successes
in many previous works. Specifically, we prove that hidden
concepts can be identified up to trivial indeterminacy from
diverse classes of observations without any assumptions
on the concept types, functional relations, or parametric
generating models. Interestingly, even in scenarios where
the structural conditions do not universally hold, we can still
provide appropriate identifiability for a subset of concepts
with sufficient diversity based on the mechanism of local
comparison, thereby greatly broadening the applicability of
the proposed theory. Furthermore, the connective structure
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Figure 9: Results on AnimalFace. The rows correspond to
“Ursid” and “Monochrome” of a panda, respectively.

Figure 10: The same concept (“Blooming”) consistently
identified from different environments in Flower102.

between classes and concepts can also be recovered in a
nonparametric manner. As a current limitation, future work
involves exploiting the theory to a wider range of practical
problems, such as compositional generalization, decision-
making, controllable generation, and foundation models.
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A. Summary of Notation
We summarize the key notation used throughout the paper to provide a quick reference for readers.

Variables and Functions

• x = (x1, . . . ,xm) ∈ X ⊆ Rm : Observed variables.

• z = (zA, zB) ∈ Z ⊆ Rn, where n = nA + nB : Latent concept variables.

• zA ∈ RnA : Class-dependent concepts influenced by the classes c.

• zB ∈ RnB : Class-independent concepts, unaffected by c.

• c = (c1, . . . , cu) : Class variables represented as vectors, with u classes.

• f : Z → X : Injective generative function mapping latent concepts to observations.

• zA = g(c, θ) : Class-dependent concept function parameterized by c and θ (other factors).

• θ : Additional influencing factors in the function g.

Probabilities and Densities

• p(z | c) = p(zA | c)p(zB) : Conditional density of latent concepts z given classes c, assuming conditional
independence.

• p(zA | c) =
∏nA

i=1 p(zi | Mi,· ⊙ c) : Factorized density of class-dependent concepts zA.

• E[·] : Expectation operator.

• P : Probability measure.
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Indices and Sets

• Ai : Index set of concepts corresponding to class ci.

• zAi
: Concepts associated with class ci.

• zAi\Aj
: Difference in concept sets between classes ci and cj .

• I ⊂ {1, . . . ,m} × {1, . . . , n} : Set of indices for matrix elements.

• Ii,· = {j | (i, j) ∈ I} : Indices corresponding to row i in I.

• I·,j = {i | (i, j) ∈ I} : Indices corresponding to column j in I.

• S ⊂ {1, . . . , n} : Subset of indices.

• Rn
S = {s ∈ Rn | si = 0 if i /∈ S} : Subspace of Rn where components not in S are zero.

Matrices and Operations

• S ∈ Ra×b : An arbitrary matrix with the shape (a, b).

• Si,·, S·,j : i-th row, j-th column of matrix S.

• supp(S) = {(i, j) | Si,j ̸= 0} : Support of matrix S.

• supp(S(Θ)) = {(i, j) | ∃θ ∈ Θ,S(θ)i,j ̸= 0} : Support of a matrix-valued function S(Θ).

• Dcg : Partial derivative of g with respect to class labels c.

• D = supp(Dcg) : Support of the Jacobian of g with respect to c.

• T : Matrix-valued function representing a transformation between Dcg and Dĉĝ.

• T : A matrix sharing the same support as T.

• M ∈ {0, 1}nA×u : Binary structure matrix showing connections between classes and concepts.

• ⊙ : Element-wise (Hadamard) product.

• span{·} : Linear span of a set of vectors.

• rank(·) : Rank of a matrix.

Data and Parameters

• {(x, c)(i)}Ni=1 : Dataset of N samples with observed variables and corresponding classes.

• M : Mask applied to classes in the dataset.

• λ : Regularization parameter used in the estimation objective.

• R : Regularization term (e.g., ℓ1 norm applied to estimated supports).

• π : Permutation function used to align estimated concepts.

• Θ : Parameter space.
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Conventions

• Bold lowercase letters (e.g., x) denote variables, with their realizations denoted by the plain version (e.g., x for x);
uppercase letters (e.g., S, M ) denote matrices.

• Calligraphic letters (e.g., X , Z) denote sets or spaces.

• Subscripts with dots denote slicing: Si,· represents the i-th row; S·,j represents the j-th column; Si,·k denotes the first
k dimensions of the i-th row and Si,k+1· dentoes the remaining; S·k,j denotes the first k dimensions of the j-th column
and Sk+1·,j denotes the remaining.

• Estimated quantities are denoted with hats (e.g., ẑ for estimated latent concepts).

B. Proofs
B.1. Proof of Theorem 1

Theorem 1 (Learning by pairwise comparison). Consider two observationally equivalent (Defn. 1) models (g, pz,M) and
(ĝ, pẑ, M̂) as in Sec. 2. Suppose, with an ℓ0 regularization on Dcĝ (|D̂| ≤ |D|), there exist a set of points {(c, θ)(ℓ)}|D·,i|

ℓ=1 ,
such that

1. {Dcg((c, θ)
(ℓ))·,i}

|D·,i|
ℓ=1 , are linearly independent;

2.
[
TDcg((c, θ)

(ℓ))
]
·,i ∈ RnA

D̂·,i
.

Then for any pair of classes ci and cj , there exists a permutation π such that the unique concepts of each class are

disentangled with other concepts, i.e.,
∂ẑπ(Ai\Aj)

∂zAj
and

∂ẑπ(Aj\Ai)

∂zAi
equal to zero.

Proof. Because of the observational equivalence, we have

px̂|c = px|c ⇒ pf̂(ẑ)|c = pf(z)|c. (4)

Based on the change-of-variable formula, and the invertibility of the generating function f , there exists an invertible function
t := f̂−1 ◦ f such that ẑ = t(z). By taking the derivatives of both sides w.r.t. c, we have

Dcĝ = TDcg, (5)

where T is matrix-value function that is invertible. According to the assumption, the span is nondegenerate in the sense that
Dcg((c, θ)

(1))·,j
Dcg((c, θ)

(2))·,j
...

Dcg((c, θ)
(|D·,j |))·,j

 (6)

are linearly independent. Then we can construct an one-hot vector ei0 ∈ RnA

D·,j
for any i0 ∈ D·,j as a linear combination of

vectors {Dcg((c, θ)
(ℓ))·,j}

|D·,j |
ℓ=1 , i.e., ei0 =

∑
ℓ∈D·,j

βℓDcg((c, θ)
(ℓ))·,j , where βℓ denotes some coefficient. Note that we

define D as the support of Dcg. We also define T as a matrix with the same support of T in Dcĝ = TDcg. Then we have

T·,i0 = Tei0 =
∑

ℓ∈D·,j

βℓTDcg((c, θ)
(ℓ))·,j . (7)

According to the assumption, we have
TDcg((c, θ)

(ℓ))·,j ∈ RnA

D̂·,j
. (8)

Therefore, Eq. (7) implies T·,i0 ∈ RnA

D̂·,j
, which is equivalent to

∀i ∈ D·,j ,T·,i0 ∈ RnA

D̂·,j
. (9)
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This further indicates
∀(i, j) ∈ D, T·,i × {j} ⊂ D̂. (10)

Since T is invertible, we have

det(T) =
∑

σ∈SnA

sgn(σ)

nA∏
j=1

Tσ(j),j

 ̸= 0, (11)

where SnA
is a set of nA-permutations. Then there must exist at least one non-zero term in the summation, which indicates

that

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA}, sgn(σ)

nA∏
j=1

Tσ(j),j ̸= 0. (12)

Clearly, there cannot be any term in the product that equals zero, so we have

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA},Tσ(j),j ̸= 0. (13)

Denote T as the support of T. Thus, it follows that

∀i ∈ {1, . . . , nA}, σ(i) ∈ T·,i. (14)

Then it yields
∀(i, j) ∈ D, (σ(i), j) ∈ T·,i × {j}. (15)

Because of Eq. (10), we have
∀(i, j) ∈ D, (σ(i), j) ∈ D̂. (16)

Let us denote π̃(D) as a row permutation of D, where ∀(i, j) ∈ D, there must be

(σ(i), j) ∈ π̃(D) (17)

and
|π̃(D)| = |D|. (18)

Furthermore, Eq. (16) indicates that
π̃(D) ⊂ D̂, (19)

We have the following relation based on the sparsity regularization:

|D̂| ≤ |D|. (20)

Therefore, we have the following relation:
|π̃(D)| = |D| ≥ |D̂|. (21)

Together with Eq. (19), it follows that
D̂ = π̃(D). (22)

Let us denote the permutation indeterminacy in our goal as π s.t.

D̂ := {(π(i), j) | (i, j) ∈ D}. (23)

Given two classes ci and cj , for any zk ∈ zAi
, we have

(k, i) ∈ D. (24)

Because of Eq. (10), this further implies
T·,k × {i} ∈ D̂. (25)

For any π(v) where zv ∈ zAj\Ai
, suppose we have

(π(v), k) ∈ T , (26)
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which is equivalent to
π(v) ∈ T·,k. (27)

Then according to Eq. (25), we have
(π(v), i) ∈ T·,k × {i} ∈ D̂. (28)

Based on Eq. (23), Eq. (28) is equivalent to
(v, i) ∈ D, (29)

which indicates a contradiction since zv ∈ zAj\Ai
.

As a result, there must be (π(v), k) /∈ T . Similarly, for any zu ∈ zAj , we can also show by contradiction that there must be
(π(u), j) /∈ T . Therefore, for any two classes ci and cj , there exists a permutation π that

∂ẑπ(Ai\Aj)

∂zAj

= 0. (30)

Similarly, there is also
∂ẑπ(Aj\Ai)

∂zAi

= 0, (31)

which is the goal.

B.2. Proof of Corollary 1

Corollary 1 (Learning by local comparison). Consider two observationally equivalent (Defn. 1) models (g, pz,M) and
(ĝ, pẑ, M̂) as in Sec. 2. Suppose that the assumptions in Thm. 1 hold. Then, for a set of classes cI and its corresponding
concept sets zAI

with a set of indices I , there exists a permutation π such that the unique concepts for the class ci are

disentangled with concepts associated with other classes, i.e.,
∂ẑπ(Ai\AI\i)

zAI\i
= 0.

Proof. Because all assumptions in Theorem 1 hold, according to the proof of it, we know that, for a row permutation of D,
i.e., π̃(D) where

π̃(D) := {(σ(i), j)|(i, j) ∈ D}. (32)

There must be a relationship that
D̂ = π̃(D). (33)

Then we want to show that, there exists a permutation π that

∂ẑπ(Ai\AI\i)

zAI\i

= 0. (34)

For any zk ∈ zAI\i and its corresponding class cq ∈ cI and q ̸= i, we have

(k, q) ∈ D. (35)

According to the proof of Theorem 1, we have

TDcg((c, θ)
(ℓ))·,j ∈ RnA

D̂·,j
. (36)

Therefore, Eq. (35) further indicates that
T·,k × {q} ∈ D̂, (37)

where T denotes the support of T. Define the permutation π as

D̂ := {(π(i), j) | (i, j) ∈ D}. (38)

Then we consider any π(v) where we have
zv ∈ zAi\AI\i . (39)
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Suppose we have
(π(v), k) ∈ T . (40)

This also implies that
π(v) ∈ T·,k. (41)

Based on Eq. (37), we further have
(π(v), q) ∈ T·,k × {q} ∈ D̂. (42)

According to the definition of D̂, this is equivalent to

(v, q) ∈ D, (43)

Because zv ∈ zAi\AI\i , the above equation indicates that there must be cq = ci. which is a contradiction since q ̸= i.
Therefore, we have

(π(v), k) /∈ T . (44)

This implies that there exists a permutation π that

∂ẑπ(Ai\AI\i)

zAI\i

= 0. (45)

This completes the proof.

B.3. Proof of Theorem 2

Theorem 2 (Learning by global comparison). Consider two models (g, pz,M) and (ĝ, pẑ, M̂) as in Sec. 2. Under the
assumptions in Thm. 1 and Assump. 1, suppose that for any set Az ⊆ Z with non-zero probability measure and which
cannot be expressed as BzB

× zA for any BzB
⊆ ZB , there exist two values of c, i.e., c(k) and c(v) (which may vary across

different Az), that ∫
z∈Az

p(z | c(k))dz ̸=
∫
z∈Az

p(z | c(v))dz.

If (g, pz,M) and (ĝ, pẑ, M̂) are observationally equivalent (Defn. 1), then:

1. (Element-wise Identifiability) For any zi ∈ zA, there exists a permutation π and invertible functions hi : R → R s.t.
ẑi = hi(zπ(i));

2. (Block-wise Identifiability) For zB , there exists an invertible function h : RnB → RnB s.t. ẑB = h(zB).

Proof. Because of the observational equivalence, we have

px̂|c = px|c ⇒ pf̂(ẑ)|c = pf(z)|c. (46)

Based on the change-of-variable formula, and the invertibility of the generating function f , there exists an invertible function
h := f̂−1 ◦ f such that ẑ = h(z). Using the chain rule, the derivative of ĝ with respect to c can be expressed as:

Dcĝ = DzhDcg. (47)

The Jacobian of h can be written as:

Dzh =

[
∂ẑA

∂zA

∂ẑA

∂zB
∂ẑB

∂zA

∂ẑB

∂zB

]
. (48)

According to steps 1, 2, and 3 in the proof of Theorem 4.2 in Kong et al. (2022), the bottom-left block of Dzh, i.e.,
DzhnA+1·,·nA

, consists of only zero entries. As a result, the Jacobian is equivalent to:

Dzh =

[
∂ẑA

∂zA

∂ẑA

∂zB

0 ∂ẑB

∂zB

]
. (49)
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Since h is invertible, the determinant of Dzh is non-zero. Together with the structure of the Jacobian matrix, we have

det(Dzh) = det(
∂ẑA
∂zA

) det(
∂ẑB
∂zB

), (50)

which further implies

det(
∂ẑA
∂zA

) ̸= 0, (51)

det(
∂ẑB
∂zB

) ̸= 0. (52)

Since det(∂ẑB

∂zB
) ̸= 0 and ∂ẑB

∂zA
= 0, there exists an invertible function hB : zB → ẑB s.t.,

ẑB = hB(zB). (53)

Since ẑA is independent of ẑB and ẑB = hB(zB), we further have

∂ẑA
∂zB

= 0. (54)

Then the Jacobian can be represented as

Dzh =

[
∂ẑA

∂zA
0

0 ∂ẑB

∂zB

]
. (55)

Thus, ẑB is identifiable up to a block-wise invertible transformation, and we have{
∂ẑi

∂zj
= 0 i ∈ {1, . . . , nA}, j ∈ {nA + 1, . . . , n},

∂ẑk

∂zv
= 0 k ∈ {nA + 1, . . . , n}, v ∈ {1, . . . , nA}.

(56)

This implies that
Dcĝ = Dzh·nA,·nA

Dcg. (57)

According to the assumption, we have a set of linearly independent vectors as follows
Dcg((c, θ)

(1))·,j
Dcg((c, θ)

(2))·,j
...

Dcg((c, θ)
(|D·,j |))·,j

 (58)

Then we can construct an one-hot vector ei0 ∈ RnA

D·,j
for any i0 ∈ D·,j as a linear combination of vectors

{Dcg((c, θ)
(ℓ))·,j}

|D·,j |
ℓ=1 , i.e., ei0 =

∑
ℓ∈D·,j

βℓDcg((c, θ)
(ℓ))·,j , where βℓ denotes some coefficient. Note that we de-

fine T as a matrix with the same support of T in Dcĝ = TDcg, where T is a matrix-valued function. Then we have

T·,i0 = Tei0 =
∑

ℓ∈D·,j

βℓTDcg((c, θ)
(ℓ))·,j . (59)

According to the assumption, we have
TDcg((c, θ)

(ℓ))·,j ∈ RnA

D̂·,j
. (60)

Therefore, Eq. (59) implies T·,i0 ∈ RnA

D̂·,j
, which is equivalent to

∀i ∈ D·,j ,T·,i0 ∈ RnA

D̂·,j
. (61)

This further indicates
∀(i, j) ∈ D, T·,i × {j} ⊂ D̂, (62)
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where T denotes the support of T. Since T is invertible, we have

det(T) =
∑

σ∈SnA

sgn(σ)

nA∏
j=1

Tσ(j),j

 ̸= 0, (63)

where SnA
is a set of nA-permutations. Then there must exist at least one non-zero term in the summation, which indicates

that

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA}, sgn(σ)

nA∏
j=1

Tσ(j),j ̸= 0. (64)

Clearly, there cannot be any term in the product that equals zero, so we have

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA},Tσ(j),j ̸= 0. (65)

Thus, it follows that
∀i ∈ {1, . . . , nA}, σ(i) ∈ T·,i. (66)

Then it yields
∀(i, j) ∈ D, (σ(i), j) ∈ T·,i × {j}. (67)

Because of Eq. (62), we have
∀(i, j) ∈ D, (σ(i), j) ∈ D̂. (68)

Let us denote π̃(D) as a row permutation of D, where ∀(i, j) ∈ D, there must be

(σ(i), j) ∈ π̃(D), (69)

and
|π̃(D)| = |D|. (70)

Eq. 68 indicates that
π̃(D) ⊂ D̂. (71)

According to the sparsity regularization, we have the following relation based on the sparsity regularization:

|D̂| ≤ |D|. (72)

Therefore, we have
|π̃(D)| = |D| ≥ |D̂|. (73)

Together with Eq. (71), it follows that
D̂ = π̃(D). (74)

Let us denote the permutation indeterminacy in our goal as π s.t.

D̂ := {(π(i), j) | (i, j) ∈ D}. (75)

For a latent concept zi, according to the structural diversity assumption (Assump. 1), there exists a set of column indices J ,
where Mi,J only has one non-zero entry. Let us denote that non-zero entry as Mi,j . Since M is a binary matrix with the
support D, we have (i, j) ∈ D and (i, k) /∈ D for any k ∈ J \ j.

Then, according to the assumption, for any other concept zv where v ̸= i, there must be a class cq s.t. q ∈ J \ j s.t.

(v, q) ∈ D. (76)

Because of Eq. (62), it follows that
T·,v × {q} ∈ D̂. (77)

For any π(i), suppose we have
(π(i), v) ∈ T , (78)
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which is equivalent to
π(i) ∈ T·,v. (79)

Then according to Eq. (77), we have
(π(i), q) ∈ T·,v × {q} ∈ D̂. (80)

Based on Eq. (75), Eq. (80) is equivalent to
(i, q) ∈ D. (81)

This is a contradiction since (i, q) /∈ D for any q ∈ J \ j. Thus, for any i ∈ {1, . . . , nA} and v ∈ {1, . . . , nA} \ {i}, there
must be

(π(i), v) /∈ T . (82)

Because T is invertible, all row must have at least one non-zero entry. Thus, Eq. (82) further implies

(π(i), i) ∈ T . (83)

Combining both Eqs. (82) and (83) for each i ∈ {1, . . . , nA}, the transformation between ẑA and zA must be a composition
of an element-wise invertible transformation and a permutation, which is our goal.

B.4. Proof of Proposition 1

Proposition 1 (Learning class-independent concepts; Informal). Consider two observationally equivalent (Defn. 1) models
(g, pz,M) and (ĝ, pẑ, M̂) as in Sec. 2. Under the assumptions in Thm. 2, further assume structural conditions on the
connective structure between zB and x and an ℓ0 regularization. Then for any zi ∈ z, there exists a permutation π and
invertible functions hi : R → R s.t. ẑi = hi(zπ(i)).

We first present its formal version. For brevity, let F and F̂ denote the support of the Jacobian Dzf and Dẑf̂ , respectively.
Additionally, Tf refers to a matrix with the same support of Tf in Dẑf̂ = DzfTf , where Tf is a matrix-valued function.
Generally, the condition on the structure supp(Dzf) encourages sparsity in the Jacobian of the generating function f . As
verified empirically in previous work (Zheng & Zhang, 2023), this condition is likely to hold in our setting where the number
of observed variables x exceeds the number of class-independent concepts zB .

Proposition 1 (Learning class-independent concepts; Formal). Consider two observationally equivalent (Defn. 1) models
(g, pz,M) and (ĝ, pẑ, M̂) generated as in Sec. 2. Under the assumptions in Thm. 2, further suppose that, for all zi ∈ zB ,
with an ℓ0 regularization on Dẑf̂ (|F̂ | ≤ |F|), there exists Ci s.t.

⋂
k∈Ci

supp(Dzi
f)i,nA+1· = {i}. Meanwhile, for

each i ∈ {nA + 1, . . . , n}, there exist {z(ℓ)}|Fi,nA+1·|
ℓ=1 s.t. {Dzf(z

(ℓ))i,nA+1·}
|Fi,nA+1·|
ℓ=1 are linearly independent, and[

Dzf(z
(ℓ))Tf

]
i,nA+1· ∈ RnB

F̂i,nA+1·
. Then for any zi ∈ z, there exists a permutation π and invertible functions hi : R → R

such that ẑi = hi(zπ(i)) for all i.

Proof. Because of the observational equivalence, we have

px̂|c = px|c ⇒ pf̂(ẑ)|c = pf(z)|c. (84)

Based on the change-of-variable formula, and the invertibility of the generating function f , there exists an invertible function
h := f̂−1 ◦ f such that ẑ = h(z). According to the proof in Theorem 2, the Jacobian of h w.r.t. z is as follows:

Dzh =

[
∂ẑA

∂zA
0

0 ∂ẑB

∂zB

]
. (85)

At the same time, by using the chain rule on h = f̂−1 ◦ f , we have

Dẑf̂ = DzfDẑh
−1, (86)

which is equivalent to
Dẑf̂ ·,nA+1· = DzfDẑh

−1
·,nA+1·. (87)
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Based on Eq. 85, this further indicates that

Dẑf̂ ·,nA+1· = Dzf ·,nA+1·Dẑh
−1

nA+1·,nA+1·. (88)

Then, according to the assumption, there must be a set of vectors
Dzf(z

(1))i,nA+1·
Dzf(z

(2))i,nA+1·
...

Dzf(z
(|Fi,nA+1·|))i,nA+1·

 (89)

that are linearly independent. Then we can construct an one-hot vector ej0 ∈ RnB

Fi,nA+1·
for any j0 ∈ Fi,nA+1· as a linear

combination of vectors {Dzf(z
(ℓ))i,nA+1·}

|Fi,nA+1·|
ℓ=1 , i.e.,

ej0 =
∑

ℓ∈Fi,nA+1·

βℓDzf(z
(ℓ))i,nA+1·, (90)

where βℓ denotes some coefficient. Then we have

Tf j0,nA+1· = ej0Tf ·,nA+1· =
∑

ℓ∈D·,j

βℓDzf(z
(ℓ))i,nA+1·Tf ·,nA+1· ∈ RnB

F̂i,nA+1·
. (91)

This further implies that, for any j ∈ Fi,nA+1·, we always have Tf j,· ∈ RnB

F̂i,nA+1·
. Thus, we have the connection between

support as follows:
(i, j) ∈ F·,nA+1·, {i} × Tf j,· ⊂ F̂·,nA+1·. (92)

Then, because of the invertibility of Tf , its determinant must not equal to zero, i.e.,

∑
σ∈Sn

(
sgn(σ)

nB∏
i=1

Tf (z
(ℓ))i,σ(i)

)
̸= 0, (93)

where S is the set of n-permutations. Therefore, there must be at least one term in the summation that does not equal to
zero, i.e.,

∃σ ∈ Sn, ∀i ∈ {1, . . . , nB}, sgn(σ)
nB∏
i=1

Tf (z
(ℓ))i,σ(i) ̸= 0. (94)

Because sgn(σ) ̸= 0, every term in the production must not equal to zero, i.e.,

∃σ ∈ Sn, ∀i ∈ {1, . . . , nB},Tf (z
(ℓ))i,σ(i) ̸= 0. (95)

This follows that
∀j ∈ {1, . . . , nB}, σ(j) ∈ Tf j,nA+1·. (96)

Based on Eq. (92), Eq. (96) further implies that, for any (i, j) ∈ F·,nA+1·, we have (i, σ(j)) ∈ F̂·,nA+1·. Let us denote
σ(F) = {(i, σ(j)) | (i, j) ∈ F}, the above connection implies σ(F) ⊂ F̂ . Together with the sparsity regularization on the
estimated Jacobian, we have

|F̂ | ≤ |F| (97)

Because of the definition of σ(F), there must be
|F| = |σ(F)|, (98)

which follows that
|σ(F)| ≥ |F̂ |. (99)

Together with the relation that σ(F) ⊂ F̂ ,there must be

F̂ = σ(F). (100)
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Suppose T·,nA+1· is not a composition of a permutation matrix and a diagonal matrix, then

∃j1 ̸= j2, Tj1,nA+1· ∩ Tj2,nA+1· ̸= ∅. (101)

Additionally, consider j3 ∈ {1, . . . , nB} for which

σ(j3) ∈ Tj1,nA+1· ∩ Tj2,nA+1·. (102)

Since j1 ̸= j2, we can assume j3 ̸= j1 without loss of generality. Based on assumption, there exists Cj1 ∋ j1 such that⋂
i∈Cj1

Fi,nA+1· = {j1}. Because

j3 ̸∈ {j1} =
⋂

i∈Cj1

Fi,nA+1·, (103)

there must exists i3 ∈ Cj1 such that
j3 ̸∈ Fi3,nA+1·. (104)

Since j1 ∈ Fi3,nA+1·, it follows that (i3, j1) ∈ F·,nA+1·. Therefore, according to Eq. (92), we have

{i3} × Tj1,nA+1· ⊂ F̂·,nA+1·. (105)

Notice that σ(j3) ∈ Tj1,nA+1· ∩ Tj2,nA+1· implies

(i3, σ(j3)) ∈ {i3} × Tj1,nA+1·. (106)

Then by Eqs. (105) and (106), we have
(i3, σ(j3)) ∈ F̂·,nA+1·. (107)

This further implies (i3, j3) ∈ F·,nA+1· by Eq. (100), which contradicts Eq. (104). Therefore, we have proven by
contradiction that T·,nA+1· is a composition of a permutation matrix and a diagonal matrix, which means that the invariant
part zB is identifiable up to an element-wise invertible transformation and a permutation. Together with the element-wise
identifiability for concepts in the changing part zA given by Theorem 2, we have proved that all latent concepts z = (zA, zB)
are identifiable up to an element-wise invertible transformation and a permutation.

B.5. Proof of Proposition 2

Proposition 2 (Learning class-concept structure). Consider two observationally equivalent (Defn. 1) models (g, pz,M)
and (ĝ, pẑ, M̂) as in Sec. 2. Suppose all assumptions in Thm. 1 hold, except Assump. 1. Then M̂ = PM for a permutation
matrix P .

Proof. Because of the observational equivalence, we have

px̂|c = px|c ⇒ pf̂(ẑ)|c = pf(z)|c. (108)

Based on the change-of-variable formula, and the invertibility of the generating function f , there exists an invertible function
h := f̂−1 ◦ f such that ẑ = h(z).

Using the chain rule, the derivative of both sides with respect to c can be expressed as:

Dcĝ = DzhDcg. (109)

The Jacobian of h can be written as:

Dzh =

[
∂ẑA

∂zA

∂ẑA

∂zB
∂ẑB

∂zA

∂ẑB

∂zB

]
. (110)

According to steps 1, 2, and 3 in the proof of Theorem 4.2 in Kong et al. (2022), the bottom-left block of Dzh, i.e.,
DzhnA+1·,·nA

, consists of only zero entries. As a result, the Jacobian is equivalent to:

Dzh =

[
∂ẑA

∂zA

∂ẑA

∂zB

0 ∂ẑB

∂zB

]
. (111)
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Since h is invertible, the determinant of Dzh is non-zero. Together with the structure of the Jacobian matrix, we have

det(Dzh) = det(
∂ẑA
∂zA

) det(
∂ẑB
∂zB

), (112)

which further implies

det(
∂ẑA
∂zA

) ̸= 0, (113)

det(
∂ẑB
∂zB

) ̸= 0. (114)

Since det(∂ẑB

∂zB
) ̸= 0 and ∂ẑB

∂zA
= 0, there exists an invertible function hB : zB → ẑB s.t.,

ẑB = hB(zB). (115)

Since ẑA is independent of ẑB and ẑB = hB(zB), we further have

∂ẑA
∂zB

= 0. (116)

Therefore, the Jacobian of h is

Dzh =

[
∂ẑA

∂zA
0

0 ∂ẑB

∂zB

]
. (117)

Note that we have
Dcĝ = DzhDcg, (118)

which is equivalent to
Dcĝ = (DzhDcg)·nA,· = Dzh·nA,·Dcg. (119)

Because ∂ẑi

∂zk
= 0 for i ∈ {1, . . . , nA} and k ∈ {nA +1, . . . , n}, the upper-right block of Dzh, i.e., Dzh·nA,nA+1·, consists

of only zero entries. It further indicates that

Dcĝ = Dzh·nA,·nA
Dcg. (120)

According to the assumption, we have 
Dcg((c, θ)

(1))·,j
Dcg((c, θ)

(2))·,j
...

Dcg((c, θ)
(|D·,j |))·,j

 (121)

as a set of linearly independent vectors.

Then we can construct an one-hot vector ei0 ∈ RnA

D·,j
for any i0 ∈ D·,j as a linear combination of vectors

{Dcg((c, θ)
(ℓ))·,j}

|D·,j |
ℓ=1 , i.e., ei0 =

∑
ℓ∈D·,j

βℓDcg((c, θ)
(ℓ))·,j , where βℓ denotes some coefficient. Then we have

T·,i0 = Tei0 =
∑

ℓ∈D·,j

βℓTDcg((c, θ)
(ℓ))·,j . (122)

Note that we define D as the support of Dcg. Additionally, we define T as a matrix that share the same support as T in the
equation Dcĝ = TDcg, where T is a matrix-valued function and T ∈ T .

According to the assumption, we have
TDcg((c, θ)

(ℓ))·,j ∈ RnA

D̂·,j
. (123)

Therefore, Eq. (122) implies T·,i0 ∈ RnA

D̂·,j
, which is equivalent to

∀i0 ∈ D·,j ,T·,i0 ∈ RnA

D̂·,j
. (124)
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This further indicates
∀(i, j) ∈ D, T·,i × {j} ⊂ D̂. (125)

Since T is invertible, we have

det(T) =
∑

σ∈SnA

sgn(σ)

nA∏
j=1

Tσ(j),j

 ̸= 0, (126)

where SnA
is a set of nA-permutations. Then there must exist at least one non-zero term in the summation, which indicates

that

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA}, sgn(σ)

nA∏
j=1

Tσ(j),j ̸= 0. (127)

Clearly, there cannot be any term in the product that equals zero, so we have

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA},Tσ(j),j ̸= 0. (128)

Thus, it follows that
∀i ∈ {1, . . . , nA}, σ(i) ∈ T·,i. (129)

Then it yields
∀(i, j) ∈ D, (σ(i), j) ∈ T·,i × {j}. (130)

Because of Eq. (125), we have
∀(i, j) ∈ D, (σ(i), j) ∈ D̂. (131)

Let us denote π(D) as a row permutation of D, where ∀(i, j) ∈ D, there must be

(σ(i), j) ∈ π(D). (132)

And it also implies
|π(D)| = |D|. (133)

Furthermore, Eq. 131 indicates that
π(D) ⊂ D̂, (134)

We have the following relation based on the sparsity regularization:

|D̂| ≤ |D|. (135)

Therefore, we have
|π(D)| = |D| ≥ |D̂|. (136)

Together with Eq. (134), it follows that
D̂ = π(D). (137)

Thus, we have proved the identifiability of D up to a permutation on the row indices. Since M is a binary matrix with the
support of D, we have proved the connective structure between classes and concepts up to a row permutation.
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Figure 11: Identification of concepts w.r.t. different numbers of concepts and different settings.

C. Experiments
In this section, we provide more details regarding the experimental setup as well as additional experimental results to further
support our theoretical findings.

C.1. Supplementary Experimental Setup

We generate the data following the process outlined in our theorems. For our model that identifies only class-dependent
concepts (Fig. 5), the connective structure between classes and concepts is generated according to the Structural Diversity
condition. For class-dependent concepts, we sample from two multivariate Gaussian distributions with zero means and
variances drawn from a uniform distribution on [0.5, 3], consistent with parameters used in previous work (Khemakhem
et al., 2020b; Sorrenson et al., 2020). For our model that identifies all hidden concepts, including class-independent ones
(Fig. 6), the connective structure between class-independent concepts and observed variables follows the structural condition
in Prop. 1. These class-independent concepts are sampled from a single multivariate Gaussian distribution with zero means
and variances drawn from a uniform distribution on [0.5, 3]. In the base model, we remove the structural constraints on both
types of connective structures to verify the necessity of the proposed conditions. All other settings remain the same as ours.

In our model evaluation, we employ the Mean Correlation Coefficient (MCC) to measure the alignment between the
ground-truth and the recovered latent concepts, which is standard in the literature (Hyvärinen & Morioka, 2016). To
calculate MCC, we first compute the pairwise correlation coefficients between the true concepts and the recovered concepts
after applying a component-wise transformation via regression. Following this, we solve an assignment to match each
recovered concept to the corresponding ground-truth concept with the highest correlation.

We use Generative Flow (Kingma & Dhariwal, 2018) as the nonlinear generating function. For synthetic settings, the sample
size is set as 10, 000. Experiments are conducted using the official implementation of GIN2 (Sorrenson et al., 2020) with
an additional ℓ1 regularization on the Jacobians and FrEIA3 (Ardizzone et al., 2018-2022) for the flow-based generative
function. The regularization parameters λ is set according to a search in λ ∈ {0.01, 0.1, 1}, and we select λ = 0.1 according
to the average MCCs of experiments conducted on synthetic datasets. Moreover, all experiments are conducted on 12 CPU
cores with 16 GB RAM.

C.2. Supplementary Experimental Results

Partial violation of previous conditions. We also conduct experiments to evaluate the identification under partial
violations of previously established assumptions in the literature of latent variable models. Specifically, we generated
datasets with the following conditions:

1. Base (a): The structural sparsity assumption on the mixing structure between latent concepts and observed variables,
as outlined in (Zheng et al., 2022), is partially violated for a subset of concepts, with the size randomly selected from
all integers in the range 1 to n/2.

2https://github.com/VLL-HD/GIN
3https://github.com/vislearn/FrEIA
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(a) Angle (b) Height (c) Thickness

Figure 12: Results for each digit class in the EMNIST dataset, showing the identified concepts with the top three standard
deviations (SDs). Each subfigure represents a concept identified by our model, with values ranging from −4 to +4 SDs to
demonstrate their impact. The rightmost column features a heat map of the absolute pixel differences between −1 and +1
SDs. These concepts can be interpreted as variations in angle, height, and thickness.

Figure 13: Multiple concepts (e.g., skin, eyes, face shape, etc.) corresponding to “Age” are entangled.

2. Base (b): The 2n+1 domain requirement in (Khemakhem et al., 2020b; Kong et al., 2022) is partially violated. Instead,
latent concepts are generated from n+ 1 multivariate Gaussian distributions, each with zero mean and variances drawn
from a uniform distribution over [0.5, 3].

3. Ours: The data-generating process adheres to our proposed structural diversity condition. While there are no constraints
on the mixing structure between latent concepts and observed variables, the structure between classes and concepts
satisfies the required structural diversity.

The results, shown in Fig. 11, indicate that when assumptions from previous works are partially violated, the recovery of
latent concepts becomes unreliable, shedding light on the necessity of the proposed flexible guarantees based on learning by
comparison. All results are from 10 runs with different random seeds.

Some concepts are naturally entangled. As discussed in Sec. 4, we include the results on EMNIST and FFHQ datasets
here in the appendix. The EMNIST dataset (Cohen et al., 2017) is an extension of the classical MNIST, which consists of a
much larger set of handwritten digits derived from the NIST Special Database 19 (Grother & Hanaoka, 1995).

The results are shown in Fig. 12. Similar to the other datasets, we select the identified components with the top three
standard deviations and vary the value of the identified components to visualize their potential semantics. According to the
results, it is clear that the hidden concepts can be identified by only learning from diverse classes of observations. This
further indicates that the proposed nonparametric identifiability, which is based on the basic cognitive mechanism of learning
by comparison, has potential applicability in real-world scenarios.
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Figure 14: Multiple concepts (e.g., lipstick, eye shadow, powder, etc.) corresponding to “Makeup” are entangled.

Figure 15: Multiple concepts (e.g., hairstyle, head shape, eye, etc.) corresponding to “Gender” are entangled.

To explore scenarios where not all concepts can be identified element-wise, we conduct additional real-world experiments
on a more complex scenario, i.e., the FFHQ dataset (Karras et al., 2019). The dataset contains 70, 000 human face images,
which is more complicated than the datasets in our other experiments.

From Figs. 13, 14, and 15, it is evident that some concepts remain entangled and cannot be fully recovered. For instance, for
the class “Age”, concepts like “skin,” “eye,” and “face shape” are all entangled together, suggesting that assumptions for
component-wise identifiability may not be fully satisfied in this scenario. However, these class-dependent concepts can still
be identified as a group, consistent with our theorem based on local or pairwise comparisons. This suggests that, even in
complex scenarios where theories fail to guarantee identifiability for all individual concepts due to assumption violations,
our alternative identifiability framework based on pairwise comparisons may still provide an alternative theoretical basis for
recovering class-dependent concepts collectively, even if they remain entangled. This sheds light on the necessity of our
alternative identifiability guarantees in some complicated real-world scenarios.

Learning concepts with noise. We evaluate the robustness of concept recovery in noisy environments. Specifically, we
introduce non-additive random noise to the Fashion-MNIST images, since additive noise has been extensively studied and
can often be removed via deconvolution. The more challenging case with non-additive noise is also shown to be identifiable
with rather general conditions (Zheng et al., 2025). Example noisy samples are shown in Fig. 16. Despite the corruption,
our method still recovers meaningful concepts (Fig. 17), demonstrating the framework’s robustness to general noise.

Quantitative evaluation on images. To quantitatively evaluate our framework on images, we conducted a series of
experiments. Specifically, we report Mutual Information Gap (MIG) (Chen et al., 2018) and DCI scores (Eastwood &
Williams, 2018) for synthetic datasets (Figures 18 and 19), and Fréchet Inception Distance (FID) (Heusel et al., 2017) and
Perceptual Path Length (PPL) (Karras et al., 2019) for real-world datasets, CUB-200-2011 (Wah et al., 2011) and AWA2
(Xian et al., 2018). CUB-200-2011 contains 200 bird classes with 11,788 images; AWA2 includes 50 animal categories with
37,322 images. We report a Mutual Information Gap (MIG) of 8.135, a DCI score of 16.533, a Fréchet Inception Distance
(FID) of 8.11, and a Perceptual Path Length (PPL) of 30.938, indicating strong disentanglement and high-quality generation
under our framework. We also visualize the recovered concepts from CUB-200-2011 and AWA2 (Figs. 20 and 21).
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Figure 16: Samples of Fashion-MNIST with noise.

Figure 17: Results on noisy Fashion-MNIST. The rows correspond to different identified concepts: “sleeve length,” “torso
length,” and “shoulder width,” respectively.
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Figure 18: Mutual Information Gap (MIG) w.r.t. 10, 000 samples and different number of concepts. All results are from 10
runs with different random seeds. The settings for Ours and Base follow those used in the main manuscript. For Partial, we
intentionally violate the structural diversity assumption for one randomly selected concept and vary the total number of
concepts to control the proportion of the violated concept.

D. Supplementary Discussion
D.1. Challenges, Motivations, and Implications

Challenges of nonparametric identifiability. Theoretical and empirical evidence consistently demonstrates that, without
additional assumptions, achieving identifiability in nonparametric generative processes is nearly impossible (Hyvärinen
& Pajunen, 1999; Locatello et al., 2019). This challenge extends beyond concept learning to fields such as independent
component analysis and causal representation learning. Without additional conditions, it is impossible to ensure that the
recovered concepts align with the ground truth, as the solution space is vastly underconstrained, allowing non-trivial mixtures
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Figure 19: Disentanglement, Completeness, and Informativeness (DCI) Disentanglement score w.r.t. 10, 000 samples and
different number of concepts. All results are from 10 runs with different random seeds. The settings for Ours and Base
follow those used in the main manuscript. For Partial, we intentionally violate the structural diversity assumption for one
randomly selected concept and vary the total number of concepts to control the proportion of the violated concept.

Figure 20: Results on CUB-200-2011. The rows correspond to different identified concepts: “color,” “orientation,” and
“size,” respectively.

of the true concepts to generate observationally equivalent data. Parametric assumptions, such as linearity, disjointness,
or additivity, constrain the solution space, reducing ambiguity and identifying the true generative process up to certain
indeterminacies. In contrast, our focus is on understanding what concepts can be recovered in the general setting. Our
nonparametric identifiability results provide insights into this general setting and suggest a promising direction.

Learning by pairwise comparison. Theorem 1 demonstrates that for any given pair of classes and their corresponding
sets of hidden concepts, the unique concepts in each class can be disentangled from all the remaining concepts. This process
is fundamental to the cognitive mechanism of learning through comparison. Consider an infant with no prior experience of
the world: when presented with two classes, such as a cat and a dog, the infant learns and memorizes the unique concepts
associated with each class, such as ”meows” for the cat and ”barks” for the dog. The invariant concepts, like ”furry” or
”four-legged,” cannot be distinctly learned because they do not provide distinguishing information between the classes. From
a cognitive science perspective, infants and young learners rely heavily on contrastive features to form distinct categories
and concepts (Eimas et al., 1971). For instance, if an infant repeatedly hears a cat meow and a dog bark, they begin to
associate these unique sounds with the respective animals. In contrast, shared attributes like fur or four legs do not stand out
because they do not help in differentiating between the two animals. This emphasizes the role of unique concepts in early
learning and memory, highlighting how pair-wise comparisons are essential in the process of discovering the new world. For
machines to learn without prior knowledge, we argue that similar mechanisms also help.

Learning by local comparison. Corollary 1 extends these theoretical guarantees from pair-wise comparisons to local
comparisons among multiple classes. Although pairwise comparison is fundamental to the learning mechanism, local
comparison is more efficient in complex scenarios. For instance, when an infant is exposed to a variety of stimuli, they
do not learn by isolating pairs indefinitely. Instead, they begin to discern patterns and unique features within a broader
context, comparing multiple classes simultaneously. For example, a child distinguishing between a cat, a dog, and a bird
must identify unique concepts such as ”meows,” ”barks,” and ”chirp.” As the child interacts with these animals in different
contexts—perhaps hearing a bird chirp in the park, a dog bark at home, and a cat meow in the neighbor’s yard—they learn to
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Figure 21: Results on AWA2. The rows correspond to different identified concepts: “number of animals,” “orientation,” and
“size,” respectively.

associate specific sounds and behaviors with each animal. This local comparison ensures that even as the number of classes
increases, the child can efficiently disentangle and learn the unique concepts of each class, providing a more complete
understanding of the new environment.

Class-concept alignment. Proposition 2 indicates that, the recovered hidden structure between classes and concepts is an
isomorphism of the ground-truth structure. Intuitively, this helps the machine understand which concepts correspond to a
given class of observations. While this process may seem straightforward to us, it can be challenging for infants or machines
without prior experience, as it aligns with an essential step of learning through comparison. For instance, consider an infant
presented with a set of objects like a cat, a dog, and a bird (the classes) and a set of concepts like ”furry,” ”barks,” and ”flies.”
Without proper knowledge, the infant might incorrectly assign ”barks” to the cat or ”flies” to the dog, lacking the experience
to accurately match these concepts with the correct classes. The concept of ”furry” might also be mistakenly assigned to
the bird, despite its inapplicability. Therefore, to distinguish different classes by their concepts and learn unique concepts
through comparison, the machine must first recover the underlying connective structure. This is essential for provably
learning from multiple classes of observations.

D.2. Supplementary Examples for Assumptions

We first include a concrete example for assumptions in Thm. 1 and Cor. 1 as follows:
Example 5. Suppose there exist two samples with their corresponding Jacobians given by Dcg((c, θ)

(1)):,i = (0, 1, 2) and
Dcg((c, θ)

(2)):,i = (0, 3, 4). Clearly, these two vectors span a 2-dimensional subspace. We can also find a matrix T (e.g.,
a binary matrix with the same support as T) s.t.

[
TDcg((c, θ)

(ℓ))
]
:,i

∈ RnA

D̂:,i
for ℓ ∈ {1, 2}. Since identifiability theory

considers an infinite number of samples, the requirement for several non-degenerate samples is almost always satisfied
asymptotically.

Then we introduce an illustrative example for the distributional variability condition in Thm. 2. Intuitively, the condition is a
generic faithfulness assumption, ruling out special parameter combinations that would make the two integrals equal.
Example 6. Consider c as a 2-dimensional vector with c(k) = [1, 0] and c(v) = [0, 1]. Let Z = R2, and Az = {(z1, z2) ∈
R2 : 0 ≤ z1 ≤ 2, 0 ≤ z2 ≤ 1}. The conditional densities are p(z | c = [1, 0]) = 1

2π e
− (z1−1)2+(z2−0)2

2 and p(z | c =

[0, 1]) = 1
2π e

− (z1−0)2+(z2−1)2

2 . Evaluating the integrals over Az, we have∫ 1

0

∫ 1

0

1

2π
e−

(z1−1)2+(z2−0)2

2 dz1dz2 ̸=
∫ 1

0

∫ 1

0

1

2π
e−

(z1−0)2+(z2−1)2

2 dz1dz2.

Note that (k, v) can even be different for different Az, which further weakens the assumption.
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