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Abstract—Mental health disorders are often comorbid, high-
lighting the need for predictive models that can address multiple
outcomes simultaneously. Multi-task learning (MTL) provides a
principled approach to jointly model related conditions, enabling
shared representations that improve robustness and reduce reliance
on large disorder-specific datasets. In this work, we present a tri-
modal speech-based framework that integrates text transcriptions,
acoustic landmarks, and vocal biomarkers within a large language
model (LLM)-driven architecture. Beyond static assessments, we
introduce a longitudinal modeling strategy that captures temporal
dynamics across repeated clinical interactions, offering deeper
insights into symptom progression and relapse risk. Our MTL
design simultaneously predicts depression relapse, suicidal ideation,
and sleep disturbances, reflecting the comorbid nature of adolescent
mental health. Evaluated on the Depression Early Warning (DEW)
dataset, the proposed longitudinal trimodal MTL model achieves
a balanced accuracy of 70.8%, outperforming unimodal, single-
task, and non-longitudinal baselines. These results demonstrate
the promise of combining MTL with longitudinal monitoring
for scalable, noninvasive prediction of adolescent mental health
outcomes.

Index Terms—multi-task learning; multimodal speech analysis;
large language models (LLM); depression prediction; longitudinal
modeling; digital phenotyping; natural language processing, digital
health.

I. INTRODUCTION

Depression, suicidal ideation, and sleep disturbances are
prevalent and interconnected mental health issues among ado-
lescents. Major depressive disorder affects 8–12% of adolescents
globally, with suicide being the second leading cause of death
in individuals aged 15–24 [1]. Sleep disturbances, affecting
up to 50% of adolescents, significantly increase the risk of
both depression and suicidality [2], with each hour of sleep
loss raising suicidal thoughts by 11% [3]. These conditions are
bidirectionally linked, suggesting that integrated screening could
enhance early detection.

Speech offers a non-invasive avenue for mental health as-
sessment, as individuals with depression or suicidal ideation
exhibit distinct linguistic and paralinguistic features [4]. Recent
advances in large language models (LLMs) enable automatic
detection of these markers. Importantly, Multi-task learning
enables the simultaneous modeling of multiple mental health
conditions, facilitating shared representation learning that en-
hances generalization performance and reduces the need for large
condition-specific labeled datasets.

Despite advances in LLM-based depression detection, gaps
remain. We address them with the following contributions:
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1) A comprehensive multimedia framework for depression re-
lapse detection that integrates three speech-derived modal-
ities: speech transcriptions, acoustic landmarks [5], and
vocal biomarkers. This approach provides a holistic un-
derstanding of speech-based depression indicators.

2) A longitudinal analysis framework that tracks changes
across clinical interactions by treating the interactions as
an LLM ‘conversation’. This type of analysis is not novel,
but we are the first to apply it to multimodal speech and
text-based mental health analysis.

3) A multi-task learning architecture that extends our trimodal
approach beyond depression relapse detection to related
clinical assessments, maximizing the utility of data col-
lected across multiple related domains.

We assess these contributions relative to current state-of-the-
art methods on the Depression Early Warning (DEW) dataset,
which is described in Section III-A.

II. RELATED WORKS

The potential of machine learning for predicting mental health
conditions is well-established. Prior studies explored modalities
like actigraphy, sleep patterns, ecological momentary assess-
ments, facial expressions, and speech characteristics [6]. Ad-
vancements in LLMs enhanced their ability to process long-form
transcripts and infer underlying cognitive states. These models
can extract clinically relevant features from multimodal data for
scalable, accurate mental health diagnostics [7].

A. Text- and Speech Semantics-Based Prediction

LLM-based depression detection using text or transcribed
speech data is a rich field. Xu et al. [8] benchmarked widespread
general-purpose LLMs against mental health classification tasks,
finding limited potential in zero-shot and few-shot regimes. Their
work introduced two new LLMs—Mental-Alpaca and Mental-
FLAN-T5—that were instruction fine-tuned for multi-task men-
tal health classification and outperformed larger mainstream
models [8].

Another active research area lies in leveraging the conver-
sational power of LLMs to understand patient histories by
using longitudinal methods. Whereas previous works such as [9]
employ unimodal methods, we use a multimodal framework by
treating each clinical assessment as an episode in a larger LLM
interaction (see Section IV-D).

B. Vocal Biomarker-Based Prediction

Several studies explore the link between vocal biomarkers
(e.g., fundamental frequency, mel-frequency cepstrum coeffi-
cients (MFCC)) and mental disorders. Tasnim et al. introduce a
depression detection dataset using hand-curated speech features,



including intensity, MFCC 0-12, zero-crossing rate, and funda-
mental frequency informed by clinical expertise [10]. Our work
integrates these biomarkers with additional modalities suitable
for LLM analyses, as detailed in Section IV-A3.

C. Acoustic Landmark-Based Prediction

While transcripts are natural inputs for language mod-
els, speech contains rich multimedia features relevant to de-
pression relapse detection. Zhang et al. [5] extract acoustic
landmarks—discrete symbols representing linguistic and pronun-
ciation patterns—that complement raw transcripts. Their two-
stage approach fine-tunes an LLM with Low-Rank Adaptation
(LoRA) matrices [11] to encode landmarks and applies prompt
(P)-tuning with an attached classifier for depression prediction,
achieving state-of-the-art results. They omit features from speech
waveforms (e.g., vocal biomarkers) which are less compliant
with LLM-based methods, but central to our model.

D. Multi-Task Learning in the Context of Mental Heath

Multi-task learning (MTL) is a machine learning paradigm
in which a single model is trained to perform multiple related
tasks simultaneously by sharing common representations. This
approach allows the model to learn underlying patterns that
are shared among tasks, often leading to better generalization
and robustness compared to models trained on individual tasks
[12]. Benton et al. demonstrated the effectiveness of MTL in
predicting mental health conditions from social media text; they
showed that combining demographic attributes and mental states
in an MTL framework outperformed single-task models [13].

III. EXPERIMENTAL SETUP

In this section, we present the Depression Early Warning
(DEW) dataset used in this study. We describe the modalities,
the data acquisition protocol, and the pre-processing steps.
We then outline task label assignments for depression relapse,
suicidal ideation, and sleep disturbances. Lastly, we introduce
the experimental design.

A. Dataset and Task Labels

The Depression Early Warning (DEW) dataset, collected at
CAMH in Toronto, contains speech recordings from adolescents
aged 12–21 with a clinical history of MDD. The sample is
predominantly female (70%) and White (50%), reflecting de-
mographic trends commonly reported in adolescent depression
research. Each participant was scheduled for up to eight follow-
up visits over two years, spaced three to four months apart, where
semi-structured interviews were conducted to capture naturalistic
speech. For analysis, we consider both cross-sectional predic-
tions, where visits are modeled independently, and longitudinal
predictions, which incorporate temporal information across ses-
sions.

The study defines three binary classification tasks: depression
relapse (derived from harmonized CDRS and HAM-D scores via
equipercentile linking [14]), suicidal ideation (based on PHQ-9
Q9 and MFQ Q19), and sleep disturbances (based on PHQ-9 Q3
and MFQ Q32–33) [15].

B. Experimental Overview

We employ binary classification for the three conditions and
use three architectures based on the following sets of modalities:
text; text & acoustic landmarks; and text, acoustic landmarks &
vocal biomarkers. Each architecture is designed for a particular
modality set and is built on two ‘LLM bases’—the general-
purpose LLaMA-2-7B model [16] and Mental-Alpaca. This
enables a comparison across modality sets, and between the two
LLMs. We optimize a combined loss function across the three
tasks and assess performance with metrics like precision, recall,
and balanced accuracy. All subjects are separated into training
and test sets to avoid data leakage between subjects.

IV. METHODOLOGY

We begin by describing the extraction and tokenization pro-
cesses for the three modalities leveraged in this work: text,
acoustic landmarks, and vocal biomarkers. We then describe the
three model architectures and training pipelines.

A. Feature Extraction and Tokenization

The proposed architecture treats the patients’ speech data
as a trimodal multimedia source composed of text, acoustic
landmarks, and audio biomarker features. This section details
the extraction of these three components.

1) Text: Text transcripts of the speech data are generated
using OpenAI’s Whisper Speech Recognition System. While
this software is known to be robust [17], we manually scanned
the generated transcripts and re-transcribed any incomplete sen-
tences.

2) Landmarks: Acoustic landmarks are extracted as per [5].
Each audio spectrogram is divided into six frequency bands.
Energy changes in one or more of these bands are classified
under various landmark symbols, like vibration of vocal folds,
release or closure of the nasal passage, voiced frication, period-
icity, etc. The sequence of landmarks corresponding to a specific
speech sample is recorded alongside the text transcriptions for
consumption by the proposed architectures.

3) Vocal Biomarkers: Vocal biomarkers are extracted using
Python’s Librosa library [10]. We divide each speech sample
into 500-ms windows and extract their summary statistics. These
features encompass spectral characteristics like sound intensity,
MFCC, delta-MFCC, pitch, magnitude, and zero-crossing rate
(ZCR), along with voicing-related attributes like fundamental
frequency (F0), harmonicity, harmonic-to-noise ratio (HNR),
shimmer and jitter, energy, durational features, pauses, fillers,
and phonation rate.

B. Baseline A: Text Model with MTL

This baseline employs a P-tuned version of either Mental-
Alpaca (see Section II-A), or Meta AI’s LLaMA-2-7B [16].
Both models have potential since Mental-Alpaca is fine-tuned
to mental health tasks, while LLaMA-2-7B has shown promise
on general-purpose prediction. The LLM’s predicted embedding
is then used for MTL, as per Section IV-E.

C. Baseline B: Text and Acoustic Landmark Pipeline with MTL

This pipeline is heavily influenced by [5]. We replicate their
two-stage procedure: hint cross-modal instruction fine-tuning,
followed by P-tuning for depression detection [18]. Similar to



Fig. 1. The two baseline architectures use subsets of the available modalities. Our proposed architecture leverages all available modalities and analyses them
longitudinally over a patient’s history. All architectures use an MTL framework and a common fine-tuning strategy to ensure fair comparisons.

baseline A, we extend the work to support MTL and allow
support for both LLaMA-2-7B and Mental-Alpaca.

In cross-modal fine-tuning, the LLM is prompted in a manner
that elicits correspondances between acoustic landmarks and
its transcript. This allows the LLM to learn the semantics of
acoustic landmarks and align the positions of landmarks to
text. Since the LLM has billions of parameters, we use the
LoRA technique [8] to only train a limited parameter subset.
After the LLM is trained to recognize the combined text and
landmark data, a different prompt is fed into the LLM to ask it
to predict three binary labels: depression, suicidal ideation, and
sleep disturbances. Instead of using the usual language model
head, a fully connected classification layer is added to the LLM
to make these predictions. P-tuning is applied to add trainable
prompt embeddings in combination with the original prompt to
fine-tune the LLM during training.

D. Proposed Pipeline: Text, Acoustic Landmark, and Vocal
Biomarkers for Multi-Task, Longitudinal Analysis

This architecture unifies all three speech-derived modalities
into a novel, multimodal depression detection system. It also
introduces time-awareness by supporting longitudinal analysis
across multiple clinical visits. A depiction of the architecture,
along with the baselines, is provided in Fig. 1.

The model uses the result of baseline B to generate final
embeddings from the text data and their corresponding acoustic
landmarks. Since this model was pre-trained to analyze text and
acoustic landmark samples for depression, its weights can remain
frozen.

To analyze the vocal biomarkers extracted from the speech
samples, we generate contextualized embeddings through a
transformer encoder that captures the time-series nature of the
biomarkers. The two embeddings are fused at the decision-level
with trainable weights which are then used for MTL.

This architecture allows the user to optionally track a hidden
latent vector between subsequent patient visits. This vector is
propagated from visit to visit through a Gated Recurrent Unit
(GRU), introducing a second layer of temporal analysis beyond
the inherent time-series nature of speech.

E. MTL Formulation (For All Architectures)

For all three pipelines, the final embeddings pass through
three separate heads responsible for one task each. The gradients
between heads are not detached, allowing decisions from one
task to influence the others and thus enabling us to leverage
comorbidity (the is evaluated in Section V-C). Since each task
can suffer from class imbalance, we use a weighted binary cross-
entropy loss. The loss for a single task t is

Lt = −
(
w+

t yt log(ŷt) + (1− yt) log(1− ŷt)
)

(1)

where yt is the true label, ŷt is the predicted probability, and
w+

t is the weight applied to positive samples to account for
task-specific class imbalance. The total loss, then, is

Ltotal = LM + λaux (LA0
+ LA1

) (2)

where LM is the main task loss, LA0
and LA1

are auxiliary task
losses, and λaux controls the weight of auxiliary losses.

V. RESULTS AND ANALYSIS

Table I presents the classification performance across all three
binary prediction tasks, categorized based on the subset of
modalities utilized, the corresponding model architectures, and
the base LLM employed. To ensure consistency, λaux = 0.25
is used for all trials. While precision and recall are reported for
completeness, balanced accuracy serves as our primary metric
since it best captures aggregate performance across both positive
and negatives cases.

To ensure a fair study, a Receiver Operating Characteristic
(ROC) curve is constructed for each case based on the validation
set, and thresholds are selected based on the point on the curve
closest to the top left corner. This threshold is then blindly
applied to the test set and the resulting metrics are reported to
ensure no information leakage between sets.

A. Effect of Modality and Base LLM Architecture

Table I shows an improvement in balanced accuracy as more
modalities are incorporated into the Mental-Alpaca-based anal-
ysis, highlighting the utility of multimodal approaches. This



TABLE I
MTL RESULTS ACROSS MODALITIES/MODELS; MA=MENTAL-ALPACA, L2=LLAMA-2-7B, P=PRECISION, R=RECALL, BA=BALANCED ACCURACY

Architecture / Modalities
Depression Relapse Suicidal Ideation Sleep Disturbances

MA L2 MA L2 MA L2
P R BA P R BA P R BA P R BA P R BA P R BA

Text 0.362 0.607 0.606 0.258 0.537 0.524 0.000 0.000 0.500 0.000 0.000 0.500 0.885 1.000 0.500 0.885 1.000 0.500
Text & Acoustic Landmarks 0.291 0.460 0.518 0.302 0.520 0.533 0.215 0.472 0.524 0.219 0.694 0.542 0.929 0.404 0.583 0.898 0.273 0.518
Proposed: All Modalities 0.402 0.660 0.644 0.185 0.300 0.400 0.727 0.222 0.601 0.201 0.778 0.509 1.000 0.099 0.550 0.885 1.000 0.500
Proposed: All Modalities with
Longitudinal Enhancement

0.425 0.680 0.666 0.271 0.580 0.495 0.235 0.639 0.563 0.286 0.056 0.511 0.924 0.752 0.638 0.957 0.280 0.592

is most evident in the Suicidal Ideation task, where precision
and recall start at 0 with text alone and increase substantially
as additional modalities are incorporated. We also observe a
significant improvement when using Mental-Alpaca, compared
to LLaMA-2-7B, which agrees with the literature [8].Despite
LLaMA-2-7B’s size, Mental-Alpaca’s domain pretraining yields
superior predictive performance, achieving the highest balanced
accuracy across all tasks in the trimodal setting.

B. Effect of Longitudinal Analysis

Table I demonstrates that the longitudinal enhancement to the
full trimodal pipeline results in improved balanced accuracy for
all three tasks with LLaMA-2-7B and two tasks with Mental-
Alpaca. This shows that monitoring long-term trajectories leads
to improved predictive power, aligning with previous work on
unimodal text datasets [9].

Note that for the Suicidal Ideation task with Mental-Alpaca,
enabling the longitudinal enhancement causes precision to fall
and recall to rise. We hypothesize this occurs because incor-
porating patient history improves sensitivity to emerging risk
patterns, increasing true positives but also introducing more false
positives.

C. Utility of MTL

For this experiment, the trimodal Mental-Alpaca-based longi-
tudinal architecture is used, since it was found to perform best in
the previous study. Table II demonstrates the effect of increasing
the importance (weightage) applied to the two auxiliary tasks on
the ability to predict the main task as illustrated in (2). Increasing
the weights on the auxiliary tasks leads to improved balanced
accuracies for the main task, with the exception of λaux = 0.75.
This suggests synergistic effects among the three tasks, best
exploited through joint learning.

TABLE II
EFFECT OF AUXILIARY TASK WEIGHTS ON PRIMARY DEPRESSION TASK

Auxiliary Tasks Weights Primary Task Metrics
P R BA

0.00 0.354 0.580 0.589
0.25 0.438 0.420 0.608
0.50 0.427 0.700 0.672
0.75 0.468 0.580 0.665
1.00 0.535 0.620 0.708

VI. CONCLUSION AND LIMITATIONS

Our results demonstrate that deploying a longitudinal LLM-
based model on speech data—treated as a trimodal multimedia
source—enhances performance in predicting multiple mental
health outcomes. By leveraging speech digital phenotypes, our

approach captures rich behavioural markers, leading to improved
performance compared to baseline models [18] on our dataset.
To further substantiate these findings, we plan to benchmark
our pipeline against publicly available datasets that have been
used to assess baseline models, including Mental-Alpaca and
other LLMs, in the context of comparable tasks. This work can
also be extended to explore other LLM architectures, such as
Mental-FLAN-T5 and GPT. Given that LLM outputs are heavily
influenced by input prompts, conducting a more in-depth analysis
of different prompt strategies would provide valuable insights.

One of the limitations of this work is that the dataset’s
demographic composition is skewed, with a predominance of
female and White participants. This imbalance may restrict the
generalizability of the results and raise concerns about potential
bias in predictive performance for underrepresented racial and
gender groups.
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