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ABSTRACT

Multi-Task Learning (MTL) is a widely used and powerful learning paradigm
for training deep neural networks that allows learning more than one objective
by a single backbone. Compared to training tasks separately, MTL significantly
reduces computational costs, improves data efficiency, and potentially enhances
model performance by leveraging knowledge across tasks. Hence, it has been
adopted in a variety of applications, ranging from computer vision to natural
language processing and speech recognition. Among them, there is an emerging
line of work in MTL that focuses on manipulating the task gradient to derive an
ultimate gradient descent direction to benefit all tasks. Despite achieving impressive
results on many benchmarks, directly applying these approaches without using
appropriate regularization techniques might lead to suboptimal solutions to real-
world problems. In particular, standard training that minimizes the empirical loss
on the training data can easily suffer from overfitting to low-resource tasks or be
spoiled by noisy-labeled ones, which can cause negative transfer between tasks and
overall performance drop. To alleviate such problems, we propose to leverage a
recently introduced training method, named Sharpness-aware Minimization, which
can enhance model generalization ability on single-task learning. Accordingly,
we present a novel MTL training methodology, encouraging the model to find
task-based flat minima for coherently improving its generalization capability on all
tasks. Finally, we conduct comprehensive experiments on a variety of applications
to demonstrate the merit of our proposed approach to existing gradient-based MTL
methods, as suggested by our developed theory. Our training code is available at
https://github.com/anonymous-user00/FS-MTL.

1 INTRODUCTION

Over the last few years, deep learning has emerged as a powerful tool for functional approximation by
exhibiting superior performance and even exceeding human ability on a wide range of applications.
In spite of the appealing performance, training massive independent neural networks to handle
individual tasks requires not only expensive computational and storage resources but also long
runtime. Therefore, multi-task learning is a more preferable approach in many situations (Zhang
et al., 2014; Liu et al., 2019a; Wang et al., 2020) as they can: (i) avoid redundant features calculation
for each task through their inherently shared architecture; and (ii) reduce the number of total
trainable parameters by hard parameter sharing (Kokkinos, 2017; Heuer et al., 2021) or soft parameter
sharing (Gao et al., 2019; Ruder et al., 2019). However, existing state-of-the-art methods following
the veins of gradient-based multi-task learning (Sener & Koltun, 2018; Yu et al., 2020; Liu et al.,
2021a; 2020; Javaloy & Valera, 2021; Navon et al., 2022) tend to neglect geometrical properties of
the loss landscape yet solely focus on minimizing the empirical error in the optimization process,
which can be easily prone to the overfitting problem (Kaddour et al., 2022; Zhao et al., 2022).

Meanwhile, the overfitting problem of modern neural networks is often attributed to high-dimensional
and non-convex loss functions, which result in complex loss landscapes containing multiple local
optima. Hence, understanding the loss surface plays a crucial role in training robust models, and
developing flat minimizers remains one of the most effective approaches (Keskar et al., 2017b;
Kaddour et al., 2022; Li et al., 2022; Lyu et al., 2022). To be more specific, recent studies (He
et al., 2019; Zheng et al., 2021) show that the obtained loss landscape from directly minimizing
the empirical risk can consist of many sharp minimums, thus yielding poor generalization capacity
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Figure 1: We demonstrate our framework in a 2-task problem. For the shared part, task-based flat
gradients (red dashed arrows) steer the model to escape sharp areas, while task-based loss gradients
(orange dashed arrows) lead the model into their corresponding low-loss regions. In our method, we
aggregate them to find the combined flat gradient gflat

sh and combined loss gradient gloss
sh , respectively.

Finally, we add those two output gradients to target the joint low-loss and flat regions across the tasks.
Conversely, updating task-specific non-shared parts is straightforward and much easier since there is
the involvement of one objective only.

when being exposed to unseen data. Moreover, this issue is apparently exacerbated in optimizing
multiple objectives simultaneously, as in the context of multi-task learning. Certainly, sharp minima
of each constituent objective might appear at different locations, which potentially results in large
generalization errors on the associated task. To this end, finding a common flat and low-loss valued
region for all tasks is desirable for improving the current methods of multi-task learning.

Contribution. To further address the above desideratum, we propose a novel MTL training method,
incorporating the recently introduced optimization sharpness-aware minimization (SAM) (Foret
et al., 2021) into existing gradient manipulation strategies in multi-task learning to further boost their
performance. Guiding by the generalization error in Theorem 1, the proposed approach not only
orients the model to the joint low empirical loss value across tasks but also encourages the model to
reach the task-based flat regions. Importantly, our approach is model-agnostic and compatible with
current gradient-based MTL approaches (see Figure 1 for the overview of our approach). By using
our proposed framework, the gradient conflict across tasks is mitigated significantly, which is the
goal of recent gradient-based MTL studies in alleviating negative transfer between tasks. Finally,
we conduct comprehensive experiments on a variety of applications to demonstrate the merit of our
approach for improving not only task performance but also model robustness and calibration. Last
but not least, to the best of our knowledge, ours is the first work to improve multi-task learning by
investigating the geometrical properties of the model loss landscape.

2 RELATED WORK

2.1 MULTI-TASK LEARNING

In multi-task learning (MTL), we often aim to jointly train one model to tackle multiple different
but correlated tasks. It has been proven in prior work (Caruana, 1997; Liu et al., 2019a;b; Ruder,
2017) that it is not only able to enhance the overall performance but also reduce the memory footprint
and fasten the inference process. Previous studies on MTL often employ a hard parameter-sharing
mechanism along with light-weight task-specific modules to handle multiple tasks.

Pareto multi-task learning. Originated from Multiple-gradient descent algorithm (MGDA), a
popular line of gradient-based MTL methods aim to find Pareto stationary solutions, from which we
can not further improve model performance on any particular task without diminishing another (Sener
& Koltun, 2018). Moreover, recent studies suggest exploring the whole Pareto front by learning
diverse solutions (Lin et al., 2019; Liu et al., 2021b; Mahapatra & Rajan, 2020; 2021), or profiling
the entire Pareto front with hyper-network (Lin et al., 2020; Navon et al., 2021). While these methods
are theoretically grounded and guaranteed to converge to Pareto-stationary points, the experimental
results are often limited and lack comparisons under practical settings.
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Loss and gradient balancing. Another branch of preliminary work in MTL capitalizes on the idea
of dynamically reweighting loss functions based on gradient magnitudes (Chen et al., 2018), task
homoscedastic uncertainty (Kendall et al., 2018), or difficulty prioritization (Guo et al., 2018) to
balance the gradients across tasks. More recently, PCGrad (Yu et al., 2020) developed a gradient
manipulation procedure to avoid conflicts among tasks by projecting random task gradients on the
normal plane of the other. Similarly, (Liu et al., 2021a) proposes a provably convergent method to
minimize the average loss, and (Liu et al., 2020) calculates loss scaling coefficients such that the
combined gradient has equal-length projections onto individual task gradients.

2.2 FLAT MINIMA

Flat minimizer has been found to improve generalization ability of neural networks because it enables
models to find wider local minima, by which they will be more robust against shifts between train and
test losses (Jiang et al., 2020; Petzka et al., 2021; Dziugaite & Roy, 2017). This relationship between
generalization ability and the width of minima is theoretically and empirically studied in many studies
(Hochreiter & Schmidhuber, 1994; Neyshabur et al., 2017; Dinh et al., 2017; Fort & Ganguli, 2019),
and subsequently, a variety of methods seeking flat minima have been proposed (Pereyra et al., 2017;
Chaudhari et al., 2017; Keskar et al., 2017a; Izmailov et al., 2018). For example, (Keskar et al.,
2017a; Jastrzebski et al., 2017; Wei et al., 2020) analyze the impacts of different training factors,
such as batch-size, learning rate, covariance of gradient, dropout, on the flatness of found minima.
Additionally, several schemes pursue wide local minima by adding regularization terms to the loss
function (Pereyra et al., 2017; Zhang et al., 2018; 2019; Chaudhari et al., 2017), e.g., softmax output’s
low entropy penalty, (Pereyra et al., 2017), distillation losses (Zhang et al., 2018; 2019).

Recently, SAM (Foret et al., 2021), which seeks flat regions by explicitly minimizing the worst-
case loss around the current model, has received significant attention due to its effectiveness and
scalability compared to previous methods. Particularly, it has been exploited in a variety of tasks and
domains (Cha et al., 2021; Abbas et al., 2022; Qu et al., 2022; Caldarola et al., 2022; Bahri et al.,
2022; Chen et al., 2021; Nguyen et al., 2023). A notable example is the improvement that SAM
brings to meta-learning bi-level optimization in (Abbas et al., 2022). Another application of SAM is
in federated learning (FL) (Qu et al., 2022) in which the authors achieved tighter convergence rates
than existing FL works, and proposed a generalization bound for the global model. In addition, SAM
shows its generalization ability in vision models (Chen et al., 2021), language models (Bahri et al.,
2022) and domain generalization (Cha et al., 2021). However, existing studies have only focused
on single task problems. In this work, we leverage SAM’s principle to develop theory and devise
practical methods, allowing seeking flat minima in gradient-based multi-task learning models.

3 SHARPNESS AWARE MINIMIZATION TRAINING

Conventional training methods that focus on minimizing the empirical loss can be easily prone
to overfitting problems (i.e., the validation error no longer decreases, but the training loss keeps
declining), thus, restricting model generalization performance. In an attempt to alleviate such
phenomenons, Foret et al. (2021) proposed to minimize the worst-case loss in a neighborhood of the
current model parameter given by:

min
θ

max
||ϵ||2≤ρ

L (θ + ϵ) , (1)

where || · ||2 denotes the l2 norm and ρ represents the radius of the neighborhood. We assume L is
differentiable up to the first order with respect to θ. The optimization problem equation 1 is referred
to as sharpness aware minimization (SAM).

To solve problem equation 1, Foret et al. (2021) proposed to first find the solution for the inner
maximization by approximating L(θ + ϵ) via a first-order Taylor expansion w.r.t ϵ around 0, which
is as follows:

ϵ∗ = argmax
||ϵ||2≤ρ

L(θ + ϵ) ≈ argmax
||ϵ||2≤ρ

ϵ⊤∇θL(θ) ≈ ρ
∇θL(θ)

||∇θL(θ)||2
.

Putting into words, the worst-case perturbation is approximated as the scaled gradient of the loss w.r.t
the current parameter θ. Then, the gradient w.r.t this perturbed model is computed to update θ:

gSAM := ∇θ max
||ϵ||2≤ρ

L (θ + ϵ) ≈ ∇θL(θ + ϵ)|θ+ϵ∗ (2)
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4 OUR PROPOSED FRAMEWORK

This section describes our proposed framework to improve existing methods on gradient-based MTL.
We first recall the goal of multi-task learning, then establish the upper bounds for the general loss
of each task. Subsequently, we rely on these upper bounds to devise the proposed framework for
improving the model generalization ability by guiding it to a flatter region of each task.

4.1 MULTI-TASK LEARNING SETTING

In multi-task learning, we are given a data-label distribution D from which we can sample a training
set S = {(xi, y

1
i , ..., y

m
i )ni=1}, where xi is a data example and y1i , ..., y

m
i are the labels of the tasks

1, 2, ...,m respectively.

The model for each task θi = [θsh,θ
i
ns] consists of the shared part θsh and the individual non-shared

part θi
ns. We denote the general loss for task i as Li

D(θ
i), while its empirical loss over the training

set S as Li
S(θ

i). Existing works in MTL, typically MGDA (Sener & Koltun, 2018), PCGrad (Yu
et al., 2020), CAGrad (Liu et al., 2021a), and IMTL (Liu et al., 2020), aim to find a model that
simultaneously minimizes the empirical losses for all tasks:

min
θsh,θ1:m

ns

[
L1
S
(
θ1
)
, ...,Lm

S (θm)
]
, (3)

by calculating gradient gi for i-th task (i ∈ [m]). The current model parameter is then updated
by the unified gradient g = gradient aggregate(g1, g2, . . . , gm), with the generic operation
gradient aggregate is to combine multiple task gradients, as proposed in gradient-based MTL studies.

Additionally, prior works only focus on minimizing the empirical losses and do not concern the
general losses which combat overfitting. Inspired by SAM (Foret et al., 2021), it is desirable to
develop sharpness-aware MTL approaches wherein the task models simultaneously seek low loss and
flat regions. However, this is challenging since we have multiple objective functions in (3) and each
task model consists of a shared and an individual non-shared parts. To address the above challenge,
in Theorem 1, we develop upper bounds for the task general losses in the context of MTL which
signifies the concepts of sharpness for the shared part and non-shared parts and then rely on these
new concepts to devise a novel MTL framework via seeking the task-based flat regions.

4.2 THEORETICAL DEVELOPMENT

We first state our main theorem that bounds the generalization performance of individual tasks by the
empirical error on the training set:
Theorem 1. (Informally stated) For any perturbation radius ρsh, ρns > 0, under some mild
assumptions, with probability 1− δ (over the choice of training set S ∼ D) we obtain[

Li
D
(
θi
)]m

i=1
≤ max

∥ϵsh∥2≤ρsh

[
max

∥ϵins∥2≤ρns

Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)
+ f i

(
∥θi∥22

)]m
i=1

, (4)

where f i : R+ → R+, i ∈ [m] are strictly increasing functions.

Theorem 1 establishes the connection between the generalization error of each task with its empirical
training error via worst-case perturbation on the parameter space. The formally stated theorem and
proof are provided in the appendix. Here we note that the worst-case shared perturbation ϵsh is
commonly learned for all tasks, while the worst-case non-shared perturbation ϵins is tailored for each
task i. Theorem 1 directly hints us an initial and direct approach.

Additionally, Foret et al. (2021) invokes the McAllester (1999) PAC-Bayesian generalization bound
, hence is only applicable to the 0-1 loss in the binary classification setting. In terms of the theory
contribution, we employ a more general PAC-Bayesian generalization bound (Alquier et al., 2016) to
tackle more general losses in MTL. Moreover, our theory development requires us to handle multiple
objectives, each of which consists of the non-shared and shared parts, which is certainly non-trivial.

4.3 INITIAL AND DIRECT APPROACH

A straight-forward approach guided by Theorem 1 is to find the non-shared perturbations ϵins, i ∈ [m]
independently for the non-shared parts and a common shared perturbation for the shared part. Driven
by this theoretical guidance, we propose the following updates.
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Update the non-shared parts. Based on the upper bounds in Theorem 1, because the non-shared
perturbations ϵins, i ∈ [m] are independent to each task, for task i, we update its non-shared part θi

ns:

ϵins = ρns
∇θi

ns
Li
S
(
θsh,θ

i
ns

)
∥∇θi

ns
Li
S (θsh,θi

ns) ∥2
,

gi,SAM
ns = ∇θi

ns
Li
S
(
θsh,θ

i
ns + ϵins

)
,

θi
ns = θi

ns − ηgi,SAM
ns , where η > 0 is the learning rate. (5)

Update the shared part. Updating the shared part θsh is more challenging because its worst-cased
perturbation ϵsh is shared among the tasks. To derive how to update θsh w.r.t. all tasks, we first
discuss the case when we update this w.r.t. task i without caring about other tasks. Specifically, this
task’s SAM shared gradient is computed as:

ϵish = ρsh
∇θsh

Li
S
(
θsh,θ

i
ns

)
∥∇θsh

Li
S (θsh,θi

ns) ∥2
,

gi,SAM
sh = ∇θsh

Li
S
(
θsh + ϵish,θ

i
ns

)
,

then we have a straight-forward updating strategy:

gSAM
sh = gradient aggregate(g1,SAM

sh , . . . , gm,SAM
sh ),

θsh = θsh − ηgSAM
sh .

According to our analysis in Section 4.4, each gi,SAM
sh = gi,loss

sh + gi,flat
sh is constituted by two

components: (i) gi,loss
sh to navigate to the task low-loss region and (ii) gi,flat

sh to navigate to the task-
based flat region. However, a direct gradient aggregation of gi,SAM

sh , i ∈ [m] can be negatively affected
by the gradient cancelation or conflict because it aims to combine many individual elements with
different objectives. In this paper, we go beyond this initial approach by deriving an updating formula
to decompose SAM gradient into two components, each serving its own purpose, and then combining
their corresponding task gradients simultaneously. We also compare our method against the naive
approach in Section 5.3.

4.4 OUR PROPOSED APPROACH

The non-shared parts are updated normally as in Equation (5). It is more crucial to investigate how to
update the shared part more efficiently. To better understand the SAM’s gradients, we analyze their
characteristics by deriving them as follows:

gi,SAM
sh = ∇θsh

Li
S
(
θsh + ϵish,θ

i
ns

) (1)
≈ ∇θsh

[
Li
S
(
θsh,θ

i
ns

)]
+
〈
ϵish,∇θsh

Li
S
(
θsh,θ

i
ns

)〉
= ∇θsh

[
Li
S
(
θsh,θ

i
ns

)
+ ρsh

〈 ∇θsh
Li
S
(
θsh,θ

i
ns

)
∥∇θsh

Li
S (θsh,θi

ns) ∥2
,∇θsh

Li
S
(
θsh,θ

i
ns

)〉]
= ∇θsh

[
Li
S
(
θsh,θ

i
ns

)
+ ρsh∥∇θsh

Li
S
(
θsh,θ

i
ns

)
∥2
]

(6)

where in
(1)
≈ , we apply the first-order Taylor expansion and ⟨·, ·⟩ represents the dot product.

It is obvious that following the negative direction of gi,SAM
sh will minimize the loss Li

S
(
θsh,θ

i
ns

)
and the gradient norm ∥∇θsh

Li
S
(
θsh,θ

i
ns

)
∥2 of task i, hence leading the model to the low-valued

region for the loss of this task and its flatter region with a lower gradient norm magnitude.

Moreover, inspired from the derivation in Equation (6), we decompose the gradient gi,SAM
sh =

gi,loss
sh + gi,flat

sh where we define gi,loss
sh := ∇θsh

Li
S
(
θsh,θ

i
ns

)
and gi,flat

sh := gi,SAM
sh − gi,loss

sh . As
aforementioned, the purpose of the negative gradient −gi,loss

sh is to orient the model to minimize the
loss of the task i, while −gi,flat

sh navigates the model to the task i’s flatter region.

Therefore, the SAM gradients gi,SAM
sh , i ∈ [m] constitute two components with different purposes.

To mitigate the possible confliction and interference of the two components when aggregating, we
propose to aggregate the low-loss components solely and then the flat components solely. Specifically,
to find a common direction that leads the joint low-valued losses for all tasks and the joint flatter
region for them, we first combine the gradients gi,loss

sh , i ∈ [m] and the gradients gi,flat
sh , i ∈ [m], then
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add the two aggregated gradients, and finally update the shared part as:
gloss
sh = gradient aggregate(g1,loss

sh , . . . , gm,loss
sh ),

gflat
sh = gradient aggregate(g1,flat

sh , . . . , gm,flat
sh ),

gSAM
sh = gloss

sh + gflat
sh ; θsh = θsh − ηgSAM

sh ,

Finally, the key steps of our proposed framework are summarized in Algorithm 1 and the overall
schema of our proposed method is demonstrated in Figure 1.

Algorithm 1 Sharpness minimization for multi-task learning

Input: Model parameter θ = [θsh,θ
1:m
ns ], perturbation radius ρ = [ρsh, ρns], step size η and a list of m

differentiable loss functions
{
Li

}m

i=1
.

Output: Updated parameter θ∗

1: for task i ∈ [m] do
2: Compute gradient gi,loss

sh , gi
ns ← ∇θLi(θ)

3: Worst-case perturbation direction
ϵish = ρsh · gi,loss

sh /
∥∥∥gi,loss

sh

∥∥∥ and ϵins = ρns · gi
ns/

∥∥gi
ns

∥∥
4: Approximate SAM’s gradient

gi,SAM
sh = ∇θshL

i(θsh + ϵish,θ
i
ns) and gi,SAM

ns = ∇θi
ns
Li(θsh,θ

i
ns + ϵins)

5: Compute flat gradient
gi,flat
sh = gi,SAM

sh − gi,loss
sh

6: end for
7: Calculate combined update gradients:

gloss
sh = gradient aggregate(g1,loss

sh , g2,loss
sh , . . . , gm,loss

sh )

gflat
sh = gradient aggregate(g1,flat

sh , g2,flat
sh , . . . , gm,flat

sh )

8: Calculate shared gradient update gSAM
sh = gloss

sh + gflat
sh

9: Update model parameter
θ∗ = [θsh,θ

1:m
ns ]− η[gSAM

sh , g1:m,SAM
ns ]

5 EXPERIMENTS

In this section, we compare our proposed method against other state-of-the-art methods of multi-task
learning in different scenarios, ranging from image classification to scene understanding problems.
Refer to the appendix for the detailed settings used for each dataset and additional experiments.

Datasets and Baselines. Our proposed method is evaluated on four MTL benchmarks including
Multi-MNIST (Lin et al., 2019), CelebA (Liu et al., 2015) for visual classification, and NYUv2
(Silberman et al., 2012), CityScapes (Cordts et al., 2016) for scene understanding. We show how our
framework can boost the performance of gradient-based MTL methods by comparing vanilla MGDA
(Sener & Koltun, 2018), PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2021a) and IMTL (Liu et al.,
2020) to their flat-based versions F-MGDA, F-PCGrad, F-CAGrad and F-IMTL. We also add single
task learning (STL) baseline for each dataset.

5.1 IMAGE CLASSIFICATION

Multi-MNIST. Following the protocol of Sener & Koltun (2018), we set up three Multi-MNIST
experiments with the ResNet18 (He et al., 2016) backbone, namely: MultiFashion, MultiMNIST and
MultiFashion+MNIST. In each dataset, two images are sampled uniformly from the MNIST (LeCun
et al., 1998) or Fashion-MNIST (Xiao et al., 2017), then one is placed on the top left and the other is
on the bottom right. We thus obtain a two-task learning that requires predicting the categories of the
digits or fashion items on the top left (task 1) and on the bottom right (task 2) respectively.

As summarized in Table 1, we can see that seeking flatter regions for all tasks can improve
the performance of all the baselines across all three datasets. Especially, flat-based methods
achieve the highest score for each task and for the average, outperforming STL by 1.2% on
MultiFashion and MultiMNIST. We conjecture that the discrepancy between gradient update
trajectories to classify digits from MNIST and fashion items from FashionMNIST has resulted
in the fruitless performance of baselines, compared to STL on MultiFashion+MNIST. Even if
there exists dissimilarity between tasks, our best obtained average accuracy when applying our
method to CAGrad is just slightly lower than STL (< 0.4%) while employing a single model only.
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Table 1: Evaluation of different methods on three Multi-MNIST datasets. Rows with flat-based
minimizers are shaded. Bold numbers denote higher accuracy between flat-based methods and their
baselines. ∗ denotes the highest accuracy (except for STL, since it unfairly exploits multiple neural
networks). We also use arrows to indicate that the higher is the better (↑) or vice-versa (↓).

MultiFashion MultiMNIST MultiFashion+MNIST
Method

Task 1 ↑ Task 2 ↑ Average ↑ Task 1 ↑ Task 2 ↑ Average ↑ Task 1 ↑ Task 2 Average ↑
STL 87.10± 0.09 86.20± 0.06 86.65± 0.02 95.33± 0.08 94.16± 0.04 94.74± 0.06 98.40± 0.02 89.42± 0.03 93.91± 0.02

MGDA 86.76± 0.09 85.78± 0.36 86.27± 0.22 95.62± 0.02 94.49± 0.10 95.05± 0.06 97.24± 0.04 88.19± 0.13 92.72± 0.07

F-MGDA 88.12± 0.11 87.35± 0.11 87.73± 0.09 96.37± 0.06 94.99± 0.06 95.68± 0.00 97.30± 0.09 89.26± 0.14 93.28± 0.03

PCGrad 86.93± 0.17 86.20± 0.14 86.57± 0.12 95.71± 0.03 94.41± 0.02 95.06± 0.02 97.12± 0.16 88.45± 0.08 92.78± 0.11

F-PCGrad 88.17± 0.14 87.35± 0.27 87.76± 0.07 96.49± 0.05 95.34± 0.10 95.92± 0.07 97.65± 0.06 89.35± 0.07∗ 93.50± 0.01

CAGrad 86.99± 0.17 86.04± 0.15 86.51± 0.16 95.62± 0.05 94.39± 0.04 95.01± 0.04 97.19± 0.06 88.18± 0.14 92.68 ±0.04

F-CAGrad 88.19± 0.19∗ 87.45± 0.13 87.82± 0.10∗ 96.54± 0.02 95.36± 0.04∗ 95.95± 0.01∗ 97.82± 0.05∗ 89.26± 0.22 93.54± 0.13∗

IMTL 87.35± 0.22 86.45± 0.09 86.90± 0.15 95.93± 0.09 94.63± 0.13 95.28± 0.02 97.47± 0.06 88.46± 0.11 92.97± 0.03

F-IMTL 88.1± 0.10 87.5± 0.04∗ 87.80± 0.06 96.55± 0.07∗ 95.16± 0.05 95.85± 0.05 97.59± 0.12 88.99± 0.08 93.29± 0.02
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Figure 2: Entropy distributions of ResNet18 on
in-domain set (left) and out-of-domain set (right).

Interestingly, our proposed MTL training
method also helps improve model calibration
performance by mitigating the over-confident
phenomenon of deep neural networks. As can be
seen from Figure 2, our method produces high-
entropy predictions that represent its uncertainty,
ERM-based method outputs high confident
predictions on both in and out-of-domain
data. More details about model calibration
improvement can be found in the appendix.

Table 2: Mean of error per
category of MTL algorithms
in multi-label classification
on CelebA dataset.

Method Average error ↓
STL 8.77
LS 9.99
UW 9.66

MGDA 9.96
F-MGDA 9.22

PCGrad 8.69
F-PCGrad 8.23

CAGrad 8.52
F-CAGrad 8.22∗

IMTL 8.88
F-IMTL 8.24

CelebA. CelebA (Liu et al., 2018) is a face dataset, which consists
of 200K celebrity facial photos with 40 attributes. Similar to (Sener
& Koltun, 2018), each attribute forms a binary classification problem,
thus a 40-class multi-label classification problem is constructed.

Table 2 shows the average errors over 40 tasks of the methods with
linear scalarization (LS) and Uncertainty weighting (UW) (Kendall
et al., 2018) being included to serve as comparative baselines. The
best results in each pair and among all are highlighted using bold
font and ∗, respectively. When the number of tasks is large, flat
region seeking still consistently shows its advantages and the lowest
average accuracy error is achieved by F-CAGrad. Interestingly, when
the optimizer is aware of flat minima, the gaps between PCGrad,
IMTL and CAGrad, (8.23, 8.24 vs 8.22), are smaller than those using
conventional ERM training, (8.69, 8.88 and 8.52). This might be
due to the better aggregation of tasks’ gradients, which means that
the conflict between these gradients is likely to be reduced when the
shared parameters approach the common flat region of all tasks.

5.2 SCENE UNDERSTANDING

Two datasets used in this sub-section are NYUv2 (Silberman et al., 2012) and CityScapes (Cordts
et al., 2016). NYUv2 is an indoor scene dataset that contains 3 tasks: 13-class semantic segmentation,
depth estimation, and surface normal prediction. In CityScapes, there are 19 classes of street-view
images, which are coarsened into 7 categories to create two tasks: semantic segmentation and depth
estimation. For these two experiments, we additionally include several recent MTL methods, namely,
scale-invariant (SI), random loss weighting (RLW), Dynamic Weight Average (DWA) (Liu et al.,
2019a), GradDrop (Chen et al., 2020), and Nash-MTL (Navon et al., 2022) whose results are taken
from (Navon et al., 2022). Details of each baseline can be found in the appendix. Also following
the standard protocol used in (Liu et al., 2019a; 2021a; Navon et al., 2022), Multi-Task Attention
Network (Liu et al., 2019a) is employed on top of the SegNet architecture (Badrinarayanan et al.,
2017), our presented results are averaged over the last 10 epochs to align with previous work.

Evaluation metric. In this experiment, we have to deal with different task types rather than one only
as in the case of image classification. Since each of them has its own set of metrics. We thus mark the
overall performance of comparative methods by reporting their relative task improvement (Maninis
et al., 2019) throughout this section. Let Mi and Si be the metrics obtained by the main and the
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Table 3: Test performance for two-task CityScapes:
semantic segmentation and depth estimation.∗
denotes the best score for each task’s metrics.

Segmentation Depth

Method mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err↓ ∆m% ↓
STL 74.01 93.16 0.0125 27.77

LS 75.18 93.49 0.0155 46.77 22.60
SI 70.95 91.73 0.0161 33.83 14.11
RLW 74.57 93.41 0.0158 47.79 24.38
DWA 75.24 93.52 0.0160 44.37 21.45
UW 72.02 92.85 0.0140 30.13∗ 5.89
GradDrop 75.27 93.53 0.0157 47.54 23.73
Nash-MTL 75.41 93.66 0.0129 35.02 6.82

MGDA 68.84 91.54 0.0309 33.50 44.14
F-MGDA 73.77 93.12 0.0129 27.44∗ 0.67∗

PCGrad 75.13 93.48 0.0154 42.07 18.29
F-PCGrad 75.77 93.67 0.0144 39.60 13.65

CAGrad 75.16 93.48 0.0141 37.60 11.64
F-CAGrad 76.02 93.72 0.0134 34.64 7.25

IMTL 75.33 93.49 0.0135 38.41 11.10
F-IMTL 76.63∗ 93.76∗ 0.0124∗ 31.17 1.87

single-task learning (STL) model, respectively,
the relative task improvement on i-th task is
mathematically given by: ∆i := 100 · (−1)li

(Mi − Si)/Si, where li = 1 if a lower value
for the i-th criterion is better and 0 otherwise.
We depict our results by the average relative
task improvement ∆m% = 1

m

∑m
i=1 ∆i.

CityScapes. In Table 3, the positive effect of
seeking flat regions is consistently observed
in all metrics and baselines. In particular, the
relative improvements of MGDA and IMTL
are significantly boosted, achieving the highest
and second-best ∆m% scores, respectively.
The segmentation scores of PCGrad, CAGrad
and IMTL even surpass STL. Intriguingly,
MGDA biases to the depth estimation objective,
leading to the predominant performance on that
task, similar patterns appear in Liu et al., 2020
and the below NYUv2 experiment.

NYUv2. Table 4 shows each task’s results and the relative improvements over STL of different
methods. Generally, the flat-based versions obtain comparable or higher results on most of the metrics,
except for MGDA at the segmentation task, in which F-MGDA notably decreases the mIoU score.
However, it does significantly help other tasks, which contributes to the overall MGDA’s relative
improvement, from 1.38% being worse than STL to 0.33% being higher. Remarkably, F-CAGrad
and F-IMTL outperform their competitors by large margins across all tasks, resulting in the top two
relative improvements, 3.78% and 4.77% .
Table 4: Test performance for three-task NYUv2 of Segnet (Badrinarayanan et al., 2017): semantic
segmentation, depth estimation, and surface normal. Using the proposed procedure in conjunction
with gradient-based multi-task learning methods consistently advances their overall performance.

Segmentation Depth Surface Normal

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Distance ↓ Within t◦ ↑ ∆m% ↓
Mean Median 11.25 22.5 30

STL 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15 0.00

LS 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 5.59
SI 38.45 64.27 0.5354 0.2201 27.60 23.37 22.53 48.57 62.32 4.39

RLW 37.17 63.77 0.5759 0.2410 28.27 24.18 22.26 47.05 60.62 7.78
DWA 39.11 65.31 0.5510 0.2285 27.61 23.18 24.17 50.18 62.39 3.57
UW 36.87 63.17 0.5446 0.2260 27.04 22.61 23.54 49.05 63.65 4.05

GradDrop 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 3.58
Nash-MTL 40.13 65.93 0.5261∗ 0.2171 25.26 20.08 28.4 55.47 68.15 −4.04

MGDA 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 1.38
F-MGDA 26.42 58.78 0.6078 0.2353 24.34∗ 18.45∗ 31.64∗ 58.86∗ 70.50∗ −0.33

PCGrad 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 3.97
F-PCGrad 40.05 65.42 0.5429 0.2243 27.38 23.00 23.47 49.35 62.74 3.14

CAGrad 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20
F-CAGrad 40.93∗ 66.68∗ 0.5285 0.2162 25.43 20.39 27.99 54.82 67.56 −3.78

IMTL 39.35 65.60 0.5426 0.2256 26.02 21.19 26.2 53.13 66.24 −0.76
F-IMTL 40.42 65.61 0.5389 0.2121∗ 25.03 19.75 28.90 56.19 68.72 −4.77∗

5.3 ABLATION STUDY

So far, our proposed technique has shown state-of-the-art performances under different settings, we
now investigate in more detailed how it affects conventional training by inspecting loss surfaces and
model robustness. Similar patterns are observed in other experiments and given in the appendix.

Task conflict. To empirically confirm that tasks’ gradients are less conflicted when the model is driven
to the flat regions, we measure the gradient conflict and present the result in Figure 3a. While the
percentage of gradient conflict of ERM increases to more than 50%, ours decreases and approaches
0%. This reduction in gradient conflict is also the goal of recent gradient-based MTL methods in
mitigating negative transfer between tasks (Yu et al., 2020; Zhu et al., 2022; Wang et al., 2020).
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(b) Accuracy within r−radius ball. Solid/dashed lines
denote performance on train/test sets, respectively.

Model robustness against noise. To verify that SAM can orient the model to the common flat and
low-loss region of all tasks, we measure the model performance within a r-radius Euclidean ball. To
be more specific, we perturb parameters of two converged models by ϵ, which lies in a r-radius ball
and plot the accuracy of the perturbed models of each task as we increase r from 0 to 1000. At each
value of r, 10 different models around the r−radius ball of the converged model are sampled.

In Figure 3b, the accuracy of the model trained using our method remains at a high level when noise
keeps increasing until r = 800. This also gives evidence that our model found a region that changes
slowly in loss. By contrast, the naively trained model loses its predictive capabilities as soon as the
noise appears and becomes a dummy classifier that attains 10% accuracy in a 10-way classification.

Aggregation strategies comparison. Table 5 provides a comparison between the direct aggregation
on {gi,SAM

sh }mi=1 and individual aggregation on {gi,flat
sh }mi=1 and {gi,loss

sh }mi=1 (our method).

Table 5: Two aggregation strategies on CityScapes.

Segmentation Depth

Method mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err↓ ∆m% ↓
ERM 68.84 91.54 0.0309 33.50 44.14
Ours (direct) 68.93 91.41 0.0130 31.37 6.43

Ours (individual) 73.77 93.12 0.0129 27.44∗ 0.67

Compared to the naive approach, in
which per-task SAM gradients are
directly aggregated, our decomposition
approach consistently improves
performance by a large margin across
all tasks. This result reinforces the
rationale behind separately aggregating
low-loss directions and flat directions.

Visualization of the loss landscapes. Following Li et al. (2018), we plot the loss surfaces at
convergence after training Resnet18 from scratch on the MultiMNIST dataset. Test loss surfaces of
checkpoints that have the highest validation accuracy scores are shown in Figure 4.

Figure 4: Visualization of test loss surfaces with standard ERM training and when applying our
method. The coordinate plane axes are two random sampled orthogonal Gaussian perturbations.

We can clearly see that the solution found by our proposed method not only mitigates the test loss
sharpness for both tasks but also can intentionally reduce the test loss value itself, in comparison to
traditional ERM. This is a common behavior when using flat minimizers as the gap between train and
test performance has been narrowed (Izmailov et al., 2018; Kaddour et al., 2022).

6 CONCLUSION

In this work, we have presented a general framework that can be incorporated into current multi-task
learning methods following the gradient balancing mechanism. The core ideas of our proposed
method are the employment of flat minimizers in the context of MTL and proving that they can help
enhance previous works both theoretically and empirically. Concretely, our method goes beyond
optimizing per-task objectives solely to yield models that have both low errors and high generalization
capabilities. On the experimental side, the efficacy of our method is demonstrated on a wide range of
commonly used MTL benchmarks, in which ours consistently outperforms comparative methods.
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A APPENDIX

Due to space constraints, some details were omitted from the main paper. We therefore include
additional theoretical developments (section B) and experimental results (section D) in this appendix.

B OUR THEORY DEVELOPMENT

This section contains the proofs and derivations of our theory development to support the main
submission.

We first start with the following theorem, which is inspired by the general PAC-Bayes in (Alquier
et al., 2016).

Theorem 2. With the assumption that adding Gaussian perturbation will raise the test error:
LD(θ) ≤ Eϵ∼N (0,σ2I) [LD(θ + ϵ)]. Let T be the number of parameter θ, and N be the cardinality
of S , then the following inequality is true with the probability 1− δ:

LD (θ) ≤ Eϵ∼N (0,σ2I) [LS(θ + ϵ)] +
1√
N

[
1

2
+

T

2
log
(
1 +

||θ||2

Tσ2

)
+ log

1

δ
+ 6 log(N + T ) +

L2

8

]
where L is the upper-bound of the loss function.

Proof. We use the PAC-Bayes theory for P = N (0, σ2
P IT ) and Q = N (θ, σ2IT ) are the prior and

posterior distributions, respectively.

By using the bound in (Alquier et al., 2016), with probability at least 1 − δ and for all β > 0, we
have:

Eθ∼Q [LD(θ)] ≤ Eθ∼Q [LS(θ)] +
1

β

[
KL(Q∥P ) + log

1

δ
+Ψ(β,N)

]
,

where we have defined:

Ψ(β,N) = logEPES

[
exp

{
β
(
LD(θ)− LS(θ)

)}]
Note that the loss function is bounded by L, according to Hoeffding’s lemma, we have:

Ψ(β,N) ≤ β2L2

8N
.

By Cauchy inequality:

1√
N

[
T

2
log
(
1 +

||θ||2

Tσ2

)
+

L2

8

]
≥ L

2
√
N

√
T log

(
1 +

||θ||2
Tσ2

)
≥ L,

which means that the theorem is proved since the loss function is upper bounded by L, following
assumptions.

Now, we only need to prove the theorem under the case: ||θ||2 ≤ Tσ2
[
exp 4N

T − 1
]
.

We need to specify P in advance since it is a prior distribution. However, we do not know in advance
the value of θ that affects the KL divergence term. Hence, we build a family of distribution P as
follows:

P =
{
Pj = N (0, σ2

Pj
IT ) : σ2

Pj
= c exp

(1− j

T

)
, c = σ2

(
1 + exp

4N

T

)
, j = 1, 2, . . .

}
.

Set δj = 6δ
π2j2 , the below inequality holds with probability at least 1− δj :

Eθ∼Q [LD(θ)] ≤ Eθ∼Q [LS(θ)] +
1

β

[
KL(Q∥Pj) + log

1

δj
+

β2L2

8N

]
.
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Or it can be written as:

Eϵ∼N (0,σ2I) [LD(θ + ϵ)] ≤ Eϵ∼N (0,σ2I) [LS(θ + ϵ)] +
1

β

[
KL(Q∥Pj) + log

1

δj
+

β2L2

8N

]
.

Thus, with probability 1− δ the above inequalities hold for all Pj . We choose:

j∗ =

⌊
1 + T log

(
σ2
(
1 + exp{4N/T}

)
σ2 + ∥θ∥2/T

)⌋
.

Since ∥θ∥2

T ≤ σ2
[
exp 4N

T − 1
]
, we get σ2 + ∥θ∥2

T ≤ σ2 exp 4N
T , thus j∗ is well-defined. We also

have:

T log
c

σ2 + ∥θ∥2/T
≤ j∗ ≤ 1 + T log

c

σ2 + ∥θ∥2/T

⇒ log
c

σ2 + ∥θ∥2/T
≤ j∗

T
≤ 1

T
+ log

c

σ2 + ∥θ∥2/T

⇒ − 1

T
+ log

σ2 + ∥θ∥2/T
c

≤ −j∗

T
≤ log

σ2 + ∥θ∥2/T
c

⇒ e−1/T σ2 + ∥θ∥2/T
c

≤ e−j∗/T ≤ σ2 + ∥θ∥2/T
c

⇒ σ2 +
∥θ∥2

T
≤ ce

1−j∗
T ≤ e

1
T

(
σ2 +

∥θ∥2

T

)
⇒ σ2 +

∥θ∥2

T
≤ σ2

Pj∗
≤ e

1
T

(
σ2 +

∥θ∥2

T

)
.

Hence, we have:

KL(Q∥Pj∗) =
1

2

[Tσ2 + ∥θ∥2

σ2
Pj∗

− T + T log
σ2
Pj∗

σ2

]
≤ 1

2

[ Tσ2 + ∥θ∥2

σ2 + ∥θ∥2/T
− T + T log

e1/T
(
σ2 + ∥θ∥2/T

)
σ2

]
≤ 1

2

[
1 + T log

(
1 +

∥θ∥2

Tσ2

)]
.

For the term log 1
δj∗

, use the inequality log(1 + et) ≤ 1 + t for t > 0:

log
1

δj∗
= log

(j∗)2π2

6δ
= log

1

δ
+ log

(π2

6

)
+ 2 log(j∗)

≤ log
1

δ
+ log

π2

6
+ 2 log

(
1 + T log

σ2
(
1 + exp(4N/T )

)
σ2 + ∥θ∥2/T

)
≤ log

1

δ
+ log

π2

6
+ 2 log

(
1 + T log

(
1 + exp(4N/T )

))
≤ log

1

δ
+ log

π2

6
+ 2 log

(
1 + T

(
1 +

4N

T

))
≤ log

1

δ
+ log

π2

6
+ log(1 + T + 4N).

Choosing β =
√
N , with probability at least 1− δ we get:

1

β

[
KL(Q∥Pj∗) + log

1

δj∗
+

β2L2

8N

]
≤ 1√

N

[1
2
+

T

2
log
(
1 +

∥θ∥2

Tσ2

)
+ log

1

δ
+ 6 log(N + T )

]
+

L2

8
√
N

.

Thus the theorem is proved.
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Back to our context of multi-task learning in which we have m tasks with each task model: θi =
[θsh,θ

i
ns], we can prove the following theorem.

Theorem 3. With the assumption that adding Gaussian perturbation will rise the test error:
LD(θ

i) ≤ Eϵ∼N (0,σ2I)
[
LD(θ

i + ϵ)
]
. Let Ti be the number of parameter θi and N be the cardinality

of S. We have the following inequality holds with probability 1− δ (over the choice of training set
S ∼ D): [

Li
D
(
θi
)]m

i=1
≤
[
Eϵ∼N (0,σ2I)

[
LS(θ

i + ϵ)
]
+ f i

(
∥θi∥22

) ]m
i=1

, (7)
where

f i
(
∥θi∥22

)
=

1√
N

[
1

2
+

Ti

2
log
(
1 +

||θ||2

Tiσ2

)
+ log

1

δ
+ 6 log(N + Ti) +

L2

8

]
.

Proof. The result for the base case m = 1 can be achieved by using Theorem 2 where ξ = δ and f1

is defined accordingly. We proceed by induction, suppose that Theorem 3 is true for all i ∈ [n] with
probability 1− δ/2, which also means:[

Li
D
(
θi
)]n

i=1
≤
[
Eϵ∼N (0,σI)

[
LS(θ

i + ϵ)
]
+ f i

(
∥θi∥22

) ]n
i=1

.

Using Theorem 2 for θn+1 and ξ = δ/2, with probability 1− δ/2, we have:

Ln+1
D

(
θn+1

)
≤ Eϵ∼N (0,σI)

[
LS(θ

n+1 + ϵ)
]
+ fn+1

(
∥θn+1∥22

)
.

Using the inclusion–exclusion principle, with probability at least 1− δ, we reach the conclusion for
m = n+ 1.

We next prove the result in the main paper. Let us begin by formally restating the main theorem as
follows:
Theorem 4. For any perturbation radius ρsh, ρns > 0, with probability 1− δ (over the choice of
training set S ∼ D) we obtain:[

Li
D
(
θi
)]m

i=1
≤ max

∥ϵsh∥2≤ρsh

[
max

∥ϵins∥2≤ρns

Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)
+ f i

(
∥θi∥22

)]m
i=1

, (8)

where f i
(
∥θi∥22

)
is defined the same as in Theorem 3.

Proof. Theorem 3 gives us[
Li

D

(
θi
)]m

i=1
≤

[
Eϵ∼N(0,σ2I)

[
Li

S

(
θi + ϵ

)]
+ f i

(
∥θi∥2

)]m
i=1

=

[∫
Eϵins

[
Li

S

(
θsh + ϵsh,θ

i
ns + ϵins

)]
p (ϵsh) dϵsh + f i

(
∥θi∥2

)]m

i=1

= Eϵsh

[
Eϵins

[
Li

S

(
θsh + ϵsh,θ

i
ns + ϵins

)]
+ f i

(
∥θi∥2

)]m
i=1

,

where p(ϵsh) is the density function of Gaussian distribution; ϵsh and ϵins are drawn from their
corresponding Gaussian distributions.

We have ϵins ∼ N(0, σ2Ins) with the dimension Ti,ns, therefore ∥ϵins∥ follows the Chi-square
distribution. As proven in (Laurent & Massart, 2000), we have for all i:

P
(
∥ϵins∥22 ≥ Ti,nsσ

2 + 2σ2
√

Ti,nst+ 2tσ2
)
≤ e−t,∀t > 0

P
(
∥ϵins∥22 < Ti,nsσ

2 + 2σ2
√
Ti,nst+ 2tσ2

)
> 1− e−t

for all t > 0.

Select t = ln(
√
N), we derive the following bound for the noise magnitude in terms of the

perturbation radius ρns for all i:

P

(
∥ϵins∥22 ≤ σ2(2 ln(

√
N) + Ti,ns + 2

√
Ti,ns ln(

√
N))

)
> 1− 1√

N
. (9)
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Moreover, we have ϵsh ∼ N(0, σ2Ish) with the dimension Tsh, therefore ∥ϵsh∥ follows the Chi-
square distribution. As proven in (Laurent & Massart, 2000), we have:

P
(
∥ϵsh∥22 ≥ Tshσ

2 + 2σ2
√
Tsht+ 2tσ2

)
≤ e−t,∀t > 0

P
(
∥ϵsh∥22 < Tshσ

2 + 2σ2
√
Tsht+ 2tσ2

)
> 1− e−t

for all t > 0.

Select t = ln(
√
N), we derive the following bound for the noise magnitude in terms of the

perturbation radius ρsh:

P

(
∥ϵsh∥22 ≤ σ2(2 ln(

√
N) + Tsh + 2

√
Tsh ln(

√
N))

)
> 1− 1√

N
. (10)

By choosing σ less than ρsh√
2 lnN1/2+Tsh+2

√
Tsh lnN1/2

and mini
ρns√

2 lnN1/2+Ti,ns+2
√

Ti,ns lnN1/2
,

and referring to (9,10), we achieve both:

P
(
∥ϵins∥ < ρns

)
> 1− 1

N1/2
,∀i,

P (∥ϵsh∥ < ρsh) > 1− 1

N1/2
.

Finally, we finish the proof as:[
Li
D
(
θi
)]m

i=1
≤ Eϵsh

[
Eϵins

[
Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)]
+ f i

(
∥θi∥2

)]m
i=1

≤ max||ϵsh||<ρsh

[
max||ϵins||<ρns

Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)
+ 2√

N
− 1

N + f i
(
∥θi∥2

)]m
i=1

To reach the final conclusion, we redefine:

f i
(
∥θi∥2

)
=

2√
N

− 1

N
+ f i

(
∥θi∥2

)
.

Here we note that we reach the final inequality due to the following derivations:

Eϵsh

[
Eϵins

[
Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)]]m
i=1

≤
∫
Bsh

[∫
Bi

ns

Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)
dϵins +

1√
N

]m
i=1

dϵsh

+

∫
Bc

sh

[∫
Bi

ns

Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)
dϵins +

1√
N

]m
i=1

dϵsh

≤
∫
Bsh

[∫
Bi

ns

Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)
dϵins

]m
i=1

dϵsh +

(
1− 1√

N

)
1√
N

+
1√
N

≤ max||ϵsh||<ρsh

[
max||ϵins||<ρns

[
Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)] ]m
i=1

+
2√
N

− 1

N
,

where Bsh = {ϵsh : ||ϵsh|| ≤ ρsh}, Bc
sh is the compliment set, and Bi

ns =
{
ϵins : ||ϵins|| ≤ ρns

}
.

C GRADIENT AGGREGATION STRATEGIES OVERVIEW

This section details how the gradient aggregate operation is defined according to recent gradient-
based multi-task learning methods that we employed as baselines in the main paper, including MGDA
(Sener & Koltun, 2018), PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2021a) and IMTL (Liu et al.,
2020). Assume that we are given m vectors g1, g2, . . . , gm represent task gradients. Typically, we
aim to find a combined gradient vector as:

g = gradient aggregate(g1, g2, . . . , gm)

.
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C.1 MULTIPLE-GRADIENT DESCENT ALGORITHM - MGDA

Sener & Koltun (2018) apply MGDA (Désidéri, 2012) to find the minimum-norm gradient vector
that lies in the convex hull composed by task gradients g1, g2, . . . , gm:

g = argmin||
m∑
i=1

wig
i||2, s.t.

m∑
i=1

wi = 1 and , wi ≥ 0∀i.

This approach can guarantee that the obtained solutions lie on the Pareto front of task objective
functions.

C.2 PROJECTING CONFLICTING GRADIENTS - PCGRAD

PCgrad resolves the disagreement between tasks by projecting gradients that conflict with each
other, i.e. ⟨gi, gj⟩ < 0, to the orthogonal direction of each other. Specifically, gi is replaced by its
projection on the normal plane of gj :

gi
PC = gi − gi · gj

||gj ||2
gj .

Then compute the aggregated gradient based on these deconflict vectors g =
∑m

i gi
PC.

C.3 CONFLICT AVERSE GRADIENT DESCENT - CAGRAD

CAGrad (Liu et al., 2021a) seeks a worst-case direction in a local ball around the average gradient
of all tasks, g0, that minimizes conflict with all of the gradients. The updated vector is obtained by
optimizing the following problem:

max
g∈R

min
i∈[m]

⟨gi, g⟩ s.t. ||g − g0|| ≤ c|||g0|,

where g0 = 1
m

∑m
i gi is the averaged gradient and c is a hyper-parameter.

C.4 IMPARTIAL MULTI-TASK LEARNING - IMTL

IMTL (Liu et al., 2020) proposes to balance per-task gradients by finding the combined vector g,
whose projections onto {gi}mi=1 are equal. Following this, they obtain the closed-form solution for
the simplex vector w for reweighting task gradients:

w = g1U⊤ (DU⊤)−1

where ui = gi/
∥∥gi
∥∥, U =

[
u1 − u2, · · · ,u1 − um

]
, and D =

[
g1 − g2, · · · , g1 − gm

]
The

aggregated vector is then calculated as g =
∑m

i wig
i.

D IMPLEMENTATION DETAILS

In this part, we provide implementation details regarding the empirical evaluation in the main paper
along with additional comparison experiments.

D.1 BASELINES

In this subsection, we briefly introduce some of the comparative methods that appeared in the main
text:

• Linear scalarization (LS) minimizes the unweighted sum of task objectives
∑m

i Li(θ).
• Scale-invariant (SI) aims toward obtaining similar convergent solutions even if losses are

scaled with different coefficients via minimizing
∑m

i logLi(θ).
• Random loss weighting (RLW) (Lin et al., 2021) is a simple yet effective method for

balancing task losses or gradients by random weights.
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• Dynamic Weight Average (DWA) (Liu et al., 2019a) simply adjusts the weighting coefficients
by taking the rate of change of loss for each task into account.

• GradDrop (Chen et al., 2020) presents a probabilistic masking process that algorithmically
eliminates all gradient values having the opposite sign w.r.t a predefined direction.

D.2 IMAGE CLASSIFICATION

Network Architectures. For two datasets in this problem, Multi-MNIST and CelebA, we replicate
experiments from (Sener & Koltun, 2018; Lin et al., 2019) by respectively using the Resnet18 (11M
parameters) and Resnet50 (23M parameters) (He et al., 2016) with the last output layer removed
as the shared encoders and constructing linear classifiers as the task-specific heads, i.e. 2 heads for
Multi-MNIST and 40 for CelebA, respectively.

Training Details. We train the all the models under our proposed framework and baselines using:

• Multi-MNIST: Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001 for 200
epochs using a batch size of 256. Images from the three datasets are resized to 36× 36.

• CelebA: Batch-size of 256 and images are resized to 64× 64× 3. Adam (Kingma & Ba,
2014) is used again with a learning rate of 0.0005, which is decayed by 0.85 for every 10
epochs, our model is trained for 50 epochs in total.

Regarding the hyperparameter for SAM (Foret et al., 2021), we use their adaptive version (Kwon
et al., 2021) where both ρsh and ρns are set equally and extensively tuned from 0.005 to 5.

D.3 SCENE UNDERSTANDING

Two datasets used in this problem are NYUv2 and CityScapes. Similar to (Navon et al., 2022), all
images in the NYUv2 dataset are resized to 288× 384 while all images in the CityScapes dataset
are resized to 128× 256 to speed up the training process. We follow the exact protocol in (Navon
et al., 2022) for implementation. Specifically, SegNet (Badrinarayanan et al., 2017) is adopted as the
architecture for the backbone and Multi-Task Attention Network MTAN (Liu et al., 2019a) is applied
on top of it. We train each method for 200 epochs using Adam optimizer (Kingma & Ba, 2014) with
an initial learning rate of 1e− 4 and reduced it to 5e− 5 after 100 epochs. We use a batch size of 2
for NYUv2 and 8 for CityScapes. The last 10 epochs are averaged to get the final results, and all
experiments are run with three random seeds.

E ADDITIONAL RESULTS

To further show the improvement of our proposed training framework over the conventional one, this
section provides additional comparison results in terms of qualitative results, predictive performance,
convergent behavior, loss landscape, model sharpness, and gradient norm. Please note that in these
experiments, we choose IMTL and F-IMTL as two examples for standard and flat-aware gradient-
based MTL training respectively. We also complete the ablation study in the main paper by providing
results on all three datasets in the Multi-MNIST dataset.

E.1 IMAGE SEGMENTATION QUALITATIVE RESULT

In this section, we provide qualitative results of our method of the CityScapes experiment. We
compare our proposed method against its main baseline by highlighting typical cases where our
method excels in generalization performance. Figure 5 shows some visual examples of segmentation
outputs on the test set. Note that in the CityScapes dataset, the “void” class is identified as unclear
and pixels labeled as void do not contribute to either objective or score (Cordts et al., 2016).

While there is only a small gap between the segmentation performance of IMTL and F-IMTL, we
found that a small area, which is the car hood and located at the bottom of images, is often incorrectly
classified. For example, in Figure 5, the third and fourth rows compare the prediction of SegNet
(Badrinarayanan et al., 2017) with ERM training and with our proposed method. It can be seen
that both of them could not detect this area correctly, this is because this unclear “void” class did
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(a) A training sample (after augmentation)

(b) Corresponding original image (before augmentation)

(c) Predictions on an unseen image

(d) Predictions on an unseen image

Figure 5: Semantic segmentation prediction comparison on CityScapes . From left to right are input
images, ground truth, and segmentation outputs from SegNet (Badrinarayanan et al., 2017) using
ERM training and sharpness-aware training. Regions that are represented in gray color are ignored
during training. (Best viewed in color).

not appear during training. Even worse, the currently employed data augmentation technique in the
codebase of Nash-MTL and other recent multi-task learning methods Navon et al. (2022); Liu et al.
(2021a) consists of RandomCrop, which often unintentionally excludes edge regions. For example,
Figure 5a shows an example fed to the neural network for training, which excludes the car hood and
its logo, compared to the original image (Figure 5b). Therefore, we can consider this ”void” class as
a novel class in this experiment, since its appearance is ignored in both training and evaluation. Even
though, in Figures 5c and 5d our training method is still able to distinguish between this unknown
area and other nearby known classes, which empirically shows the robustness and generalization
ability of our method over ERM.

E.2 PREDICTIVE PERFORMANCE

In this part, we provide experimental justification for an intriguing insight into the connection between
model sharpness and model calibration. Empirically, we found that when a model converges to flatter
minima, it tends to be more calibrated. We start by giving the formal definition of a well-calibrated
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classification model and three metrics to measure the calibration of a model, then we analyze our
empirical results.

Consider a C-class classification problem with a test set of N samples given in the form (xi, yi)
N
i=1

where yi is the true label for the sample xi. Model outputs the predicted probability for a given
sample xi to fall into C classes, is given by

p̂(xi) = [p̂(y = 1|xi), . . . , p̂(y = C|xi)].

p̂(y = c|xi) is also the confidence of the model when assigning the sample xi to class c. The
predicted label ŷi is the class with the highest predicted value, p̂(xi) := maxc p̂(y = c|xi). We refer
to p̂(xi) as the confidence score of a sample xi.

Model calibration is a desideratum of modern deep neural networks, which indicates that the
predicted probability of a model should match its true probability. This means that the classification
network should be not only accurate but also confident about its prediction, i.e. being aware of when
it is likely to be incorrect. Formally stated, the perfect calibration (Guo et al., 2017) is:

P (ŷ = y|p̂ = q) = q,∀q ∈ [0, 1]. (11)

Metric. The exact computation of Equation 11 is infeasible, thus we need to define some metrics to
evaluate how well-calibrated a model is.

• Brier score ↓ (BS) (Brier et al., 1950) assesses the accuracy of a model’s predicted probability
by taking into account the absolute difference between its confidence for a sample to fall
into a class and the true label of that sample. Formally,

BS =
1

N

N∑
i=1

C∑
c=1

(p̂(y = c|xi)− 1[yi = c])
2
.

• Expected calibration error ↓ (ECE) compares the predicted probability (or confidence) of
a model to its accuracy (Naeini et al., 2015; Guo et al., 2017). To compute this error, we
first bin the confidence interval [0, 1] into M equal bins, then categorize data samples into
these bins according to their confidence scores. We finally compute the absolute value of
the difference between the average confidence and the average accuracy within each bin,
and report the average value over all bins as the ECE. Specifically, let Bm denote the set of
indices of samples having their confidence scores belonging to the mth bin. The average
accuracy and the average confidence within this bin are:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1[ŷi = yi],

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂(xi).

Then the ECE of the model is defined as:

ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)|.

In short, the lower ECE neural networks obtain, the more calibrated they are.
• Predictive entropy (PE) is a widely-used measure of uncertainty (Ovadia et al., 2019;

Lakshminarayanan et al., 2017; Malinin & Gales, 2018) via the predictive probability of the
model output. When encountering an unseen sample, a well-calibrated model is expected to
yield a high PE, representing its uncertainty in predicting out-of-domain (OOD) data.

PE =
1

C

C∑
c=1

−p̂(y = c|xi) log p̂(y = c|xi).

Figures 6 and 7 plot the distribution of the model’s predicted entropy in the case of in-domain and
out-domain testing, respectively. We can see when considering the flatness of minima, the model
shows higher predictive entropy on both in-domain and out-of-domain, compared to ERM. This also
means that our model outputs high uncertainty prediction when it is exposed to a sample from a
different domain.
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Figure 6: Histograms of predictive entropy of ResNet18 (He et al., 2016) on in domain dataset, train
and test on MultiMNIST (left) and MultiFashion (right). We use the orange lines to denote ERM
training while blue lines indicate our proposed method.
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Figure 7: Out of domain: model is trained on MultiMNIST, then tested on MultiFashion (left) and
vice versa (right). Models trained with ERM give over-confident predictions as their predictive
entropy concentrates around 0.
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Here, we calculate the results for both tasks 1 and 2 as a whole and plot their ECE in Figure 8. When
we look at the in-domain prediction in more detail, our model still outperforms ERM in terms of
expected calibration error. We hypothesize that considering flat minima optimizer not only lowers
errors across tasks but also improves the predictive performance of the model.
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Figure 8: The predictive performance (measured by the expected calibration error) of neural networks
has been enhanced by using our proposed training method (right column).

We also report the Brier score and ECE for each task in Table 6 and Table 7. As can be observed from
these tables, our method shows consistent improvement in the model calibration when both scores
decrease over all scenarios.
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Table 6: Brier score on Multi-Fashion, Multi-Fashion+MNIST and MultiMNIST datasets. We use
the bold font to highlight the best results.

.

Dataset Task Multi-Fashion Multi-Fashion+MNIST MultiMNIST

ERM
Top left 0.237 0.055 0.082

Bottom right 0.254 0.217 0.106

Average 0.246 0.136 0.094

Ours
Top left 0.172 0.037 0.059

Bottom right 0.186 0.189 0.075
Average 0.179 0.113 0.067

Table 7: Expected calibration error on Multi-Fashion, Multi-Fashion+MNIST and MultiMNIST
datasets. Here we set the number of bins equal to 10.

Dataset Task Multi-Fashion Multi-Fashion+MNIST MultiMNIST

ERM
Top left 0.113 0.027 0.039

Bottom right 0.121 0.104 0.050

Average 0.117 0.066 0.045

Ours
Top left 0.034 0.015 0.022

Bottom right 0.032 0.083 0.028
Average 0.033 0.049 0.025

E.3 EFFECT OF CHOOSING PERTURBATION RADIUS ρ.

The experimental results analyzing the sensitivity of model w.r.t ρ are given in Figure 9. We evenly
picked ρ from 0 to 3.0 to run F-CAGrad on three Multi-MNIST datasets.
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Figure 9: Average accuracy when varying ρ from 0 to 3.0 (with error bar from three independent
runs).

We find that the average accuracy of each task is rather stable from ρ = 0.5, which means the effect
of different values of ρ in a reasonably small range is similar. It can also easy to notice that the
improvement tends to saturate when ρ ≥ 1.5.

E.4 GRADIENT CONFLICT.

In the main paper, we measure the percentage of gradient conflict on the MultiFashion+MNIST
dataset. Here, we provide the full results on three different datasets. As can be seen from Figure
10, there is about half of the mini-batches lead to the conflict between task 1 and task 2 when using
traditional training. Conversely, our proposed method significantly reduces such confliction (less than
5%) via updating the parameter toward flat regions.
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Figure 10: Task gradient conflict proportion of models trained with our proposed method and ERM
across MultiFashion, MultiFashion+MNIST and MultiMNIST datasets (columns).

E.5 LOSS LANDSCAPE

Thirdly, we provide additional visual comparisons of the loss landscapes trained with standard training
and with our framework across two tasks of three datasets of Multi-MNIST. As parts of the obtained
visualizations have been presented in the main paper, we provide the rest of them in this subsection.
The results in Figure 11 consistently show that our method obtains significantly flatter minima on
both two tasks, encouraging the model to generalize well.

(a) MultiFashion

(b) MultiFashion+MNIST

Figure 11: Loss landscapes of task 1 and task 2 on MultiFashion and MultiFashion+MNIST,
respectively.
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E.6 TRAINING CURVES

Secondly, we compare the test accuracy of trained models under the two settings in Fig. 13. It can be
seen that from the early epochs (20-th epoch), the flat-based method outperforms the ERM-based
method on all tasks and datasets. . Although the ERM training model is overfitted after such a long
training, our model retains a high generalizability, as discussed throughout previous sections.
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Figure 12: Train accuracy of models trained with our proposed method and ERM across 2 tasks
(rows) of MultiFashion, MultiFashion+MNIST and MultiMNIST datasets (columns).
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Figure 13: Test accuracy of models trained with our proposed method and ERM across 2 tasks
(rows) of MultiFashion, MultiFashion+MNIST and MultiMNIST datasets (columns).

Furthermore, we also plot the training accuracy curves across experiments in Figure 12 to show that
training accuracy scores of both ERM and our proposed method are similar and reach ≈ 100% from
50-th epoch, which illustrates that the improvement is associated with generalization enhancement,
not better training.

E.7 MODEL SHARPNESS

Fourthly, Figure 14 displays the evolution of ρ-sharpness of models along training epochs under
conventional loss function (ERM) and worst-case loss function (ours) on training sets of three datasets
from Multi-MNIST, with multiple values of ρ. We can clearly see that under our framework, for both
tasks, the model can guarantee uniformly low loss value in the ρ-ball neighborhood of parameter
across training process. In contrast, ERM suffers from sharp minima from certain epochs when the
model witnesses a large gap between the loss of worst-case perturbed model and current model. This
is the evidence for the benefit that our framework brings to gradient-based methods, which is all tasks
can concurrently find flat minima thus achieving better generalization.
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(c) ρ = 0.5

Figure 14: Sharpness of models trained with our proposed method and ERM with different values
of ρ. For each ρ, the top and bottom row respectively represents the first and second task, and each
column respectively represents each dataset in Multi-MNIST: from left to right are MultiFashion,
MultiFashion+MNIST, MultiMNIST.

E.8 GRADIENT NORM

Finally, we demonstrate the gradient norm of the loss function w.r.t the worst-case perturbed parameter
of each task. On the implementation side, we calculate the magnitude of the flat gradient gi,flat for
each task at different values of ρ in Figure 15. As analyzed by equation (6) from the main paper,
following the negative direction of gi,SAM

sh will lower the L2 norm of the gradient, which orients the
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model towards flat regions. This is empirically verified in Figure 15. In contrast, as the number of
epochs increases, gradnorm of the model trained with ERM tends to increase or fluctuate around a
value higher than that of model trained with SAM.
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Figure 15: Gradient magnitude at the worst-case perturbations of models trained with our proposed
method and ERM with different values of ρ. For each ρ, the top and bottom row respectively
represents the first and second task, and each column respectively represents each dataset in Multi-
MNIST: from left to right are MultiFashion, MultiFashion+MNIST, MultiMNIST.
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