
TV-Rec: Time-Variant Convolutional Filter for
Sequential Recommendation

Yehjin Shin Jeongwhan Choi Seojin Kim Noseong Park∗

KAIST
{yehjin.shin, jeongwhan.choi, seojinkim, noseong}@kaist.ac.kr

Abstract

Recently, convolutional filters have been increasingly adopted in sequential rec-
ommendation for their ability to capture local sequential patterns. However, most
of these models complement convolutional filters with self-attention. This is be-
cause convolutional filters alone, generally fixed filters, struggle to capture global
interactions necessary for accurate recommendation. We propose Time-Variant
Convolutional Filters for Sequential Recommendation (TV-Rec), a model inspired
by graph signal processing, where time-variant graph filters capture position-
dependent temporal variations in user sequences. By replacing both fixed kernels
and self-attention with time-variant filters, TV-Rec achieves higher expressive
power and better captures complex interaction patterns in user behavior. This de-
sign not only eliminates the need for self-attention but also reduces computation
while accelerating inference. Extensive experiments on six public benchmarks
show that TV-Rec outperforms state-of-the-art baselines by an average of 7.49%.

1 Introduction

Recommender systems have become essential for guiding users through vast amounts of content
by providing personalized information based on users’ historical interactions [41, 13, 1, 19, 15,
2, 3, 8, 16, 21]. Considering that preferences evolve over time, sequential recommendation (SR)
has become widely used for capturing dynamic preferences using sequential patterns in users’
interactions. Various approaches have been developed to more accurately capture users’ dynamic
sequential patterns, including architectures such as Markov chains [25], RNNs [14], and GNNs [36].
Transformers [32], a powerful architecture in NLP, have been widely adopted as encoders for many
SR models, highlighting their ability to model long-term dependencies in data [18, 30, 24, 6].

Table 1: Comparison of existing methods based on three
points: i) convolutional filter type, ii) inference efficiency,
and iii) recommendation performance. The double tick mark
indicates better performance compared to a single tick mark.

Model Convolutional Self- Inference Rec.
Filter Attention Efficiency Performance

SASRec [18] ✗ ✓ ✓ ✓
BERT4Rec [30] ✗ ✓ ✓ ✓

Caser [31] Fixed ✗ ✗ ✓
NextItNet [42] Fixed ✗ ✗ ✓
FMLPRec [47] Fixed ✗ ✓ ✓

AdaMCT [17] Fixed ✓ ✗ ✓✓
BSARec [29] Fixed ✓ ✗ ✓✓

TV-Rec (Ours) Time-Variant ✗ ✓ ✓✓

Despite their modeling power, self-
attention mechanisms have a funda-
mental limitation: they lack an induc-
tive bias toward sequential structure.
While position embeddings provide
absolute position information, self-
attention still treats all positions pair-
wise without any inherent bias toward
local proximity. As a result, it makes
it difficult to model fine-grained, local-
ized user behavior patterns [29]. This
limitation has led to the development
of hybrid models that integrate con-
volutional layers to introduce locality

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

bias. For instance, AdaMCT [17] utilizes self-attention and 1D convolution together to capture
both long-term and short-term user preferences, while BSARec [29] addresses the limitations of
self-attention by applying convolution using the Fourier Transform.

At the same time, convolution-only models have been explored for their effectiveness in capturing
local sequential dependencies, which are particularly valuable in SR. As shown in Table 1, models
such as Caser [31], NextItNet [42], and FMLPRec [47] use fixed convolutional filters to detect
patterns in user sequences. These filters focus on users’ recent behavior, which is advantageous
in recommending users’ next items. However, their fixed nature limits their adaptability: the same
filter is applied uniformly across positions, making it difficult to capture temporally evolving or
position-specific semantics. While convolutional filters solve this issue by using multiple fixed filters
to capture various patterns, these filters remain static and cannot adapt to the specific context or
temporal variations at each position in the sequence. This limits their expressiveness in modeling
evolving user preferences, especially when user interests shift rapidly over time.

This reveals a fundamental trade-off: convolution excels at modeling local patterns but lacks flexibility,
whereas self-attention is expressive but inefficient and insensitive to locality. To bridge this gap, we
propose a new architecture called Time-Variant Convolutional Filters for Sequential Recommendation
(TV-Rec), which captures both local and global patterns while achieving greater efficiency than
existing hybrid models such as AdaMCT and BSARec. We design time-variant convolutional filters
to effectively capture temporal variations and emphasize the most relevant elements at each time step.
Our key finding is that existing complicated models based on self-attention and convolutional filters
can be replaced with our time-variant convolutional filter.

Inspired by graph signal processing (GSP), we reinterpret SR as a line graph and, instead of using
fixed convolution filters, apply time-variant graph filters, analogous to node-variant filters in the graph
domain. These filters enable us to effectively adapt weights across the sequence, eliminating the need
for positional embeddings while directly encoding temporal signals. Moreover, the time-variant filters
act as linear operators, resulting in faster inference with lower complexity.

To evaluate the effectiveness of TV-Rec, we conduct extensive experiments on 6 benchmark datasets.
Our results indicate that TV-Rec consistently outperforms state-of-the-art baseline methods. Addi-
tionally, we perform a series of experiments comparing the theoretical and practical complexity of
TV-Rec with other recent hybrid baselines that combine convolution and self-attention. These experi-
ments demonstrate improved recommendation accuracy and enhanced generalization capabilities.
The contributions of this work are as follows:

• We propose Time-Variant Convolutional Filters for Sequential Recommendation (TV-Rec),
using time-variant convolutional filters to capture temporal dynamics and user behavior
patterns more effectively (Sec. 3).

• We show that TV-Rec provides more expressive generalization (Sec. 3.4) and effectively
captures both long-term preferences and recent interests via filters designed as functions of
time (Sec. 4.5).

• We conduct extensive experiments on 6 benchmark datasets, and the results demonstrate that
TV-Rec outperforms state-of-the-art baseline methods by an average of 7.49% (Sec. 4.2),
while achieving the optimal balance between accuracy and efficiency (Sec. 4.6).

2 Preliminaries

In this section, we present the problem statement and the notations used in this paper. We then discuss
GSP and the node-variant graph filter, which are core components of TV-Rec.

2.1 Problem Statement

SR aims to model user behavior sequences based on implicit feedback to predict and recommend the
user’s next interaction. Assume that we have a set of users U and a set of items V , where |U| and |V|
denote the total numbers of users and items, respectively. The interacted items of each user u ∈ U can
be chronologically ordered into a sequence S(u) = [v

(u)
1 , v

(u)
2 , . . . , v

(u)

|S(u)|], where v(u)i represents the
i-th item in the sequence of user u. For simplicity, the superscript (u), which indicates the user, will

2

be omitted henceforth. Therefore, the goal is to predict p(v|S|+1 = v | S) and recommend a Top-r
list of items as potential next interactions in the sequence.

2.2 Graph Signal Processing (GSP)

Our method, TV-Rec, incorporates key concepts from GSP. GSP analyzes signals on graphs, with
graph filtering as a core operation that emphasizes or suppresses specific frequency components of
the signal. Given a shift operator S ∈ RN×N , which can be an adjacency matrix or a Laplacian
matrix, a graph filter G is defined as a polynomial of S:

y = Gx =

K∑
k=0

hkS
kx, (1)

where x ∈ RN is a graph signal, hk are filter taps and K is the order of the filter.

This operation can be interpreted in the frequency domain using the graph Fourier transform (GFT),
which enables the decomposition of graph signals into different frequency components. Given a shift
operator S, the GFT is defined using its eigen-decomposition2:

S = U diag(λ)U⊤, (2)

where U is the matrix of eigenvectors, λ is the vector of eigenvalues, and diag(·) indicates construct-
ing a diagonal matrix from a vector. The GFT of a graph signal x is x̃ = U⊤x, and the inverse GFT
is x = Ux̃. In the frequency domain, the graph filter G acts on the transformed signal x̃:

ỹ = G̃x̃ =
(K∑

k=0

hk diag(λ)k
)
x̃, (3)

where G̃ forms a diagonal matrix, allowing the calculation between the graph filter and the signal to
be element-wise multiplication. The filtered signal in the time domain can be obtained by applying
inverse GFT, y = Uỹ.

In SR, GSP can be utilized to model user behavior sequences as graph signals by representing items
as nodes in a line graph. By applying graph filters, we can capture the complex dependencies between
items and enhance the predictive performance of SR. Graph convolution in this setting aggregates
information from neighboring items in the sequence, which are close in time, allowing the model to
learn both local and global patterns in user interactions.

2.3 Node-Variant Graph Filter

We focus on node-variant graph filters [28, 7], that apply distinct filter taps at each node position. As
shown in Fig. 1, conventional graph convolutional filters introduced above use a scalar as the filter
tap (hk), whereas node-variant graph filters Gnv use a vector (hk) for the filter tap, as follows:

y = Gnvx =
(K∑

k=0

diag(hk)S
k
)
x, (4)

where diag(·) indicates constructing a diagonal matrix from a vector, meaning that every node has
a different filter tap hk = [h

(1)
k , h

(2)
k , · · · , h(N)

k]. The set of filter taps can be represented in matrix
form as H ∈ CN×(K+1), where the k-th column is hk.

While conventional graph convolutional filters are calculated by element-wise multiplication of the
frequency responses of the graph signal and the filter, the frequency response of a node-variant graph
filter is given as follows:

ỹ = G̃nvx̃ = U⊤(U ◦ (HΛ⊤))x̃, (5)

2In the general case, the GFT considers the Jordan decomposition S = VJV−1, but we assume that S is a
diagonalizable matrix, so the Jordan decomposition is equivalent to the eigen-decomposition.

3

𝑥! 𝑥" 𝑥#

𝑦! 𝑦" 𝑦#

0 0

Multiply

Sum

ℎ! ℎ" ℎ#

ℎ! ℎ" ℎ#

ℎ! ℎ" ℎ#

(a) Fixed Filter

𝑥! 𝑥" 𝑥#

𝑦! 𝑦"

0

𝑦#

0

Multiply

Sum

ℎ!
(!)	 ℎ"

(!) ℎ#
(!)

ℎ!
(") ℎ"

(") ℎ#
(")

ℎ!
(#) ℎ"

(#) ℎ#
(#)

(b) Time-Variant Convolutional Filter

Figure 1: Comparison of a fixed filter in (a) and a time-variant convolutional filter in (b) under our
line graph expression of a sequence of signals xi, with K = 2 and N = 3. The output yj , i.e., the
filtered signal at index j, is produced by summing the filtered results. Arrow colors show each filter’s
contribution to the output yj , while different hi box colors represent different filters. In the fixed filter
case in (a), the same filter hi is applied to every node, while the time-variant convolutional filter in
(b) allows each node to have its own filter.

where Λ ∈ CN×(K+1) is a Vandermonde matrix3 given by Λik = λk−1
i and ◦ denotes the element-

wise product of matrices. The proof for the frequency response of the node-variant graph filter can be
found in Appendix A.

Node-variant graph filters provide a flexible, general approach to creating operators while preserving
local implementation, effectively adapting to changing user preferences. In our line graph context,
where each node represents a distinct time point, these filters function equivalently to time-variant
convolutional filters. For consistency, we will use this term in the following sections.

3 Proposed Method

Embedding Layer

Filter Layer

Add & Norm

Feed Forward

Add & Norm

Prediction Layer

𝐗"ℓ = 𝐔 ∘ 𝐇𝚲" 𝐔"𝐗ℓ

IGFT Filter GFT

Element-wise
multiplication

GFT matrix: 𝐔!

IGFT matrix: 𝐔

Graph Fourier Transform (GFT)

=

𝐒 𝐔 𝐔!

00𝜆!

0𝜆"0

𝜆#00

𝑢#𝑢"𝑢! 𝑢#𝑢"𝑢!

𝜆!#𝜆!"𝜆!1

𝜆"#𝜆""𝜆"1

𝜆##𝜆#"𝜆#1

𝚲 =𝐿	×

diag(𝛌)

Figure 2: Architecture of our proposed TV-Rec.

In this section, we present the design
of TV-Rec. As shown in Fig. 2, TV-
Rec consists of 3 modules: embedding
layer, time-variant encoder, and pre-
diction layer.

3.1 Embedding Layer

We first convert a user’s historical in-
teraction sequence S to a fixed length
N . If |S| ≥ N , we truncate the se-
quence keeping the most recent N
items, and if |S| < N , we pad the
sequence with zeros at the beginning.
This process results in a sequence of
length N , denoted as s = (s1, s2, · · · , sN). Using the item embedding matrix E ∈ R|V|×D where D
is the latent dimension size, we then apply a look-up operation to obtain the embedding representation
of the user sequence, followed by layer normalization and dropout. This process produces the final
embedding of the user sequence X0, serving as the input for the time-variant encoder:

X0 = Dropout(LayerNorm([Es1 ,Es2 , · · · ,EsN]⊤)), (6)

where Ev denotes the embedding of item v from E. Note that positional embedding is not necessary
due to the benefits of applying our time-variant convolutional filters.

3A Vandermonde matrix has rows formed by the powers of a set of values, with each element in the i-th row
and j-th column given by xj−1

i .

4

3.2 Time-Variant Encoder

We build our item encoder by stacking L time-variant encoding blocks, each containing a filter layer,
a feed-forward network, and a residual connection applied after both.

Filter Layer. In the ℓ-th filter layer, with Xℓ as the input, we perform a filtering operation, then
apply a residual connection and layer normalization. As shown in Fig. 2, we first transform Xℓ into
the frequency domain as X̃ℓ = U⊤Xℓ, where U denotes the GFT matrix derived from a padded
directed cyclic graph (DCG), which we adopt in place of a line graph to ensure diagonalizability and
enable spectral filtering (see Appendix B for formal justification). Then, we calculate the time-variant
convolutional filter using the filter tap H ∈ CN×(K+1) and the Vandermonde matrix Λ ∈ RN×(K+1):

X̂ℓ = GnvX̃ =
(
U ◦ (HΛ⊤)

)
X̃ℓ =

(
U ◦ (HΛ⊤)

)
U⊤Xℓ (7)

where ◦ indicates element-wise multiplication. Note that the inverse GFT matrix U is multiplied with
the filter earlier than it is with the frequency response of the signal X̃ℓ. To enhance expressive power,
we construct the filter matrix H as follows:

H = CB̄ = C

(
B

∥B∥2

)
, (8)

where C ∈ RN×m is the coefficient matrix that generates position-specific filters, and B̄ ∈
Cm×(K+1) is the normalized basis matrix. The parameter m determines the number of basis vectors.
Since each node corresponds to a position in the sequence, C can be considered as a function of time.
For numerical stability, we normalize B using the L2 norm along each row.

After Eq. (7), we use a residual connection with dropout and layer normalization to prevent overfitting:

Fℓ = LayerNorm(Xℓ + Dropout(X̂ℓ)). (9)

Feed Forward Layer. After the filter layer, we employ a feed-forward network for non-linearity:

F̂ℓ = FFN(Fℓ) = (GELU(FℓWℓ
1 + bℓ

1))W
ℓ
2 + bℓ

2, (10)

where Wℓ
1, Wℓ

2 ∈ RD×D, and bℓ
1, bℓ

2 ∈ RD×D are learnable parameters. As in Eq. (9), we apply a
dropout layer, residual connections, and layer normalization to get the output of ℓ’s layer as follows:

Xℓ+1 = LayerNorm(Fℓ + Dropout(F̂ℓ)). (11)

3.3 Prediction Layer and Training

Prediction Layer. After processing through L time-variant encoding blocks, we compute the user’s
preference score for each item in the entire item set V as follows:

ŷv = p(v|S|+1 = v|S) = E⊤
v X

L
N , (12)

where Ev is the embedding of item v and XL
N is the final sequence representation.

Model Training. Similar to other studies [17, 29, 24], we optimize our model using cross-entropy
loss Lce with an orthogonal regularization term Lortho on the basis matrix B used in Eq. (8):

L = − log
exp(ŷg)∑
v∈V exp(ŷv)︸ ︷︷ ︸
Lce

+α ·
(∥∥BrealB

⊤
real − I

∥∥2
F
+

∥∥BimagB
⊤
imag − I

∥∥2
F

)
︸ ︷︷ ︸

Lortho

, (13)

where g is the ground-truth item, Breal and Bimag denote the real and imaginary components of B, α
controls the regularization strength, I denotes the identity matrix, and F denotes the Frobenius norm.

5

3.4 Discussion

Relations to Other Methods. From a graph filtering perspective, several existing SR methods
can be viewed as special cases within our time-variant filter. In particular, 1D CNN in AdaMCT
corresponds to a fixed graph convolutional filter, G in Eq. (1), where K is the kernel size. Similarly,
FMLPRec and BSARec apply the discrete Fourier transform (DFT), mathematically equivalent to
the GFT of a DCG [27, 26, 29], representable as G̃ in Eq. (3). Our time-variant filter is a more
general method that can be reduced to these approaches as special cases when the filters are fixed. By
contrast, Transformer-based studies that interpret self-attention via graph filtering [4, 34] differ from
our approach, as TV-Rec reformulates SR as graph signal filtering without relying on self-attention.

Comparison to GNN-based Methods. TV-Rec relates to GNN-based methods that model item
dependencies through item-transition graphs [35, 37, 45], but differs in two key aspects. First, TV-Rec
defines sequence positions rather than items as graph nodes. This enables the model to capture
fine-grained temporal and positional dependencies that are often ignored when identical items are
merged in a graph. Second, while GNN-based models rely on iterative message passing, TV-Rec
employs time-variant graph convolutional filters directly in the spectral domain without recursive
propagation, yielding a more efficient representation of temporal dynamics.

Why We Need Time-Variant Graph Filters? In Fig. 1, a fixed filter applies the same weights in
the sequence, emphasizing recent items. However, it also makes it difficult to capture specific patterns
at different stages. For instance, while the patterns at the end of the sequence may highlight recent
items, the patterns at the beginning can provide crucial insights into the user’s overall preferences. As
a result, the fixed filter may lose valuable information, particularly when attempting to understand
early-stage patterns. In contrast, our time-variant filter uses different filters for each position, allowing
the model to capture both recent items and long-term preferences.

Why Positional Encoding is Unnecessary? Unlike Transformer-based models that require explicit
positional encodings, TV-Rec naturally encodes positional information via the spectral properties
of the graph. Since TV-Rec constructs a DCG and applies the GFT, it shares the same frequency
components as sinusoidal encodings (see Appendix C). Furthermore, the time-variant graph filter acts
as a position-specific operation, dynamically modulating frequency components without requiring
additional embeddings. In Sec. 4.3, we confirm that adding positional embeddings does not offer a
performance benefit.

Time Complexity. Assume that n is the length of the input sequence and d is the dimension of
each input vector. The time complexity of self-attention is O(nd2 + n2d), where O(nd2) is for
computing the key, query, and value matrices, and O(n2d) is for calculating the attention scores
and applying them to the value matrix. The time complexity of our time-variant convolutional filter
is O(n2m + n2d), where O(n2m) is for computing the filter tap H, and O(n2d) is for applying
GFT to the input signal and multiplying it with the filter tap. Since m ≤ n, this can be simplified to
O(n3 + n2d). The difference in complexity between self-attention and the time-variant graph filter
depends on the relative sizes of n and d, as it determines which term dominates. It is worth noting
that the time-variant convolutional filter is a linear operator, so Gnv does not need to be computed
for every inference, and can be precomputed after training, resulting in a time complexity of O(n2d).

4 Experiments

4.1 Experimental Setup

We evaluate TV-Rec on 6 benchmark datasets for SR, following the preprocessing procedures in
[47, 46]. For standard experiments, we set the maximum sequence length N to 50. Additionally,
to examine performance on long-range dependencies, we conduct experiments on ML-1M and
Foursquare with longer average interactions, setting N to 200. For evaluation, we use standard Top-r
metrics (HR@r and NDCG@r for r ∈ {5, 10, 20}) computed over the entire item set without negative
sampling [20]. Detailed experimental setups, including dataset statistics and optimal hyperparameter
configurations, are provided in Appendix D. The source code is publicly available at https://
github.com/yehjin-shin/TV-Rec.

6

https://github.com/yehjin-shin/TV-Rec
https://github.com/yehjin-shin/TV-Rec

Table 2: Performance comparison of different methods. Best results are in bold and second-best
results are underlined. ‘Improv.’ indicates the relative improvement against the best baseline.
Datasets Metric Caser GRU4Rec SASRec BERT4Rec NextItNet FMLPRec DuoRec LRURec AdaMCT BSARec TV-Rec Improv.

Beauty

HR@5 0.0149 0.0170 0.0368 0.0491 0.0549 0.0423 0.0680 0.0648 0.0675 0.0714 0.0721 0.98%
HR@10 0.0253 0.0307 0.0574 0.0742 0.0779 0.0639 0.0944 0.0889 0.0925 0.0990 0.1017 2.73%
HR@20 0.0416 0.0499 0.0860 0.1079 0.1100 0.0949 0.1279 0.1197 0.1299 0.1393 0.1403 0.72%
NDCG@5 0.0089 0.0105 0.0241 0.0318 0.0392 0.0272 0.0485 0.0472 0.0489 0.0501 0.0513 2.40%
NDCG@10 0.0122 0.0149 0.0307 0.0399 0.0467 0.0341 0.0570 0.0549 0.0569 0.0590 0.0608 3.05%
NDCG@20 0.0164 0.0198 0.0379 0.0484 0.0547 0.0419 0.0654 0.0627 0.0664 0.0691 0.0705 2.03%

Sports

HR@5 0.0091 0.0131 0.0215 0.0279 0.0311 0.0222 0.0390 0.0351 0.0386 0.0422 0.0431 2.13%
HR@10 0.0147 0.0211 0.0319 0.0434 0.0458 0.0358 0.0549 0.0502 0.0544 0.0623 0.0635 1.93%
HR@20 0.0253 0.0347 0.0485 0.0658 0.0682 0.0549 0.0779 0.0698 0.0769 0.0865 0.0880 1.73%
NDCG@5 0.0064 0.0084 0.0142 0.0182 0.0212 0.0148 0.0276 0.0242 0.0272 0.0296 0.0298 0.68%
NDCG@10 0.0082 0.0110 0.0175 0.0232 0.0260 0.0191 0.0328 0.0291 0.0322 0.0361 0.0363 0.55%
NDCG@20 0.0109 0.0144 0.0217 0.0288 0.0316 0.0239 0.0385 0.0340 0.0379 0.0422 0.0425 0.71%

Yelp

HR@5 0.0131 0.0137 0.0165 0.0243 0.0247 0.0195 0.0277 0.0240 0.0239 0.0260 0.0290 4.69%
HR@10 0.0230 0.0240 0.0267 0.0411 0.0423 0.0313 0.0450 0.0396 0.0404 0.0446 0.0474 5.33%
HR@20 0.0388 0.0412 0.0445 0.0681 0.0694 0.0518 0.0730 0.0656 0.0670 0.0718 0.0777 6.44%
NDCG@5 0.0080 0.0086 0.0103 0.0154 0.0151 0.0122 0.0179 0.0151 0.0153 0.0162 0.0186 3.91%
NDCG@10 0.0112 0.0119 0.0135 0.0208 0.0208 0.0160 0.0234 0.0201 0.0206 0.0222 0.0245 4.70%
NDCG@20 0.0151 0.0162 0.0180 0.0275 0.0276 0.0211 0.0304 0.0266 0.0272 0.0290 0.0321 5.59%

LastFM

HR@5 0.0303 0.0339 0.0422 0.0358 0.0431 0.0450 0.0404 0.0358 0.0468 0.0505 0.0596 18.02%
HR@10 0.0459 0.0394 0.0670 0.0606 0.0624 0.0670 0.0587 0.0532 0.0716 0.0679 0.0853 19.13%
HR@20 0.0606 0.0550 0.0972 0.0908 0.0936 0.1000 0.0872 0.0807 0.1018 0.1119 0.1202 7.42%
NDCG@5 0.0222 0.0231 0.0301 0.0213 0.0264 0.0321 0.0276 0.0257 0.0330 0.0348 0.0402 15.52%
NDCG@10 0.0269 0.0249 0.0382 0.0291 0.0325 0.0392 0.0336 0.0312 0.0409 0.0405 0.0484 18.34%
NDCG@20 0.0306 0.0288 0.0458 0.0366 0.0402 0.0475 0.0407 0.0380 0.0485 0.0514 0.0572 11.28%

ML-1M

HR@5 0.1033 0.1225 0.1406 0.1651 0.1858 0.1329 0.1821 0.1916 0.1773 0.1909 0.2013 5.06%
HR@10 0.1671 0.1925 0.2199 0.2442 0.2724 0.2089 0.2690 0.2848 0.2560 0.2798 0.2904 1.97%
HR@20 0.2598 0.2906 0.3250 0.3459 0.3853 0.3212 0.3757 0.3886 0.3647 0.3844 0.4079 4.97%
NDCG@5 0.0663 0.0779 0.0920 0.1077 0.1264 0.0861 0.1226 0.1339 0.1185 0.1286 0.1371 2.39%
NDCG@10 0.0868 0.1006 0.1174 0.1332 0.1543 0.1105 0.1507 0.1640 0.1438 0.1573 0.1658 1.10%
NDCG@20 0.1101 0.1253 0.1438 0.1588 0.1829 0.1388 0.1776 0.1901 0.1711 0.1836 0.1955 2.84%

Foursquare

HR@5 0.0139 0.0148 0.0139 0.0139 0.0129 0.0120 0.0139 0.0148 0.0157 0.0148 0.0175 11.46%
HR@10 0.0175 0.0157 0.0185 0.0157 0.0175 0.0175 0.0185 0.0166 0.0185 0.0212 0.0259 22.17%
HR@20 0.0268 0.0231 0.0268 0.0231 0.0203 0.0240 0.0240 0.0212 0.0259 0.0277 0.0314 13.36%
NDCG@5 0.0099 0.0110 0.0102 0.0108 0.0093 0.0076 0.0110 0.0110 0.0105 0.0111 0.0134 20.72%
NDCG@10 0.0110 0.0113 0.0117 0.0113 0.0108 0.0094 0.0124 0.0116 0.0113 0.0130 0.0161 23.85%
NDCG@20 0.0133 0.0132 0.0137 0.0132 0.0115 0.0110 0.0139 0.0127 0.0131 0.0147 0.0176 19.73%

Table 3: Results of long-range modeling performance.
Datasets Metric Caser GRU4Rec SASRec BERT4Rec NextItNet FMLPRec DuoRec LRURec AdaMCT BSARec TV-Rec Improv.

ML-1M

HR@5 0.1109 0.1518 0.1558 0.1730 0.1978 0.1397 0.1930 0.2233 0.1760 0.1949 0.2255 0.99%
HR@10 0.1869 0.2374 0.2399 0.2573 0.2882 0.2296 0.2795 0.3175 0.2619 0.2917 0.3232 1.80%
HR@20 0.2942 0.3455 0.3551 0.3695 0.3970 0.3462 0.3854 0.4205 0.3695 0.4005 0.4306 2.40%
NDCG@5 0.0696 0.0981 0.1014 0.1147 0.1334 0.0885 0.1292 0.1516 0.1167 0.1327 0.1572 3.69%
NDCG@10 0.0939 0.1256 0.1285 0.1418 0.1627 0.1175 0.1571 0.1820 0.1443 0.1639 0.1886 3.63%
NDCG@20 0.1209 0.1528 0.1576 0.1701 0.1901 0.1468 0.1838 0.2079 0.1715 0.1913 0.2157 3.75%

Foursquare

HR@5 0.0139 0.0120 0.0111 0.0102 0.0083 0.0120 0.0120 0.0129 0.0120 0.0129 0.0148 6.47%
HR@10 0.0194 0.0157 0.0175 0.0157 0.0166 0.0148 0.0194 0.0139 0.0157 0.0175 0.0212 9.28%
HR@20 0.0231 0.0194 0.0295 0.0240 0.0259 0.0194 0.0286 0.0185 0.0305 0.0305 0.0323 5.90%
NDCG@5 0.0105 0.0099 0.0085 0.0078 0.0068 0.0087 0.0078 0.0099 0.0094 0.0089 0.0108 2.86%
NDCG@10 0.0123 0.0111 0.0106 0.0096 0.0095 0.0096 0.0102 0.0102 0.0106 0.0103 0.0129 4.88%
NDCG@20 0.0133 0.0120 0.0136 0.0117 0.0118 0.0108 0.0126 0.0114 0.0142 0.0135 0.0158 11.27%

4.2 Overall Performance

Sequential Recommendation Results. As shown in Table 2, TV-Rec outperforms all baseline
methods, with an average accuracy improvement of 7.49% over the strongest baselines. The im-
provements are particularly significant on LastFM (19.13% on HR@10 and 18.34% on NDCG@10)
and Foursquare (22.17% on HR@10 and 23.85% on NDCG@10). On larger datasets like ML-1M,
TV-Rec still shows gains with improvements of 5.06% on HR@5 and 2.39% on NDCG@5. However,
for E-commerce datasets like Beauty and Sports, the improvements are more subtle but still consistent
(0.98% and 2.13% on HR@5, respectively). Among the baselines, recent hybrid methods that combine
convolution and self-attention, such as AdaMCT and BSARec, show strong performance. BSARec
achieves the second-best results in many cases. For ML-1M, LRURec shows competitive results with
its specialized architecture for long sequences, while DuoRec achieves second-best performance for
Yelp. Despite these strong baselines, TV-Rec consistently outperforms them by significant margins.

7

Table 4: Results of performance comparison with GNN-based methods.

Methods Beauty Sports Yelp LastFM ML-1M Foursquare

H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20

TV-Rec 0.1403 0.0705 0.0880 0.0425 0.0777 0.0321 0.1202 0.0572 0.4079 0.1955 0.0314 0.0176

SR-GNN 0.0847 0.0374 0.0517 0.0224 0.0609 0.0252 0.0872 0.0379 0.2940 0.1390 0.0222 0.0137
GC-SAN 0.1059 0.0546 0.0608 0.0289 0.0635 0.0260 0.0807 0.0394 0.3255 0.1611 0.0212 0.0131
GCL4SR 0.1206 0.0601 0.0744 0.0356 0.0684 0.0276 0.0908 0.0398 0.3381 0.1607 0.0185 0.0123

Table 5: Ablation studies.

Methods Beauty Sports Yelp LastFM ML-1M Foursquare

H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20

TV-Rec 0.1403 0.0705 0.0880 0.0425 0.0777 0.0321 0.1202 0.0572 0.4079 0.1955 0.0314 0.0176

(1) Positional Embedding 0.1408 0.0702 0.0842 0.0396 0.0763 0.0320 0.1018 0.0496 0.4017 0.1936 0.0313 0.0160
(2) Basic Graph Filter 0.1402 0.0692 0.0857 0.0408 0.0747 0.0307 0.1165 0.0543 0.3974 0.1933 0.0212 0.0113
(3) Identity Basis 0.1400 0.0698 0.0851 0.0410 0.0765 0.0317 0.1138 0.0539 0.4015 0.1930 0.0277 0.0141
(4) Basis Normalization 0.1336 0.0689 0.0841 0.0412 0.0634 0.0264 0.0963 0.0418 0.3985 0.1912 0.0305 0.0144

Long-Range Sequential Recommendation Results. To examine the performance of TV-Rec on
long-range dependencies, we additionally conduct experiments on ML-1M and Foursquare, which
have a long average interaction length, by setting the maximum length N to 200. As shown in Table 3,
TV-Rec outperforms all baseline models in long-range SR tasks. Our model achieves an average
improvement of 4.74% on all metrics compared to the top baseline performances. The improvement
is particularly significant in NDCG metrics, with TV-Rec showing up to 11.27% gain in NDCG@20
for Foursquare. For ML-1M, we observe that LRURec performs strongest among baselines due to
its linear recurrent unit designed for long sequences. For Foursquare, Caser and AdaMCT show the
highest baseline performance. The superior results of TV-Rec on these settings show the effectiveness
of our time-variant filters on extended user interaction histories. This shows the ability of our approach
to maintain recommendation accuracy even when processing sequences with hundreds of interactions.

Comparison to GNN-based Methods. To further examine its effectiveness, we also compare
TV-Rec with three representative GNN-based sequential recommendation models: SR-GNN [35],
GC-SAN [37], and GCL4SR [45], under the same experimental settings described in Section 4.1.
While most GNN-based recommendation methods are tailored for collaborative filtering on static
user–item graphs, these GNN-based sequential models utilize item-transition graphs to model local
or global item dependencies. As shown in Table 4, TV-Rec consistently outperforms all GNN-based
sequential models, confirming the advantage of its time-variant filtering design. By operating directly
on sequence positions instead of propagating messages over item-transition graphs, TV-Rec achieves
a more efficient representation of temporal dependencies.

4.3 Ablation Studies

We conduct ablation studies to validate the design choices of TV-Rec. The results are shown in
Table 5. (1) First, we test an ablation model with added learnable positional embeddings. Unlike
recent SR models [29, 6, 17], TV-Rec performs effectively without positional embeddings because our
time-variant filter inherently captures position-specific information. The first ablation model yields
inconsistent results on all datasets. (2) Second, we define the second ablation model by replacing
our time-variant filter with a basic graph filter. This ablation model degrades the performance, which
confirms the effectiveness of our method as discussed in Sec. 4.5. (3) Third, to validate our filter
construction method (Eq. 8), we define the third ablation model by setting B as an identity matrix,
which makes H equal to C. This ablation model degrades results compared to our filter construction
method. (4) Fourth, we compare against the fourth ablation model that uses the basis matrix B directly
without normalization, demonstrating the effectiveness of our normalization approach. These results
prove that each component of our design contributes to the superiority of TV-Rec.

8

4.4 Parameter Sensitivity

We analyze the sensitivity of the parameters m and dropout rate p, as shown in Figs. 3 and 4. All
other hyperparameters are fixed at their optimal values. Additional results, including sensitivity to
filter order K and weight decay α, are provided in Appendix E.

4 8 16 32 50
m

0.
06

6
0.
06

8
0.
07

0
ND

CG
@
20

NDCG@20
HR@20 0.

13
6

0.
13

8
0.
14

0
HR

@
20

(a) Beauty

4 8 16 32 50
m

0.
04

6
0.
05

1
0.
05

8
ND

CG
@
20

NDCG@20
HR@20 0.

10
4

0.
11

2
0.
12

0
HR

@
20

(b) LastFM

Figure 3: Sensitivity to the number of basis vectors
m.

0.1 0.2 0.3 0.4 0.5
p

0.
03

70
.0
39

0.
04

2
ND

CG
@
20

NDCG@20
HR@20 0.

07
9
0.
08

3
0.
08

8
HR

@
20

(a) Sports

0.1 0.2 0.3 0.4 0.5
p

0.
01

1
0.
01

4
0.
01

7
ND

CG
@
20

NDCG@20
HR@20 0.

02
60
.0
28

0.
03

1
HR

@
20

(b) Foursquare

Figure 4: Sensitivity to dropout rate p.

Sensitivity to m. We employ a basis matrix
B in the time-variant graph filter (Eq. (8)),
where m controls the number of basis vectors,
influencing both expressiveness and computa-
tional cost. As shown in Fig. 3, performance on
Beauty peaks at m = 32 but drops sharply for
smaller values, indicating the need for richer
representations. Conversely, LastFM achieves
its best results at m = 8, with performance
degrading as m increases, suggesting that a
compact representation suffices for this dataset.

Sensitivity to p. The effect of dropout rate p
on Sports and Foursquare is shown in Fig. 4.
For Sports, larger p values improve perfor-
mance, while for Foursquare, smaller p values
work better. Datasets with fewer interactions
tend to benefit from higher dropout rates, which
help prevent overfitting by encouraging more
general representations.

4.5 Analyzing Filter Behavior and Case Study

0 10 20 30 40 50
Shift

0

10

20

30

40

50

No
de

0.00

0.02

0.04

0.06

0.08

0.10

0.12

(a) Basic Graph Filter

0 10 20 30 40 50
Shift

0

10

20

30

40

50

No
de

0.00

0.05

0.10

0.15

0.20

(b) Time-Variant Filter

Figure 5: Visualization of learned graph filters on LastFM.
The x-axis denotes the number of shifts in graph convo-
lution, while the y-axis represents individual nodes, with
higher numbers indicating more recent time points.

Early-stage Mid-stage Recent

Drama Comedy Action Western
Time-Variant FilterFixed Filter

Western Western

Comedy

Western
ActionComedy

Western

Movie Recommendation by

Figure 6: Case Study on ML-1M.

To understand why our time-variant filter
works better than fixed basic graph filter
(Eq.(3)), we analyze their learned repre-
sentations via visualizations and a case
study. Fig. 5 reveals the key difference be-
tween approaches: the basic graph filter
applies the same filter to all nodes, while
our time-variant filter applies different
filters to each node.

Both filters assign higher weights to
lower shifts, meaning they give stronger
weights to recent items. However, unlike
the basic graph filter, the time-variant
convolutional filter starts with similar
weights for the early-stage nodes, reflect-
ing the model’s focus on understanding
overall patterns. As the sequence pro-
gresses, the filter’s weights shift to em-
phasize recent items, allowing the filter to
capture temporal shifts more accurately.
This shows the time-variant filter’s ability
to adapt to both early and recent changes,
boosting performance.

Our case study on ML-1M (see Fig. 6)
shows this advantage in practice. The ba-
sic graph filter focuses solely on Western films from recent interactions, while our time-variant filter
captures both user’s recent Western interest and their broader Comedy preference. These findings
confirm our statement that applying different filtering operations at different temporal positions is
important for effective sequential recommendation.

9

4.6 Model Complexity and Runtime Analyses

0.6 0.7 0.8 0.9 1.0 1.1
Inference Time (seconds)

0.02

0.03

0.04

0.05

0.06

0.07

ND
CG

@
20

Caser

SASRec

BERT4Rec
NextItNet

FMLPRec

AdaMCTBSARecTV-Rec

Caser
SASRec
BERT4Rec
NextItNet

FMLPRec
AdaMCT
BSARec
TV-Rec

Figure 7: Comparison of model infer-
ence time and NDCG@20 on Beauty.
The size of each circle corresponds to
the number of parameters.

To evaluate the efficiency of TV-Rec, we analyze the
number of parameters and inference time. The results
across the full dataset are provided in the Appendix G.
As shown in Fig. 7, TV-Rec achieves the best balance be-
tween performance and computational efficiency. Among
top-performing methods, TV-Rec has the fastest inference
time with the smallest number of parameters, compared to
hybrid models that combine convolution and self-attention,
such as AdaMCT and BSARec. Compared to SASRec and
BERT4Rec, which use only self-attention, TV-Rec pro-
vides faster inference time and superior recommendation
accuracy. While FMLPRec runs slightly faster with its sim-
ple architecture, it achieves this through a basic graph filter
that degrades recommendation quality. Considering the
improved performance of TV-Rec, the marginally higher
inference time than FMLPRec is acceptable.

5 Related Work

5.1 Sequential Recommendation

SR has evolved from early approaches that used Markov chains [25] and RNNs [14] to model
sequential dependencies. Transformer-based models such as SASRec [18] and BERT4Rec [30] use
self-attention to capture global dependencies and establish new performance benchmarks. Recent
advanced methods have emerged to address specific challenges and efficiency-performance trade-offs
in SR. FMLPRec [47] proposes a filter-enhanced MLP to eliminate frequency domain noise, while
FEARec [6] and DuoRec [24] use contrastive learning approaches for better sequence representa-
tion. AC-TSR [48] calibrates unreliable attention weights generated by Transformer-based models.
LRURec [43] explores linear recurrent units to balance efficiency and performance. In addition, SR
models [22, 44, 40, 33] based on state space models [11, 10, 9] have been explored for potential in
SR.

5.2 Hybrid Approaches and Convolution in SR

Recent research has shown that convolution-based methods can serve as competitive alternatives to
existing SR methods [31, 38, 39, 47, 17, 29, 5]. The first to use convolution in SR was Caser [31],
which treats user-item interactions as images for 2D convolutions, followed by NextItNet [42], which
uses dilated 1D convolutions. FMLPRec [47] incorporated Fourier transforms within an all-MLP
architecture to enhance sequence representations. AdaMCT [17] incorporates 1D convolution into
Transformer-based recommendation model to capture both long-term and short-term user preferences.
BSARec [29] has recently achieved state-of-the-art results by addressing the limitations of self-
attention through the application of convolution using the Fourier transform. However, these models
typically require self-attention to achieve optimal performance. Our work differs by introducing
time-variant convolutional filters that achieve high performance without relying on self-attention.

6 Conclusion

We focus on the inherent limitations of conventional convolutional filters. Since these filters are fixed,
they may struggle to capture the complex patterns required for SR. To address this issue, we introduce
TV-Rec, which uses time-variant convolutional filters that apply different filters to each data point.
TV-Rec achieves high performance without relying on self-attention, even in long-range modeling.
Our method also benefits from fast inference times due to its linear operator nature. We validated
the effectiveness and efficiency of TV-Rec through extensive experiments on 6 datasets. In future
work, we plan to explore both the theoretical and practical relationships between our time-variant
filter and recent advances in state space models, which have demonstrated strong connections with
convolutional filters. We leave limitations in Appendix J.

10

Acknowledgments

This work was partly supported by the Institute for Information & Communications Technology
Planning & Evaluation (IITP) grants funded by the Korean government (MSIT) (No. RS-2022-
II220113, Developing a Sustainable Collaborative Multi-modal Lifelong Learning Framework),
Samsung Electronics Co., Ltd. (No. G01240136, KAIST Semiconductor Research Fund (2nd)), and
Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number
SRFC-IT2402-08.

References
[1] Jeongwhan Choi, Jinsung Jeon, and Noseong Park. LT-OCF: Learnable-time ode-based collab-

orative filtering. In Proceedings of the 30th ACM international conference on information &
knowledge management, pages 251–260, 2021.

[2] Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. Blurring-sharpening
process models for collaborative filtering. In Proceedings of the 46th international ACM SIGIR
conference on research and development in information retrieval, pages 1096–1106, 2023.

[3] Jeongwhan Choi, Hyowon Wi, Chaejeong Lee, Sung-Bae Cho, Dongha Lee, and Noseong Park.
RDGCL: Reaction-diffusion graph contrastive learning for recommendation. arXiv preprint
arXiv:2312.16563, 2023.

[4] Jeongwhan Choi, Hyowon Wi, Jayoung Kim, Yehjin Shin, Kookjin Lee, Nathaniel Trask, and
Noseong Park. Graph convolutions enrich the self-attention in transformers! Advances in Neural
Information Processing Systems, 37:52891–52936, 2024.

[5] Minjin Choi, Hye-young Kim, Hyunsouk Cho, and Jongwuk Lee. Multi-intent-aware session-
based recommendation. In Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 2532–2536, 2024.

[6] Xinyu Du, Huanhuan Yuan, Pengpeng Zhao, Jianfeng Qu, Fuzhen Zhuang, Guanfeng Liu,
Yanchi Liu, and Victor S Sheng. Frequency enhanced hybrid attention network for sequential
recommendation. In SIGIR, pages 78–88, 2023.

[7] Fernando Gama, Brendon G Anderson, and Somayeh Sojoudi. Node-variant graph filters in
graph neural networks. In 2022 IEEE Data Science and Learning Workshop (DSLW), pages
1–6. IEEE, 2022.

[8] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan Quan, Jianxin
Chang, Depeng Jin, Xiangnan He, et al. A survey of graph neural networks for recommender
systems: Challenges, methods, and directions. ACM Transactions on Recommender Systems, 1
(1):1–51, 2023.

[9] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[10] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

[11] James D Hamilton. State-space models. Handbook of econometrics, 4:3039–3080, 1994.

[12] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

[13] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In SIGIR, 2020.

[14] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. In ICLR, 2016.

[15] Seoyoung Hong, Minju Jo, Seungji Kook, Jaeeun Jung, Hyowon Wi, Noseong Park, and Sung-
Bae Cho. TimeKit: A time-series forecasting-based upgrade kit for collaborative filtering. In
2022 IEEE International Conference on Big Data (Big Data), pages 565–574. IEEE, 2022.

11

[16] Seoyoung Hong, Jeongwhan Choi, Yeon-Chang Lee, Srijan Kumar, and Noseong Park. SVD-AE:
Simple autoencoders for collaborative filtering. In Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence, IJCAI-24, pages 2054–2062. International Joint
Conferences on Artificial Intelligence Organization, 2024. doi: 10.24963/ijcai.2024/227. URL
https://doi.org/10.24963/ijcai.2024/227.

[17] Juyong Jiang, Peiyan Zhang, Yingtao Luo, Chaozhuo Li, Jae Boum Kim, Kai Zhang, Senzhang
Wang, Xing Xie, and Sunghun Kim. Adamct: adaptive mixture of cnn-transformer for sequential
recommendation. In Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management, pages 976–986, 2023.

[18] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In ICDM,
pages 197–206. IEEE, 2018.

[19] Taeyong Kong, Taeri Kim, Jinsung Jeon, Jeongwhan Choi, Yeon-Chang Lee, Noseong Park,
and Sang-Wook Kim. Linear, or non-linear, that is the question! In Proceedings of the fifteenth
ACM international conference on web search and data mining, pages 517–525, 2022.

[20] Walid Krichene and Steffen Rendle. On sampled metrics for item recommendation. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining, pages 1748–1757, 2020.

[21] Chaejeong Lee, Jeongwhan Choi, Hyowon Wi, Sung-Bae Cho, and Noseong Park. SCONE:
A novel stochastic sampling to generate contrastive views and hard negative samples for
recommendation. In Proceedings of the Eighteenth ACM International Conference on Web
Search and Data Mining, pages 419–428, 2025.

[22] Chengkai Liu, Jianghao Lin, Jianling Wang, Hanzhou Liu, and James Caverlee. Mamba4rec:
Towards efficient sequential recommendation with selective state space models. arXiv preprint
arXiv:2403.03900, 2024.

[23] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM
SIGIR conference on research and development in information retrieval, pages 43–52, 2015.

[24] Ruihong Qiu, Zi Huang, Hongzhi Yin, and Zijian Wang. Contrastive learning for representation
degeneration problem in sequential recommendation. In WSDM, pages 813–823, 2022.

[25] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized
markov chains for next-basket recommendation. In TheWebConf (former WWW), pages 811–820,
2010.

[26] Aliaksei Sandryhaila and José MF Moura. Discrete signal processing on graphs. IEEE
transactions on signal processing, 61(7):1644–1656, 2013.

[27] Aliaksei Sandryhaila and Jose MF Moura. Discrete signal processing on graphs: Frequency
analysis. IEEE Transactions on Signal Processing, 62(12):3042–3054, 2014.

[28] Santiago Segarra, Antonio G Marques, and Alejandro Ribeiro. Optimal graph-filter design and
applications to distributed linear network operators. IEEE Transactions on Signal Processing,
65(15):4117–4131, 2017.

[29] Yehjin Shin, Jeongwhan Choi, Hyowon Wi, and Noseong Park. An attentive inductive bias for
sequential recommendation beyond the self-attention. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 8984–8992, 2024.

[30] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. BERT4Rec:
Sequential recommendation with bidirectional encoder representations from transformer. In
CIKM, pages 1441–1450, 2019.

[31] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional
sequence embedding. In WSDM, pages 565–573, 2018.

12

https://doi.org/10.24963/ijcai.2024/227

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

[33] Yuda Wang, Xuxin He, and Shengxin Zhu. Echomamba4rec: Harmonizing bidirectional state
space models with spectral filtering for advanced sequential recommendation. arXiv preprint
arXiv:2406.02638, 2024.

[34] Hyowon Wi, Jeongwhan Choi, and Noseong Park. Learning advanced self-attention for linear
transformers in the singular value domain. In James Kwok, editor, Proceedings of the Thirty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI-25, pages 6561–6569.
International Joint Conferences on Artificial Intelligence Organization, 8 2025. doi: 10.24963/
ijcai.2025/730. URL https://doi.org/10.24963/ijcai.2025/730. Main Track.

[35] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based
recommendation with graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 346–353, 2019.

[36] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based
recommendation with graph neural networks. In AAAI, volume 33, pages 346–353, 2019.

[37] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua
Fang, and Xiaofang Zhou. Graph contextualized self-attention network for session-based
recommendation. In IJCAI, volume 19, pages 3940–3946, 2019.

[38] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Jiajie Xu, Victor S Sheng S. Sheng, Zhiming
Cui, Xiaofang Zhou, and Hui Xiong. Recurrent convolutional neural network for sequential
recommendation. In TheWebConf (former WWW), pages 3398–3404, 2019.

[39] An Yan, Shuo Cheng, Wang-Cheng Kang, Mengting Wan, and Julian McAuley. Cosrec: 2d
convolutional neural networks for sequential recommendation. In Proceedings of the 28th ACM
international conference on information and knowledge management, pages 2173–2176, 2019.

[40] Jiyuan Yang, Yuanzi Li, Jingyu Zhao, Hanbing Wang, Muyang Ma, Jun Ma, Zhaochun Ren,
Mengqi Zhang, Xin Xin, Zhumin Chen, et al. Uncovering selective state space model’s
capabilities in lifelong sequential recommendation. arXiv preprint arXiv:2403.16371, 2024.

[41] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In KDD,
2018.

[42] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xiangnan He. A
simple convolutional generative network for next item recommendation. In Proceedings of the
twelfth ACM international conference on web search and data mining, pages 582–590, 2019.

[43] Zhenrui Yue, Yueqi Wang, Zhankui He, Huimin Zeng, Julian McAuley, and Dong Wang. Linear
recurrent units for sequential recommendation. In Proceedings of the 17th ACM International
Conference on Web Search and Data Mining, pages 930–938, 2024.

[44] Shun Zhang, Runsen Zhang, and Zhirong Yang. Matrrec: Uniting mamba and transformer for
sequential recommendation. arXiv preprint arXiv:2407.19239, 2024.

[45] Yixin Zhang, Yong Liu, Yonghui Xu, Hao Xiong, Chenyi Lei, Wei He, Lizhen Cui, and Chunyan
Miao. Enhancing sequential recommendation with graph contrastive learning. arXiv preprint
arXiv:2205.14837, 2022.

[46] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan
Wang, and Ji-Rong Wen. S3-rec: Self-supervised learning for sequential recommendation with
mutual information maximization. In CIKM, pages 1893–1902, 2020.

[47] Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. Filter-enhanced mlp is all you need for
sequential recommendation. In TheWebConf (former WWW), pages 2388–2399, 2022.

[48] Peilin Zhou, Qichen Ye, Yueqi Xie, Jingqi Gao, Shoujin Wang, Jae Boum Kim, Chenyu You,
and Sunghun Kim. Attention calibration for transformer-based sequential recommendation. In
CIKM, pages 3595–3605, 2023.

13

https://doi.org/10.24963/ijcai.2025/730

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims clearly stated in abstract and introduction: we address the
limitation of existing convolution-based sequential recommendation models and introduce
TV-Rec.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of our work in Appendix J.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [Yes]
Justification: The proof of frequency response of node-variant graph filter is provided in
Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: To ensure reproducibility, we disclose all of our settings and best hyperparame-
ter for each dataset in Sec. 4, Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide processed data and training code in the supplemental material and
will release our code and data on a public GitHub repository upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We disclose all of our settings and best hyperparameter for each dataset in
Sec. 4, Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The statistical significance of the experimental results is provided in Ap-
pendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We report the compute resources used in our experiments, including the specific
types of CPUs and GPUs. Detailed information on the hardware setup (e.g., GPU model,
number of GPUs, and CPU type) is included in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm that our research is done within the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We describe broader impact of our research in Appendix I
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

17

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve high-risk data or models requiring specific safe-
guards. The datasets used are public, and the model is trained on well-known benchmarks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets used in the experiments are cited with their respective licenses.
We also adhere to the terms of use of these datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

18

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not introduce any new datasets or models. Instead, we present
a new model architecture using existing data.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development of our research does not involve LLMs as any
important components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Supplementary Materials for “TV-Rec: Time-Variant Convolutional
Filter for Sequential Recommendation”

A Proof of Frequency Response of Node-Variant Graph Filters

In this section, we provide a detailed proof of the frequency response of the node-variant graph filter
Gnv as stated in Eq. (5), following the derivation in [7].

Proof. We begin by considering the definition of the node-variant graph filter. Let x ∈ RN represent
the input graph signal, S ∈ RN×N represent the shift operator, and let hk be a vector of filter taps.
By using the node-variant graph filter Gnv , the output graph signal y is calculated as follows:

y = Gnvx =
(K∑

k=0

diag(hk)S
k
)
x, (14)

where diag(·) indicates constructing a diagonal matrix from a vector, and K is the order of the filter.
Recall that the frequency response of the input signal x̃ is U⊤x, and similarly ỹ = U⊤y, where the
shift operator S is eigen-decomposed by S = U diag(λ)U⊤, which results in:

ỹ = U⊤y = U⊤
(K∑

k=0

diag(hk)S
k
)
x (15)

= U⊤
K∑

k=0

diag(hk)U diag(λk)x̃, (16)

where λk ∈ CN is the k-th column of a Vandermonde matrix Λ ∈ CN×(K+1) given by Λik =
[λk]i = λk

i . The set of filter taps hk can be represented in matrix form as H ∈ CN×(K+1). Each
element of the summation in Eq. (16) is as follows:[

K∑
k=0

diag(hk)U diag(λk)

]
ij

=

K∑
k=0

h
(i)
k λk

juij (17)

= uij

K∑
k=0

h
(i)
k λk

j , (18)

where h
(i)
k is the i-th row and k-th column of H. Using the matrices H and Λ, it holds that HΛ⊤ ∈

CN×N :

[HΛ⊤]ij =

K∑
k=0

h
(i)
k λk

j . (19)

Substituting Eq. (19) into Eq. (18) results in:[
K∑

k=0

diag(hk)U diag(λk)

]
ij

= [U ◦HΛ⊤]ij , (20)

where ◦ denotes element-wise multiplication between matrices.

Therefore, Eq. (16) becomes:

ỹ = G̃nvx̃ = U⊤(U ◦ (HΛ⊤))x̃. (21)

This completes the proof.

21

B Theoretical Justification for DCG-Based Filtering

This section theoretically shows that spectral filtering on the zero-padded DCG is equivalent to
filtering on the line graph, ensuring no backward information flow.

To perform spectral filtering, the model must apply GFT, which requires eigen decomposition of
the graph shift operator (i.e., the adjacency or Laplacian matrix). However, when the sequence is
modeled as a line graph, the resulting adjacency matrix has rank exactly N − 1 because the first node
(i.e., the most past item) has no incoming edges. This results in one row of the matrix being entirely
zero, making it defective and thus non-diagonalizable.

To resolve this, we model the sequence as a DCG, which differs from the line graph by a single edge
connecting the last node to the first. This addition makes the adjacency matrix circulant, ensuring
diagonalizability and enabling spectral filtering in the Fourier domain. However, the added edge
introduces a backward connection from the future to the past, which could lead to information leakage
in the reverse temporal direction.

To prevent reverse information flow while maintaining spectral tractability, we adopt a padding
strategy. Specifically, we pad the sequence x ∈ RN with K zeros by forming the extended vector:

x̃ =

[
x
0

]
∈ RN+K , (22)

where 0 ∈ RK is the zero vector. Using the circulant shift operator S ∈ R(N+K)×(N+K) that
represents the DCG, we define a spectral filter of order K as follows:

g(S) =

K∑
k=0

hkS
k, (23)

where hk denotes the filter coefficients. The filtered output ỹ is then computed by applying the filter
to the padded input:

ỹ = g(S)x̃. (24)

We obtain a result identical to applying the same filter on the original sequence x modeled as a line
graph by extracting the first N elements of ỹ as follows:

y = [ỹ]1:N , (25)

where 1 : N denotes taking the first N elements of the vector. This equivalence holds because the
last K entries of x̃ are zeros. Although the circulant matrix S performs circular shifts, the filter
involves powers of S up to order K, so these zero entries do not influence the first N output values.
Consequently, this effectively blocks any cyclic information flow that would lead to backward leakage.

As a result, spectral filtering on the zero-padded DCG provides the correct filtering output equivalent
to causal convolution on a line graph, while benefiting from the computational efficiency and
diagonalizability of circulant matrices.

C Equivalence of Positional Encoding and Graph Fourier Basis

Unlike Transformers, which require explicit positional encoding (e.g., sinusoidal or learnable), TV-
Rec captures positional information inherently through spectral decomposition on DCG. This section
provides a formal connection between positional encodings in Transformer and the graph Fourier
basis used in TV-Rec.

Sinusoidal Positional Encoding in Transformer. The original Transformer model uses sinusoidal
functions to encode absolute position pos as follows:

PE(pos,2i) = sin
(pos

100002i/d

)
, PE(pos,2i+1) = cos

(pos

100002i/d

)
,

where d denotes the embedding dimension. This produces a set of periodic signals with varying
frequencies that form a basis for encoding positional variation.

22

Graph Fourier Basis in TV-Rec. In TV-Rec, we define the shift operator S as the adjacency matrix
of a directed cyclic graph. Its eigen-decomposition yields the graph Fourier basis U ∈ CN×N , where:

Ukn =
1√
N

e−i2πkn/N =
1√
N

[
cos

(
2πkn

N

)
− i sin

(
2πkn

N

)]
.

This corresponds to the DFT basis, which is an orthonormal set of complex exponential spanning RN

(or CN).

Equivalence in Representational Capacity. While the frequency components used in Transformer
positional encodings are sampled on a logarithmic scale and those in GFT are linearly spaced, both
sets of basis functions are composed of trigonometric functions. As such, they span the same space
of length-N periodic signals. Formally, the real-valued DFT basis used in TV-Rec corresponds to
sin

(
2πkn
N

)
and cos

(
2πkn
N

)
for various k, which can represent any finite-length sinusoidal signal,

including those used in Transformer encodings. Therefore, although the sampling strategies differ,
the span of both bases covers the same function space, which indicates that the spectral basis used in
TV-Rec is functionally equivalent to the sinusoidal encodings in Transformer models, in the sense
that both span the same space of position-dependent trigonometric functions.

Implication for Positional Encoding. TV-Rec projects the input sequence x to the GFT domain
as x̃ = U⊤x, and reconstructs it via x = Ux̃, thereby implicitly encoding frequency-based posi-
tional variations. The time-variant filter then modulates these frequency components per position,
which makes explicit positional embeddings unnecessary, as position-sensitive modulation is already
embedded in the spectral filtering process. TV-Rec’s design leverages the spectral basis to achieve
the same functional role as positional encoding in Transformers. It achieves this without requiring
explicit embeddings, while retaining full expressiveness in modeling temporal variation.

D Detailed Experimental Settings

D.1 Datasets

We evaluate our model using 6 SR datasets that vary in sparsity and domain. We follow the data pre-
processing procedures outlined in [46, 47], considering all reviews and ratings as implicit feedback.
Detailed statistics can be found in Table 6.

• Amazon Beauty and Sports are Amazon datasets of product reviews from [23], widely
used for SR. For this study, we use the “Beauty” and “Sports and Outdoors” categories.

• Yelp4 is a popular business recommendation dataset. We use records from after 2019/01/01
due to its large size.

• LastFM5 includes artist listening records and is used to recommend musicians to users.

• ML-1M [12] is a movie recommendation dataset from MovieLens6. It is commonly used to
evaluate recommendation algorithms due to its detailed user interaction data.

• Foursquare7 provides user check-ins across New York city over 10 months (April 2012 to
February 2013).

D.2 Baselines

To evaluate the performance of our method, we compare it with the following ten SR baseline
methods:

• Caser [31] is a CNN-based model that captures complex user patterns through horizontal
and vertical convolutions.

4https://www.yelp.com/dataset
5https://grouplens.org/datasets/hetrec-2011/
6https://grouplens.org/datasets/movielens/
7https://sites.google.com/site/yangdingqi/home/foursquare-dataset

23

Table 6: Statistics of the processed datasets.
Users # Items # Interactions Avg. Length Sparsity

Beauty 22,363 12,101 198,502 8.9 99.93%
Sports 25,598 18,357 296,337 8.3 99.95%
Yelp 30,431 20,033 316,354 10.4 99.95%
LastFM 1,090 3,646 52,551 48.2 98.68%
ML-1M 6,041 3,417 999,611 165.5 95.16%
Foursquare 1,083 9,989 179,468 165.7 98.34%

• GRU4Rec [14] is a GRU-based model that captures temporal dynamics and patterns in user
interactions.

• SASRec [18] is a Transformer-based model that uses a multi-head self-attention mechanism.

• BERT4Rec [30] is a bidirectional Transformer-based model, using a masked item training
scheme.

• NextItNet [42] is a CNN-based model that uses dilated convolutions and residual connec-
tions to capture both short- and long-range dependencies in user behavior sequences.

• FMLPRec [47] uses Fourier Transform and learnable filters in an all-MLP architecture to
reduce noise and enhance sequence representations.

• DuoRec [24] employs model-level augmentation and sementic positive samples for con-
trastive learning, using SASRec as its base model.

• LRURec[43] uses linear recurrent units for rapid inference and recursive parallelization.

• AdaMCT [17] is a hybrid model combining Transformer attention with local convolutional
filters to capture long- and short-term user preferences.

• BSARec [29] is a hybrid model that combines Transformer self-attention with the Fourier
Transform to address the oversmoothing problem.

• SR-GNN [35] is a session-based recommendation model which converts user sessions into
graphs and applies GNNs to capture item transition relationships.

• GC-SAN [37] is a GNN-based model that dynamically builds a graph for each sequence and
combines GNN with self-attention to model both local and long-range item dependencies.

• GCL4SR [45] is a GNN-based model that constructs a global item transition graph across
all users and uses graph contrastive learning to integrate global and local context.

D.3 Metrics

To evaluate the recommendation performance, we use widely adopted Top-r metrics, HR@r (Hit
Rate) and NDCG@r (Normalized Discounted Cumulative Gain), with r set to 5, 10, and 20. For a fair
comparison, we examine the ranking results across the entire item set without negative sampling [20].

D.4 Implementation Details

All experiments, including the baselines, were conducted using the following software and hard-
ware configurations: UBUNTU 20.04.6 LTS, PYTHON 3.9.7, PYTORCH 2.2.2, CUDA 11.1.74, and
NVIDIA Driver 550.54.14. The hardware setup included dual INTEL XEON CPUs and an NVIDIA
RTX A6000 GPU.

Hyperparameters for Standard Sequential Recommendation. We determine the optimal hyper-
parameters for the baselines according to their suggested settings. The experiments are performed
with the following hyperparameters: learning rates of {5×10−4, 1×10−3}, orthogonal regularization
coefficient α of {0, 1× 10−3, 1× 10−5}, dropout rates p of {0.1, 0.2, 0.3, 0.4, 0.5}, and m values of
{8, 16, 32}. The order of the time-variant convolutional filter K is equal to the maximum sequence
length N , which is set to 50. The batch size is set to 256, the dimension D to 64, and the number
of time-variant blocks L to 2. We use the Adam optimizer for training. For reproducibility, the best
hyperparameter settings are detailed in Table 7.

24

Table 7: Best hyperparameters of TV-Rec.
Dataset Learning Rate α p m

L = 50

Beauty 5× 10−4 0 0.5 32
Sports 5× 10−4 0 0.5 16
Yelp 5× 10−4 1× 10−3 0.1 16

LastFM 1× 10−3 1× 10−3 0.4 8
ML-1M 1× 10−3 1× 10−5 0.3 8

Foursquare 5× 10−4 1× 10−5 0.2 8

L = 200

ML-1M 1× 10−3 0 0.1 16
Foursquare 5× 10−4 1× 10−5 0.1 8

4 8 16 32 50
m

0.
06

6
0.
06

8
0.
07

0
ND

CG
@
20

NDCG@20
HR@20 0.

13
6

0.
13

8
0.
14

0
HR

@
20

(a) Beauty

4 8 16 32 50
m

0.
04

1
0.
04

2
0.
04

2
ND

CG
@
20

NDCG@20
HR@20 0.

08
50
.0
86

0.
08

8
HR

@
20

(b) Sports

4 8 16 32 50
m

0.
03

0
0.
03

1
0.
03

2
ND

CG
@
20

NDCG@20
HR@20

0.
07

3
0.
07

5
0.
07

8
HR

@
20

(c) Yelp

4 8 16 32 50
m

0.
04

6
0.
05

1
0.
05

8
ND

CG
@
20

NDCG@20
HR@20 0.

10
4

0.
11

2
0.
12

0
HR

@
20

(d) LastFM

4 8 16 32 50
m

0.
19

0
0.
19

3
0.
19

6
ND

CG
@
20

NDCG@20
HR@20 0.

39
2

0.
40

0
0.
40

8
HR

@
20

(e) ML-1M

4 8 16 32 50
m

0.
00

7
0.
01

2
0.
01

7
ND

CG
@
20

NDCG@20
HR@20 0.

01
8

0.
02

4
0.
03

1
HR

@
20

(f) Foursquare

Figure 8: Sensitivity to the number of basis vectors m.

E Sensitivity Studies

In this section, we investigate the sensitivity of four hyperparameters: the number of basis vector m,
dropout rate p, orthogonal regularization coefficient α and filter order K. The results are shown in
Figs. 8, 9, 10 and Table 8 respectively. We keep optimal settings for all other hyperparameters except
the one being examined.

Sensitivity to m. In our time-variant graph filter, we use a basis matrix B ∈ Rm×(K+1) as shown
in Eq. (8). The parameter m determines the number of basis vectors, which affects the expressive
power and computational complexity. To explore its effect, we extend the initial parameter search
range of m = {8, 16, 32} to include m = {4, 50}. Fig. 8 shows NDCG@20 and HR@20 by varying
m. For Beauty, the best accuracy is achieved with m = 32, and both NDCG@20 and HR@20
drop significantly as m decreases. This suggests that for Beauty, a larger number of basis vectors
is beneficial, possibly due to the complexity of user-item interactions in this dataset. In contrast,
for LastFM, the best accuracy is achieved with m = 8, and as m increases, both NDCG@20 and
HR@20 decline dramatically. This behavior may be attributed to the particular characteristics of
music recommendation on LastFM, where a more condensed representation is sufficient to capture
user preferences.

25

0.1 0.2 0.3 0.4 0.5
p

0.
06

7
0.
06

9
0.
07

1
ND

CG
@
20

NDCG@20
HR@20 0.

13
3
0.
13

6
0.
14

0
HR

@
20

(a) Beauty

0.1 0.2 0.3 0.4 0.5
p

0.
03

70
.0
39

0.
04

2
ND

CG
@
20

NDCG@20
HR@20 0.

07
9
0.
08

3
0.
08

8
HR

@
20

(b) Sports

0.1 0.2 0.3 0.4 0.5
p

0.
02

9
0.
03

10
.0
32

ND
CG

@
20

NDCG@20
HR@20 0.

07
3
0.
07

5
0.
07

8
HR

@
20

(c) Yelp

0.1 0.2 0.3 0.4 0.5
p

0.
04

2
0.
04

9
0.
05

7
ND

CG
@
20

NDCG@20
HR@20 0.

09
4

0.
10

6
0.
12

0
HR

@
20

(d) LastFM

0.1 0.2 0.3 0.4 0.5
p

0.
17

5
0.
18

5
0.
19

6
ND

CG
@
20

NDCG@20
HR@20 0.

37
3

0.
39

0
0.
40

8
HR

@
20

(e) ML-1M

0.1 0.2 0.3 0.4 0.5
p

0.
01

1
0.
01

4
0.
01

7
ND

CG
@
20

NDCG@20
HR@20 0.

02
60
.0
28

0.
03

1
HR

@
20

(f) Foursquare

Figure 9: Sensitivity to dropout rate p.

0 1e-7 1e-5 1e-3 1e-1
®

0.
07

0
0.
07

0
ND

CG
@
20

NDCG@20
HR@20 0.

13
8
0.
13

9
0.
14

0
HR

@
20

(a) Beauty

0 1e-7 1e-5 1e-3 1e-1
®

0.
04

1
0.
04

1
0.
04

2
ND

CG
@
20

NDCG@20
HR@20 0.

08
50
.0
86

0.
08

8
HR

@
20

(b) Sports

0 1e-7 1e-5 1e-3 1e-1
®

0.
03

1
0.
03

1
0.
03

2
ND

CG
@
20

NDCG@20
HR@20

0.
07

7
0.
07

7
0.
07

8
HR

@
20

(c) Yelp

0 1e-7 1e-5 1e-3 1e-1
®

0.
05

3
0.
05

5
0.
05

7
ND

CG
@
20

NDCG@20
HR@20 0.

10
8

0.
11

4
0.
12

0
HR

@
20

(d) LastFM

0 1e-7 1e-5 1e-3 1e-1
®

0.
18

7
0.
19

1
0.
19

5
ND

CG
@
20

NDCG@20
HR@20 0.

39
5

0.
40

1
0.
40

8
HR

@
20

(e) ML-1M

0 1e-7 1e-5 1e-3 1e-1
®

0.
01

3
0.
01

5
0.
01

7
ND

CG
@
20

NDCG@20
HR@20 0.

03
00.
03

1
0.
03

3
HR

@
20

(f) Foursquare

Figure 10: Sensitivity to orthogonal regularization coefficient α.

Sensitivity to p. The effect of the dropout rate p is analyzed in Fig. 9. For Sports, a larger value
of p leads to better performance. Conversely, for Foursquare, a lower value of p results in improved
performance. Datasets with many interactions tend to achieve better accuracy with a small p, whereas
those with fewer interactions typically perform better with a large p. This is because lower data
diversity of datasets with fewer interactions leads model to easily overfit. A higher dropout rate helps
prevent overfitting by encouraging the model to learn more general patterns.

Sensitivity to α. The parameter search range for α is extended from {0, 1× 10−3, 1× 10−5} to
{0, 1 × 10−1,1 × 10−3, 1 × 10−5, 1 × 10−7}, and experiments are conducted with these values.
Fig. 10 shows NDCG@20 and HR@20 by varying α. For LastFM, the best accuracy is achieved

26

Table 8: Sensitivity to filter order K.

K
Beauty Sports Yelp LastFM ML-1M Foursquare

H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20

3 0.1380 0.0690 0.0839 0.0405 0.0731 0.0295 0.1046 0.0443 0.3901 0.1843 0.0240 0.0116
5 0.1364 0.0680 0.0849 0.0407 0.0752 0.0308 0.1147 0.0490 0.3823 0.1814 0.0268 0.0116
10 0.1378 0.0688 0.0853 0.0410 0.0741 0.0303 0.1165 0.0532 0.3922 0.1898 0.0268 0.0139
25 0.1371 0.0684 0.0854 0.0409 0.0774 0.0323 0.1248 0.0546 0.3957 0.1891 0.0295 0.0163
50 0.1403 0.0705 0.0880 0.0425 0.0777 0.0321 0.1202 0.0572 0.4079 0.1955 0.0314 0.0176

Table 9: Results on XLong.
Metric SASRec LRURec TV-Rec Improv.
HR@5 0.3612 0.4266 0.4844 13.55%
HR@10 0.4680 0.5137 0.5353 4.20%
HR@20 0.5612 0.5874 0.5774 -1.70%
NDCG@5 0.2656 0.3227 0.3905 21.00%
NDCG@10 0.2979 0.3510 0.4071 15.98%
NDCG@20 0.3232 0.3697 0.4178 13.01%

with α = 10−3. Both NDCG@20 and HR@20 drop significantly as α decreases, suggesting that an
adequate level of orthogonal regularization is crucial to maintain effective filter diversity and prevent
overfitting in this dataset. In contrast, for Sports and Yelp datasets, the highest accuracy occurs at
relatively lower α values, and performance deteriorates noticeably as α increases. This behavior may
indicate that too strong orthogonal regularization overly constrains the filter parameters, limiting
the model’s ability to adapt to the data distribution in these domains. These results emphasize the
importance of adjusting α based on the characteristics of the dataset, balancing the regularization
strength to achieve optimal performance.

Sensitivity to filter order K. We analyze the sensitivity of the filter order K, which is equivalent
to the kernel size in CNN-based models. As shown in Table 8, except for Yelp and LastFM, setting
K = 50 consistently yields the best performance across datasets. This supports our hypothesis that
aligning the shift depth K with the sequence length N enables the model to capture more global
context, thereby enhancing recommendation quality.

F Additional Results on XLong

To further test scalability in extreme cases, we conducted experiments on the XLong dataset, which
contains 69,069 users, 2.12 million items, and approximately 66.8 million interactions. The sequences
are exceptionally long, with an average length of 958.8 and a density of about 5× 10−4, roughly 20
times longer than in our main experiments. We followed the experimental settings of LRURec [43]
and performed the experiments within the LRURec framework. As shown in Table 9, although TVRec
shows slightly lower performance compared to LRURec in Recall@20, it significantly outperforms
in all other metrics. This demonstrates that TVRec handles extremely long sequences effectively,
highlighting its strength in long-range modeling tasks.

G Model Complexity and Runtime Analyses

In this section, we provide a comprehensive analysis of model complexity and runtime efficiency
for the entire datasets. Table 10 shows a detailed comparison of our proposed TV-Rec model with
7 baseline models in 6 different datasets. Our TV-Rec consistently shows competitive parameter
efficiency in all datasets, maintaining a comparable or slightly lower number of parameters than most
advanced baselines. In terms of training efficiency, our TV-Rec shows competitive training cost in
most datasets, often comparable to or slightly higher than SASRec and FMLPRec. TV-Rec shows
strong inference efficiency, often having the lowest or near-lowest inference costs among all models,
especially in datasets such as Beauty, Sports, and Yelp.

27

Table 10: Parameters number and execution efficiency analysis of models.

Dataset Metrics TV-Rec AdaMCT BSARec FMLPRec NextItNet BERT4Rec SASRec Caser

Beauty

Parameters 854,208 878,208 880,318 851,200 981,696 877,888 877,824 2,909,532
Training Cost (s/epoch) 13.20 12.30 11.35 11.85 18.9184 21.98 11.21 65.54
Inference Cost (s/epoch) 0.5697 0.6647 0.7299 0.5427 1.0267 0.5821 0.6316 1.0641

NDCG@20 0.0704 0.0691 0.0664 0.0419 0.0547 0.0484 0.0379 0.0164

Sports

Parameters 1,248,160 1,278,592 1,264,318 1,251,584 1,644,224 1,278,272 1,278,208 4,835,756
Training Cost (s/epoch) 19.46 17.63 18.44 17.76 30.1034 31.60 14.26 98.21
Inference Cost (s/epoch) 0.7411 0.9049 0.9679 0.7049 1.2724 0.8016 0.8460 1.5715

NDCG@20 0.0428 0.0422 0.0379 0.0239 0.0316 0.0288 0.0217 0.0109

Yelp

Parameters 1,355,424 1,385,856 1,365,522 1,358,848 1,751,488 1,385,536 1,385,472 3,925,238
Training Cost (s/epoch) 21.89 20.87 21.83 20.20 32.88 37.57 16.74 111.62
Inference Cost (s/epoch) 0.6388 0.8527 0.8890 0.6223 1.2348 0.7225 0.7322 1.3220

NDCG@20 0.0338 0.0290 0.0272 0.0211 0.0276 0.0275 0.0180 0.0151

LastFM

Parameters 303,440 337,088 322,814 310,080 981,696 336,768 336,704 998,646
Training Cost (s/epoch) 2.41 2.51 2.66 2.51 19.1253 4.29 2.30 13.22
Inference Cost (s/epoch) 0.2649 0.2807 0.3228 0.2678 1.068 0.3018 0.3061 0.3445

NDCG@20 0.0582 0.0514 0.0485 0.0475 0.0402 0.0366 0.0458 0.0306

ML-1M

Parameters 298,368 322,368 308,094 295,360 556,928 322,048 321,984 961,326
Training Cost (s/epoch) 26.60 27.68 31.40 24.67 40.7731 46.51 22.50 102.99
Inference Cost (s/epoch) 0.4129 0.4180 0.4474 0.3594 0.7269 0.4202 0.4181 0.5817

NDCG@20 0.1951 0.1836 0.1711 0.1388 0.1829 0.1588 0.1438 0.1101

Foursquare

Parameters 719,040 743,040 728,766 716,032 1,108,672 742,720 742,656 1,073,044
Training Cost (s/epoch) 6.01 5.79 5.81 5.11 8.9109 9.06 5.27 21.01
Inference Cost (s/epoch) 0.2900 0.2913 0.3562 0.2521 0.4963 0.2871 0.3178 0.3703

NDCG@20 0.0170 0.0147 0.0131 0.0110 0.0115 0.0132 0.0137 0.0133

Table 11: Performance comparison between TV-Rec and the second-best baseline methods across 6
datasets. Results show the mean and standard deviation for 10 runs with different random seeds using
the best hyperparameter settings.

Datasets Methods HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20

Beauty BSARec 0.0694±0.001 0.0978±0.002 0.1352±0.002 0.0496±0.001 0.0587±0.001 0.0681±0.001
TV-Rec 0.0706±0.001 0.0997±0.001 0.1375±0.002 0.0500±0.001 0.0594±0.001 0.0689±0.001

Sports BSARec 0.0417±0.001 0.0600±0.001 0.0844±0.001 0.0288±0.001 0.0349±0.001 0.0411±0.001
TV-Rec 0.0420±0.001 0.0610±0.002 0.0863±0.002 0.0290±0.001 0.0351±0.001 0.0415±0.001

Yelp DuoRec 0.0268±0.001 0.0453±0.001 0.0733±0.001 0.0170±0.000 0.0230±0.000 0.0300±0.000
TV-Rec 0.0284±0.001 0.0472±0.001 0.0759±0.001 0.0179±0.000 0.0240±0.001 0.0312±0.001

LastFM BSARec 0.0501±0.004 0.0707±0.006 0.1051±0.008 0.0342±0.002 0.0412±0.002 0.0498±0.002
TV-Rec 0.0508±0.005 0.0750±0.006 0.1090±0.007 0.0343±0.003 0.0420±0.003 0.0506±0.003

ML-1M LRURec 0.1955±0.002 0.2818±0.002 0.3871±0.002 0.1326±0.002 0.1604±0.002 0.1869±0.002
TV-Rec 0.2024±0.005 0.2901±0.005 0.3972±0.005 0.1365±0.004 0.1647±0.003 0.1918±0.003

Foursquare BSARec 0.0133±0.003 0.0175±0.003 0.0250±0.003 0.0098±0.002 0.0111±0.002 0.0130±0.002
TV-Rec 0.0151±0.002 0.0214±0.003 0.0289±0.002 0.0105±0.002 0.0126±0.002 0.0145±0.002

Overall, TV-Rec presents a balance between model complexity, computational efficiency, and rec-
ommendation performance. Our TV-Rec achieves the best performance metrics while maintaining
competitive or better efficiency in both training and inference compared to state-of-the-art models.

H Statistical Significance of Experimental Results

To ensure the reliability of our evaluation, we conducted each experiment using 10 different random
seeds under the best hyperparameter settings for both our proposed model and the second-best
baseline model. The second-best models for each dataset are as follows: BSARec for Beauty, Sports,
LastFM, and Foursquare; DuoRec for Yelp; and LRURec for ML-1M. We then report the mean and
standard deviation of the performance metrics calculated across these runs to reflect variability caused
by random initialization. The detailed results, including these statistics, are provided in Table 11.

28

I Broader Impact

This work proposes TV-Rec, a time-variant convolutional filter for sequential recommendation. Its
improved efficiency and performance can positively impact real-world recommender systems by
reducing computational cost and energy consumption. However, potential negative societal impacts
include reinforcing user biases, limiting content diversity, and risking privacy violations if sensitive
user behavior data is mishandled. TV-Rec’s reliance on user interaction logs raises concerns about
data privacy and fairness in recommendations. To mitigate these issues, we recommend careful data
governance, fairness auditing, and the development of privacy-preserving training pipelines.

J Limitation

While TV-Rec achieves strong performance and inference-time efficiency, it has several limitations.
First, the training process of TV-Rec involves some additional computational complexity due to
repeated GFT and inverse GFT operations, as well as the generation of position-specific filters.
Moreover, to enable spectral filtering, TV-Rec replaces the original line graph with DCG, which adds
extra nodes through padding and increases the dimensionality of the spectral domain. These factors
can lead to moderate increases in training time and memory usage. However, as shown in Table 10,
this overhead remains manageable and does not significantly impact training scalability in practice.
Second, the filter generation in TV-Rec is data-independent, relying solely on temporal position
rather than sequence content. While this design improves generalization and structural simplicity, it
may limit the model’s adaptability to instance-specific behavior or irregular patterns. Nonetheless,
the inference-time efficiency and architectural simplicity make these trade-offs acceptable for many
practical applications. Overall, these trade-offs are justified by TV-Rec’s strong empirical results and
practical efficiency.

29

	Introduction
	Preliminaries
	Problem Statement
	Graph Signal Processing (GSP)
	Node-Variant Graph Filter

	Proposed Method
	Embedding Layer
	Time-Variant Encoder
	Prediction Layer and Training
	Discussion

	Experiments
	Experimental Setup
	Overall Performance
	Ablation Studies
	Parameter Sensitivity
	Analyzing Filter Behavior and Case Study
	Model Complexity and Runtime Analyses

	Related Work
	Sequential Recommendation
	Hybrid Approaches and Convolution in SR

	Conclusion
	Proof of Frequency Response of Node-Variant Graph Filters
	Theoretical Justification for DCG-Based Filtering
	Equivalence of Positional Encoding and Graph Fourier Basis
	Detailed Experimental Settings
	Datasets
	Baselines
	Metrics
	Implementation Details

	Sensitivity Studies
	Additional Results on XLong
	Model Complexity and Runtime Analyses
	Statistical Significance of Experimental Results
	Broader Impact
	Limitation

