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ABSTRACT

Knowledge distillation (KD) is a promising yet challenging model compression
approach that transmits rich learning representations from robust but resource-
demanding teacher models to efficient student models. Previous methods for image
super-resolution (SR) are often tailored to specific teacher-student architectures,
limiting their potential for improvement and hindering broader applications. This
work presents a novel KD framework for SR models, the multi-granularity Mixture
of Priors Knowledge Distillation (MiPKD), which can be universally applied to
a wide range of architectures at both feature and block levels. The teacher’s
knowledge is effectively integrated with the student’s feature via the Feature Prior
Mixer, and the reconstructed feature propagates dynamically in the training phase
with the Block Prior Mixer. Extensive experiments illustrate the significance of the
proposed MiPKD technique.

1 INTRODUCTION

Super-resolution (SR) poses a key challenge in computer vision (CV) (Dong et al., 2015; Liang
et al., 2021; Chen et al., 2021), reconstructing high-resolution (HR) images from their low-resolution
(LR) versions. In the past decade, the convolutional neural network (CNN) (Dong et al., 2014; Kim
et al., 2016; Lim et al., 2017) and the Transformer (Wang et al., 2022c; Zamir et al., 2022; Qiao et al.,
2024b;a; Tu et al., 2024; Wang et al., 2023; Zhang et al., 2024) have demonstrated exceptional success
for SR. However, deploying these models directly on resource-constrained devices is impractical
due to their substantial computational overhead (Zhang et al., 2021b). Therefore, there is increasing
attention on model compression techniques for super-resolution (SR) models to enhance their practical
deployment.

Knowledge distillation, emerging as an effective model compression method, can significantly reduce
computation overload, facilitating the student by transmitting prior knowledge from the competent
but resource-intensive teacher model to the compact student model (Zhang et al., 2021a; Luo et al.,
2021; Hui et al., 2019; Lee et al., 2020; Liu et al., 2023). In contrast to alternative model compression
strategies like pruning (Wang et al., 2021a;b), quantization (Li et al., 2020; Hong et al., 2022),
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Figure 1: The PSNR values of student models on Urban100 test set under different compression
settings. In the depth compression (a), there are barely KD methods outperforming vanilla logits-KD.
For width compression (b), CSD performs well but only satisfies this setting. For compounded
compression, almost all KD underperforms training without KD.

compact block design (Ahn et al., 2018; Song et al., 2021; Nie et al., 2021; Wang et al., 2022a), and
neural architecture search (NAS) (Zoph & Le, 2016; Wan et al., 2020; Ren et al., 2021), KD is a
widely recognized method that can be incorporated with these approaches to further enhance the
compactness of the student model. KD for SR has also attracted wide attention recently and has
gained remarkable progress (Li et al., 2020; Lee et al., 2020; Zhang et al., 2021a; He et al., 2020;
Wang et al., 2021b). These methods can be broadly classified into response-based KD and feature-
based KD. The former supervises the student model using the teacher model’s output, while the latter
focuses on aligning the latent space representations between the teacher and student models. (Gou
et al., 2021; Wang et al., 2021b; He et al., 2020).

Although previous KD methods show promising results in SR, several issues hinder their wide
applications. First, existing KD techniques for SR are tailored to specific teacher-student architectures.
They support network depth (Figure 1(a)) or network width (Figure 1(b)) compression (He et al.,
2020), and deteriorate the student dramatically when they are adopted into another setting. For
instance, FAKD (He et al., 2020) boosts the student model in depth compression but deteriorates the
student when applied to a width compression circumstance. CSD (Wang et al., 2021b) improves the
student model significantly (Figure 1(b)) but is not compatible with depth compression in Figure 1 (a).
It’s necessary to propose a more flexible KD framework that is closer to real-world application. While
few methods have discussed compounded compression on both depth and width dimensions, which is
a much more general but challenging scenario. Existing KD methods for SR, including feature-based
methods adapted from high-level CV tasks, such as RKD (Park et al., 2019), AT (Zagoruyko &
Komodakis, 2016), and FitNet (Romero et al., 2014), offer limited benefit to the student model.
Figure 1 shows that the previous depth and channel distillation methods can just obtain a marginal
performance gain or even deteriorate the student in most cases. To alleviate these issues, we introduce
a novel knowledge distillation technique for SR models, the multi-granularity Mixture of Priors
knowledge for Knowledge Distillation(MiPKD), that is universally applicable to various teacher-
student frameworks at feature and block levels. Specifically, the feature prior mixer dynamically
combines prior knowledge from the teacher and student models’ intermediate feature maps. Then its
output-enhanced feature map is supervised by the teacher model’s feature map. The block prior mixer
adopts a coarser-grained prior mixture at the network block level that dynamically and stochastically
switches the normal forward propagation path to the teacher or the student. The output SR image of
this ensembled sub-network is supervised by the teacher’s output. The primary contributions of this
paper are outlined as follows:

• We present MiPKD, a KD framework for efficient SR, transferring the teacher model’s dark
knowledge from both network width and depth levels. It’s flexible and applicable to various
teacher-student frameworks.

• We propose the feature and block prior mixers to mitigate the impact of model capacity disparity
on the effectiveness of KD to achieve better alignment. The former integrates the feature maps in
a unified latent space, while the latter assembles a dynamic combination of network blocks from
teacher and student models.

• Extensive experiments on various benchmarks show that the proposed MiPKD framework signifi-
cantly outperforms the previous arts.
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Figure 2: Framework of the MiPKD method. MiPKD utilizes the multi-granularity dark knowledge
mixture to constrain the KD process. At the k and (k + i)-th distillation position, the Feature Prior
Mixer stochastically integrates teacher-provided features with the student model, and the Block Prior
Mixer employs a coarser-grained prior fusion at the network block level.

2 RELATED WORK

Efficient SISR. To improve the model efficiency, there have been various approaches to make the SR
model less redundant, such as neural architecture search (NAS) (Chu et al., 2021; Song et al., 2020),
pruning (Wang et al., 2021a;b), low-bit quantization (Ma et al., 2019; Li et al., 2020; Hong et al.,
2022), and compact net block design (Ahn et al., 2018; Song et al., 2021; Nie et al., 2021; Wang et al.,
2022a;c; Zamir et al., 2022). The strength of NAS manifests in searching the optimal architecture
but is time-consuming and computationally expensive due to the massive search space. Afterwards,
compact SR model designs have attracted rising attention and achieved remarkable progress (Zhang
et al., 2022; Hui et al., 2019; Ahn et al., 2018; Dong et al., 2016). ELAN, proposed by Zhang et al.
(2022), incorporates the GMSA module that effectively exploits long-range image dependencies
and achieves superior performance compared to transformer-based super-resolution models while
being much less complex. Pruning (Wang et al., 2021a;b) and quantization (Ma et al., 2019; Li et al.,
2020; Hong et al., 2022) are other two types of methods to remove model redundancy by sparsity
and low-bit quantization mappings. Despite the considerable progress made by these lightweight
networks, significant computational resources are still in demand.

Feature-based Knowledge Distillation:

Knowledge distillation is widely recognized as an effective neural network compression technique
that is able to significantly reduce the computation overload and improve student’s capability by
transferring “dark knowledge” as prior information from the large teacher model to the lightweight
student model (Gou et al., 2021; Yim et al., 2017; Hinton et al., 2015). Feature-based KD methods
extend beyond simple output alignment by focusing on matching intermediate representations.
FitNet Romero et al. (2015) aligns feature maps directly, while FAKD He et al. (2020) distills
correlation information from the affinity matrix. KD-SRRL Yang et al. (2021) uses a Softmax
regression loss by feeding student features into the teacher’s classification head. Qiu et al. (2022)
introduces a dynamic knowledge mechanism that injects teacher features into the student with hyper-
parameters. While MiPKD integrates the teacher’s dark knowledge and the student’s representations
at two levels: feature level and block level. This is achieved through latent space encoding and two
stochastic mixing mechanisms, ensuring comprehensive alignment of the learned representations.
PEFD Chen et al. (2022) employs a projector ensemble to extract task-relevant discriminative features
and avoid overfitting the teacher’s feature space. DMAE Bai et al. (2022) aligns intermediate features
using a feature-based KD loss and reconstructs the original image via the student’s decoder, similar
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to FitNet but focused on the direct alignment of intermediate features. ViTKD Yang et al. (2024)
combines the FitNet loss for shallow layers with a generative loss for deeper ones.

Knowledge Distillation for SISR. Recently, several attempts have also been made for image super-
resolution knowledge distillation. Lee et al. (2020) employ a trainable encoder-decoder network to
perform information extraction, and use the statistics computed from the scale maps of the decoder to
distill student models. He et al. (2020) proposed FAKD to distill the correlation information from the
affinity matrix of feature maps. Wang et al. (2021b) proposed CSD that incorporates self-distillation
and contrastive learning by introducing extra simply upsampled LR images as negative samples.
MTKDSR (Yao et al., 2022) employed two teacher models with different SR objectives (PSNR,
perceptual) to guide the student model simultaneously. CrossKD (Fang et al., 2023) divides the teacher
and student networks into two segments that are interchanged and connected to perform forward
propagation. RDEN (Ren et al., 2024) introduces an efficient SR network design by leveraging re-
parameterization and a progressive training strategy. Especially, the FitNet loss is used for distillation
in the second training stage. Existing SRKD techniques for SR are tailored to specific teacher-student
architectures, focusing on either network depth (Wang et al., 2021b) or channel compression (He
et al., 2020), which is infeasible for practical compounded compression applications.

3 METHODOLOGY

3.1 PRELIMINARIES AND NOTATIONS

Given a low-resolution input image ILR, the deep SR model F(·) aims to reconstruct the high-
resolution image ISR = F(ILR; Θ) with fine details and consistent content with corresponding
high-resolution image IHR, where Θ denotes the model parameters. The logits-based KD method
compels the student model FS to produce the same output as the teacher model

Llogits = ∥ITSR − ISSR∥1 (1)

where ISSR = FS(ILR; Θ
S) and ITSR = FT (ILR; Θ

T ) denote the SR images produced by the
student and teacher networks. The feature-based KD methods seek to mimic the rich implicit hidden
representations between the teacher and the student, which also can be represented by the feature
distillation loss

Lfeat = ∥Ts(FS
k )− Tt(FT

k )∥1 (2)

where FS
k and FT

k represent the feature maps of the student and teacher model at the k-th distillation
position, respectively. Tt and Ts are the transformations applied on raw feature maps.

3.2 MIXTURE OF PRIOR KNOWLEDGE DISTILLATION

Inspired by MAE (He et al., 2022) that reconstructs the missing pixels from the masked input patches,
we proposed the dark knowledge synthesis approach for KD on SR tasks in both feature and block
levels. The prior knowledge mixers are applied to the raw feature maps of the student and teacher
models in order to encode them into a unified latent space, in which the models’ dark knowledge
is mixed. Subsequently, the mixed latent feature map is decoded to its original space, enabling the
reconstruction of the enhanced feature map and the performance of distillation. While the purpose
of the MAE is to reconstruct the masked pixels, the encoder-decoder in the feature prior mixer
reconstructs the portion of the teacher model feature map that is replaced by the student’s. This allows
the student model’s intermediate representations to have a similar distribution to the teacher model’s.
The block prior mixer optimizes the network’s capacity to process and represent information. This
is achieved utilizing a dynamic combination of blocks, whereby the resulting fusion information
is transferred from the feature prior mixer to the enhanced network. The two granularity of prior
mixtures follow the common idea of prior mixing and propagation, which effectively mitigates the
adverse effects caused by the capacity disparity between the teacher and student.

Feature Prior Mixer. Figure 2 illustrates the hybrid dark knowledge framework at the feature level.
At the k-th feature distillation position, initially, the feature maps of both the student model FS

k and
teacher model FT

k are processed through their respective encoders to extract the latent representations
ZS
k , ZT

k ∈ RC×H×W in a unified latent space, where C,H,W represent the dimension of the feature
maps. Subsequently, the encoded student and teacher feature maps are fused in accordance with a
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pair of randomly generated complementary masks. And the decoder reverts the fused feature map
ZE
k to the enhanced feature map representation FE

k in the same space as raw feature maps as

FE
k = Decoder(ZE

k ) = Decoder(ZS
k ⊙ (1− IM ) + ZT

k ⊙ (IM )), (3)

where IM ∈ {0, 1}C×H×W represents a random three-dimensional mask and ⊙ denotes the element-
wise product between matrices. The student’s feature map is combined with the teacher’s knowledge
with the above mixing mechanism to reduce the discrepancy between them at the feature level. FE

k is
utilized as an input to the subsequent block level prior mixer module. The feature distillation loss
LfeatF
k of Feature Prior Mixer is computed between FE

k and FT
k as

LfeatF
k = ∥FE

k − FT
k ∥1 (4)

Additionally, in order to enhance the reconstruction capability of the decoder and ensure the stability
of training, at the beginning of training, the auxiliary enhanced feature map F

′E
k is obtained by

directly passing the teacher’s feature map to the teacher’s encoder and decoder without applying the
above masking and mixing strategy. The auxiliary “auto-encoder” loss Lae

k is computed as

Lae
k = ∥F

′E
k − FT

k ∥1 (5)

It requires the encoder and decoder to serve as an auto-encoder structure, ensuring the decoded
enhanced feature map is comparable with FT

k . The enhancement of the decoder contributes to the
overall effectiveness of the feature prior mixer module.

Block Prior Mixer. Existing feature-based distillation methods on SR tasks mostly align the feature
maps in the original representation space with Mean Absolute Error or Mean Square Error (MSE).
The semantic information among the teacher and student networks are differently distributed. Solely
aligning features at the present distillation node with the same magnitudes of distance can lead the
student model to learn entirely different information. To tackle this issue, we propose to align the
networks’ ability to process and represent information by assembling a dynamic combination of
blocks and transmitting the fusion information from the Feature Prior Mixer to the enhanced network.

To construct an enhanced network (Fblock
E ) at the distillation position k, according to the Block

Prior Mixing Option Rk randomly sampled from {0, 1}, the output of Feature Prior Mixer FE
k

is forwarding propagated to the student network (Rk = 1) or teacher network (Rk = 0), as the
propagation path exemplified in Figure 2. The HS(k)

and HT(k)
represent the block from student and

teacher models after the current position respectively. HO(k)
represents the mixed block at the current

position based on Rk, which can be computed as

HO(k)
= RkHS(k)

+ (1− Rk)HT(k)
. (6)

Based on this process, denote the output of such concatenated network as IEk

SR,

IEk

SR = Fblock
E (ILR; Θ

S) = HO(k)
(FE

k ) (7)

The feature knowledge distillation loss based on Block Prior Mixer is derived through the combined
network’s final output with the teacher model’s output:

LfeatB
k = ∥IEk

SR − ITSR∥1 (8)

In addition, LfeatB
k = 0 if the k-th feature distillation position is dropped out. It is anticipated that

there will be an attainment of interchangeability between the corresponding teacher and student
network blocks, facilitating the student in learning and replicating the abilities of the teacher model.

The Whole Pipeline. Compared to conventional feature-based KD methods, MiPKD uses enhanced
feature maps and networks to impose more constraints on the student model. In general, for each
feature distillation position k, based on the pair of FT

k and FS
k as the input of Feature Prior Mixer, the

random masked feature maps are fused in a unified latent space. And the LfeatF
k is computed to align

the enhanced feature map FE
k with the initial teacher feature map in the same representation space.

Subsequently, the randomly sampled Rk determines the propagation option of FE
k , the networks’

blocks are randomly exchanged and the knowledge is transmitted from the teacher to student model,
as shown in Figure 2. Besides logits-KD loss Llogits, reconstruction loss Lrec, the feature losses in
block and feature levels are accumulated:

Ltotal = λkdLlogits + λrecLrec +
∑
k≤K

(λfeatLfeatF
k + λblockLfeatB

k ). (9)

5



Published as a conference paper at ICLR 2025

Table 1: The specifications for the SR model under ×4 experimental settings, including #Params,
FLOPs and FPS are calculated using an input image with dimensions 256×256×3. And Frames per
second is evaluated on an NVIDIA V100 GPU.

Model Role Network FLOPs (G) #Params (M) FPS
Channel Block Group

EDSR
Teacher 256 32 - 3293.35 43.09 3.2

Student 1 64 32 - 207.28 2.70 33.958
Student 2 64 16 - 129.97 (25.3×) 1.52 (28.3×) 53.3

RCAN Teacher 64 20 10 1044.03 15.59 6.3
Student 64 6 10 366.98 5.17 12.3

SwinIR Teacher 180 6 - 861.27 11.90 0.459
Student 60 4 - 121.48 1.24 0.874

where λkd, λrec, λfeat, λblock represent the weights for logits-kd loss, reconstruction loss, feature
prior mixer and block prior mixer respectively. The teacher’s knowledge is effectively transferred
through this multi-level distillation process.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENT SETUPS

Backbones and Evaluation. EDSR (Lim et al., 2017), RCAN (Zhang et al., 2018), and
SwinIR (Liang et al., 2021) as backbone architectures are utilized to assess the significance of
MiPKD and contrast it against previous KD techniques on ×2, ×3, and ×4 super-resolving scales.
The SR network specifications and some statistics are presented in Table 1, including the num-
ber of channels, residual blocks and residual groups (RCAN), number of parameters (#Params),
FLOPs(Floating Point Operations per Second), and inference speed (frame per second, FPS).

We compare MiPKD with the baselines: train from scratch, Logits-KD (Hinton et al., 2015),
RKD (Park et al., 2019), AT (Zagoruyko & Komodakis, 2016), FitNet (Romero et al., 2014),
FAKD (He et al., 2020), CrossKD (Fang et al., 2023), and CSD (Wang et al., 2021b). Since the
CSD is a self-distillation method in the channel-splitting manner, it’s not applicable to the RCAN
experiments of network depth distillation. The results for ×4 EDSR trained with CSD are obtained by
testing the provided checkpoint, and the ×2 and ×3 ones are reproduced by us since the checkpoints
are unavailable. The peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) are
computed to evaluate the quality of the SR model’s output. We utilize DIV2K (Timofte et al., 2017)
dataset for training, and evaluate models on various standard test sets: Set14 (Zeyde et al., 2012),
Set5 (Bevilacqua et al., 2012), BSD100 (Martin et al., 2001), and Urban100 (Huang et al., 2015).

Training Details. The Adam optimizer (Kingma & Ba, 2014) is employed for training models,
utilizing parameters β1 = 0.9, β2 = 0.99 and ϵ = 1e − 8 with 2.5e5 iterations. The learning
rate is initialized at 1e − 4 and reduced by a factor of 10 at each 1e5 iteration. We set the loss
weights λkd, λfeat and λblock to 1, 1 and 0.1, respectively. The proposed MiPKD is implemented
by the BasicSR (Wang et al., 2022b) and PyTorch (Paszke et al., 2019) framework and train them
using 4 NVIDIA V100 GPUs. For both training and evaluation, the LR images were produced by
applying bicubic down-sampling to the HR images. Augmentation through random cropping, flips,
and rotations are applied during training

4.2 RESULTS AND COMPARISON

Comparison with Baseline Methods. Quantitative results for training EDSR (Lim et al., 2017),
RCAN (Zhang et al., 2018), and SwinIR (Liang et al., 2021) of three SR scales are presented
in Table 2, Table 3 and Table 11, from which we can draw the following conclusions:

(1) Existing KD methods for SR have limited effects, some may even deteriorate the student model.
The KD methods originally designed for high-level CV tasks (RKD, AT, FitNet), though applicable,
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Table 2: Quantitative comparison of distilling EDSR (Lim et al., 2017) on the benchmark datasets. In
these experiments, the EDSR student model of c64b32 is distilled by the teacher model of c256b32.

Scale Method Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

x2

Teacher 38.20/0.9606 34.02/0.9204 32.37/0.9018 33.10/0.9363
Scratch 38.00/0.9605 33.57/0.9171 32.17/0.8996 31.96/0.9268
KD 38.04/0.9606 33.58/0.9172 32.19/0.8998 31.98/0.9269
RKD 38.03/0.9606 33.57/0.9173 32.18/0.8998 31.96/0.9270
AT 37.96/0.9603 33.48/0.9167 32.12/0.8990 31.71/0.9241
FitNet 37.59/0.9589 33.09/0.9136 31.79/0.8953 30.46/0.9111
FAKD 37.99/0.9606 33.60/0.9173 32.19/0.8998 32.04/0.9275
CSD 38.06/0.9607 33.65/0.9179 32.22/0.9004 32.26/0.9300
MipKD 38.18/0.9611 33.82/0.9197 32.30/0.9011 32.56/0.9323

x3

Teacher 34.76/0.929 30.66/0.8481 29.32/0.8104 29.02/0.8685
Scratch 34.39/0.927 30.32/0.8417 29.08/0.8046 27.99/0.8489
KD 34.43/0.9273 30.34/0.8422 29.10/0.8050 28.00/0.8491
RKD 34.43/0.9274 30.33/0.8423 29.09/0.8051 27.96/0.8493
AT 34.29/0.9262 30.26/0.8406 29.03/0.8035 27.76/0.8443
FitNet 33.35/0.9178 29.71/0.8323 28.62/0.7949 26.61/0.8167
FAKD 34.39/0.9272 30.34/0.8426 29.10/0.8052 28.07/0.8511
CSD 34.45/0.9275 30.32/0.8430 29.11/0.8061 28.21/0.8549
MipKD 34.60/0.9288 30.50/0.8454 29.21/0.8079 28.52/0.8592

x4

Teacher 32.65/0.9005 28.95/0.7903 27.81/0.744 26.87/0.8086
Scratch 32.29/0.8965 28.68/0.7840 27.64/0.7380 26.21/0.7893
KD 32.30/0.8965 28.70/0.7842 27.64/0.7382 26.21/0.7897
RKD 32.30/0.8965 28.69/0.7842 27.64/0.7383 26.20/0.7899
AT 32.22/0.8952 28.63/0.7825 27.59/0.7365 25.97/0.7825
FitNet 31.65/0.8873 28.33/0.7768 27.38/0.7309 25.40/0.7637
FAKD 32.27/0.8960 28.65/0.7836 27.62/0.7379 26.18/0.7895
CSD 32.34/0.8974 28.72/0.7856 27.68/0.7396 26.34/0.7948
MipKD 32.45/0.8980 28.79/0.7865 27.71/0.7400 26.46/0.7968

hardly improve the SR models over training from scratch. For instance, AT and FitNet underperform
the vanilla student models trained without KD among all settings.

(2) The presented MiPKD outperforms existing KD methods baselines for model compression. For
example, MiPKD outperforms the vanilla student in the most challenging dataset Urban100 in
EDSR×2, ×3 and ×4 settings by 0.6 dB, 0.53 dB, 0.25 dB in terms of PSNR, respectively as Table 2
shown. Compared with training from scratch, 0.35 dB, 0.30 dB, 0.30 dB in terms of PSNR are
improved, respectively, on Urban100 dataset in RCAN ×2, ×3, and ×4 settings as Table 3 shown.

(3) The MiPKD is applicable to the transformer network and able to boost the model’s performance.
Conventional feature-based KD methods are not directly applicable to the Transformer-type networks,
so we compare MiPKD with training from scratch and the response-based KD (Hinton et al., 2015)
in the experiments. The results in Table 11 indicate that the MiPKD could improve the transformer
SR model by a large margin, further emphasizing its superior performance.

Visual Comparison. Figure 3 compares the output of ×4 EDSR models from the Urban100 dataset
with various KD methods. For instance, for img_047, MiPKD can reconstruct much better fine
details than all baseline works. FAKD are prone to artifacts in the left-bottom of the building and the
vanilla student, Logits-KD, FAKD, and FitNet are over-blurred. In contrast, MiPKD alleviates the
blurring distortions and reconstructs much more fine-grained structural features. Similar observations
are observed across other examples, e.g. the characters and anisotropic textures in img_073. The
visual analysis aligns with the quantitative findings, highlighting the advantages of MiPKD. Further
visual comparisons are supplied in the supplementary section.

Comparison of training costs: As shown in Table 4, MiPKD significantly outperforms Logits-KD
by 0.12dB PNSR, while with an increase of only 0.38s training time per step. It indicates that our
MiPKD achieves the best trade-off between performance and training time.
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Table 3: Quantitative comparison on RCAN (Zhang et al., 2018) architecture on the benchmark
datasets. In these experiments, the RCAN student model of c64b6 is distilled by the teacher model of
c64b20.

Scale Method Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

x2

Teacher 38.27/0.9614 34.13/0.9216 32.41/0.9027 33.34/0.9384
Scratch 38.13/0.9610 33.78/0.9194 32.26/0.9007 32.63/0.9327
KD 38.17/0.9611 33.83/0.9197 32.29/0.9010 32.67/0.9329
RKD 38.18/0.9612 33.78/0.9191 32.29/0.9011 32.70/0.9330
AT 38.13/0.9610 33.70/0.9187 32.25/0.9005 32.48/0.9313
FitNet 37.97/0.9602 33.57/0.9174 32.19/0.8999 32.06/0.9279
FAKD 38.17/0.9612 33.83/0.9199 32.29/0.9011 32.65/0.9330
CrossKD 38.18/0.9612 33.82/0.9195 32.29/0.9012 32.69/0.9331
MiPKD 38.26/0.9614 34.02/0.9210 32.35/0.9017 32.98/0.9357

x3

Teacher 34.74/0.9299 30.65/0.8482 29.32/0.8111 29.09/0.8702
Scratch 34.61/0.9288 30.45/0.8444 29.18/0.8074 28.59/0.8610
KD 34.61/0.9291 30.47/0.8447 29.21/0.8080 28.62/0.8612
RKD 34.67/0.9292 30.48/0.8451 29.21/0.8080 28.60/0.8610
AT 34.55/0.9287 30.43/0.8438 29.17/0.8070 28.43/0.8577
FitNet 34.21/0.9248 30.20/0.8399 29.05/0.8044 27.89/0.8472
FAKD 34.63/0.9290 30.51/0.8453 29.21/0.8079 28.62/0.8612
CrossKD 34.66/0.9291 30.50/0.8448 29.22/0.8082 28.64/0.8617
MiPKD 34.76/0.9299 30.61/0.8467 29.28/0.8090 28.89/0.8658

x4

Teacher 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087
Scratch 32.38/0.8971 28.69/0.7842 27.63/0.7379 26.36/0.7947
KD 32.45/0.8980 28.76/0.7860 27.67/0.7400 26.49/0.7982
RKD 32.39/0.8974 28.74/0.7856 27.67/0.7399 26.47/0.7981
AT 32.31/0.8967 28.69/0.7839 27.64/0.7385 26.29/0.7927
FitNet 31.99/0.8899 28.50/0.7789 27.55/0.7353 25.90/0.7791
FAKD 32.46/0.8980 28.77/0.7860 27.68/0.7400 26.50/0.7980
CrossKD 32.45/0.8984 28.81/0.7866 27.69/0.7406 26.53/0.7992
MiPKD 32.58/0.8998 28.84/0.7875 27.75/0.7418 26.66/0.8029

Table 4: Training expenses of KD methods for distilling ×2 EDSR model.
KD methods Logits-KD FitNet FAKD CSD MiPKD

Time (s/step) 0.49 0.56 0.56 1.18 0.87
Urban100 PSNR 31.98 30.46 32.04 32.26 32.56

5 ABLATION STUDY

To illustrate the significance of the proposed MiPKD method, we conduct detailed ablation studies
on RCAN and EDSR networks.

Ablation on the feature and block prior mixers for MipKD. There are two fine-grained prior mixer
modules in MiPKD, namely, the feature and block prior mixers. Their individual effects are ablated
in Table 5. The result shows that employing the feature prior mixers leads to significant performance
improvement and the block prior mixer based on it could further boost the student model.

Ablation on the MiPKD feature prior mixer module. In the feature prior mixer module of MiPKD,
the teacher and student models’ feature maps are mapped to the latent space through corresponding
encoders, then randomly mixed and stitched. We present an analysis on the encoders in Table 6,
comparing MiPKD with 1) removing the encoders, aligning and utilizing the teacher’s feature map
directly and 2) sharing the encoder between the teacher and student model. Removing the encoders
would substantially deteriorate the student model’s performance. Due to the different distribution of
teacher and student models’ feature maps, a shared encoder cannot effectively map them to the same
latent space, leading to noisy mixtures. Assigning separate encoders to the teacher and student models
yields the best results, indicating that mixing feature priors in the same latent space is necessary.
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Figure 3: Visual comparison (×4) with existing SRKD methods from Urban100. The numbers in the
bracket denote the PSNR of the presented patches.

Table 5: Ablation on the two prior mixers. The RCAN
student model of c32b5g5 is distilled by the teacher
model of c32b6g10.

Feature Prior
Mixer

Block Prior
Mixer

Urban100

PSNR / SSIM

✗ ✗ 25.60 / 0.7700
✓ ✗ 25.63 / 0.7711
✗ ✓ 25.65 / 0.7717
✓ ✓ 25.69 / 0.7728

Table 6: Ablation on the encoder type
in MiPKD feature mixer module without
block prior mixer module.

Encoder Type Urban100

PSNR SSIM

No Encoder 24.51 0.7149
Shared Encoder 25.61 0.7704
Separate Encoder 25.63 0.7711

Table 7 compares the encoder and decoder of different network architectures with similar sizes. The
convolutional neural network can better project the representations to the unified latent space, as the
result shows that CNN exhibits better performance than the MLP encoder/decoder.

Ablation on the “auto-encoder” loss Lae
k . We compared the MiPKD with and without Lae

k
in Table 8. The results indicate that the auxiliary “auto-encoder” loss makes the mapping between the
raw feature maps’ space and the latent space more accurate, leading to a better student model.
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Table 7: Comparison of different encoder and de-
coder network settings.

Encoder/Decoder Type Urban100

PSNR/SSIM

MLP 26.42/0.7964
Conv 26.66/0.8029

Table 8: Ablation study on the auto-encoder
loss Lae

k .

Auto-encoder Loss Urban100

PSNR/SSIM

✗ 26.42/0.7971
✓ 26.66/0.8029

Besides, the mask generation strategies are compared in Table 9. Compared with 1) masking
according to the Cosine or CKA similarity between teacher and student models’ feature maps or
2) generating the complementary pairs of feature map by fixed grid pattern, the random 3D mask
exhibits the best performance and least calculation consumption. A more flexible, generalizable
strategy is applied in the prior mixer module.

Table 9: Ablation analysis on the masking strategy for feature prior mixture.

masking strategy Urban100
PSNR/SSIM

Cosine 25.62/0.7711
Grid mask 25.61/0.7669
CKA 25.63/0.7713
Random 25.69/0.7728

Ablation on the Loss weights setting of feature and block mixers. The impact of various weights
of feature mixers loss and block mixer loss is evaluated as Table 10 shown, where λrec, λkd, λfeat,
λblock represent the weights for reconstruction loss, logits-kd loss, feature prior mixer and block prior
mixer respectively. Considering the initial fluctuation caused by mixing the block from networks,
λblock is applied since 0.1 presented the best student performance as the Table 8 shown. In addition,
the reconstruction loss of the auto-encoder in the feature prior mixer is introduced in the initial stage
of training. As the reconstruction ability of the decoder improves, it’s beneficial for the prior mixer to
fuse dark knowledge and restore the enhanced feature map efficiently.

Table 10: Ablation analysis on the weights of different losses

λrec λkd λfeat λblock
Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

1 1 1 1 32.46/0.8972 28.75/0.7851 27.68/0.7399 26.53/0.7976
1 1 0.1 1 32.34/0.8970 28.73/0.7849 27.67/0.7394 26.47/0.7960
1 1 0.1 0.1 32.42/0.8980 28.75/0.7857 27.68/0.7399 26.51/0.7988
1 1 1 0.1 32.58/0.8998 28.84/0.7875 27.75/0.7418 26.66/0.8029

6 CONCLUSION

In this paper, we proposed the dark mixing mechanism for KD on SR in feature and block levels. The
teacher’s knowledge is effectively integrated with the student’s feature via the Feature Prior Mixer,
and the reconstructed feature propagates stochastically by the Block Prior Mixer. The masked feature
maps are fused in a unified latent space, and the mixed prior narrows the optimization space. The
Block Prior Mixer propagates the reconstructed feature and re-ensembles the networks to constrain
the student model. The two granularity of the prior mixtures follow the common idea of prior mixing
and propagation, which alleviates the impact of capacity variation on the performance of knowledge
transfer. In-depth evaluations prove the significance of the proposed MiPKD strategy.
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A SUPPLYMENTARY EXPERIMENT RESULTS

A.1 EXPERIMENT RESULTS ON SWINIR MODEL

We compare MiPKD with other applicable KD methods on distilling transformer-based SR model,
SwinIR. The result shows the superiority and universality of MiPKD.

Table 11: Quantitative comparison of distilling SwinIR (Liang et al., 2021) on the benchmark datasets.

Scale Method Set5 Set14 BSD100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

2

Teacher 38.36 0.9620 34.14 0.9227 32.45 0.9030 33.40 0.9394
Scratch 38.00 0.9607 33.56 0.9178 32.19 0.9000 32.05 0.9279

KD 38.04 0.9608 33.61 0.9184 32.22 0.9003 32.09 0.9282
MipKD 38.14 0.9611 33.76 0.9194 32.29 0.9011 32.46 0.9313

3

Teacher 34.89 0.9312 30.77 0.8503 29.37 0.8124 29.29 0.8744
Scratch 34.41 0.9273 30.43 0.8437 29.12 0.8062 28.20 0.8537

KD 34.44 0.9275 30.45 0.8443 29.14 0.8066 28.23 0.8545
MipKD 34.53 0.9283 30.52 0.8456 29.19 0.8079 28.47 0.8591

4

Teacher 32.72 0.9021 28.94 0.7914 27.83 0.7459 27.07 0.8164
Scratch 32.31 0.8955 28.67 0.7833 27.61 0.7379 26.15 0.7884

KD 32.27 0.8954 28.67 0.7833 27.62 0.7380 26.15 0.7887
FitNet 32.08 0.8925 28.51 0.7800 27.53 0.7354 25.80 0.7779
FAKD 32.06 0.8926 28.52 0.7800 27.53 0.7354 25.81 0.7780

MipKD 32.39 0.8971 28.76 0.7854 27.68 0.7403 26.37 0.7956

A.2 EVALUATE MIPKD ON HIGH COMPRESSION RATE SETTING.

Table 12 shows the results of training ×4 scale EDSR model with both network width and depth
compression. The number of parameters is reduced to about 1

28 of teacher model’s. Directly distilling
the student model by the teacher model yields negative effects on its performance. Two-stage KD with
an intermediate teaching-assistant (TA) model Mirzadeh et al. (2020) are preferred in such case. To
make use of the CSD method, we compared different TA options, (1) Teacher->Student1->Student2:
the whole pipeline is in a width-then-depth compression order. We adopt CSD to train the TA and
FAKD for student model (2) Depth-then-width: we first perform depth compression and then width
compression. We adopt FAKD+CSD and MiPKD+MiPKD for the two-stage distillations. The result
indicates that distill TA and student model with MiPKD yields the best performance.

Table 12: Quantitative comparison on training ×4 EDSR models with higher compression rate on
the benchmark datasets. In these experiments, the EDSR student model of c64b16 is distilled by the
teacher model of c256b32.

Method Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Teacher 32.65/0.9005 28.95/0.7903 27.81/0.7440 26.87/0.8086
NOKD 32.01/0.8924 28.46/0.7782 27.47/0.7324 25.61/0.7704
KD 31.99/0.8921 28.46/0.7784 27.47/0.7327 25.60/0.7700
FitNet 31.92/0.8912 28.42/0.7776 27.44/0.7317 25.52/0.7672
FAKD 31.65/0.8879 28.32/0.7760 27.37/0.7303 25.38/0.7629
FAKD+CSD 32.00/0.8930 28.47/0.7800 27.51/0.7340 25.79/0.7790
CSD+FAKD 31.86/0.8907 28.42/0.7786 27.46/0.7327 25.58/0.7709
MiPKD+MiPKD 32.17/0.8947 28.57/0.7812 27.57/0.7354 25.89/0.7794

A.3 ABLATION ON THE FREQUENCY OF BLOCK PRIOR MIXER

In the MiPKD, the block prior mixer at each distillation position randomly determines if the enhanced
feature map FE

k is forward propagated to the student or teacher network. In Table 13, we analyzed
the impact of frequency of this random propagation. It’s also the number of each input image
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passing through the enhanced mixed SR networks. It shows that performing single random forward
propagation yields the best results, which in practice is the most efficient as well.

Table 13: Ablation for the frequency of random propagation of the Block Prior Mixer. The RCAN
student model of c64b5g10 is distilled by the teacher model of c64b6g10.

#propagation per sample Set5 Set14 BSD100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 31.99 0.8919 28.43 0.7777 27.46 0.732 25.69 0.7728
2 31.87 0.8884 28.38 0.7632 27.42 0.7311 25.62 0.7699
4 31.86 0.8867 28.37 0.7619 27.41 0.7306 25.57 0.7697

B MORE VISUAL RESULTS

In the experiment section of main text, we provided some visual results of EDSR model. We present
more visual comparisons of MiPKD with other KD methods over the SwinIR network in Figure 4.
MiPKD reconstructs more structural details and alleviates the blurring artifacts, which is consistent
with the observations on EDSR network.

Img_098	from	Urban	100

Img_024	from	Urban	100

Figure 4: The ×4 super resolution results of SwinIR models on img024, and img098 from Urban100.
PSNRs of the cropped regions are annotated below each image.

C FEATURE MAP ANALYSIS FOR THE MASK STRATEGY

The comparison of feature maps at a deep layer (the convolution layer following all residual groups
of RCAN) across FitNet, RKD, and MiPKD could highlight the effectiveness of MiPKD’s random
masking strategy, as shown in Figure 5. The MiPKD excels in capturing fine-grained texture details,
producing feature maps (far right) with sharper contrasts between high-frequency regions with
complex patterns and low-frequency background regions. This enhanced representation serves as
higher-quality input for the network’s reconstruction layers, ultimately leading to superior visual
quality in the output SR images.
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The Feature Prior Mixer ensures that the student learns to reconstruct the teacher’s fine-grained
features while maintaining contextual consistency, effectively narrowing the gap between teacher and
student feature distributions. Simultaneously, the Block Prior Mixer introduces stochastic routing
of feature representations, enabling the student to inherit complex transformation patterns from
the teacher. This two granularity prior mixing mechanism enhances the fidelity of high-frequency
textures while preserving structural integrity, reducing artifacts and producing visually pleasing
super-resolution results with sharper edges and more realistic textures.

Figure 5: The feature maps at the deep layer (’conv afterbody’) distillation point for FitNet, RKD,
and MiPKD methods on the ×4 super resolution RCAN model

D TRAINING STABILITY OF MIPKD

The MiPKD adopts random masking strategy in the feature and block prior mixer, which introduces
diverse mixing patterns. As shown in Figure 6, the random strategy is as stable stable as other
feature-based KD methods during training.
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Figure 6: Loss curve of distilling ×4 RCAN with different KD methods.
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