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Abstract

Retrieval-Augmented Generation effectively overcomes
Large Language Models knowledge limitations. This
approach improves answer quality by incorporating
additional context into the input prompt. In this paper, we
propose the Human-inspired Retrieval-Augmented
Generation (HiRAG) that reduces prompt sizes by creating
and retrieving short yet comprehensive contexts. Our
experiments demonstrate that HiRAG improves retrieval
accuracy with smaller embedding models, especially for
technical data. On average, HiRAG condenses more
knowledge into shorter prompts while preserving context
quality. This reduction lowers latency during inference,
making it well-suited for embedded devices.

Introduction
Large Language Models (LLMs) facilitate deep and natural
interactions between humans and machines. Pre-trained
foundation models are often customized to improve
performance in specific use cases. Unlike fine-tuning
approaches (Hu et al. 2022) that modify the model’s
parameters, Retrieval-Augmented Generation (RAG)
(Lewis et al. 2020) enhances response quality by enriching
the LLM’s prompt (Boros et al. 2024). RAG with factual
context also reduces false answers, called hallucinations.
RAG consists of three phases: ingestion, retrieval, and
generation. This study focuses on the first two phases.

The ingestion phase involves segmenting a large textual
knowledge into short pieces of text named chunks. Each
chunk is stored with a vector embedding representing its
meaning. Fixed-Size (FS) chunking (Venish and
Siva Sankar 2016) was introduced to divide text into
overlapping segments of predefined length. As this method
overlooks human language structure, content-aware
strategies such as Recursive chunking (Rec.) (Gong et al.
2020) were developed. In practice, the text is recursively
cut on punctuation signs, until a desired number of
characters is reached. Natural Language Processing
libraries such as NLTK (Bird 2006) and SpaCy (Neumann
et al. 2019) offer advanced tools for generating chunks with
better context preservation.
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Figure 1: In HiRAG, an external LLM converts large texts
into Question-Answer pairs. The user query is compared
with all pairs to feed the relevant information to the prompt.

The retrieval phase consists in identifying the most
relevant chunks to a query by comparing the similarity of
all stored vectors with the query’s embedding (Farouk
2020). The most similar chunks are considered the most
pertinent pieces of information and are added to the LLM’s
prompt. Their quality depends on both the chunking
strategy and the embedding model’s ability to capture
textual meaning (Cer et al. 2018). The Massive Text
Embedding Benchmark (MTEB) (Muennighoff et al. 2022)
evaluates and compares the size and performance of various
embedding models across different tasks. For example, the
7-billion parameter SFR-Embedding-Mistral model (Jiang
et al. 2023; Wang et al. 2024) excels in tasks such as pair
classification, retrieval, and re-ranking. In contrast, the
23-million parameter GIST-all-MiniLM-L6-v2 (Wang et al.
2020; Solatorio 2024) is a much more compact alternative
that still achieves impressive results on retrieval tasks
(Muennighoff et al. 2022).



However, integrating LLMs into embedded devices
remains challenging due to limited memory, restricted data
movement, and reduced computational power (Dhar et al.
2024). Therefore, research has focused on smaller LLMs
(Abdin et al. 2024) designed for embedded applications.
The 1-billion parameter TinyLlama (Zhang et al. 2024), the
7-billion Llama2 (Touvron et al. 2023), or more recently
the 8-billion parameter Llama3 (Dubey et al. 2024) offer
compact and promising alternatives. Further reducing
LLMs’ size is possible through structural (Ma, Fang, and
Wang 2023) and/or post-training adaptations (Xiao et al.
2023), but entails an additional sacrifice of proficiency for
latency. Moreover, RAG complicates the integration
process by requiring an extra embedding model. Re-ranking
algorithms (Carraro and Bridge 2024) that improve chunk
relevancy can also exacerbate latency. While efforts have
been made to reduce embedding model sizes, research on
adapting RAG for embedded applications remains limited.

In this paper, we present HiRAG which delivers concise
yet comprehensive contextual information to the prompt.
The phases of the HiRAG process are illustrated in
Figure 1. Our contribution is threefold: (1) a relatively more
compact textual database, (2) the retrieval of concise and
high-quality context information, and (3) smaller prompts
to reduce inference latency.

Human-inspired RAG
This paper introduces a RAG pipeline designed for
embedded applications, which evolves chunking from basic
text segmentation to knowledge-driven summarization.
Our approach generates fewer, smaller, but smarter chunks.
In the ingestion phase, an advanced LLM such as
ChatGPT-3 (Ye et al. 2023) transforms textual data into
Question-Answer (QA) pairs that capture all essential
information. Question-answering agents typically handle
spoken or written questions, whereas RAG databases often
contain more technical vocabulary that differs from
standard conversational phrasing. Figure 2 shows how
leveraging LLMs’ understanding and broad knowledge
reduces parsing artifacts and produces concise yet
exhaustive chunks with high clarity.

We evaluate HiRAG on two configurations for the
ingestion phase and two complementary configurations for
the retrieval phase.

The two ingestion phase configurations are: (1) EmbQ,
where only the question part of the QA chunk is vectorized,
and (2) EmbQA, which converts into embedding the entire
QA pair. While (1) aims to maximize the similarity
between stored embeddings and the user’s question, (2)
considers that the question’s phrasing might appear in both
the question and answer part of a chunk.

The two retrieval phase configurations are: (1) RetA,
which adds only the answer part of the retrieved chunk to
the prompt, and (2) RetQA, which inserts the entire QA pair
into the prompt. While (1) seeks to minimize prompt length
to reduce latency, potentially limiting context
understanding, (2) provides clearer and longer context by
adding the whole QA pair into the prompt.

Prompt:
Give me as many question-answer pairs as needed to cover the whole
following text. Question (Q) and answer (A) must be short and precise.
The pairs must be formatted as: Q: ; A: .
With Remote Start Shown, Without Similar: If equipped, the RKE
transmitter functions work up to 60 m (197 ft) away from the vehicle.
Other conditions can affect the performance of the transmitter. See
Remote Keyless Entry (RKE) System 08.
Answer:
- Q: How far do the RKE transmitter functions work from the vehicle?;
A: Up to 60 meters (197 feet) away.
- Q: What can affect the performance of the RKE transmitter
functions?; A: Other conditions.
- Q: Where can more information about the Remote Keyless Entry
(RKE) System be found?; A: In the vehicle’s manual.

Figure 2: Example of a prompt for generating QA pairs from
a given context paragraph, using ChatGPT-3.

Experimental Setup
Two QA databases were generated using ChatGPT-3 and the
7-billion-parameter Llama2 LLMs, respectively. In practice,
textual data is segmented into paragraphs, that are processed
by the external LLM, as shown in Figure 2. QA pairs are
then extracted directly from the LLM’s responses.

Comparing Chunking Strategies
The two HiRAG ingestion configurations EmbQ and
EmbQA are compared with four state-of-the-art chunking
strategies: FS, Rec., NLTK, and SpaCy. These baselines are
evaluated with different chunk lengths and overlaps, both
defined by the size in number of characters. Three standard
size/overlap pairs were selected: the Small 64/32 (S), the
Medium 128/64 (M), and the Large 256/128 (L). In total,
16 chunking strategies are compared in this study.

Comparing Retrieval Strategies
The impact of HiRAG QA reformatting was compared
using two embedding models of different sizes: the large
and advanced SFR-Embedding-Mistral model, and the
compact GIST-all-MiniLM-L6-v2 model. In this study,
only the single chunk with the highest cosine similarity was
considered to simplify the retrieved context evaluation.

Datasets
Our experiments are conducted on two datasets: the
validation set of the Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al. 2016) and the Car Owner’s
Manual (COM). These datasets are designed to evaluate
RAG across various themes. Each paragraph of the datasets
is associated with one or more questions along with their
respective answers.

The SQuAD is composed of general knowledge data
from Wikipedia. Its validation set has been filtered out from
unanswerable questions. After preprocessing, 2,067
paragraphs and 10,569 question-answers remain.

We crafted the COM dataset from a 284-page car user
guide which is composed of 356 paragraphs of technical
automotive data. 2,104 question-answers were generated



Table 1: Chunking strategies comparison on SQuAD

Ingestion GIST SFR #chunk #char.
strategy Acc. ↑ Acc. ↑ (103) ↓ (106) ↓
FS (S) 0.44 0.77 251 15.88
FS (M) 0.50 0.80 123 15.41
FS (L) 0.51 0.78 59 14.43
Rec. (S) 0.48 0.77 252 14.96
Rec. (M) 0.52 0.80 123 14.97
Rec. (L) 0.53 0.78 59 14.21
NLTK (S) 0.63 0.76 53 8.19
NLTK (M) 0.63 0.80 53 8.2
NLTK (L) 0.62 0.77 43 8.71
SpaCy (S) 0.62 0.75 53 8.19
SpaCy (M) 0.63 0.76 52 8.2
SpaCy (L) 0.62 0.77 43 8.70
HiRAG
Llama2 QA chunks
EmbQ 0.50 0.67 70 10.49EmbQA 0.60 0.77
ChatGPT QA chunks
EmbQ 0.54 0.70 60 6.64EmbQA 0.62 0.79

for this dataset using Gemini 1.0 Pro (Reid et al. 2024),
following a similar process shown in Figure 2.

For each question in both datasets, the
SFR-Embedding-Mistral model was used to identify the
most similar chunk from among the available options
within the same paragraph. The selected chunks are labeled
as the ground truths.

Metrics
The quality of each ingestion strategy is measured by its
resulting accuracy (Acc.) in retrieving the ground truth
chunk. The database memory impact is assessed by both
the chunk count and the character count. The chunk count
indicates the number of vectors sorted in the database,
while the character count indicates the knowledge
compactness after chunking.

The BERTScore (Zhang et al. 2020) metric is calculated
by comparing the retrieved chunk with the LLM’s expected
answer to evaluate relevancy. A higher BERTScore
corresponds to a better similarity. The ROUGE (Lin 2004)
scores provide complementary insight on the overlap
between the words in the expected answer and those in the
retrieved chunk. In particular, the ROUGE 1 and 2 scores
evaluate the co-occurrence of unigrams and bigrams
between two texts, while the L score measures the longest
common subsequence.

Experimental Results
The impact of HiRAG is studied for the ingestion and
retrieval phases. Different combinations of EmbQA, EmbQ,
RetQA, and RetA are denoted by the ∧ symbol. For instance,
the combination of EmbQA ∧ RetA configurations refers to
the use of EmbQA for ingestion and RetA for retrieval.

Table 2: Chunking strategies comparison on COMQdataset

Ingestion GIST SFR #chunk #char.
strategy Acc. ↑ Acc. ↑ (103) ↓ (106) ↓
FS (S) 0.41 0.70 15 0.97
FS (M) 0.42 0.74 7 0.96
FS (L) 0.48 0.75 3 0.93
Rec. (S) 0.44 0.74 15 0.92
Rec. (M) 0.47 0.75 7 0.93
Rec. (L) 0.46 0.74 3 0.91
NLTK (S) 0.52 0.71 5 0.49
NLTK (M) 0.55 0.73 4 0.53
NLTK (L) 0.51 0.73 3 0.69
SpaCy (S) 0.55 0.70 5 0.50
SpaCy (M) 0.56 0.74 4 0.53
SpaCy (L) 0.51 0.74 3 0.70
HiRAG
Llama2 QA chunks
EmbQ 0.61 0.71 2 0.45EmbQA 0.58 0.69
ChatGPT QA chunks
EmbQ 0.64 0.73 1 0.22EmbQA 0.64 0.71

Ingestion Strategies Evaluation
Table 1 and 2 highlight the chunk database quality for
SQuAD and COM datasets, respectively. For each dataset,
16 chunk databases have been generated using the different
ingestion strategies. The tables show the accuracy of the
two embedding models in finding the ground truth chunk in
the database. They also present the total chunk count and
the character count, illustrating the storage requirements for
the same initial knowledge data.

Table 1 shows consistent accuracy of the
SFR-Embedding-Mistral model across different ingestion
strategies. The GIST-all-MiniLM-L6-v2 model exhibits
more varied accuracy, suggesting that chunk database
quality has a greater impact on retrieval accuracy as the
embedding model size decreases. On SQuAD, the
NLTK (L) and SpaCy (L) strategies generate fewer chunks.
In comparison, the HiRAG chunk counts remain fairly low.
HiRAG with ChatGPT best condenses the textual data.

Table 2 confirms that the chunk database quality has a
greater impact when using a smaller embedding model. On
COM dataset, HiRAG demonstrates the best accuracies
with scores over 0.61 using GIST-all-MiniLM-L6-v2.
Notably, this method also produces fewer and more
condensed chunks. The HiRAG using ChatGPT appears to
be the best ingestion strategy with an accuracy of 0.64 for
only 1000 compact chunks.

Retrieval Strategies Evaluation
Table 3 and 4 show the retrieved chunk quality for SQuAD
and COM datasets, respectively. 20 retrieval strategies
including 4 HiRAG combinations are compared using
BERT and ROUGE scores. The average number of tokens
added to the prompt reflects the LLM inference latency.



Table 3: Retrieval strategies comparison on SQuAD

Retrieval BERT ROUGE- tok/
strategy Score ↑ 1 ↑ 2 ↑ L ↑ ctx ↓
FS (S) 0.82 0.14 0.06 .014 16
FS (M) 0.83 0.17 0.10 0.17 31
FS (L) 0.82 0.14 0.09 0.14 56
Rec. (S) 0.82 0.15 0.07 0.15 14
Rec. (M) 0.83 0.18 0.11 0.17 29
Rec. (L) 0.83 0.15 0.09 0.14 59
NLTK (S) 0.83 0.19 0.13 0.19 43
NLTK (M) 0.84 0.19 0.13 0.19 43
NLTK (L) 0.83 0.17 0.11 0.17 53
SpaCy (S) 0.84 0.19 0.13 0.19 43
SpaCy (M) 0.84 0.19 0.13 0.19 43
SpaCy (L) 0.83 0.17 0.11 0.17 53
HiRAG
Llama2 QA chunks
EmbQ ∧ RetA 0.85 0.24 0.15 0.23 20EmbQA∧ RetA 0.85 0.25 0.16 0.25
EmbQ ∧ RetQA 0.83 0.17 0.10 0.16 36EmbQA∧ RetQA 0.83 0.18 0.11 0.18
ChatGPT QA chunks
EmbQ ∧ RetA 0.86 0.29 0.18 0.28 11EmbQA∧ RetA 0.86 0.29 0.18 0.29
EmbQ ∧ RetQA 0.83 0.19 0.10 0.18 28EmbQA∧ RetQA 0.84 0.20 0.11 0.19

Table 3 shows uniform BERT scores across all retrieval
strategies, indicating that the retrieved chunks are equally
similar to the expected answer. In most cases, HiRAG
obtains the best ROUGE scores, showing that the original
knowledge is preserved. Specifically, RetA achieves higher
scores than RetQA, as all metrics are influenced by chunk
length; using only the answer results in shorter prompts
compared to including the entire QA pair. On average, with
only 11 tokens added to the prompt, the ChatGPT RetA
configurations are the most successful retrieval strategies
in this evaluation.

Table 4 exhibits a consistent trend, indicating that
HiRAG achieves superior retrieval performance. HiRAG
configurations implying RetA slightly improve over other
strategies with BERT scores of 0.90. In particular, the
ChatGPT EmbQA∧RetA configuration shows higher scores
across all metrics. For the COM technical knowledge, the
HiRAG solution improves the quality of retrieved chunks
while limiting the latency introduced by adding context
to the prompt.

Limitations
HiRAG database construction relies on computationally
expensive LLMs to generate chunk databases. These LLMs
can also be costly, contingent upon the chosen model and
the volume of knowledge data. Furthermore, the generated
QA pairs may require post-processing to ensure a
consistent output format.

Our enhancement of the retrieved chunk quality may
have a modest impact on LLM generation. While RAG

Table 4: Retrieval strategies comparison on COMQdataset

Retrieval BERT ROUGE- tok/
strategy Score ↑ 1 ↑ 2 ↑ L ↑ ctx ↓
FS (S) 0.86 0.28 0.15 0.25 16
FS (M) 0.87 0.36 0.25 0.33 31
FS (L) 0.88 0.35 0.26 0.32 56
Rec. (S) 0.87 0.31 0.19 0.28 14
Rec. (M) 0.88 0.38 0.28 0.36 29
Rec. (L) 0.88 0.35 0.25 0.32 54
NLTK (S) 0.89 0.41 0.30 0.38 26
NLTK (M) 0.89 0.42 0.32 0.39 30
NLTK (L) 0.88 0.38 0.29 0.36 51
SpaCy (S) 0.89 0.40 0.29 0.38 24
SpaCy (M) 0.89 0.41 0.31 0.39 29
SpaCy (L) 0.88 0.38 0.29 0.36 51
HiRAG
Llama2 QA chunks
EmbQ ∧ RetA 0.90 0.42 0.31 0.39 24EmbQA∧ RetA 0.90 0.43 0.32 0.41
EmbQ ∧ RetQA 0.88 0.35 0.24 0.32 39EmbQA∧ RetQA 0.88 0.36 0.24 0.32
ChatGPT QA chunks
EmbQ ∧ RetA 0.90 0.42 0.32 0.41 14EmbQA∧ RetA 0.90 0.43 0.32 0.41
EmbQ ∧ RetQA 0.88 0.38 0.25 0.34 29EmbQA∧ RetQA 0.88 0.38 0.25 0.34

consistently produces more accurate answers with fewer
hallucinations, the differences between chunks from
different strategies might become indistinguishable in terms
of post-generation answer improvement.

Foundation LLMs are not trained to capitalize on the
prompt format introduced by HiRAG chunks, highlighting
an opportunity for further performance improvement.
Although fine-tuning the LLM was beyond the scope of this
study, training the model to leverage RetA chunks could
enhance answer quality.

Conclusion
This paper presents HiRAG, a RAG alternative for
embedded applications. Our experiments demonstrate that
HiRAG outperforms other strategies, particularly when
using ChatGPT and for specialized use cases. Compared to
state-of-the-art chunking algorithms, HiRAG condenses
data more efficiently and generates fewer chunks, while
preserving the integrity of the original knowledge.
Additionally, our study shows that QA chunk formatting
maintains or improves chunk quality while reducing the
number of added tokens to the prompt. Smaller embedding
models, like GIST-all-MiniLM-L6-v2, benefit from the
HiRAG format, leading to improved retrieval accuracy.
Furthermore, the configuration that retrieves only the
answer part of the chunks achieves the highest chunk
quality with a reduced prompt, minimizing latency in
embedded applications. Future work on fine-tuning the
LLM to better leverage the HiRAG chunk format could
enhance answer quality.
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