Under review as submission to TMLR

Mastering SAM Prompts: A Large-Scale Empirical Study in
Segmentation Refinement

Anonymous authors
Paper under double-blind review

Abstract

Segment Anything Model (SAM) has emerged as a prevalent tool empowering advances in vi-
sion tasks from instance segmentation, panoptic segmentation, to interactive segmentation.
Leveraging powerful zero-shot capabilities enabled by visual prompts such as masks placed
on the image, SAM has been shown to significantly improve tasks. Yet, a poor prompt can
worsen SAM performance, risking consequences such as misdiagnoses, autonomous driving
failures, or manufacturing defects. However, recent studies on visual SAM prompting re-
main limited, cover only a small fraction of potential prompt configurations, adopt ad-hoc
evaluation strategies, and come with limited or even no rigorous analysis of the statistical
significance of prompt configurations. To address this gap, we undertake the first large-
scale empirical study comprehensively evaluating the impact of SAM prompt configurations
on segmentation refinement. This includes 2,688 prompt configurations, including points,
boxes, and masks with diverse augmentations, on four initial segmentation models for a to-
tal of 10,752 evaluations. From these results, we draw statistically significant insights along
with practical guidelines for prompt design . In particular, we recom-
mend including a bounding box, which raised AP@50-95 by 0.320 and advise against using
a coarse mask, which lowers AP@50-95 by -0.133 across all four models

. We showcase that our recommended prompt configuration enables SAM to outperform
leading refinement methods on multiple benchmark datasets.

1 Introduction

The Promise of Segment Anything Model (SAM). The recent introduction of Segment Anything
Model (SAM) by Kirillov et al.| (2023) has revolutionized the field and practice of computer vision, streamlin-
ing numerous tasks that had previously been significantly more challenging. SAM has enabled improvements
in weakly supervised instance segmentation (Wei et al.,[2024)), high-resolution object segmentation (Ke et al.
2024)), zero-shot segmenting (Yamagiwa et al.,[2024)), and 3D-object detection (Zhang et all [2023b). Impres-
sively, SAM leverages zero-shot prompting to achieve these advancements across a diverse range of tasks.
User-specified visual prompts, such as points, boxes, or coarse masks, guide the model’s outputs to the de-
sired task without requiring additional training or prohibitively expensive modification to the massive model
architecture. In this work, we leverage SAM for segmentation refinement

(Figure , converting initial segmentation masks into prompts and producing high-quality refinements. We
focus on refinement because it supports rapid creation of large numbers of input masks, enables automated
prompt derivation per instance according to defined criteria, and allows high-fidelity quantitative evaluation
against ground-truth IoU.

Limitations of SAM. Despite extensive work integrating (Wei et al.l 2024)), extending (Ke et al.l 2024])),
or fine-tuning SAM (Wu et al., 2025), there is a lack of systematic evaluation of how prompt design affects
its performance. While SAM has the potential for strong zero-shot capabilities, SAM’s accuracy is highly
dependent on the “quality” of its prompt. For example, a single point-prompt might cause SAM to under-
segment the desired object, as shown in Figure By contrast, using multiple point-prompts can improve
coverage of the object’s boundaries but requires careful selection of point locations — but again too many or
poorly placed points can inadvertently force SAM to include surrounding regions or merge adjacent objects
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Figure 1: (a) Example segmentation refinement pipeline using SAM, including making initial predictions,
processing them into prompts for SAM, producing refined segmentations, and aggregating across all objects.
(b) Impact of example prompt configurations on SAM segmentations, showcasing how variations can drasti-
cally alter final segmentations (red dots denote a prompt placement of points as visual prompts).

(Wei et all, [2024). Additionally, SAM’s performance is domain-dependent, often underperforming on low-
contrast, fine-grained scientific and medical microscopy images essential for critical applications
2024). In this work, we therefore concentrate on prompt design for this important class of scientific and
medical applications that leverage microscopy images to derive practical guidelines.

Research Questions. Given the variability in image resolution, object morphology, and desired prompt
attributes, the number of unique prompts is near-infinite. As a result, open questions remain regarding
prompt design composition. In this work, we conduct a rigorous study of performance trends to guide
prompt selection and answer the following research questions in microscopy settings: What is the relative
importance of boxes, masks, and point prompts on segmentation quality? How do different potential types of
visual augmentation strategies (e.g., point-placement strategies) impact SAM’s results? How does combining
different prompt types and their visual augmentations affect segmentation quality, in particular, what are the
challenges and promises derived by the potential interaction (amplification, attenuation, or even cancellation
out of the positive or negative impact) of one prompt type on others when combined into visual prompt
configurations? Last but not least, with SAM’s training set, SA-1B, primarily including natural-scene high-
contrast benchmarks such as COCO or Cityscapes rather than the low-contrast, small-scale, and irregular
features common in scientific and medical images , if and how best can SAM’s performance
be effectively adapted to the unique challenges in these scientific and medical domains?

State-of-the-Art and its Shortcomings. Consequently, recent studies have found that SAM’s out-
of-the-box performance often falls short on segmentation tasks in these important scientific and medical
application domains (Ma et al] [2024} Zhang et all [2024¢). With the growing demand for generalizable
yet high-precision segmentation models in these important domains—including cancer detection (Kassis
2024), high-throughput microscopy (Rusanovsky et al [2022), histopathology (Sikaroudi et al., 2023),
and surgical planning , establishing effective visual prompting strategies to achieve high-
quality segmentation for these settings is imperative. Without an effective prompting strategy, these works
implemented alternative strategies, such as retraining SAM (Ma et all [2024)), relying on human-in-the-loop
interactive segmentations (Shen et al., 2024), or both (Cheng et all [2023D).

Recently, |Cheng et al| (2023al), Mayladan et al,| (2023)), and (2023)) have begun to explore SAM

prompting across natural, medical, and remote-sensing data. However, these studies have been exceedingly
small, typically evaluating fewer than 25 prompt configurations. With so few combinations, these studies
have not statistically validated the significance of each prompt type or of its potential types of visual aug-
mentations. Lastly, these works typically explored a single prompt type (points, bounding boxes, and coarse
masks) at a time, overlooking the problem of determining the complex interactions of prompt types and
their augmentations when combined into visual prompt configurations.

Our Approach: Large-Scale Analysis of Prompt Design Configuration. To address this gap,
we undertake a comprehensive study of visual prompt design configurations and their combined impact
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on the performance of SAM for segmentation refinement . Our rigorous study covers
2,688 prompt designs on four alternate popular initial segmentation models, resulting in 10,752 evaluations.
In particular, we first identify the effect of each core prompt type (points, masks, and boxes) and their
unique augmentation strategies. Namely, for boxes, uniform scaling is employed to expand or contract
the as-detected boundary while preserving spatial location. For masks, a similar approach is considered,
but with additional requirements to ensure the preservation of the object’s morphology. For points, we
evaluate multiple strategies, including adjusting the number of points placed, tailoring the search space for
placement, and modifying the placement algorithm. Next, we also thoroughly explore their prompt type
interrelationships by creating composite prompt configurations that include (or exclude) each core prompt
type, as well as their respective augmentations.

Throughout this evaluation, we discovered significant prevalent trends that serve as a foundation for deriving
guidance for practitioners for prompt design. For example, prompts that contained bounding boxes improved
performance by 0.320 AP@50-95 through a wide array of testing scenarios on scientific images. Alternatively,
adding coarse masks reduced it by -0.133 AP@50-95, and point-based components could boost accuracy but
were dependent on the number of points and their spatial placement. To validate the robustness and
generality of these trends, we then extended our analysis of the top prompt’s performance to determine its
impact on other metrics, including individual ToU thresholds (AP@50, APQ75, AP@95), revealing both bulk
and fine-grained improvements. We further explored the robustness and generalizability of our evaluation
by applying our top-performing prompt configuration developed on one key data set as is, without further
prompt refinement, to other benchmark scientific datasets not considered during the prompt design study.
For this, we then compare SAM’s zero-shot refinement performance using our identified recommended prompt
configuration against the leading model-agnostic segmentation refiners, CascadePSP (Cheng et al.,|2020) and
SegRefiner (Wang et all |2024)). Owverall, our study highlights that SAM, with our well-designed prompt,
can achieve significant improvements in segmentation quality on scientific images, a domain where it has
previously been found to struggle (Ma et al., 2024]).

Contributions. In summary, this work offers the following contributions:

e The largest empirical study of SAM prompt design to date, covering 2,688 unique configurations and
four initial popular segmentation models, totaling 10,752 evaluations. This study covers the first sys-
tematic analysis of how points, boxes, and masks interact when combined in a prompt configuration.

e Comprehensive evaluations demonstrating statistically significant trends for prompt design, leading
to valuable guidelines for practitioners for the utilization of SAM in scientific and medical domains.

e An experimental validation of SAM’s model-agnostic performance compared to state-of-the-art tech-
niques, particularly designed to tackle the segmentation refinement problem across three

data sets, four initial segmentation models, and four performance metrics.

2 Related Works

2.1 Segmentation Refinement Approaches

Segmentation refinement refers to the task of processing an initial model’s output to yield an improved
new mask (Tang et al., [2021). These methods fall into two categories: model-dependent and model-agnostic
solutions. Model-dependent solutions, such as RefineMask (Zhang et al.| 2021)), PointRend (Kirillov et al.,
2020), and Mask Scoring R-CNN (Huang et all [2019), add additional layers to a model’s architecture to
produce higher resolution or more accurate segmentations. However, these approaches are tailored to a
specific model architecture and, as a result, typically cannot be used elsewhere. Model-agnostic approaches,
such as CascadePSP (Cheng et al., |2020) or SegRefiner (Wang et al.l 2024, instead post-process an initial
model’s segmentation. The latter eliminates the dependency on the specific architecture, offering improved
versatility across domains. For this reason, we henceforth focus on the latter approach.

Model-Agnostic Segmentation Refinement. Prior to the introduction of SAM, model-agnostic segmen-
tation refinement approaches were not based on prompting. One of the first refinement methods, CascadePSP
(Cheng et al., [2020), applies a cascade of boundary-aware residual modules on a coarse mask, progressively
enhancing local edge detail. SegRefiner (Wang et al., 2024)) at NeurIPS 2023 was the first to integrate
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diffusion-based models into the refinement process, building on previous work using GANs . Most
recently, Meta’s Segment Anything Model (SAM) (Kirillov et al., 2023), a foundational computer vision
model, has emerged as a highly competitive segmentation refiner (Lin et all 2025 [Yu et al.| 2024; [Wei et al.|
[2024} Chen et al., [2024; Mayladan et al. 2023). When using SAM, the initial segmentations are used to
derive visual objects that serve as prompts, such as bounding boxes, coarse masks, and points, to aid SAM’s
re-segmentation (See Figure .

2.2 SAM and Visual Prompting

Previous works, while starting to analyze the effect of prompting on SAM performance, have been quite
limited. In particular, prompt types are frequently analyzed in isolation. For example,
briefly tested how increasing the number of points from 1, 5, 10, or 20 affected performance but did not
specify how points were placed and ignored any other prompt types. Alternatively, [Cheng et al)| (2023a))
performed a preliminary analysis of six bounding box prompts and three-point prompts. However, there
was no variation in the point-prompting method. They neglected to evaluate when points and boxes are
used together. explored four point-placement strategies but constrained their experiments
to only two points. While they explored a few box prompts, similarly to prior work, they did not explore
points and boxes integrated together into one unified prompt configuration. Lastly, Mayladan et al. (2023)
explored two prompts containing a box and points — testing one and five points only, plus, no placement
strategy was indicated.

Our Work in Comparison. These experiments, demonstrating the need for further analysis on prompting,
were ad hoc in nature. They contained too few samples (often less than ten) to evaluate statistical significance
(Cheng et al.l 2023a; Hu et al., [2023; Mayladan et all 2023), rarely explored multiple prompt types together
|Cheng et al.| (2023a)); Dai et al.| (2023); Hu et al.| (2023), and frequently did not give enough information to
reproduce results or analyze trends, particularly with respect to how points were placed (Cheng et al. 2023a;
[Hu et al., 2023} Mayladan et al.,[2023). In comparison, our work addresses each of these shortcomings. We
offer the first large-scale evaluation of prompts, containing 2,688 distinct prompts, enabling the statistical
significance of each prompt type and each prompt augmentation method to be evaluated. We performed the
first systematic cross-prompting evaluation, identifying each prompt type’s effect on the others. Additionally,
we evaluate the effect of coarse masks, which were not explored in these previous works. Lastly, we introduce
iterative refinement, testing how SAM’s refinement capabilities change over multiple iterations.

2.3 Existing Surveys on Target Domains for SAM

Prior works, such as 7 discussed SAM’s performance and potential application areas. However,
these works primarily reviewed where SAM works, and focussed less on how to improve SAM. For example,
surveys such as |Zhang et al.| (2023al) and Zhang et al.| (2024a)) extensively have cataloged SAM’s usage
and performance across diverse domains, including image-based tasks, human-robot interaction, and more
specialized fields such as remote sensing. While these studies offer a useful overview of potential domains
for SAM-based application and research, they provide little guidance on improving performance or insights
into the stability of results. In contrast, our work specifically targets methods for improving performance,

particularly on scientific images, a domain where SAM is known to struggle (Ma et al, 2024)).

3 Constructing SAM Prompts

SAM was trained on the SA-1B dataset, containing 11 million images with over 1 billion masks, making it
a highly capable and one of the most popular segmenters (Kirillov et al., [2023). While SAM is skilled at
detecting contours, it demonstrates semantic ambiguity, occasionally assigning higher confidence to undesired
sub-regions (e.g., a t-shirt instead of a person, or a sub-component of a particle as shown in Figure . To
overcome this ambiguity, a well-designed prompt must accurately delineate the intended object, providing
full coverage to prevent erroneous annotations of sub-regions, yet not so expansive that it merges the object
with its neighbors or surrounding error.
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When constructing a prompt, SAM takes two types of inputs: sparse (points, boxes, and text) and dense
(mask), as categorized in Figure [2| Of these, boxes, points, and masks are spatial prompts, specifying exact
locations or regions for SAM to process, while text prompts are non-spatial by offering semantic guidance.
In our analysis, we cover all types of spatial prompts. In addition, we tested numerous prompt engineering
strategies in the form of visual prompt augmentations in an effort to represent the desired object more closely.
For example, we evaluated the impact of shrinking or enlarging boxes and masks. For points of interest
(POIs), the augmentation steps are more complex due to their interconnected nature. Specifically, among
the three augmentation factors for points (number of points, placement algorithm, and perimeter buffer),
we note that the actual placement depends jointly on all three, since the buffer modifies the available search
space, and the number of points augments the decision process for each algorithm.

POl Placement Algorithm Selection
Number of POI

Figure 2: Characterization of prompt types and augmentations for SAM-based segmentation refinement.

3.1 Boundary Box Visual Prompt and Its Augmentations

Using predictions from an initial model, which we aim to refine, a bounding box B can be extracted for each
detected instance. This box is the tightest boundary area containing the instance mask, represented by the
x, y coordinates of the upper-left corner, the width, and the height (Eq. . This box can be used as a
prompt for SAM as-is without any augmentation. However, it can also be augmented by a scaling factor,
a, to produce B’, as described in Equation [3] This is achieved by uniformly scaling the width and height
by \/a, creating w’ and h’, and adjusting x and y by half this change, producing x’ and y’, as described in
Equation 2] The resultant augmentation produces a bounding box whose area is scaled by some factor «,
while the center is held constant, preserving the spatial location of the segmentation. This augmentation
can be useful in cases of poor initial segmentations, enabling expansion for under-segmentation cases or
contraction for over-segmentation cases.

B = (z,y, w, h) (1)

(1-va)w / (1-va)h 2)
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B =a-B = (2,¢y,w, 1) (3)
3.2 Coarse Mask Visual Prompt and Its Augmentations

Like the bounding box, a coarse mask M C Q (where Q C Z? is the set of all image-pixel coordinates) can
be given to SAM as detected, or can be augmented by some factor A to produce M’, an enlarged or shrunk
version. However, as a complex shape, M cannot be uniformly scaled in the same way while preserving the
spatial location and morphological characteristics of the object. Instead, M must be augmented at the pixel
level, applying erosion (©) to shrink and dilation (@) to enlarge it by A. First, we define a discrete disk
with radius ¢, as shown in Equation El Next, define the smallest ¢ = r(A) such that eroding or dilating M

ot
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by D; yields a mask whose area is approximately A|M|, as shown in Equation [5| Finally, we define M’ as
M, with the inclusion of any additional pixel contained within the disk D; centered at some pixel in M for
dilation or M after excluding any pixel contained within the disk D; centered at some pixel outside of M
for erosion, as shown in Equation [f] Through this transformation, we preserve the spatial location and a
similar morphology.

Dy = {p=(pas,py) € Z*: \ /P2 +p2 < t} (4)

min{tEN: M & D,| )\|M|}, A> 1,

r(A) = ()
min{teN: Mo D| < MM}, 0<A<1,

Y

IN

M @ Doy ={ucQ:3veM, de Dy with u=v+d}, A>1,
M= (6)
M@DT(A):{UGQZHUEM,dEDT(A)Withu:U_d}7 0<\<1.

3.3 POI Placement Augmentations

When evaluating POI augmentation strategies like POI placement, we aim to balance two competing inter-
ests: spacing the POIs far enough apart to fully cover the desired object, while keeping them close enough
to avoid false prompts outside the object. To address this, we distinguish between and then evaluate three
prompt placement parameters: the number of POIs (denoted as k), the perimeter exclusion area (denoted as
v), and the POI placement algorithm (denoted as ¢). In this work, we explore values of k ranging from 1 to
7. We evaluate v as a mitigating factor to prevent POIs from being placed too close to the object boundary,
where false prompts are more likely. In our experiments, we apply a perimeter buffer v of 0%, 5%, 10%, and
15%, eroding the original mask M to yield the search region M* with Equations [4] - [6] Note the distinction
between M* and M': the parameter v only defines the eroded region used for POI placement, whereas A
governs how we dilate or erode the mask input itself.

With the number of POIs &, and the POI search space defined by ~, we design and then evaluate three POI
placement algorithms (¢): random, distance maximization, and Voronoi placement. The three algorithms
are described below.

Random Placement. For random placement (Alg. [1)), the initial mask M, perimeter buffer v, and
number of points k are taken as inputs. Once M is eroded by v to produce M*, defining the search space,
we uniformly sample k points.

Algorithm 1: Random Point Placement

Input: Binary mask M, perimeter buffer v, number of points &
Output: Selected points P
M*«—~ Mo (1 -—v);
Ve A{(z,y) € M"};
P+
while |P| < k do
pick (z,y) uniformly at random from V;
P PU{(,y)}:

V= VAL, 9)};
return P;

Distance Maximization.
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To achieve this (Alg. , the algorithm accepts the same inputs. Further, we define M™* the same
as for random placement, and V as all points contained within M*. For each C' C V such that |C| = k, we
evaluate the total pairwise distance between all points p € C, and return P as the set C' with the largest
total pairwise distance.

Algorithm 2: Distance-Maximization Placement

Input: Binary mask M, perimeter buffer «, number of points k
Output: Selected points P
M*+ M e ~;
V + {(=,y) | pixel (z,y) is on the boundary of M*};
maxDistance < —oo;
P« 0;
for each subset C C V with |C| =k do
tempDistance < total PairwiseDistance(C);
if tempDistance > maxDistance then
maxDistance < tempDistance;
L P+ C,

return P;

Voronoi Placement.

The Alg. [3] again accepts the same inputs and defines
M* as above. To achieve the above goal, however, it now approximates a centroidal Voronoi tessellation of
M* into k cells via Lloyd’s k-means iterations. The algorithm then returns the centroid of each cell as the
POI placement.

Algorithm 3: Voronoi Point Placement

Input: Binary mask M, perimeter buffer ~, number of points k, iterations I
Output: Selected points P

M*+— Moy
Ve {(z,y) e M}
Initialize cq,..., ¢, by sampling k distinct points from V;

for i < 1to I do
foreach v € V do
| assign v to cluster j = arg min,||v — ¢;[|2;
for i <1 to k do
| ¢ < mean({v € V | v assigned to i});

P« {round(ci)}f:ﬁ
return P;

With random placement as a baseline, Voronoi and distance maximization use the same underlying strategy
for placement, assuming that points farther apart will be more representative of the complete mask. However,
since Voronoi places points at the centroid of each cluster, these points are not as likely to be placed on the
boundary and will also be spread around the inner regions of the mask more, resulting in a distinct approach.
Piecing this together, the set of POIs is determined by the initial mask (M), the number of POIs (k), the
chosen perimeter buffer (), and the selected algorithm for placement (¢), as in Equation

Ps= f(M, ¢, k,v) (7)
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3.4 Final Prompt Composition

Ultimately, the final prompt, P, corresponds to the combination of the desired components after augmenta-
tion, as described in Equation [§] and visualized in Figure [3] Since a prompt can contain any combination
of visual prompt types, we represent the inclusion (or exclusion) of each component with d5, dps, and dp as
binary flags. Here, dp indicates if the box B’ is included, ;s specifies whether the mask M’ is included, and
dp determines if the generated POIs, Ps, are incorporated. As shown in Figure [3] after all necessary aug-
mentations have been performed, the desired inputs are joined together and fed to SAM for re-segmentation,
producing a final refined segmentation.

P = {(53 :BI7 om M/, opPs ‘ 0p,0nr,0p € {0,1}} (8)

Initial
Prediction

Segment-Anything
Re-Segmentin

POl Inclusion | _ | lInitial Mask (M) | Algorithm (¢) | _ | Final POIs
(3p) Buffer (y) Num POls (k) (Ps)

—> Required Process - -- Optional Prompt I:l Initial Model . Box Prompt . Mask Prompt I:‘ POI Prompt I:‘ SAM Refinement
Selection/Prediction

Figure 3: Framework of prompt input selection and augmentation considered for SAM-based refinement.

4 Experimental Methodology

4.1 Data Sets

For the primary analysis, we used a microscopy dataset composed of micrographs from a scanning electron
microscope of powder particles used in additive manufacturing. In powder-based additive manufacturing,
particle size and shape are critical to overall build quality. Particles too large can leave porous regions,
negatively impacting the structural integrity of manufactured parts. Similarly, particles with irregular mor-
phology can affect the flowability of a powder, decreasing the deposition efficiency and increasing costs. As
a result, there has been a growing interest in high-throughput powder analysis frameworks (Cohn et al.
[2021} Price et all 2021). For the primary evaluation, our powder dataset contained 132 images and 7,324
annotations, which will be released upon acceptance. To ensure generalizability, after identifying the optimal
prompt configuration on the primary powder-particle dataset, we compared SAM’s refinement performance
using our identified prompt against state-of-the-art methods on two additional publicly available microscopy
datasets: a general collection of 385 images covering particles, grains, and cells with 8,877 annotations

2023), and a cellular microscopy dataset of 65 images with 2,193 annotations (Yukil 2024).

4.2 Models

Vision Models for Initial Segmentation. Four vision models were used for initial segmentation:
YOLOv8 Nano, YOLOv8 X-Large (Ultralytics| [2023), Mask R-CNN 2017), and Mask2Former
Cheng et all [2022). These models were chosen for their growing popularity in applied scientific domains
Zhu et all 2025; |Zhang et al. 2024bid; Tang et al. 2025; Wankhade et al. 2024; |Cohn et al. 2021}
[Price et all 2021). These models also cover a diverse range of model sizes and architectures, including
convolutional-based and transformer-based backbones.

Vision Models for Segmentation Refinement. For SAM refinement, we used the ViT-L backbone
(Alexeyl, 2020) with the published model weights and parameters, as specified in Kirillov et al. (2023). For
comparison against state-of-the-art refinement techniques, we employed CascadePSP, introduced at CVPR




Under review as submission to TMLR

2020 (Cheng et al., |2020)), in its default configuration. Similarly, we used SegRefiner, presented at NeurIPS
2023 (Wang et al, 2024), evaluating both its small and large variants.

4.3 Metrics

To evaluate performance, Average Precision (AP)was computed at Intersection-over-Union (IoU) thresholds
of 0.50, 0.75, and 0.95, and the average of all thresholds between 0.50 and 0.95 (in 0.05 increments). AP@50
provides the most lenient metric, where a segmentation is considered correct if IoU > 50%. In contrast,
AP@95 provides the strictest metric, requiring the IoU > 95% for a segmentation to be considered correct.
APQT5 offers a middle ground between these metrics, while AP@50-95 uniformly summarizes performance
across multiple thresholds. Measuring performance at various IoU thresholds enables us to track improvement
at different stages of initial prediction accuracy, offering insight into where refinement is most useful.

4.4 Experimental Design

In this work, our experiments can be broken into three main categories: prompt optimization, state-of-the-
art comparison, and statistical significance testing. For prompt optimization, we systematically evaluated
2,688 unique prompt configurations, encompassing combinations of points (number, placement algorithm,
perimeter buffer), boxes (inclusion and scale), coarse masks (inclusion and erosion/dilation), and iterative
refinement, on four initial segmentation models, as outlined in Table For the state-of-the-art evaluation
assessing generalizability of our proposed prompt configuration design, we compared segmentation results
of our best prompt derived on our first data set to CascadePSP (Cheng et al., |2020)), SegRefiner Small and
SegRefiner Large (Wang et al., [2024) on all four initial segmentation models and three microscopy datasets
(powder, general microscopy, and cells). Lastly, to validate our measured improvements, we conducted paired
t-tests on individual prompt parameters (e.g., box vs. no-box, various POI strategies, etc.) as well as overall
performance differences between SAM and alternate refinement methods.

Table 1: Experimental conditions tested for prompt creation.

Category EQ | Conditions

Model — | YOLOv8 Nano, YOLOv8 X-Large, Mask R-CNN, Mask2Former
Box Inclusion 0p | Yes / No

Box Distortion a | 90%, 100%, 110% (when included)

Mask Inclusion orm | Yes / No

Mask Distortion A | 90%, 100%, 110% (when included)

POI Algorithm ¢ | Random, Distance Max, Voronoi

POI Perimeter Buffer ¥ 0%, 5%, 10%, 15%

Number of POIs k 1,2,3,4,5,6,7

Iterative Refinement

One Stage / Two Stage
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5 Experimental Results

In our prompt optimization experiments, we identified multiple trends leading to a well-designed prompt,
which we discuss further in Section From these results, we determined the optimal prompt included a
bounding box (as-detected), no coarse mask, 3 POIs, Voronoi placement, and a 10% perimeter buffer, yielding
crisper and more precise segmentation across all four initial segmentation models, as shown in Figure [a]
Using this prompt, on the powder dataset, we found statistically significant improvement in the AP@50-95
by 0.203, 0.201, 0.128, and 0.081 with p < 0.0001 for YOLOv8 Nano, YOLOv8 X-Large, Mask R-CNN, and
Mask2Former, as shown in Table Compared to the state-of-the-art CascadePSP, SegRefiner-Small, and
SegRefiner Large, SAM consistently outperformed each on all four models.

YOLOv8 Nano YOLOV8 X-Large Mask R-CNN Mask2Former

*

Ground Truth Initial Prediction

SegRefiner

YOLOV8 Nano + SAM YOLOV8 X-Large + SAM  Mask R-CNN +SAM  Mask2Former + SAM CascadePSP
(a) (b)

Figure 4: (a) Qualitative evaluation of SAM-Based refinement on YOLOv8 Nano, YOLOv8 X-Large, Mask
R-CNN, and Mask2Former segmentations. (b) Qualitative comparison of CascadePSP, SegRefiner, and an
optimized SAM prompt refining segmentation, producing an IoU of 0.960, 0.926, and 0.976, respectively.

Table 2: Paired ¢-Test of Refined vs Initial AP@50-95 by Model and Method on Powder Dataset

Model Method t D Mean AAP@50-95 Std AAP@50-95 95% CI
CascadePSP 33.09  0.0000 0.153 0.179 0.144-0.162
SegRefiner - Small ~ 5.84  <0.0001 0.037 0.219 0.025-0.050
YOLOVS Nano g 'k ofiner - Large  7.60  <0.0001 0.052 0.231 0.038-0.064
SAM (This Work) 42.38  <0.0001 0.203 0.186 0.194-0.213
CascadePSP 33.10  <0.0001 0.149 0.175 0.140-0.158
SegRefiner - Small ~ 6.89  <0.0001 0.042 0.208 0.030-0.054
YOLOVE X-Large g 'Rofiner - Large 952 <0.0001 0.060 0.214 0.047-0.072
SAM (This Work) 41.19  <0.0001 0.201 0.190 0.192-0.211
CascadePSP 20.81  <0.0001 0.082 0.153 0.074-0.090
SegRefiner - Small  11.02  <0.0001 0.058 0.205 0.048-0.069
Mask R-CNN SegRefiner - Large 12.37  <0.0001 0.068 0.215 0.058-0.079
SAM (This Work) 21.82  <0.0001 0.128 0.229 0.117-0.140
CascadePSP 16.50  <0.0001 0.059 0.140 0.052-0.067
Mask2Former SegRefiner - Small  4.95  <0.0001 0.020 0.154 0.012-0.027
SegRefiner - Large  10.36  <0.0001 0.036 0.137 0.030-0.044
SAM (This Work) 19.61  <0.0001 0.081 0.161 0.073-0.089

An ablation of these results, shown in Table[3] highlights how incrementally adding each component continues
to improve performance. Starting from a single-point random-placement baseline, adding a 10% perimeter
buffer, and then increasing to three points yields consistent gains across all four backbones. Switching
from random to Voronoi placement provides an additional but smaller boost on three backbones, and a
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negligible decrease on the fourth (-0.0007). Lastly, introducing a bounding box led to the largest increase
in performance, ranging from +0.0482 to +0.1248 increase on top of previous performance improvements
achieved by the choice of the placement algorithm, the number of points, and the perimeter buffer.

Table 3: Prompt-construction ablation highlighting how segmentation refinement performance (mean
AP@50-95) evolves as components are added. For each initial segmentation model, the columns report
the mean and the change (A) from the prior step.

Ablation Step YOLOv8 Nano YOLOv8 X-Large Mask R-CNN Mask2Former
Mean AP@50-95 A Mean AP@50-95 A Mean AP@50-95 A Mean AP@50-95 A

Baseline: 1 Point 0.4612 - 0.4999 - 0.4374 - 0.3973 -

+ 10% perimeter buffer 0.4731 +0.0118 0.5369 +0.0370 0.4913 +0.0539 0.4055 +0.0082

+ Increase to 3 Points 0.5821 +0.1090 0.5530 +0.0161 0.5590 +0.0676 0.4673 +0.0619

+ Voronoi placement 0.5909 +0.0088 0.5987 +0.0457 0.5582 -0.0007 0.4686 +0.0012

+ Add Bounding Box 0.7157 +0.1248 0.6880 +0.0893 0.6497 +0.0915 0.5167 +0.0482

Table 4: Performance comparison of refinement methods across multiple initial model predictions for the
Powder, General Microscopy, and Biological Cells from Scanning Electron Microscope Images. The best
result in each group is highlighted in bold.

Model ‘ Powder General Microscopy Cells

| AP APT.o APR. APRN | APR. APRL APR. APRR | APR.a APR. APR. APRR
YOLOv8 Nano 0.8373 0.6693 0.0806 0.5291 0.8959 0.7866 0.2758 0.6526 0.5630 0.1927 0.0000 0.2519
+ CascadePSP 0.8450 0.7529 0.3781 0.6587 0.8910 0.7878 0.3427  0.6738 0.5061 0.4105 0.0002 0.3056

+ SegRefiner - Small | 0.8078 0.6965 0.1843 0.5629 0.7174 0.6381 0.2099 0.5218 0.3375 0.1291 0.0000 0.1555
+ SegRefiner - Large | 0.8344 0.7267 0.3455 0.6355 0.7476 0.6784 0.3020 0.5760 0.5245 0.2924 0.0000 0.2723
+ SAM (This Work) | 0.8812  0.8055 0.4591 0.7153 | 0.8930 0.8193 0.2300 0.6474 0.5922  0.4249 0.0016  0.3395

YOLOv8 X-Large 0.8352 0.6841 0.0964 0.5386 0.8817 0.7633 0.2134 0.6195 0.5720 0.2152 0.0000 0.2624
+ CascadePSP 0.8446 0.7587 0.3870 0.6635 0.8851 0.7880 0.2764  0.6498 0.5061 0.3986 0.0025 0.3024
+ SegRefiner - Small | 0.8105 0.6865 0.1860 0.5610 0.7033 0.6205 0.2279 0.5172 0.4035 0.1250 0.0000 0.1762
+ SegRefiner - Large | 0.8329 0.7375 0.3523 0.6409 0.7188 0.6375 0.2702 0.5421 0.5307 0.1873 0.0016 0.2399
+ SAM (This Work) | 0.8775  0.8102  0.4757 0.7211 | 0.8959  0.8132 0.2120 0.6404 0.5556  0.4038 0.0000 0.3198

Mask R-CNN 0.6876 0.5599 0.1061 0.4512 0.6653 0.5876 0.0502 0.4344 0.5458 0.1394 0.0000 0.1611
+ CascadePSP 0.7254 0.6305 0.3245 0.5601 0.6870 0.5833 0.1775 0.4826 0.3519 0.1596 0.0000 0.1705
+ SegRefiner - Small | 0.6899 0.6050 0.2056 0.5001 0.6952 0.6196 0.2062 0.5070 0.2485 0.0761 0.0000 0.1082
+ SegRefiner - Large | 0.7291 0.6434 0.3031 0.5586 0.7176 0.6317 0.2698 0.5397 0.3548 0.1754  0.0079  0.1794
+ SAM (This Work) | 0.7788  0.7130 0.4692 0.6537 | 0.8959  0.8132 0.2120 0.6404 0.3289 0.1584 0.0000 0.1624

Mask2Former 0.6556 0.5111 0.1229 0.4225 0.8539 0.7557 0.2852 0.6309 0.5795 0.1873 0.0001 0.1890
+ CascadePSP 0.6673  0.5805 0.2387 0.4955 0.8693 0.7337 0.2909  0.6313 0.3584 0.2258 0.0007 0.1950
+ SegRefiner - Small | 0.6300 0.4871 0.1176 0.4116 0.6777 0.5752 0.1847 0.4792 0.2626 0.0631 0.0000 0.1086
+ SegRefiner - Large | 0.6626 0.5718 0.2357 0.4900 0.7340 0.6218 0.2675 0.5411 0.3706 0.1146 <0.0001  0.1617
+ SAM (This Work) 0.6548 0.5497 0.3132  0.5059 0.8588 0.7827 0.2003 0.6139 0.3533 0.2620 0.0006 0.2053

Extending this to additional AP thresholds, as shown in Table [d] we found that SAM achieved the highest
AP@95 across all four base segmentation models. At AP@Q50 and APQ75, SAM outperformed both SegRe-
finer Small and SegRefiner Large on every initial segmentation model, and exceeded CascadePSP on three
of the four models. Expanding this analysis to the two additional datasets, general microscopy and cellular
microscopy, as shown in Table [d] we found that SAM continued to improve segmentation quality, and per-
form comparably or better to the state-of-the-art methods. For APQ75, scored the highest on all four initial
segmentation models for both datasets. For AP@50, SAM scored the best in four of eight measurements,
and second best in an additional two.

Key Takeaway 1: Using a prompt with a bounding box, 3 points, Voronoi placement, a 10%
perimeter buffer, and no coarse mask, SAM produced statistically significant improvement over the
raw segmentations, and performed consistently better than or comparably to CascadePSP or SegRe-
finer across three microscopy datasets - illustrating the generalizability of prompts for these scientific
image data sets.
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5.1 Prompt Optimization
5.1.1 Impact of Bounding Boxes on Prompt Performance

Of the 2,688 prompts tested, these were evenly split between no bounding box, as-detected bounding box,
bounding box shrunk to 90% of its original size, and bounding box enlarged to 110% of its original size. To
evaluate impact, paired t-tests were conducted, comparing each box configuration to an identical prompt
without a box, as shown in Table [f] On average, including an as-detected bounding box had an average
AP@50-95 improvement of 0.32. Shrinking this box to 90% of its size had a slightly larger improvement at
0.341, while enlarging the box had a slightly smaller improvement at 0.293.

Table 5: Paired t-Tests on Impact of Bounding Box Scale on Segmentation Refinement (AP@50-95)

Box Scale t P Mean AAP Std AAP 95% CI

90% 105.77  <0.0001 0.341 0.167 0.334-0.347
100% 106.39 <0.0001 0.320 0.156 0.314-0.326
110% 103.99 <0.0001 0.293 0.146 0.287-0.298

5.1.2 Impact of Coarse Masks on Prompt Performance

Contrary to bounding boxes, including coarse masks in prompts consistently negatively affected prompt
performance in our study. Broken down by mask augmentation, 90%, 100% (as-detected), and 110%, paired ¢-
tests revealed an average decrease of -0.133 AP@50-95, as shown in Table[6] Interestingly, mask augmentation
was found to have no impact, with each having an average decrease of -0.133, an STD of 0.137, and a 95%
confidence interval of -0.138— -0.128.

Table 6: Paired ¢-Tests on Impact of Coarse Mask Scale on Segmentation Refinement (AP@50-95)

Mask Scale t p Mean AAP Std AAP 95% CI

90% -50.38  <0.0001 -0.133 0.137 -0.138--0.128
100% -50.47  <0.0001 -0.133 0.137 -0.138--0.128
110% -50.38 <0.0001 -0.133 0.137 -0.138- -0.128

5.1.3 Combined Effect of Bounding Boxes and Coarse Masks

In addition to the independent effects of bounding boxes and coarse masks on performance, we found that
their combined impact is even more pronounced. For example, prompts that include a bounding box out-
perform those that omit it, while prompts that include a coarse mask underperform those that exclude it.
Further, prompts featuring a box without a mask yield the highest average performance, whereas prompts
with a mask but no box yield the lowest, as shown in Figure [fA.

Key Takeaway 2: Prompts that included a bounding box improved AP@50-95 by an average of
0.32 compared to identical prompts without a box, whereas prompts that included a coarse mask
decreased AP@50-95 by an average of 0.133. Overall, the highest performance was achieved by
prompts that included a bounding box and excluded a coarse mask.

Focusing on the best of these combinations (yes box and no mask), Figure highlights the distribution of
AP@50-95 scores when the bounding box size was shrunk to 90%, or enlarged to 110% of its original size.
Minor differences in distributions can be observed, such as a slightly lower tail distribution for prompts with
an enlarged box (0.560 compared to 0.571) and a slightly smaller distribution when the shrunk bounding
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Figure 5: Visualizing impact of bounding boxes and masks on AP@50-95 when using SAM-based refinement.

boxes (0.175 compared to 0.209). However, we conclude that overall box augmentation had no significant
effects on performance.

5.2 POI Placement Impact

Analyzing the effect of POI prompt placement, we considered the individual and combined effect of the
number of points (k), POI placement algorithm (¢), and perimeter buffer (7). In addition, we evaluated the
effect of these parameters in the presence and absence of a bounding box, allowing us to quantify how box
inclusion modulates the influence of POI placement strategies on segmentation refinement.

5.2.1 Algorithm Selection (¢)

To analyze the impact of alternate POI placement algorithms, we treated random placement as the baseline,
and conducted paired t-tests, measuring the change in AP@50-95 as a result of switching to distance maxi-
mization or Voronoi placement. For this analysis, we performed two sets of paired ¢-tests: one over the subset
of prompts without a bounding box or mask (Table 7)), and another over the subset of all prompts with a
bounding box but no mask (Table . As shown in Table m Voronoi performed the best when no box was
included, with a mean AP@50-95 improvement of 0.007 over random. In contrast, distance maximization
performed the worst with an average decrease in performance of -0.146. In our tests on prompts including
a bounding box, the mean AP@50-95 increased significantly for all three algorithms. Random increased
from 0.541 to 0.645, Distance Max increased from 0.392 to 0.622, and Voronoi increased from 0.548 to 0.644.
Additionally, when a box was included, as shown in Table |8 the effect of the placement algorithm dimin-
ished. For example, the performance decrease due to using Distance Max narrowed from —0.146 to —0.023.
Similarly, the previously statistically significant improvement of 0.007 AP@50-95 for Voronoi over Random
(p < 0.0001) became a non-significant decrease of —0.001 (p = 0.1657).

Table 7: Paired ¢-Tests Comparing Placement Algorithms (No Box, No Mask)

Comparison t D Mean AAP Std AAP 95% CI
Random—Distance Max -20.17 <0.0001 -0.146 0.108 -0.160—0.132
Random— Voronoi 5.30  <0.0001 0.007 0.020 0.005-0.010

Table 8: Paired ¢-Tests Comparing Placement Algorithms (Box, No Mask)

Comparison t D Mean AAP Std AAP 95% CI
Random—Distance Max -18.93 <0.0001 -0.023 0.031 -0.025—0.021
Random— Voronoi -1.39 0.1657 -0.001 0.012 -0.002-0.000
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Key Takeaway 3: In this study, the placement of POIs along the boundary of an initial detection
performed significantly worse than random or Voronoi placement, particularly when no bounding box
was provided. However, when a bounding box was provided, the gap between algorithm selections
was substantially reduced.

5.2.2 Number of Points (k)

Depending on the algorithm and the number of points (k), we note that points could be placed in drastically
different ways, as depicted in Figure [6] To test this effect, specifically related to the number of points, we
separated prompts by placement algorithm and box inclusion. Without a bounding box, adding more POIs
yielded clear gains for random (up to +0.091 AP@50-95, p < 0.0001) and Voronoi (up to +0.083 AP@Q50-95,
p < 0.0001), while Distance Max steadily lost performance (down to -0.105, p < 0.0001), as shown in Table
E[). However, when a bounding box was included, these trends were reversed. Random and Voronoi went
from a steady increase to a slight decrease in performance, and Distance Max’s decrease in performance was
reduced from -0.105 to -0.044.

1 Point 2 Point 4 Point

3 Point 5 Point

Random

Distance
Maximization

Voronoi

Figure 6: Sample placement of points using Random, Distance Maximization, and Voronoi placement from
k=1 to k =5 points.

Key Takeaway 4: In this study, including additional POIs improved performance for random and
Voronoi placement, but decreased performance for Distance Max. However, these effects were reduced
once a box was included.

5.2.3 Perimeter Buffer ()

Based on the theory that POIs closer to the edge have a higher chance of being outside the ground truth,
and therefore degrade performance, we implemented a perimeter buffer where POIs could not be placed.
To evaluate this, we tested a 0% buffer (no buffer) and a 5%, 10%, and 15% buffer. When no box was
included, random placement had no significant change at a 5% buffer (+0.002 AP@50-95, p = 0.3854),
and a small improvement at 10% (40.008, p = 0.0017) and 15% (40.012, p = 0.0002). Similarly, Voronoi
placement had no significant change at a 5% buffer (4+0.004, p = 0.0654), and a small improvement at
10% (40.007, p = 0.007) and 15% (+0.006, p = 0.0064). However, Distance Max had a much larger and
more statistically significant improvement at 5% (+0.053, p < 0.0001), 10% (+0.093, p < 0.0001), and
15% (40.093, p < 0.0001). When evaluating prompts with a bounding box, we observed a similar trend
reversal that was found in the placement algorithm selection and the number of POI selections. Random and
Voronoi had no statistically significant change in AP@50-95. The improvements for Distance Max dropped
from 40.053 to +0.007 at 5%, from +0.093 to +0.006 at 10%, and from +0.093 to -0.024 at 15%.
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Table 9: Paired ¢-Tests of Increasing POI Count (1 vs k) on AP@50-95 (No Box, No Mask)

Algorithm Comparison t P Mean AAP  Std AAP 95% CI
1-2 7.13  <0.0001 0.035 0.027 0.025-0.044
1—3 14.76  <0.0001 0.063 0.024 0.055-0.071
Random 1—4 18.49  <0.0001 0.079 0.024 0.070-0.087
1-5 19.93  <0.0001 0.089 0.025 0.081-0.098
1—6 21.66 <0.0001 0.091 0.024 0.083-0.099
17 16.40 <0.0001 0.090 0.031 0.079-0.100
1-2 -4.49  0.0001 -0.052 0.065 -0.077—0.032
1—3 -6.06  <0.0001 -0.082 0.076 -0.111—0.059
Distance Max 1—4 -6.77  <0.0001 -0.093 0.078 -0.121—0.069
1-5 -6.70  <0.0001 -0.098 0.083 -0.128—0.073
1—6 -6.86  <0.0001 -0.103 0.085 -0.134—0.077
17 -7.02  <0.0001 -0.105 0.085 -0.137—0.079
1—2 10.40 <0.0001 0.022 0.012 0.018-0.026
1-3 16.12  <0.0001 0.053 0.019 0.047-0.059
Voronoi 1—4 20.95 <0.0001 0.072 0.019 0.065-0.078
1—-5 17.65 <0.0001 0.077 0.025 0.068-0.085
1—6 19.71  <0.0001 0.082 0.024 0.074-0.090
1—7 25.98 <0.0001 0.083 0.018 0.076-0.089

Table 10: Paired t-Tests of Increasing POI Count (1 vs k) on AP@50-95 (Box Only, No Mask)

Algorithm Comparison t P Mean AAP Std AAP 95% CI
1—-2 -2.11 0.0372 -0.003 0.012 -0.005—0.000
1—-3 -3.53  0.0006 -0.004 0.012 -0.007—0.002
Random 1—4 -8.03  <0.0001 -0.009 0.011 -0.011—0.007
1-5 -8.85  <0.0001 -0.011 0.012 -0.013—0.008
1—6 -10.40 <0.0001 -0.012 0.012 -0.015—0.010
1-7 -10.58 <0.0001 -0.013 0.012 -0.016—0.011
1—2 -7.84  <0.0001 -0.014 0.018 -0.018—0.011
1-3 -10.60 <0.0001 -0.021 0.020 -0.025—0.018
Distance Max 1—4 -9.26  <0.0001 -0.034 0.036 -0.041—0.027
1-5 -10.30  <0.0001 -0.042 0.039 -0.050—0.034
1—6 -12.38  <0.0001 -0.045 0.036 -0.052—0.038
1—7 -13.11  <0.0001 -0.044 0.033 -0.051—0.038
1—2 -0.73  0.4689 -0.001 0.011 -0.003-0.001
1-3 -5.40  <0.0001 -0.005 0.009 -0.007—0.003
Voronoi 1—4 -4.56  <0.0001 -0.006 0.014 -0.009—0.004
1—5 -8.91  <0.0001 -0.009 0.010 -0.011—0.007
1—6 -9.77  <0.0001 -0.013 0.013 -0.016—0.010
17 -10.07  <0.0001 -0.013 0.013 -0.015—0.010

Key Takeaway 5: When no bounding box is provided, introducing a small perimeter buffer (10-15%)
around the mask edge improved AP@50-95 scores, particularly for Distance Max.

Connecting the Dots. To visualize the interconnected nature of these parameters, Figure [7] highlights
the effect of placement algorithm (¢), number of points (k), perimeter buffer (), box inclusion across the
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Table 11: Effect of Perimeter Buffer on AP@50-95 (No Box, No Mask)

Algorithm Buffer t P Mean AAP Std AAP 95% CI
0%—5%  0.87 0.3854 0.002 0.021 -0.003-0.008
Random 0%—10% 3.30 0.0017 0.008 0.019 0.003-0.013
0%—15% 4.02  0.0002 0.012 0.022 0.006-0.017
0%—5%  5.27 <0.0001 0.053 0.076 0.035-0.073
Distance Max 0%—10% 6.54 <0.0001 0.093 0.107 0.066-0.122
0%—15% 5.32 <0.0001 0.093 0.131 0.060-0.128
0%—5% 1.89  0.0645 0.004 0.017 -0.000-0.009
Voronoi 0%—10% 2.84  0.0063 0.007 0.018 0.002-0.011
0%—15% 2.84  0.0064 0.006 0.017 0.002-0.011

Table 12: Effect of Perimeter Buffer on AP@50-95 (Box Only, No Mask)

Algorithm Buffer t P Mean AAP  Std AAP 95% CI
0%—5% 1.60 0.1118 0.001 0.011 -0.000-0.003
Random 0%—10%  1.46 0.1475 0.002 0.014 -0.001-0.004
0%—15% 2.55 0.0118 0.002 0.012 0.001-0.004
0%—5% 4.71  <0.0001 0.007 0.018 0.004-0.009
Distance Max 0%—10% 4.16 0.0001 0.006 0.020 0.003-0.009
0%—15% -8.04 <0.0001 -0.025 0.040 -0.031—0.019
0%—5% -1.33  0.1869 -0.001 0.011 -0.003-0.000
Voronoi 0%—10% 0.86 0.3912 0.001 0.010 -0.001-0.002
0%—15%  0.42 0.6772 0.000 0.011 -0.001-0.002

four initial segmentation models. Each row shows one placement strategy (Distance Max on top, Random in
the middle, Voronoi on bottom), and each column corresponds to an initial segmentation model (YOLOvS8
Nano, YOLOv8 X-Large, Mask R-CNN, Mask2Former, left to right). Within each graph, an increase along
the X-axis indicates a growing perimeter buffer (), while an increase along the Y-axis indicates an increase
in reported AP@50-95. Each colored line represents the number of POIs used (k), with solid lines indicating
a bounding box was included and dashed lines indicating the bounding box was excluded.

In these results, we confirm previous findings that bounding boxes improved results with every single prompt,
performing better with a bounding box than its counterpart without a bounding box.

5.3 lterative Refinement

To evaluate whether any prompt could further improve an already refined mask, we implemented a two-
stage protocol. In Stage 1, for each base segmentation model (see Section and Table , we applied
each prompt configurations {P;} to the raw model outputs and selected the top-performing prompt P*. In
Stage 2, we first used P* to generate once-refined masks under optimal prompting conditions, then re-ran
SAM with each prompt P; on those once-refined masks to produce twice-refined outputs. We measured
AP@50-95 for every P; in Stage 2 and compared it to the corresponding Stage 1 score to see if any prompt
yielded additional gains.

As shown in Figure [BA, the range of twice-refined AP@50-95 scores was much narrower than once-refined
(Fig. 7 particularly for prompts including a bounding box, or no bounding box and no coarse mask. For
example, the range of once-refined AP@50-95 scores for prompts containing a box and mask decreased from
0.39 to 0.18, prompts containing a box and no mask decreased from 0.21 to 0.10, and prompts containing
neither a box nor mask dropped from 0.58 to 0.22. While we saw a significant reduction in the spread of
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Figure 7: Evaluation of bounding box inclusion, POI placement algorithms, number of POIs, and perimeter
buffer across multiple instance segmentation architectures.

recorded values, this was from a rising tail value, and the maximum recorded value actually decreased from
once-refined to twice-refined segmentations for each group. In fact, for all {P;}, 59.24% achieved higher
AP@50-95 when run on the once-refined P* masks compared to the raw outputs. However, none of the
twice-refined outputs from any P; produced a closer segmentation to the ground truth than the once-refined
mask produced by P*.

To analyze this further, paired ¢-tests comparing once-refined and twice-refined AP@50-95 were conducted,
as shown in Table [[3] For improved clarity, prompts were divided into five groups according to their once-
refined AP@50-95 percentiles: 0-20%, 20-40%, 40-60%, 60-80%, and 80-100%. Prompts in the 0-20% group
experienced the largest improvement (4+0.034 AP@50-95, p < 0.0001). As the percentile group increased, the
improvement decreased. For example, 20-40% had a smaller improvement (+0.008 AP@50-95, p < 0.0001),
and 40-60% had an even smaller improvement (+0.003 AP@50-95, p < 0.0001). Prompts in the 60-80% range
had an average improvement of 0.000 with no statistical significance (p = 0.4481), and prompts within the
upper 80th percentile had a statistically significant decrease in performance (-0.006 AP@50-95, p < 0.0001).
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Figure 8: Impact of Box and Mask Prompts on Secondary Refinement
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Table 13: Paired ¢-Test of Once-Refined vs Twice Refined Segmentations

Percentile t P Mean AAP  Std AAP 95% CI

0%—20% 19.05 <0.0001 0.034 0.059 0.031 - 0.038
20%—40% 12.23  <0.0001 0.008 0.022 0.007 - 0.010
40%—60% 5.89 <0.0001 0.003 0.016 0.002 — 0.004
60%—80% 0.76 0.4481 0.000 0.015 -0.001 - 0.001
80%-100% -14.00 <0.0001 -0.006 0.015 -0.007 — -0.006

Key Takeaway 6: Prompts that initially performed quite poorly did improve when using a once-
refined segmentation. However, no twice-refined segmentation outperformed the highest-scoring once-
refined segmentation, and high-performing prompts consistently performed worse twice-refined than
once-refined.

5.4 Evaluating Generalizability

While this work provides an extensive evaluation of prompt construction of SAM on scientific images, we
also tested its generalizability under two alternate conditions. First, we tested if our empirically deter-
mined optimal prompt construction still yielded similar performance on SAM2, with SAM2 a newer SAM
architecture designed for videos that is meant to continue to also provide image-segmentation capabilities.
Further, we also tested this same prompt using SAM in a domain distinct from scientific images to evaluate
its generalizability.

5.4.1 Alternative SAM Architectures: SAM vs. SAM2

SAM2 released in 2024 [Ravi et al.| (2024)), one year after SAM (Kirillov et al.| [2023), was designed to not only
handle the segmentation of still images but now also of videos. In this study, we applied the same prompt
(3 points with Voronoi placement, a 10% perimeter buffer, and a bounding box) on all four SAM2 variants
(base+, tiny, small, and large), as shown in Table Compared to the unrefined mask, each architecture
improved performance with AP@50 increasing from 0.8469 to 0.8717-0.8748, AP@75 increasing from 0.6768
to 0.7521-0.7660, AP@95 increasing from 0.0912 to 0.3212-0.3672, and AP@50-95 increasing from 0.5383
to 0.6488-0.6670. While improving over the unrefined baseline, all SAM2 variants showed slightly lower
performance than SAM on single-image refinement, with the gap most pronounced at stricter thresholds.
For example, SAM2-Large reached AP@50 of 0.8722 versus 0.8806 for SAM, but at AP@95 obtained 0.3339
versus 0.4712. This slight decrease in performance is consistent with previous findings in the literature that

SAM2 is not as good at fine-grained detail for images (Pei et al.| [2024)).

Table 14: Comparing SAM to SAM2 segmentation refinement performance on the powder dataset using 3
points, voronoi placement, a 10% perimeter buffer, and a bounding box.

Method AP@50 AP@75 AP@95 AP@50-95
Unrefined (initial) 0.8469 0.6768 0.0912 0.5383
SAM2-Base+ 0.8717 0.7621 0.3672 0.6670
SAM2-Tiny 0.8748 0.7660 0.3287 0.6565
SAM2-Small 0.8731 0.7521 0.3213 0.6488
SAM2-Large 0.8722 0.7656 0.3339 0.6572
SAM (This Work) 0.8806 0.7954 0.4712 0.7157
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5.4.2 Alternative Image Domains

To test generalizability, we evaluated our recommended prompt configuration on natural-scene datasets in
contrast of our target scientific image data sets. For this, we selected ECSSD , a collection
of 1,000 natural images with textured backgrounds, specifically designed to increase segmentation difficulty.
Using three initial segmentation models (RMBG-2 2025)), BiRefNet-DIS (Zheng et al) [2024),
and RMBG-1.4 )7 we compared the intersection-over-union (IoU) of refined segmentations
to their initial segmentation. Averaged across the three models, SAM (with a prompt of 3 points, Voronoi
placement, a 10% perimeter buffer, and a bounding box) improved IoU by 41.79, as shown in Table In
comparison, CascadePSP produced an average IoU gain of +0.62, while SegRefiner-LR and SegRefiner-HR
both degraded performance. These results on a natural-scene dataset indicate that the proposed prompt
configuration can transfer beyond microscopy and functions as a general, model-agnostic refiner.

Table 15: Average [oU across three initial segmentation models, RMBG-2 (BRIA AIL 2025), BiRefNet (Zheng]

, and RMBG-1.4 (BRIA Al on the ECSSD dataset (Shi et al} 2015).

Method RMBG-2 BiRefNet-DIS RMBG-1.4 ‘ Mean
Unrefined (initial) 86.85 79.30 78.09 | 81.41
CascadePSP 86.39 81.09 78.61 | 82.03
SegRefiner-LR 70.25 67.27 65.31 67.61
SegRefiner-HR 68.50 66.40 64.39 | 66.43
SAM (This Work) 87.78 83.05 78.77 | 83.20

5.5 Limitations

While this study demonstrates statistically significant results showing that SAM can perform similarly to or
better than state-of-the-art segmentation refinement techniques, it does have a few limitations. A primary
limitation is the dependence on the quality and completeness of the initial masks. Because SAM’s refinement
leverages the spatial support and appearance cues present in the initial segmentation, large misalignments
or missing instances limit its ability to effectively refine object boundaries. This is highlighted in Figure [J]
where the same prompts are used to refine the same image, except that we use initial segmentations from
YOLOv8 Nano (with 76 detected objects) and Mask2Former (with 64 detected objects). SAM successfully
refines many of the detected objects, improving AP@50-95 from 0.8048 to 0.9307 for YOLOv8 Nano and
from 0.6560 to 0.7787 for Mask2Former. However, despite using the same prompt construction, the same
SAM architecture, and the same image, the refined Mask2Former result is significantly lower. This occurs
because SAM is strictly a refiner in this setting and has no way to recover missed segmentations (marked
with a red X).

YOLOv8 Nano Mask2Former
f Unrefine Refined hYE Unrefined Refined \

=’ ( @ ™ y
\Count: 76 — AP50-95: 0.8048 Count: 76 - AP50-95: 0.9307/ \COunt: 64 — AP50-95:0.6560 Count: 64 - AP50-95: 0.7787/

Figure 9: Example of SAM’s dependence on initial segmentations. YOLOv8 Nano (left) and Mask2Former
(right) on the same image show increased performance after refinement, but missed instances in the initial
masks (marked with red Xs) cannot be recovered.
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Second, SAM’s performance is sensitive to “false POIs" (points placed outside the true object), which can
rapidly deteriorate mask refinement. We mitigate this through a perimeter buffer, preventing POIs from
being placed near the segmentation boundary, where they are most likely to be incorrect. However, it remains
to be explored if this may generalize to more complex shapes. A more robust approach may intelligently
select or augment POI locations. This effect is highlighted in Figure [0} Using distance max with no
perimeter buffer, where many points could be placed in over-segmented false-positive regions, many of the
particles had blurred edges, including the object and its surrounding area, or even a “halo" highlighting the
surrounding area but not the object, resulting in a decrease of AP@50-95 from 0.6576 to 0.2633. However,
by introducing a perimeter buffer of 10%, the likelihood of false-points being placed significantly decreases,
resulting in cleaner segmentations, and an AP@50-95 increase from 0.6576 to 0.8265.

Unrefined Ground Truth

Distance Max - 0% Buffr

Distance Max - 10% Buer

€

Count: 84 —VAP50-95: .6576 Count: 88 Count: 84 —7P50-95: .2633 Count: 84 - AP50-95: 0.8265

Figure 10: Example of SAM’s sensitivity to false POIs, particularly for Distance-Max point placement.
With no perimeter buffer, performance decreases from 0.6576 to 0.2633, but with a 10% buffer, performance
increases from 0.6576 to 0.8265.

Third, SAM is most reliable when object boundaries are well defined. In images with low-contrast or
gradually varying boundaries, refinement can leak across neighboring instances or into the background. As
shown in Figure where cells exhibit gradual border transitions, SAM blends several annotations in the
bottom right corner, which did not occur for CascadePSP or SegRefiner. For this reason, SAM was not as
consistently outperforming CascadePSP and SegRefiner for the additional datasets on all metrics. Despite
this, SAM still improved over the unrefined masks and exceeded CascadePSP or SegRefiner on some metrics,
such as APQT75.

Fourth, our work is focused on scientific images, and more specifically, microscopy images. Given
SAM’s domain-dependent performance, future works should evaluate the generalizability of these prompt-
augmentation strategies on additional domains. In support of this, we will release our reusable code base
upon acceptance, enabling researchers to rapidly extend these results for their target domains of interest.

Lastly, although we comprehensively explored 2,688 prompt configurations across four base segmentation
models (10,752 total evaluations), our search was not exhaustive. There is a possibility that alternative
prompting strategies may yield further improvements.

Raw Image Ground Truth Predicted CascadePSP SegRefiner SAM

Figure 11: Qualitative example of SAM’s limitations for segmenting objects with gradual bounders, such as
the cells in the lower right corner, where multiple objects are blended together.
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6 Conclusion

Accurate object detection and segmentation are necessary for numerous tasks ranging from high-throughput
object quantification to autonomous driving. Recently, there has been growing attention to model-agnostic
segmentation refinement methods and post-processing detections for improved performance. In this work, we
provide statistically significant evidence that SAM can perform comparably or better than state-of-the-art
refinement techniques, like CascadePSP and SegRefiner, by leveraging an appropriate visual prompt config-
uration. However, SAM’s performance depends on the prompts it is given. Recent works have conducted a
preliminary analysis on the effect of prompting, but are limited in that they frequently evaluate fewer than
ten prompt combinations (Cheng et al.,|2023a; [Hu et al., [2023; [ Mayladan et al.,[2023). They have also rarely
studied the combined effect of more than one prompt type together (e.g., points, boxes, and masks together)
(Cheng et al.| 2023a; Dai et al., |2023)). In this work, we provide the first large-scale analysis, including 2,688
prompt combinations across four initial segmentation models, resulting in a total of 10,752 evaluations.

Through this experimentation, we uncover several key takeaways that lead to guidelines for prompt design,
improving segmentation performance for scientific applications, summarized here:

e Prompts including a bounding box have an improvement of 0.320 AP@50-95 over identical prompts
without a box across the 10,752 evaluations on microscopy datasets.

e Prompts including a coarse mask have a decrease in performance of -0.133 AP@50-95 over identical
prompts without a mask.

e When no bounding box is provided, placing POIs along the boundary of initial segmentations is
detrimental to performance, but can be mitigated by a perimeter buffer, or POI placement algorithm,
such as Voronoi, that prioritizes more central regions.

o Iterative refinement was not found to yield improved performance over the highest-scoring refined
mask.

These results provide a statistically significant evaluation of how prompt-augmentation can improve segmen-
tation performance. Upon acceptance, we will release our full code base to facilitate further advancements
in prompt design for SAM. Moving forward, this research should be extended to study other domains of
interest, further verifying its generalizability. Future work can also focus on developing additional solutions
for POI placement, which may mitigate the challenge of “false POIs" placed outside the ground truth.

7 Broader Impacts

This work poses no direct ethical or societal risks, as it operates in a data-agnostic, model-agnostic setting
focused strictly on segmentation refinement. However, the underlying Segment Anything Model (SAM) is
energy-intensive: its pretraining required 68 hours on 256 A100 GPUs, and each refinement pass is heavier
than a single-stage segmenter. To limit inference-time carbon footprint, we recommend (1) reserving SAM-
based refinement for cases where pixel-level boundary accuracy is essential, and (2) reusing SAM’s large
encoder embeddings across multiple objects rather than re-computing them for each mask.
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A Review Comments

A.1 Review MMzu

In-text revisions that address suggestions by this review are colored blue.

A.1.1 Comment 1

Review: It is very clear that the proposed refinement framework contains many key steps or components, as
shown in Fig.2. However, there is no explicit ablation study or table in this paper, that could systematically
discuss and analyze the impact of each step or component.

Response: We thank you for your suggestion. We now provide an ablation study evaluating the performance
impact of each component of our recommended final prompt composition to supplement the per-component
evaluations, as depicted in Table

A.1.2 Comment 2

Review: This paper lacks visual prediction results under these different settings with different steps.

Response: As per your suggestion to show more visual displays of our results, we have added additional
figures highlighting different conditions for improved visibility and interpretability, namely, Figure [6] Figure

[ Figure [I0} and Figure [I1]

A.1.3 Comment 3

Review: More segmentation results from various image domains should be provided to convince the readers
with the huge working load and configurations.

Response: Thank you for your suggestion. In response to Review f9h5, we have tightened the language
to narrow the scope of the proposed work and more clearly highlight this was an evaluation of scientific
data, and more specifically, microscopy data. With this in mind, to test generalizability, we now also include
results on ECSSD, a salient object detection dataset, highlighting a range of images including different types
of objects in a diverse range of backgrounds, as shown in Table

A.1.4 Comment 4

Review: Some recent surveys that analyze SAM on multiple domains are missing, for example: [1] Ji, Wei,
et al. "Segment anything is not always perfect: An investigation of SAM on different real-world applications."
(2024): 617-630. Please enrich the related work and highlight the difference from the prior works.

Response: Thank you for your comment. Based on your suggestion, we have added a new Subsection 2.3
in the Related Work section that includes this reference, as well as a broader review of published works on
SAM. We discuss these prior works there. To summarize here, the key difference between our work and the
recommended citation (and similar papers) is that those works primarily provide high-level surveys of where
SAM has been applied, noting settings where SAM performs well and where it struggles, sometimes with
small illustrative examples. In contrast, our work is a systematic, large-scale experimental study focused
on how to optimize SAM prompting, with quantitative ablations and statistical significance testing. Here,
our main contribution is the empirical analysis of prompt configurations rather than an exhaustive survey
of potential domains.

A.1.5 Comment 5

Review: For the limitation subsection Sec.5.4, it would be more convincing to also give some failure cases
on each scenario.
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Response: Based on your suggestion, we now illustrate the failure cases we had identified with example
images in Figures 0] and These cases highlight the limitations discussed, specifically how SAM is
constrained by the initial segmentation, and how false prompts can quickly deteriorate performance.

A.1.6 Comment 6

Review: For the results in Table 3, a more detailed discussion should be presented to discuss why the
proposed method degrades when compared with other existing solutions.

Response: The reason for this degradation is that SAM looks for discrete boundaries. However, in the
additional datasets, there were images of cells with a gradient boundary, increasing the difficulty of refinement
for all methods, but particularly for SAM. We have expanded the discussion of this in Section [5.5 and
included Figure [I1] to highlight this observation.

A.1.7 Comment 7

Review: For the results and analysis in Sec.5.2, could the authors maybe provide some visual examples and
illustrations for each subsection, so as to enhance the clarity?

Response: We have added Figure [0] in Section that illustrates visually how a change in the number
of points affects the placement of each algorithm. Additionally, we have added Figure [I0], which illustrates
how a change in perimeter buffer can increase or decrease performance.

A.1.8 Comment 8

Review: I think the authors use a low-resolution version of Fig.5. Please use a high-resolution file to compile
the submission.

Response: Thank you for your close attention to detail. We have replaced Figure [f| with a higher resolution
version.

A.2 Review GYZY

In-text revisions made in response to this review are colored violet.

A.2.1 Comment 1

Review: This is a very well conducted and written empirical study. The only experiment I found lacking
was demonstrating whether the proposed findings also extend to future generations of SAM (eg. SAM-2).
It will be valuable to evaluate whether or not that holds true, and explore potential reasons.

Response: This is an interesting idea that we had not explored initially. While SAM2 was introduced as
an upgrade to SAM, it was specifically designed to process videos. While it does still have single still-image
capabilities, this was not the primary design motivation for SAM2. Other work in the literature had thus
pointed out that SAM2 had decreased performance on single images (Pei et all [2024). Following your
suggestion, we have conducted additional experiments comparing SAM2 to SAM performance using our
optimal prompt composition on SAM2. We include our results in Section [5.4.1

A.3 Review fOh5

In-text revisions for this review are colored

A.3.1 Comment 1

Review: The most significant limitation is the focus exclusively on scientific microscopy images (powder
particles, cells). While this is a valuable and challenging domain, the title and abstract suggest broader
applicability. The findings, particularly the strong negative effect of coarse masks, may not hold for natural
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images with different object characteristics (e.g., complex shapes, occlusions). It could be better to revise
the title and introduction to more accurately reflect the domain-specific nature of the study.

: We appreciate your comment and agree. We have thus adjusted the title of our manuscript from
“Mastering SAM Prompts: A Large-Scale Empirical Study in Segmentation Refinement" to “Mastering SAM
Prompts: A Large-Scale Empirical Study in Segmentation Refinement for Scientific Imaging". Similarly, we
have narrowed the scope of claims in both our abstract and introduction by emphasizing that our study
focused on scientific images. Further, we include an additional discussion in Section to indicate that
further work is needed in the future to validate the generalizablity of our coarse mask results on alternate
domains. Lastly, in response to one of the other reviewer’s suggestion to expand to other domains beyond
scientific images; we have conducted additional experiments on a non-scientific dataset, which have been
added in Table [T5

A.3.2 Comment 2

Review: The description of Distance Maximization and Voronoi placement algorithms (Algorithms 2 and
3) could be more intuitive. A brief high-level explanation before the pseudocode would improve readability.

: Thank you for your suggestion to increase readability of our manuscript. We have added some
intuition to both methods, including a more in-depth rationale for their design (See Section [3.3]).

A.3.3 Comment 3

Review: The chosen ranges for parameters (e.g., 1-7 points, specific scaling factors for boxes/masks) are
somewhat arbitrary. A brief justification for these ranges, perhaps based on pilot studies or heuristics, would
strengthen the experimental design.

: We agree that explaining our parameter ranges will be beneficial for future users of our work.
We have thus included a description in Section 4.4 motivating the specific design of our experiments in
general and the choice of the parameter ranges in particular. These choices of range values are supported by
our experimental results. For example, as shown in Table [9] improvements began to plateau after 4 points,
even decreasing going from 6 to 7 points on random placement, so we would not expect to see significant
improvements by increasing k& beyond 6 or 7. Similarly, as shown in Table [6] no effect was observed by
eroding/dilating the coarse mask before using it as a prompt.
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