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Abstract

Segment Anything Model (SAM) has emerged as a prevalent tool empowering advances in vi-
sion tasks from instance segmentation, panoptic segmentation, to interactive segmentation.
Leveraging powerful zero-shot capabilities enabled by visual prompts such as masks placed
on the image, SAM has been shown to significantly improve tasks. Yet, a poor prompt can
worsen SAM performance, risking consequences such as misdiagnoses, autonomous driving
failures, or manufacturing defects. However, recent studies on visual SAM prompting re-
main limited, cover only a small fraction of potential prompt configurations, adopt ad-hoc
evaluation strategies, and come with limited or even no rigorous analysis of the statistical
significance of prompt configurations. To address this gap, we undertake the first large-
scale empirical study comprehensively evaluating the impact of SAM prompt configurations
on segmentation refinement. This includes 2,688 prompt configurations, including points,
boxes, and masks with diverse augmentations, on four initial segmentation models for a
total of 10,752 evaluations. From these results, we draw statistically significant insights
along with practical guidelines for prompt design. In particular, we recommend including
a bounding box, which raised AP@50-95 by 0.320 and advise against using a coarse mask,
which lowers AP@50-95 by -0.133 across all four models. We showcase that our recom-
mended prompt configuration enables SAM to outperform leading refinement methods on
multiple benchmark datasets.

1 Introduction

The Promise of Segment Anything Model (SAM). The recent introduction of Segment Anything
Model (SAM) by Kirillov et al.[(2023) has revolutionized the field and practice of computer vision, streamlin-
ing numerous tasks that had previously been significantly more challenging. SAM has enabled improvements
in weakly supervised instance segmentation (Wei et al.,[2024)), high-resolution object segmentation (Ke et al.,
2024)), zero-shot segmenting (Yamagiwa et al., 2024)), and 3D-object detection (Zhang et al.| [2023)). Impres-
sively, SAM leverages zero-shot prompting to achieve these advancements across a diverse range of tasks.
User-specified visual prompts, such as points, boxes, or coarse masks, guide the model’s outputs to the de-
sired task without requiring additional training or prohibitively expensive modification to the massive model
architecture. In this work, we leverage SAM for segmentation refinement (Figure , converting initial seg-
mentation masks into prompts and producing high-quality refinements. We focus on refinement because it
supports rapid creation of large numbers of input masks, enables automated prompt derivation per instance
according to defined criteria, and allows high-fidelity quantitative evaluation against ground-truth IoU.

Limitations of SAM. Despite extensive work integrating (Wei et al.l 2024)), extending (Ke et al.l 2024])),
or fine-tuning SAM (Wu et al., 2025), there is a lack of systematic evaluation of how prompt design affects
its performance. While SAM has the potential for strong zero-shot capabilities, SAM’s accuracy is highly
dependent on the “quality” of its prompt. For example, a single point-prompt might cause SAM to under-
segment the desired object, as shown in Figure By contrast, using multiple point-prompts can improve
coverage of the object’s boundaries but requires careful selection of point locations — but again too many or
poorly placed points can inadvertently force SAM to include surrounding regions or merge adjacent objects
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Figure 1: (a) Example segmentation refinement pipeline using SAM, including making initial predictions,
processing them into prompts for SAM, producing refined segmentations, and aggregating across all objects.
(b) Impact of example prompt configurations on SAM segmentations, showcasing how variations can drasti-
cally alter final segmentations (red dots denote a prompt placement of points as visual prompts).

(Wei et all, [2024). Additionally, SAM’s performance is domain-dependent, often underperforming on low-
contrast, fine-grained scientific and medical microscopy images essential for critical applications
2024). In this work, we therefore concentrate on prompt design for this important class of scientific and
medical applications that leverage microscopy images to derive practical guidelines.

Research Questions. Given the variability in image resolution, object morphology, and desired prompt
attributes, the number of unique prompts is near-infinite. As a result, open questions remain regarding
prompt design composition. In this work, we conduct a rigorous study of performance trends to guide prompt
selection and answer the following research questions: What is the relative importance of boxes, masks, and
point prompts on segmentation quality? How do different potential types of visual augmentation strategies
(e.g., point-placement strategies) impact SAM’s results? How does combining different prompt types and
their visual augmentations affect segmentation quality, in particular, what are challenges and promises
derived by the potential interaction (amplification, attenuation, or even cancellation out of the positive or
negative impact) of one prompt type on others when combined into visual prompt configurations? Last but
not least, with SAM’s training set, SA-1B, primarily including natural-scene high-contrast benchmarks such
as COCO or Cityscapes rather than the low-contrast, small-scale, and irregular features common in scientific
and medical images , if and how best can SAM’s performance be effectively adapted to the
unique challenges in these scientific and medical domains?

State-of-the-Art and its Shortcomings. Consequently, recent studies have found that SAM’s out-
of-the-box performance often falls short on segmentation tasks in these important scientific and medical
application domains (Ma et all 2024} [Zhang et all [2024b). With the growing demand for generalizable
yet high-precision segmentation models in these important domains—including cancer detection (Kassis
2024), high-throughput microscopy (Rusanovsky et al [2022), histopathology (Sikaroudi et al., 2023),
and surgical planning , establishing effective visual prompting strategies to achieve high-
quality segmentation for these settings is imperative. Without an effective prompting strategy, these works
implemented alternative strategies, such as retraining SAM (Ma et all [2024)), relying on human-in-the-loop
interactive segmentations (Shen et al., 2024), or both (Cheng et all [2023D).

Recently, |Cheng et al| (2023al), Mayladan et al,| (2023)), and (2023)) have begun to explore SAM

prompting across natural, medical, and remote-sensing data. However, these studies have been exceedingly
small, typically evaluating fewer than 25 prompt configurations. With so few combinations, these studies
have not statistically validated the significance of each prompt type or of its potential types of visual aug-
mentations. Lastly, these works typically explored a single prompt type (points, bounding boxes, and coarse
masks) at a time, overlooking the problem of determining the complex interactions of prompt types and
their augmentations when combined into visual prompt configurations.

Our Approach: Large-Scale Analysis of Prompt Design Configuration. To address this gap, we
undertake a comprehensive study of visual prompt design configurations and their combined impact on the
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performance of SAM for segmentation refinement. Our rigorous study covers 2,688 prompt designs on four
alternate popular initial segmentation models, resulting in 10,752 evaluations. In particular, we first identify
the effect of each core prompt type (points, masks, and boxes) and their unique augmentation strategies.
Namely, for boxes, uniform scaling is employed to expand or contract the as-detected boundary while preserv-
ing spatial location. For masks, a similar approach is considered, but with additional requirements to ensure
the preservation of the object’s morphology. For points, we evaluate multiple strategies, including adjusting
the number of points placed, tailoring the search space for placement, and modifying the placement algo-
rithm. Next, we also thoroughly explore their prompt type interrelationships by creating composite prompt
configurations that include (or exclude) each core prompt type, as well as their respective augmentations.

Throughout this evaluation, we discovered significant prevalent trends that serve as foundation for deriving
guidance for practitioners for prompt design. For example, prompts that contained bounding boxes improved
performance by 0.320 AP@50-95 through a wide array of testing scenarios on scientific images. Alternatively,
adding coarse masks reduced it by -0.133 AP@50-95, and point-based components could boost accuracy but
were dependent on the number of points and their spatial placement. To validate the robustness and
generality of these trends, we then extended our analysis of the top prompt’s performance to determine its
impact on other metrics, including individual IoU thresholds (AP@50, APQ75, AP@95), revealing both bulk
and fine-grained improvements. We further explored the robustness and generalizability of our evaluation
by applying our top-performing prompt configuration developed on one key data set as is, without further
prompt refinement, to other benchmark scientific datasets not considered during the prompt design study.
For this, we then compare SAM’s zero-shot refinement performance using our identified recommended prompt
configuration against the leading model-agnostic segmentation refiners, CascadePSP (Cheng et al.,|2020) and
SegRefiner (Wang et all |2024). Owverall, our study highlights that SAM, with our well-designed prompt,
can achieve significant improvements in segmentation quality on scientific images, a domain where it has
previously been found to struggle (Ma et al., [2024)).

Contributions. In summary, this work offers the following contributions:

e The largest empirical study of SAM prompt design to date, covering 2,688 unique configurations and
four initial popular segmentation models, totaling 10,752 evaluations. This study covers the first sys-
tematic analysis of how points, boxes, and masks interact when combined in a prompt configuration.

e Comprehensive evaluations demonstrating statistically significant trends for prompt design, leading
to valuable guidelines for practitioners for the utilization of SAM in scientific and medical domains.

e An experimental validation of SAM’s model-agnostic performance compared to state-of-the-art tech-
niques, particularly designed to tackle the segmentation refinement problem across three data sets,
four initial segmentation models, and four performance metrics.

2 Related Works

2.1 Segmentation Refinement Approaches

Segmentation refinement refers to the task of processing an initial model’s output to yield an improved
new mask (Tang et al., [2021). These methods fall into two categories: model-dependent and model-agnostic
solutions. Model-dependent solutions, such as RefineMask (Zhang et al.l 2021)), PointRend (Kirillov et al.|
2020), and Mask Scoring R-CNN (Huang et al., |2019), add additional layers to a model’s architecture to
produce higher resolution or more accurate segmentations. However, these approaches are tailored to a
specific model architecture and, as a result, typically cannot be used elsewhere. Model-agnostic approaches,
such as CascadePSP (Cheng et al., [2020) or SegRefiner (Wang et al.l 2024, instead post-process an initial
model’s segmentation. The latter eliminates the dependency on the specific architecture, offering improved
versatility across domains. For this reason, we henceforth focus on the latter approach.

Model-Agnostic Segmentation Refinement. Prior to the introduction of SAM, model-agnostic segmen-
tation refinement approaches were not based on prompting. One of the first refinement methods, CascadePSP
Cheng et al.| (2020), applies a cascade of boundary-aware residual modules on a coarse mask, progressively
enhancing local edge detail. SegRefiner Wang et al.| (2024) at NeurIPS 2023 was the first to integrate
diffusion-based models into the refinement process, building on previous work using GANs (Le, [2020). Most
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recently, Meta’s Segment Anything Model (SAM) Kirillov et al.| (2023)), a foundational computer vision
model, has emerged as a highly competitive segmentation refiner |Lin et al.| (2025); [Yu et al. (2024); [Wei
et al.| (2024)); |Chen et al.| (2024)); [Mayladan et al.| (2023]). When using SAM, the initial segmentations are
used to derive visual objects that serve as prompts, such as bounding boxes, coarse masks, and points, to
aid SAM’s re-segmentation (See Figure [la)).

2.2 SAM and Visual Prompting

Previous works, while starting to analyze the effect of prompting on SAM performance, have been quite
limited. In particular, prompt types are frequently analyzed in isolation. For example, Hu et al.| (2023)
briefly tested how increasing the number of points from 1, 5, 10, or 20 affected performance but did not
specify how points were placed and ignored any other prompt types. Alternatively, |Cheng et al.| (2023a))
performed a preliminary analysis of six bounding box prompts and three-point prompts. However, there
was no variation in the point-prompting method. They neglected to evaluate when points and boxes are
used together. Dai et al.| (2023) explored four point-placement strategies but constrained their experiments
to only two points. While they explored a few box prompts, similarly to prior work, they did not explore
points and boxes integrated together into one unified prompt configuration. Lastly, Mayladan et al.| (2023))
explored two prompts containing a box and points — testing one and five points only, plus, no placement
strategy was indicated.

Our Work in Comparison. These experiments, demonstrating the need for further analysis on prompting,
were ad hoc in nature. They contained too few samples (often less than ten) to evaluate statistical significance
(Cheng et al., [2023a; Hu et al., |2023; Mayladan et al., |2023)), rarely explored multiple prompt types together
Cheng et al.| (2023a); Dai et al.| (2023)); Hu et al.| (2023)), and frequently did not give enough information to
reproduce results or analyze trends, particularly with respect to how points were placed (Cheng et al.,|2023a;
Hu et al.| [2023; [Mayladan et al., |2023). In comparison, our work addresses each of these shortcomings. We
offer the first large-scale evaluation of prompts, containing 2,688 distinct prompts, enabling the statistical
significance of each prompt type and each prompt augmentation method to be evaluated. We performed the
first systematic cross-prompting evaluation, identifying each prompt type’s effect on the others. Additionally,
we evaluate the effect of coarse masks, which were not explored in these previous works. Lastly, we introduce
iterative refinement, testing how SAM’s refinement capabilities change over multiple iterations.

3 Constructing SAM Prompts

SAM was trained on the SA-1B dataset, containing 11 million images with over 1 billion masks, making it
a highly capable and one of the most popular segmenters (Kirillov et all [2023). While SAM is skilled at
detecting contours, it demonstrates semantic ambiguity, occasionally assigning higher confidence to undesired
sub-regions (e.g., a t-shirt instead of a person, or a sub-component of a particle as shown in Figure[l)). To
overcome this ambiguity, a well-designed prompt must accurately delineate the intended object, providing
full coverage to prevent erroneous annotations of sub-regions, yet not so expansive that it merges the object
with its neighbors or surrounding error.

When constructing a prompt, SAM takes two types of inputs: sparse (points, boxes, and text) and dense
(mask), as categorized in Figure [2} Of these, boxes, points, and masks are spatial prompts, specifying exact
locations or regions for SAM to process, while text prompts are non-spatial by offering semantic guidance.
In our analysis, we cover all types of spatial prompts. In addition, we tested numerous prompt engineering
strategies in the form of visual prompt augmentations in an effort to represent the desired object more closely.
For example, we evaluated the impact of shrinking or enlarging boxes and masks. For points of interest
(POIs), the augmentation steps are more complex due to their interconnected nature. Specifically, among
the three augmentation factors for points (number of points, placement algorithm, and perimeter buffer),
we note that the actual placement depends jointly on all three, since the buffer modifies the available search
space, and the number of points augments the decision process for each algorithm.
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POI Placement Algorithm Selection

Figure 2: Characterization of prompt types and augmentations for SAM-based segmentation refinement.

3.1 Boundary Box Visual Prompt and Its Augmentations

Using predictions from an initial model, which we aim to refine, a bounding box B can be extracted for each
detected instance. This box is the tightest boundary area containing the instance mask, represented by the
x, y coordinates of the upper-left corner, the width, and the height (Eq. . This box can be used as a
prompt for SAM as-is without any augmentation. However, it can also be augmented by a scaling factor,
a, to produce B’, as described in Equation [3| This is achieved by uniformly scaling the width and height
by v/, creating w’ and k', and adjusting = and y by half this change, producing =’ and y’, as described in
Equation 2] The resultant augmentation produces a bounding box whose area is scaled by some factor «,
while the center is held constant, preserving the spatial location of the segmentation. This augmentation
can be useful in cases of poor initial segmentations, enabling expansion for under-segmentation cases or
contraction for over-segmentation cases.

B = (z,y, w, h) (1)

B ' =a-B=(2,y,w, 1) (3)

3.2 Coarse Mask Visual Prompt and Its Augmentations

Like the bounding box, a coarse mask M C 2 (where Q C Z? is the set of all image-pixel coordinates) can
be given to SAM as detected, or can be augmented by some factor A to produce M’, an enlarged or shrunk
version. However, as a complex shape, M cannot be uniformly scaled in the same way while preserving the
spatial location and morphological characteristics of the object. Instead, M must be augmented at the pixel
level, applying erosion (&) to shrink and dilation (@) to enlarge it by A. First, we define a discrete disk
with radius ¢, as shown in Equation El Next, define the smallest ¢ = r(\) such that eroding or dilating M
by D; yields a mask whose area is approximately A|M|, as shown in Equation [5| Finally, we define M’ as
M, with the inclusion of any additional pixel contained within the disk D; centered at some pixel in M for
dilation or M after excluding any pixel contained within the disk D; centered at some pixel outside of M
for erosion, as shown in Equation [6] Through this transformation, we preserve the spatial location and a
similar morphology.

Dy = {p=(pa,py) €Z°: \/P2 +p2 < t} (4)
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3.3 POI Placement Augmentations

When evaluating POI augmentation strategies like POI placement, we attempt to balance two competing
interests: spacing the POIs far enough apart to fully cover the desired object, while keeping them close enough
to avoid false prompts outside that object. To address this, we distinguish between and then evaluate three
distinct types of prompt engineering: the number of POIs (denoted as k), the perimeter exclusion area
(denoted as v), and the POI placement algorithm (denoted as ¢). In this work, we explore values of k
ranging from 1 to 7. We evaluate v as a mitigating factor to prevent POIs from being placed too close to
the object boundary, where false prompts are more likely. In our experiments, we apply a perimeter buffer
~ of 0%, 5%, 10%, and 15%, eroding the original mask M to yield the search region M* with Equations [4] -
[6] Note the distinction between M* and M’: the parameter vy only defines the eroded region used for POI
placement, whereas A governs how we dilate or erode the mask input itself. With our number of POIs k,
and our POI search space defined by ~, we evaluated three POI placement algorithms (¢): random, distance
maximization, and Voronoi placement.

Random Placement. For random placement (Alg. , the initial mask M, perimeter buffer v, and
number of points k are taken as inputs. Once M is eroded by v to produce M*, defining the search space,
we uniformly sample k points.

Algorithm 1: Random Point Placement

Input: Binary mask M, perimeter buffer «, number of points k
Output: Selected points P
M*+— Mo (l-7y);
Ve {(2,y) € M*};
P+ 0
while |P| < k do
pick (x,y) uniformly at random from V;
P« PU{(z,y)};

V= VA{(z,9)}

return P;

Distance Maximization. For distance maximization (Alg. , we accept the same inputs, define M* the
same as for random placement, and define V' as all points contained within M*. For each C' C V such that
|C| = k, we evaluate the total pairwise distance between all points p € C, and return P as the set C' with
the largest total pairwise distance.

Voronoi Placement. For Voronoi placement (Alg. , we accept the same inputs and define M* identically
to random and distance max. We then partition M*, creating k equally sized Voronoi tessellations (Du et al.
1999)), returning the centroid of each as a POI placement.

With random placement as a baseline, Voronoi and distance maximization use the same underlying strategy
for placement, assuming that points farther apart will be more representative of the complete mask. However,
since Voronoi places points at the centroid of each cluster, these points are not as likely to be placed on the
boundary and will also be spread around the inner regions of the mask more, resulting in a distinct approach.



Under review as submission to TMLR

Algorithm 2: Distance-Maximization Placement

Input: Binary mask M, perimeter buffer «, number of points k
Output: Selected points P
M*+ Mo ~;
V « {(z,y) | pixel (x,y) is on the boundary of M*};
maxDistance < —oo;
P« 0;
for each subset C C V with |C| =k do
tempDistance < total PairwiseDistance(C);
if tempDistance > maxDistance then
maxDistance < tempDistance;
L P« C,

return P;

Algorithm 3: Voronoi Point Placement

Input: Binary mask M, perimeter buffer «, number of points k, iterations I
Output: Selected points P

M*+ M & ~;
Ve {(z,y) e M}
Initialize cq, ..., c; by sampling k distinct points from V;

for i+ 1to I do
foreach v € V do
L assign v to cluster j = arg min;||v — ¢;||2;
for i < 1 to k do
L ¢; + mean({v € V | v assigned to i});

P« {round(ci)}f:ﬁ
return P;

Piecing this together, the set of POIs is determined by the initial mask (M), the number of POIs (k), the
chosen perimeter buffer (y), and the selected algorithm for placement (¢), as in Equation

Ps=f(M, ¢, k,7) (7)

3.4 Final Prompt Composition

Ultimately, the final prompt, P, corresponds to the combination of the desired components after augmenta-
tion, as described in Equation [§] and visualized in Figure [3] Since a prompt can contain any combination
of visual prompt types, we represent the inclusion (or exclusion) of each component with ég, das, and dp as
binary flags. Here, dp indicates if the box B’ is included, ;s specifies whether the mask M’ is included, and
dp determines if the generated POIs, Ps, are incorporated. As shown in Figure [3] after all necessary aug-
mentations have been performed, the desired inputs are joined together and fed to SAM for re-segmentation,
producing a final refined segmentation.

P={6pB, oM, 6pPs | dp,0r,0p € {0,1}}. (8)
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Figure 3: Framework of prompt input selection and augmentation considered for SAM-based refinement.

4 Experimental Methodology

4.1 Data Sets

For the primary analysis, we used a microscopy dataset composed of micrographs from a scanning electron
microscope of powder particles used in additive manufacturing. In powder-based additive manufacturing,
particle size and shape are critical to overall build quality. Particles too large can leave porous regions,
negatively impacting the structural integrity of manufactured parts. Similarly, particles with irregular mor-
phology can affect the flowability of a powder, decreasing the deposition efficiency and increasing costs. As
a result, there has been a growing interest in high-throughput powder analysis frameworks (Cohn et al.
[2021} [Price et all 2021). For the primary evaluation, our powder dataset contained 132 images and 7,324
annotations, which will be released upon acceptance. To ensure generalizability, after identifying the optimal
prompt configuration on the primary powder-particle dataset, we compared SAM’s refinement performance
using our identified prompt against state-of-the-art methods on two additional publicly available microscopy
datasets: a general collection of 385 images covering particles, grains, and cells with 8,877 annotations

2023)), and a cellular microscopy dataset of 65 images with 2,193 annotations (Yukil [2024)).

4.2 Models

Vision Models for Initial Segmentation. Four vision models were used for initial segmentation:
YOLOv8 Nano, YOLOv8 X-Large (Ultralytics, [2023), Mask R-CNN 2017), and Mask2Former
Cheng et al., 2022)). These models were chosen for their growing popularity in applied scientific domains
Zhu et al} 2025} Zhang et al.| 2024ajc; Tang et al.,|2025; |Wankhade et al., 2024; /Cohn et al., 2021; Price et al.,
2021). These models also cover a diverse range of model sizes and architectures, including convolutional-
based and transformer-based backbones.

Vision Models for Segmentation Refinement. For SAM refinement, we used the ViT-L backbone
with the published model weights and parameters, as specified in Kirillov et al. (2023). For
comparison against state-of-the-art refinement techniques, we employed CascadePSP, introduced at CVPR
2020 (Cheng et al., 2020), in its default configuration. Similarly, we used SegRefiner, presented at NeurIPS
2023 (Wang et al., 2024)), evaluating both its small and large variants.

4.3 Metrics

To evaluate performance, Average Precision (AP)was computed at Intersection-over-Union (IoU) thresholds
of 0.50, 0.75, and 0.95, and the average of all thresholds between 0.50 and 0.95 (in 0.05 increments). AP@50
provides the most lenient metric, where a segmentation is considered correct if IoU > 50%. In contrast,
AP@95 provides the strictest metric, requiring the IoU > 95% for a segmentation to be considered correct.
AP@T75 offers a middle ground between these metrics, while AP@50-95 uniformly summarizes performance
across multiple thresholds. Measuring performance at various IoU thresholds enables us to track improvement
at different stages of initial prediction accuracy, offering insight into where refinement is most useful.
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4.4 Experimental Design

In this work, our experiments can be broken into three main categories: prompt optimization, state-of-the-
art comparison, and statistical significance testing. For prompt optimization, we systematically evaluated
2,688 unique prompt configurations, encompassing combinations of points (number, placement algorithm,
perimeter buffer), boxes (inclusion and scale), coarse masks (inclusion and erosion/dilation), and iterative
refinement, on four initial segmentation models, as outlined in Table [I} For the state-of-the-art evaluation
assessing generalizability of our proposed prompt configuration design, we compared segmentation results
of our best prompt derived on our first data set to CascadePSP (Cheng et al., |2020)), SegRefiner Small and
SegRefiner Large (Wang et al., [2024)) on all four initial segmentation models and three microscopy datasets
(powder, general microscopy, and cells). Lastly, to validate our measured improvements, we conducted paired
t-tests on individual prompt parameters (e.g., box vs. no-box, various POI strategies, etc.) as well as overall
performance differences between SAM and alternate refinement methods.

Table 1: Experimental conditions tested for prompt creation.

Category EQ | Conditions

Model YOLOvS8 Nano, YOLOvS8 X-Large, Mask R-CNN, Mask2Former
Box Inclusion Yes / No

Box Distortion 90%, 100%, 110% (when included)

Mask Inclusion Yes / No

Mask Distortion

POI Algorithm

POI Perimeter Buffer
Number of POIs
Iterative Refinement

90%, 100%, 110% (when included)
Random, Distance Max, Voronoi
0%, 5%, 10%, 15%

1,2,3,4,5,6, 7

One Stage / Two Stage

= e > 2 |87

5 Experimental Results

In our prompt optimization experiments, we identified multiple trends leading to a well-designed prompt,
which we discuss further in Section [5.1] From these results, we determined the optimal prompt included a
bounding box (as-detected), no coarse mask, 3 POIs, Voronoi placement, and a 10% perimeter buffer, yielding
crisper and more precise segmentation across all four initial segmentation models, as shown in Figure [{a]
Using this prompt, on the powder dataset, we found statistically significant improvement in the AP@50-95
by 0.203, 0.201, 0.128 and 0.081 with p < 0.0001 for YOLOv8 Nano, YOLOv8 X-Large, Mask R-CNN and
Mask2Former, as shown in Table Compared to the state-of-the-art CascadePSP, SegRefiner-Small, and
SegRefiner Large, SAM consistently outperformed each on all four models.

Extending this to additional AP thresholds, as shown in Table [3] we found that SAM achieved the highest
AP@95 across all four base segmentation models. At AP@Q50 and APQ75, SAM outperformed both SegRe-
finer Small and SegRefiner Large on every initial segmentation model, and exceeded CascadePSP on three
of the four models. Expanding this analysis to the two additional datasets, general microscopy and cellular
microscopy, as shown in Table [3] we found that SAM continued to improve segmentation quality, and per-
form comparably or better to the state-of-the-art methods. For APQT75, scored the highest on all four initial
segmentation models for both datasets. For AP@50, SAM scored the best in four of eight measurements,
and second best in an additional two.

Key Takeaway 1: Using a prompt with a bounding box, 3 points, Voronoi placement, a 10%
perimeter buffer, and no coarse mask, SAM produced statistically significant improvement over the
raw segmentations, and performed consistently better than or comparably to CascadePSP or SegRe-
finer across three microscopy datasets - illustrating the generalizability of prompts for these scientific
image data sets.
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YOLOv8 Nano YOLOV8 X-Large Mask R-CNN Mask2Former

Ground Truth Initial Prediction

CascadePSP SegRefiner

YOLOv8 Nano + SAM  YOLOv8 X-Large + SAM  Mask R-CNN +SAM  Mask2Former + SAM
(a) (b)

Figure 4: (a) Qualitative evaluation of SAM-Based refinement on YOLOv8 Nano, YOLOv8 X-Large, Mask
R-CNN, and Mask2Former segmentations. (b) Qualitative comparison of CascadePSP, SegRefiner, and an
optimized SAM prompt refining segmentation, producing an IoU of 0.960, 0.926, and 0.976, respectively.

Table 2: Paired ¢-Test of Refined vs Initial AP@50-95 by Model and Method on Powder Dataset

Model Method t P Mean AAP@50-95 Std AAPQ@50-95 95% CI
CascadePSP 33.09  0.0000 0.153 0.179 0.144-0.162
SegRefiner - Small ~ 5.84  <0.0001 0.037 0.219 0.025-0.050
YOLOVE Nano g 'k finer - Large  7.60  <0.0001 0.052 0.231 0.038-0.064
SAM (This Work) 42.38  <0.0001 0.203 0.186 0.194-0.213
CascadePSP 33.10  <0.0001 0.149 0.175 0.140-0.158
SegRefiner - Small ~ 6.89  <0.0001 0.042 0.208 0.030-0.054
YOLOVE X-Large g 'Rofiner - Large 952 <0.0001 0.060 0.214 0.047-0.072
SAM (This Work) 41.19  <0.0001 0.201 0.190 0.192-0.211
CascadePSP 20.81  <0.0001 0.082 0.153 0.074-0.090
SegRefiner - Small  11.02  <0.0001 0.058 0.205 0.048-0.069
Mask R-CNN SegRefiner - Large  12.37  <0.0001 0.068 0.215 0.058-0.079
SAM (This Work) 21.82  <0.0001 0.128 0.229 0.117-0.140
CascadePSP 16.50  <0.0001 0.059 0.140 0.052-0.067
MaskoFormer SegRefiner - Small ~ 4.95  <0.0001 0.020 0.154 0.012-0.027
SegRefiner - Large  10.36  <0.0001 0.036 0.137 0.030-0.044
SAM (This Work) 19.61  <0.0001 0.081 0.161 0.073-0.089

5.1 Prompt Optimization
5.1.1 Impact of Bounding Boxes on Prompt Performance

Of the 2,688 prompts tested, these were evenly split between no bounding box, as-detected bounding box,
bounding box shrunk to 90% of its original size, and bounding box enlarged to 110% of its original size. To
evaluate impact, paired t-tests were conducted, comparing each box configuration to an identical prompt
without a box, as shown in Table [d] On average, including an as-detected bounding box had an average
AP@50:95 improvement of 0.32. Shrinking this box to 90% of its size had a slightly larger improvement at
0.341, while enlarging the box had a slightly smaller improvement at 0.293.

5.1.2 Impact of Coarse Masks on Prompt Performance

Contrary to bounding boxes, including coarse masks in prompts consistently negatively affected prompt
performance in our study. Broken down by mask augmentation, 90%, 100% (as-detected), and 110%, paired ¢-
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Table 3: Performance comparison of refinement methods across multiple initial model predictions for the
Powder, General Microscopy, and Biological Cells from Scanning Electron Microscope Images. The best

result in each group is highlighted in bold.

Model ‘ Powder General Microscopy Cells

| APfus APRus APhi APRIL | AP APp APh APRIL | AP APl APh.. APRL
YOLOv8 Nano 0.8373 0.6693 0.0806 0.5291 0.8959 0.7866 0.2758 0.6526 0.5630 0.1927 0.0000 0.2519
+ CascadePSP 0.8450 0.7529 0.3781 0.6587 0.8910 0.7878 0.3427  0.6738 0.5061 0.4105 0.0002 0.3056
+ SegRefiner - Small | 0.8078 0.6965 0.1843 0.5629 0.7174 0.6381 0.2099 0.5218 0.3375 0.1291 0.0000 0.1555
+ SegRefiner - Large | 0.8344 0.7267 0.3455 0.6355 0.7476 0.6784 0.3020 0.5760 0.5245 0.2924 0.0000 0.2723
+ SAM (This Work) | 0.8812  0.8055 0.4591  0.7153 | 0.8930 0.8193 0.2300 0.6474 0.5922  0.4249 0.0016  0.3395
YOLOv8 X-Large 0.8352 0.6841 0.0964 0.5386 0.8817 0.7633 0.2134 0.6195 0.5720 0.2152 0.0000 0.2624
+ CascadePSP 0.8446 0.7587 0.3870 0.6635 0.8851 0.7880 0.2764  0.6498 0.5061 0.3986 0.0025 0.3024
+ SegRefiner - Small | 0.8105 0.6865 0.1860 0.5610 0.7033 0.6205 0.2279 0.5172 0.4035 0.1250 0.0000 0.1762
+ SegRefiner - Large | 0.8329 0.7375 0.3523 0.6409 0.7188 0.6375 0.2702 0.5421 0.5307 0.1873 0.0016 0.2399
+ SAM (This Work) | 0.8775  0.8102 0.4757 0.7211 | 0.8959  0.8132 0.2120 0.6404 0.5556  0.4038 0.0000 0.3198
Mask R-CNN 0.6876 0.5599 0.1061 0.4512 0.6653 0.5876 0.0502 0.4344 0.3438 0.1394 0.0000 0.1611
+ CascadePSP 0.7254 0.6305 0.3245 0.5601 0.6870 0.5833 0.1775 0.4826 0.3519 0.1596 0.0000 0.1705
+ SegRefiner - Small | 0.6899 0.6050 0.2056 0.5001 0.6952 0.6196 0.2062 0.5070 0.2485 0.0761 0.0000 0.1082
+ SegRefiner - Large | 0.7291 0.6434 0.3031 0.5586 0.7176 0.6317 0.2698 0.5397 0.3548 0.1754  0.0079  0.1794
+ SAM (This Work) | 0.7788  0.7130 0.4692  0.6537 | 0.8959  0.8132 0.2120 0.6404 0.3289 0.1584 0.0000 0.1624
Mask2Former 0.6336 0.5111 0.1229 0.4225 0.8539 0.7537 0.2852 0.6309 0.3795 0.1873 0.0001 0.1890
+ CascadePSP 0.6673  0.5805 0.2387 0.4955 0.8693 0.7337 0.2909  0.6313 0.3584 0.2258 0.0007 0.1950
+ SegRefiner - Small | 0.6300 0.4871 0.1176 0.4116 0.6777 0.5752 0.1847 0.4792 0.2626 0.0631 0.0000 0.1086
+ SegRefiner - Large | 0.6626 0.5718 0.2357 0.4900 0.7340 0.6218 0.2675 0.5411 0.3706 0.1146  <0.0001  0.1617
+ SAM (This Work) | 0.6548 0.5497 0.3132  0.5059 0.8588 0.7827 0.2003 0.6139 0.3533 0.2620 0.0006 0.2053

Table 4: Paired t-Tests on Impact of Bounding Box Scale on Segmentation Refinement (AP@50-95)

Box Scale t P Mean AAP Std AAP 95% CI

90% 105.77  <0.0001 0.341 0.167 0.334-0.347
100% 106.39 <0.0001 0.320 0.156 0.314-0.326
110% 103.99 <0.0001 0.293 0.146 0.287-0.298

tests revealed an average decrease of -0.133 AP@50-95, as shown in Table[5] Interestingly, mask augmentation
was found to have no impact, with each having an average decrease of -0.133, an STD of 0.137, and a 95%

confidence interval of -0.138— -0.128

Table 5: Paired t-Tests on Impact of Coarse Mask Scale on Segmentation Refinement (AP@50-95)

Mask Scale t P Mean AAP Std AAP 95% CI

90% -50.38 <0.0001 -0.133 0.137 -0.138- -0.128
100% -50.47 <0.0001 -0.133 0.137 -0.138- -0.128
110% -50.38 <0.0001 -0.133 0.137 -0.138—--0.128

5.1.3 Combined Effect of Bounding Boxes and Coarse Masks

In addition to the independent effects of bounding boxes and coarse masks on performance, we found that
their combined impact is even more pronounced. For example, prompts that include a bounding box out-
perform those that omit it, while prompts that include a coarse mask underperform those that exclude it.
Further, prompts featuring a box without a mask yield the highest average performance, whereas prompts

with a mask but no box yield the lowest, as shown in Figure fA.
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Figure 5: Visualizing impact of bounding boxes and masks on AP@50:95 when using SAM-based refinement.

Key Takeaway 2: Prompts that included a bounding box improved AP@50-95 by an average of
0.32 compared to identical prompts without a box, whereas prompts that included a coarse mask
decreased AP@50-95 by an average of 0.133. Overall, the highest performance was achieved by
prompts that included a bounding box and excluded a coarse mask.

Focusing on the best of these combinations (yes box and no mask), Figure highlights the distribution of
AP@50:95 scores when the bounding box size was shrunk to 90%, or enlarged to 110% of its original size.
Minor differences in distributions can be observed, such as a slightly lower tail distribution for prompts with
an enlarged box (0.560 compared to 0.571) and a slightly smaller distribution when the shrunk bounding
boxes (0.175 compared to 0.209). However, we conclude that overall box augmentation had no significant
effects on performance.

5.2 POl Placement Impact

Analyzing the effect of POI prompt placement, we considered the individual and combined effect of the
number of points (k), POI placement algorithm (¢), and perimeter buffer (7). In addition, we evaluated the
effect of these parameters in the presence and absence of a bounding box, allowing us to quantify how box
inclusion modulates the influence of POI placement strategies on segmentation refinement.

5.2.1 Algorithm Selection (¢)

To analyze the impact of alternate POI placement algorithms, we treated random placement as the baseline,
and conducted paired t-tests, measuring the change in AP@50-95 as a result of switching to distance maxi-
mization or Voronoi placement. For this analysis, we performed two sets of paired t-tests: one over the subset
of prompts without a bounding box or mask (Table @, and another over the subset of all prompts with a
bounding box but no mask (Table . As shown in Table @ Voronoi performed the best when no box was
included, with a mean AP@50-95 improvement of 0.007 over random. In contrast, distance maximization
performed the worst with an average decrease in performance of -0.146. In our tests on prompts including
a bounding box, the mean AP@50-95 increased significantly for all three algorithms. Random increased
from 0.541 to 0.645, Distance Max increased from 0.392 to 0.622, and Voronoi increased from 0.548 to 0.644.
Additionally, when a box was included, as shown in Table [7] the effect of the placement algorithm dimin-
ished. For example, the performance decrease due to using Distance Max narrowed from —0.146 to —0.023.
Similarly, the previously statistically significant improvement of 0.007 AP@50-95 for Voronoi over Random
(p < 0.0001) became a non-significant decrease of —0.001 (p = 0.1657).
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Table 6: Paired ¢-Tests Comparing Placement Algorithms (No Box, No Mask)

Comparison t D Mean AAP Std AAP 95% CI
Random—Distance Max -20.17 <0.0001 -0.146 0.108 -0.160—0.132
Random— Voronoi 5.30  <0.0001 0.007 0.020 0.005-0.010

Table 7: Paired ¢-Tests Comparing Placement Algorithms (Box, No Mask)

Comparison t D Mean AAP Std AAP 95% CI
Random—Distance Max -18.93 <0.0001 -0.023 0.031 -0.025—0.021
Random— Voronoi -1.39 0.1657 -0.001 0.012 -0.002—-0.000

Key Takeaway 3: In this study, the placement of POIs along the boundary of an initial detection
performed significantly worse than random or Voronoi placement, particularly when no bounding box
was provided. However, when a bounding box was provided, the gap between algorithm selections
was substantially reduced.

5.2.2 Number of Points (k)

To test the effect of the number of points on performance, we separated prompts by placement algorithm
and box inclusion. Without a bounding box, adding more POIs yielded clear gains for random (up to +0.091
AP@50-95, p < 0.0001) and Voronoi (up to +0.083 AP@50-95, p < 0.0001), while Distance Max steadily
lost performance (down to -0.105, p < 0.0001), as shown in Table . However, when a bounding box was
included, these trends were reversed. Random and Voronoi went from a steady increase to a slight decrease
in performance, and Distance Max’s decrease in performance was reduced from -0.105 to -0.044.

Table 8: Paired ¢-Tests of Increasing POI Count (1 vs k) on AP@50-95 (No Box, No Mask)

Algorithm Comparison t P Mean AAP Std AAP 95% CI
12 7.13  <0.0001 0.035 0.027 0.025-0.044
1-3 14.76  <0.0001 0.063 0.024 0.055-0.071
Random 1—4 18.49 <0.0001 0.079 0.024 0.070-0.087
1-5 19.93 <0.0001 0.089 0.025 0.081-0.098
1-6 21.66 <0.0001 0.091 0.024 0.083-0.099
1-7 16.40 <0.0001 0.090 0.031 0.079-0.100
1—-2 -4.49 0.0001 -0.052 0.065 -0.077—0.032
1—3 -6.06 <0.0001 -0.082 0.076 -0.111—0.059
Distance Max 1—4 -6.77  <0.0001 -0.093 0.078 -0.121—0.069
1-5 -6.70  <0.0001 -0.098 0.083 -0.128—0.073
1-6 -6.86  <0.0001 -0.103 0.085 -0.134—0.077
1-7 -7.02  <0.0001 -0.105 0.085 -0.137—0.079
1-2 10.40 <0.0001 0.022 0.012 0.018-0.026
1-3 16.12 <0.0001 0.053 0.019 0.047-0.059
Voronoi 1—4 20.95 <0.0001 0.072 0.019 0.065-0.078
15 17.65 <0.0001 0.077 0.025 0.068-0.085
1—6 19.71  <0.0001 0.082 0.024 0.074-0.090
1-7 25.98 <0.0001 0.083 0.018 0.076-0.089
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Table 9: Paired ¢-Tests of Increasing POI Count (1 vs k) on AP@50-95 (Box Only, No Mask)

Algorithm Comparison t P Mean AAP  Std AAP 95% CI
1-2 -2.11  0.0372 -0.003 0.012 -0.005—0.000
1—-3 -3.53  0.0006 -0.004 0.012 -0.007—0.002
Random 1—4 -8.03  <0.0001 -0.009 0.011 -0.011—0.007
1-5 -8.85  <0.0001 -0.011 0.012 -0.013—0.008
1—6 -10.40  <0.0001 -0.012 0.012 -0.015—0.010
1-7 -10.58  <0.0001 -0.013 0.012 -0.016—0.011
1-2 -7.84  <0.0001 -0.014 0.018 -0.018—0.011
1—3 -10.60 <0.0001 -0.021 0.020 -0.025—0.018
Distance Max 1—4 -9.26  <0.0001 -0.034 0.036 -0.041—0.027
1-5 -10.30  <0.0001 -0.042 0.039 -0.050—0.034
1-6 -12.38  <0.0001 -0.045 0.036 -0.052—0.038
17 -13.11  <0.0001 -0.044 0.033 -0.051—0.038
1-2 -0.73  0.4689 -0.001 0.011 -0.003-0.001
1-3 -5.40  <0.0001 -0.005 0.009 -0.007—0.003
Voronoi 1—4 -4.56  <0.0001 -0.006 0.014 -0.009—0.004
1—-5 -8.91  <0.0001 -0.009 0.010 -0.011—0.007
1—6 -9.77  <0.0001 -0.013 0.013 -0.016—0.010
1—7 -10.07  <0.0001 -0.013 0.013 -0.015—0.010

Key Takeaway 4: In this study, including additional POIs improved performance for random and
Voronoi placement, but decreased performance for Distance Max. However, these effects were reduced
once a box was included.

5.2.3 Perimeter Buffer ()

Based on the theory that POIs closer to the edge have a higher chance of being outside the ground truth,
and therefore degrade performance, we implemented a perimeter buffer where POIs could not be placed.
To evaluate this, we tested a 0% buffer (no buffer) and a 5%, 10%, and 15% buffer. When no box was
included, random placement had no significant change at a 5% buffer (+0.002 AP@50-95, p = 0.3854),
and a small improvement at 10% (40.008, p = 0.0017) and 15% (40.012, p = 0.0002). Similarly, Voronoi
placement had no significant change at a 5% buffer (+0.004, p = 0.0654), and a small improvement at
10% (4+0.007, p = 0.007) and 15% (+0.006, p = 0.0064). However, Distance Max had a much larger and
more statistically significant improvement at 5% (+0.053, p < 0.0001), 10% (+0.093, p < 0.0001), and
15% (+0.093, p < 0.0001). When evaluating prompts with a bounding box, we observed a similar trend
reversal that was found in the placement algorithm selection and the number of POI selections. Random and
Voronoi had no statistically significant change in AP@50-95. The improvements for Distance Max dropped
from +0.053 to +0.007 at 5%, from +0.093 to +0.006 at 10%, and from +0.093 to -0.024 at 15%.

Key Takeaway 5: When no bounding box is provided, introducing a small perimeter buffer (10-15%)
around the mask edge improved AP@50-95 scores, particularly for Distance Max.

Connecting the Dots. To visualize the interconnected nature of these parameters, Figure [6] highlights
the effect of placement algorithm (¢), number of points (k), perimeter buffer (), box inclusion across the
four initial segmentation models. Each row shows one placement strategy (Distance Max on top, Random in
the middle, Voronoi on bottom), and each column corresponds to an initial segmentation model (YOLOvS8
Nano, YOLOv8 X-Large, Mask R-CNN, Mask2Former, left to right). Within each graph, an increase along
the X-axis indicates a growing perimeter buffer (), while an increase along the Y-axis indicates an increase
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Table 10: Effect of Perimeter Buffer on AP@50-95 (No Box, No Mask)

Algorithm Buffer t P Mean AAP Std AAP 95% CI
0%—5%  0.87 0.3854 0.002 0.021 -0.003-0.008
Random 0%—10% 3.30 0.0017 0.008 0.019 0.003-0.013
0%—15% 4.02  0.0002 0.012 0.022 0.006-0.017
0%—5%  5.27 <0.0001 0.053 0.076 0.035-0.073
Distance Max 0%—10% 6.54 <0.0001 0.093 0.107 0.066-0.122
0%—15% 5.32 <0.0001 0.093 0.131 0.060-0.128
0%—5% 1.89  0.0645 0.004 0.017 -0.000-0.009
Voronoi 0%—10% 2.84  0.0063 0.007 0.018 0.002-0.011
0%—15% 2.84  0.0064 0.006 0.017 0.002-0.011

Table 11: Effect of Perimeter Buffer on AP@Q50-95 (Box Only, No Mask)

Algorithm Buffer t D Mean AAP Std AAP 95% CI
0%—5% 1.60  0.1118 0.001 0.011 -0.000-0.003
Random 0%—10% 1.46  0.1475 0.002 0.014 -0.001-0.004
0%—15% 2.55 0.0118 0.002 0.012 0.001-0.004
0%—5%  4.71  <0.0001 0.007 0.018 0.004-0.009
Distance Max 0%—10% 4.16  0.0001 0.006 0.020 0.003-0.009
0%—15% -8.04 <0.0001 -0.025 0.040 -0.031—0.019
0%—5% -1.33  0.1869 -0.001 0.011 -0.003-0.000
Voronoi 0%—10% 0.86 0.3912 0.001 0.010 -0.001-0.002
0%—15% 0.42  0.6772 0.000 0.011 -0.001-0.002

in reported AP@50-95. Each colored line represents the number of POIs used (k), with solid lines indicating
a bounding box was included and dashed lines indicating the bounding box was excluded.

In these results, we confirm previous findings that bounding boxes improved results with every single prompt,
performing better with a bounding box than its counterpart without a bounding box.

5.3 lterative Refinement

To evaluate whether any prompt could further improve an already refined mask, we implemented a two-
stage protocol. In Stage 1, for each base segmentation model (see Section and Table , we applied
each prompt configurations {P;} to the raw model outputs and selected the top-performing prompt P*. In
Stage 2, we first used P* to generate once-refined masks under optimal prompting conditions, then re-ran
SAM with each prompt P; on those once-refined masks to produce twice-refined outputs. We measured
AP@50-95 for every P; in Stage 2 and compared it to the corresponding Stage 1 score to see if any prompt
yielded additional gains.

As shown in Figure [7]A, the range of twice-refined AP@50-95 scores was much narrower than once-refined
(Fig. , particularly for prompts including a bounding box, or no bounding box and no coarse mask. For
example, the range of once-refined AP@50-95 scores for prompts containing a box and mask decreased from
0.39 to 0.18, prompts containing a box and no mask decreased from 0.21 to 0.10, and prompts containing
neither a box nor mask dropped from 0.58 to 0.22. While we saw a significant reduction in the spread of
recorded values, this was from a rising tail value, and the maximum recorded value actually decreased from
once-refined to twice-refined segmentations for each group. In fact, for all {P;}, 59.24% achieved higher
AP@50-95 when run on the once-refined P* masks compared to the raw outputs. However, none of the
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Figure 6: Evaluation of bounding box inclusion, POI placement algorithms, number of POIs, and perimeter
buffer across multiple instance segmentation architectures.

twice-refined outputs from any P; produced a closer segmentation to the ground truth than the once-refined
mask produced by P*.

To analyze this further, paired ¢-tests comparing once-refined and twice-refined AP@Q50-95 were conducted,
as shown in Table For improved clarity, prompts were divided into five groups according to their once-
refined AP@50-95 percentiles: 0-20%, 20-40%, 40-60%, 60-80%, and 80-100%. Prompts in the 0-20% group
experienced the largest improvement (+0.034 AP@50-95, p < 0.0001). As the percentile group increased, the
improvement decreased. For example, 20-40% had a smaller improvement (+0.008 AP@50-95, p < 0.0001),
and 40-60% had an even smaller improvement (+0.003 AP@50-95, p < 0.0001). Prompts in the 60-80% range
had an average improvement of 0.000 with no statistical significance (p = 0.4481), and prompts with in the
upper 80th percentile had a statistically significant decrease in performance (-0.006 AP@50-95, p < 0.0001).
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Figure 7: Impact of Box and Mask Prompts on Secondary Refinement

Key Takeaway 6: Prompts that initially performed quite poorly did improve when using a once-
refined segmentation. However, no twice-refined segmentation outperformed the highest-scoring once-
refined, and high-performing prompts consistently performed worse twice-refined than once-refined.
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Table 12: Paired ¢-Test of Once-Refined vs Twice Refined Segmentations

Percentile t P Mean AAP  Std AAP 95% CI

0%—20% 19.05 <0.0001 0.034 0.059 0.031 - 0.038
20%—40% 12.23  <0.0001 0.008 0.022 0.007 - 0.010
40%—60% 5.89 <0.0001 0.003 0.016 0.002 — 0.004
60%—80% 0.76 0.4481 0.000 0.015 -0.001 - 0.001
80%-100% -14.00 <0.0001 -0.006 0.015 -0.007 — -0.006

5.4 Limitations

While this study demonstrates statistically significant results that SAM can perform similarly to or better
than state-of-the-art segmentation refinement techniques, it does have a few limitations. First, the quality
of the refinement is related to the quality of the initial mask. Because SAM’s refinement process relies on
leveraging the initial segmentation’s spatial structure and appearance cues, misaligned or incomplete initial
masks limit its ability to effectively refine object boundaries.

Second, SAM’s performance is sensitive to “false POIs" (points placed outside the true object), which can
rapidly deteriorate mask refinement. We mitigate this through a perimeter buffer, preventing POIs from
being placed near the segmentation boundary, where they are most likely to be incorrect. However, it remains
to be explored if this may generalize to more complex shapes. A more robust approach may intelligently
select or augment POI locations.

Third, our work is focused on scientific images, and more specifically, microscopy images. Given
SAM’s domain-dependent performance, future works should evaluate the generalizability of these prompt-
augmentation strategies on additional domains. In support of this, we will release our reusable code base
upon acceptance, enabling researchers to rapidly extend these results for their target domains of interest.

Lastly, although we comprehensively explored 2,688 prompt configurations across four base segmentation
models (10,752 total evaluations), our search was not exhaustive. There is the possibility that alternate
prompting strategies may yield further improvements.

6 Conclusion

Accurate object detection and segmentation are necessary for numerous tasks ranging from high-throughput
object quantification to autonomous driving. Recently, there has been growing attention to model-agnostic
segmentation refinement methods and post-processing detections for improved performance. In this work, we
provide statistically significant evidence that SAM can perform comparably or better than state-of-the-art
refinement techniques, like CascadePSP and SegRefiner, by leveraging an appropriate visual prompt config-
uration. However, SAM’s performance depends on the prompts it is given. Recent works have conducted a
preliminary analysis on the effect of prompting, but are limited in that they frequently evaluate fewer than
ten prompt combinations (Cheng et al.| 2023a; Hu et al.| 2023; Mayladan et al.l|2023|). They have also rarely
studied the combined effect of more than one prompt type together (e.g., points, boxes, and masks together)
(Cheng et al.l |2023a; Dai et al.,|2023). In this work, we provide the first large-scale analysis, including 2,688
prompt combinations across four initial segmentation models, resulting in a total of 10,752 evaluations.

Through this experimentation, we uncover several key takeaways that lead to guidelines for prompt design
improving segmentation performance for scientific applications, summarized here:

e Prompts including a bounding box have an improvement of 0.320 AP@50-95 over identical prompts
without a box across the 10,752 evaluations on microscopy datasets.

e Prompts including a coarse mask have a decrease in performance of -0.133 AP@50-95 over identical
prompts without a mask.
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e When no bounding box is provided, placing POIs along the boundary of initial segmentations is
detrimental to performance, but can be mitigated by a perimeter buffer, or POI placement algorithm,
such as Voronoi, that prioritizes more central regions.

e Iterative refinement was not found to yield improved performance over the highest-scoring refined
mask.

These results provide a statistically significant evaluation of how prompt-augmentation can improve segmen-
tation performance. Upon acceptance, we will release our full code base to facilitate further advancements
in prompt design for SAM. Moving forward, this research should be extended to study other domains of
interest, further verifying its generalizability. Future work can also focus on developing additional solutions
for POI placement, which may mitigate the challenge of “false POIs" placed outside the ground truth.

7 Broader Impacts

This work poses no direct ethical or societal risks, as it operates in a data-agnostic, model-agnostic setting
focused strictly on segmentation refinement. However, the underlying Segment Anything Model (SAM) is
energy-intensive: its pretraining required 68 hours on 256 A100 GPUs, and each refinement pass is heavier
than a single-stage segmenter. To limit inference-time carbon footprint, we recommend (1) reserving SAM-
based refinement for cases where pixel-level boundary accuracy is essential, and (2) reusing SAM’s large
encoder embeddings across multiple objects rather than re-computing them for each mask.
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