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ABSTRACT

Despite tremendous progress in dexterous manipulation, current visuomotor poli-
cies remain fundamentally limited by two challenges: they struggle to generalize
under perceptual or behavioral distribution shifts, and their performance is con-
strained by the size of human demonstration data. In this paper, we use video
generation as a proxy for robot policy learning to address both limitations si-
multaneously. We propose Video Policy, a modular framework that combines
video and action generation that can be trained end-to-end. Our results demon-
strate that learning to generate videos of robot behavior allows for the extraction
of policies with minimal demonstration data, significantly improving robustness
and sample efficiency. Our method shows strong generalization to unseen ob-
jects, backgrounds, and tasks, both in simulation and the real world. We further
highlight that task success is closely tied to the generated video, with action-free
video data providing critical benefits for generalizing to novel tasks. By leveraging
large-scale video generative models, we achieve superior performance compared
to recent VLAs and video-action models, paving the way for more scalable and
data-efficient robot policy learning.

1 INTRODUCTION

The fundamental challenge in visuomotor policy learning today is to create a robot system that
robustly generalizes to new situations. Methods such as behavior cloning (Bain & Sammut, 1995;
Chi et al., 2023) have achieved impressive performance in many tasks ranging from pick-and-place
operations to complex dexterous manipulation (Brohan et al., 2022; Team et al., 2024; Black et al.,
2025). However, state-of-the-art methods are often unable to transfer learned behaviors to novel
situations, failing to generalize across distribution shifts ranging from simple variations (e.g., color
changes) to more complex challenges such as adapting to entirely new tasks (Ross et al., 2011;
Xiao et al., 2022; Barreiros et al., 2025). While fields like computer vision and natural language
processing have tackled these issues by collecting increasingly larger training sets to capture all
variations (Deng et al., 2009; Wenzek et al., 2019; Radford et al., 2021), robot action and human
demonstration data are expensive to collect, making real-world generalization challenging.

Generative video models (Blattmann et al., 2023a), such as OpenAI’s Sora (Brooks et al., 2024), are
a promising direction for addressing these generalization challenges. Trained on massive datasets
capturing diverse dynamics, situations, and physical interactions, they potentially encode powerful
priors about how objects move and how actions affect the world. Thus, there is a strong interest
in extracting robot policies from these foundation models to create robust control systems that can
generalize to diverse scenarios and tasks. However, prior work along this direction has faced a
fundamental trade-off: methods either rely on hand-crafted decoding mechanisms (such as track-
ing) (Liang et al., 2024) that limit expressivity and fail to capture the model’s full knowledge, or
they use learned action decoders that introduce their own generalization gaps due to limited demon-
stration data (Du et al., 2023b). Very recently, Hu et al. (2025) have proposed a flexible approach
for combining video generation and policy learning, but their work lacks a detailed analysis of the
interplay between the two objectives.

This paper demonstrates that video generative models are robot policies that generalize behavior to
both visual and task distribution shifts. Our proposed model, Video Policy, is illustrated in Figure 1.
We systematically study video diffusion models and demonstrate that, as long as video generative
models synthesize accurate videos of robot behavior, then learned decoders only need a surprisingly
small amount of demonstration data to learn to map videos into actions that a robot can directly
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Figure 1: Video Generation as a Proxy for Robot Policy Learning. Given an initial observation
and a natural language task prompt, Video Policy generates a video of a robot executing the task
(top) jointly with generating robot actions via a separate diffusion network (middle). This modular
design enables learning from action-free video data and improves generalization to unseen scenarios,
offering a scalable and sample-efficient alternative to traditional behavior cloning.

execute. Remarkably, we find that a small decoder can be trained to generalize to unseen tasks, and
that training the video generative model independently from the action decoder leads to substantial
performance gains. These findings suggest that the video generative model is serving as the policy,
while the decoder primarily serves as an interface rather than learning the task policy itself.

Since the policy relies heavily on videos synthesized by a large-scale generative model, and this
video model has been trained on a diverse set of videos, our approach generalizes to novel objects,
scenes, and tasks with less training data than existing methods. In both simulation and real-world
experiments, we demonstrate that leveraging strong video priors improves performance compared
to recent large-scale VLAs (Black et al., 2025; Pertsch et al., 2025; Bjorck et al., 2025) as well
as custom-designed video-action models (Li et al., 2025). Furthermore, through detailed ablation
studies, we provide insights into crucial design choices, offering guidance for future research on
exploiting generative video models for robot learning. We will release our code, fine-tuned models
and implementation details to ensure reproducibility.

2 RELATED WORKS

Behavior Cloning. Behavior cloning (BC) is a widely adopted method in manipulation tasks, where
policies are learned from demonstrations using supervised learning. Initial BC approaches focused
on end-to-end models that mapped states directly to actions, yet these methods often encountered
difficulties with multimodal behavior and tasks that require high precision (Pomerleau, 1988; Zhang
et al., 2018; Florence et al., 2019). To overcome these challenges, later research investigated Energy-
Based Models (EBMs), which determine actions by minimizing an energy function during sequence
optimization (LeCun et al., 2006; Du & Mordatch, 2019; Florence et al., 2022; Huang et al., 2023).
More recently, conditional generative models have emerged as a promising alternative, effectively
capturing diverse demonstration behaviors and improving task success rates (Chi et al., 2023; Zhao
et al., 2023; Lee et al., 2024). Unlike earlier models, our approach is based on video diffusion
models with an extra action diffusion head to predict robot action jointly with pixels.

Visual Pretraining for Policy Learning. There has been extensive research on pre-training per-
ception models within visuomotor policies to achieve more robust visual representations. One com-
monly used objective is video prediction, where the model learns to forecast future frames from
current observations, thereby capturing the dynamics and causal relationships essential for physical
interactions (Finn et al., 2016; Sermanet et al., 2018; Babaeizadeh et al., 2018; Lee et al., 2018; Suris
et al., 2021). Other popular self-supervised techniques include contrastive learning (Sermanet et al.,
2018; Laskin et al., 2020; Radford et al., 2021; Nair et al., 2022) and masked autoencoding (Seo
et al., 2023; Radosavovic et al., 2023), which both contribute to developing strong visual features
for robotics. Additionally, some studies have focused on learning a generalizable reward function
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through visual pretraining to support reinforcement learning tasks (Chen et al., 2021; Ma et al.,
2023; Escontrela et al., 2023).

Video Models for Decision-Making. Early contributions in video generation (Ranzato et al., 2014;
Vondrick et al., 2016; Finn et al., 2016) set the stage for employing generative models to predict
future frames in a sequence. With recent advances in text-to-video generative models (Ho et al.,
2022; Blattmann et al., 2023a;b; Zhang et al., 2023; Brooks et al., 2024), there is renewed interest
in harnessing internet-scale video data for robotics. One line of research leverages video gener-
ative models as a form of world simulation, predicting future video sequences conditioned on ac-
tions (Yang et al., 2023; Du et al., 2023b; Brooks et al., 2024). Meanwhile, another approach utilizes
video-language models to aid in long-horizon planning (Du et al., 2023a; Ajay et al., 2023; Black
et al., 2023). Several works also explore the joint pixel and action diffusion architecture (Hu et al.,
2025; Cheang et al., 2024; Guo et al., 2025; Li et al., 2025; Zhu et al., 2025). Compared to these
concurrent works, we focus on providing detailed analysis and systematic evaluations.

3 METHODS

3.1 OVERVIEW

Given an input scene v0 and a task description c, Video Policy generates a sequence of actions
at ∈ Rk to accomplish the task, where k is the action dimension of the robot’s end-effector. We use
a video generator f that synthesizes videos of robot roll-outs {v̂t} as the backbone for the policy,
and a learned model g to predict the robot actions from the synthesized frames:

{v̂t} = f(v0, c) (1)
{at} = g(ψ0, . . . , ψi) where ψi = fi(v0, c) (2)

such that fi is the ith hidden layer of the video generator. This architecture is attractive because it
integrates passive pre-training from internet videos to provide priors for generalization, and active
demonstrations to learn strong policies in the physical world. We achieve this by fine-tuning f and
g to generate videos and actions of the task being executed. At inference time, the generated actions
are directly executed on a robot to perform manipulation tasks.

3.2 ARCHITECTURE

To integrate video generation with policy learning, we design denoising diffusion architectures f
and g which jointly predict future video frames {v̂t} and action sequences {at}. To achieve this, f
is a video U-Net µθ and g is an action U-Net αθ. See Figure 2 for an overview.

Building off of the Image-To-Video Stable Video Diffusion (SVD) (Blattmann et al., 2023a) archi-
tecture, we condition the Video U-Net µθ via cross-attention on the CLIP (Radford et al., 2021)
embedding ϕ(c) of the textual description of the task c, and in the second stream we channel-wise
concatenate a VAE-encoded image z0 = VAE(v0) with the encoded noisy frames of the video
z1, ...zt (we use the frozen VAE from SVD).

We extend the architecture to decode actions using an action U-Net, αθ, which is conditioned on
intermediate features from the video denoising network. At each denoising step i, five evenly spaced
hidden embeddings (layers 9, 14, 17, 20, 23) are extracted from the decoder layers of the video U-
Net. These spatiotemporal features are passed through a CNN adapter, which transforms the latent
embeddings into a single vector hi at denoising step i. This vector serves as a global conditioning
input to a 1D CNN U-Net αθ, adapted from Diffusion Policy (Chi et al., 2023), which then generates
the sequence of robot actions {at} via

{at} = αθ(ai, i, hi). (3)

This occurs per denoising step i, tightly integrating the video and action predicting, and allowing
actions and videos to be generated simultaneously.

3.3 LEARNING

Video Policy is trained in two stages, where the video model is first trained for video prediction, and
then the action model is trained for behavior cloning, with a dataset D = d1...dn of expert demon-
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Figure 2: Video Policy takes an image of the initial environment state together with the noise vectors
corresponding to the future frames and actions as input. It then jointly diffuses the frames and
actions, using the representation of the frames as conditioning for the action denoiser. This modular
design allows for training the two networks separately, opening way for action-free learning of the
task dynamics via video generation.

strations. Each demonstration di includes a video observation of the scene {vt}, text description of
the task c, and the corresponding robot actions {at}.

Our video model, µθ is trained to minimize:

Lvideo = Ez0,ϵ,i[||ϵ− µθ(zi, i, ϕ(c), zi,0)||2], (4)

where i refers to a denoising time step, zi,0 refers to the noisy latent embedding of the first frame,
and z0 refers to the denoised latent video.

Our action head, αθ is trained to minimize:

Laction = Ea0,ϵ,i[||ϵ− αθ(ai, i, hi)||2], (5)

where hi refers to the feature vector from our CNN adaptor at noise level i.

Since we want the video network to drive the policy due to its extensive pre-training, and αθ to just
decode the robot action, we stop the gradients from Laction from propagating back to µθ. As we
show in the experiments, this leads to significant improvements in performance.

Once Video Policy is trained, we deploy it by providing an initial visual observation of the scene v0
and task description c. The model then generates a sequence of predicted video frames {v̂t} jointly
with a corresponding sequence of robot actions {at}. The predicted actions {at} are subsequently
used to directly control the robot’s end-effector to execute the manipulation task.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We use three cameras (one mounted on the gripper and two on either side of the scene) as video
observation input. The three views are concatenated along the temporal dimension, such that vt ∈
Rt,c,h,w, and the model is trained to predict 8 frames per camera view (24 frames in total). For
Libero10 benchmark we adopt a slightly different setup to train using the agent and gripper camera
views to predict 12 frames per camera view. To align with the pretrained SVD model’s expected
input, we pad a single camera frame to the start of the sequence, resulting in a total of 25 frames for
all models. During training, we set a constant learning rate for video prediction to 1e−5 and action
prediction to 5e−5.
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Table 1: Comparison to the state of the art on the validation set of RoboCasa using success rate
over 50 roll-outs per task. Video Policy using 50 human demonstrations is able to achieve state-of-
the-art results on average and across most individual tasks. Training Video Policy on a larger set of
300 MimicGen demonstrations further improves its performance. Baselines for 3DA, DP3 and FPV
are adopted from Donat et al. (2025), and results for GR00T and DP-VLA are reported from their
respective papers.

Category Task 3DA DP3 DP- DP- GR00T FPV DP-VLA UVA Video Policy Video Policy
ResNet CLIP 50 demos 300 demos

Pick and
Place

PnPCabToCounter 0.00 0.04 0.06 0.00 0.20 0.10 0.10 0.26 0.36 0.48
PnPCounterToCab 0.00 0.02 0.06 0.02 0.36 0.14 0.32 0.18 0.42 0.52
PnPCounterToMicrowave 0.00 0.06 0.06 0.02 0.13 0.10 0.56 0.10 0.52 0.22
PnPCounterToSink 0.00 0.00 0.14 0.08 0.10 0.08 0.30 0.16 0.44 0.48
PnPCounterToStove 0.00 0.00 0.00 0.02 0.24 0.04 0.22 0.16 0.58 0.54
PnPMicrowaveToCounter 0.00 0.06 0.06 0.06 0.16 0.12 0.18 0.18 0.44 0.28
PnPSinkToCounter 0.00 0.00 0.10 0.22 0.33 0.30 0.56 0.38 0.64 0.56
PnPStoveToCounter 0.00 0.00 0.02 0.06 0.29 0.26 0.62 0.24 0.64 0.70

Doors

OpenSingleDoor 0.00 0.24 0.42 0.32 0.59 0.74 0.42 0.54 0.68 0.70
OpenDoubleDoor 0.00 0.20 0.70 0.82 0.15 0.92 0.80 0.90 0.96 0.94
CloseDoubleDoor 0.00 0.56 0.78 0.84 0.75 0.78 0.84 0.76 0.98 0.90
CloseSingleDoor 0.14 0.62 0.78 0.48 0.83 0.84 1.00 0.88 1.00 0.90

Drawers OpenDrawer 0.00 0.36 0.64 0.60 0.79 0.72 0.66 0.28 0.46 0.54
CloseDrawer 0.00 0.48 0.82 0.96 0.99 0.94 1.00 0.72 0.96 1.00

Twisting
Knobs

TurnOnStove 0.10 0.24 0.38 0.28 0.56 0.66 0.64 0.50 0.30 0.50
TurnOffStove 0.02 0.06 0.16 0.08 0.27 0.20 0.16 0.14 0.06 0.04

Turning
Levers

TurnOnSinkFaucet 0.06 0.32 0.66 0.66 0.63 0.70 0.56 0.62 0.84 0.76
TurnOffSinkFaucet 0.28 0.42 0.68 0.70 0.73 0.78 0.72 0.64 0.78 0.92
TurnSinkSpout 0.26 0.54 0.62 0.26 0.53 0.52 0.90 0.64 0.40 0.58

Pressing
Buttons

CoffeePressButton 0.08 0.16 0.76 0.68 0.85 0.90 0.86 0.84 0.92 0.96
TurnOnMicrowave 0.06 0.38 0.68 0.88 0.78 0.68 0.84 0.94 0.92 0.96
TurnOffMicrowave 0.32 0.54 0.62 1.00 0.71 0.96 0.86 0.96 0.90 1.00

Insertion CoffeeServeMug 0.00 0.18 0.44 0.60 0.73 0.48 0.64 0.78 0.76 0.70
CoffeeSetupMug 0.00 0.04 0.10 0.12 0.23 0.16 0.30 0.20 0.22 0.58

Avg. Task Success Rate 0.06 0.23 0.41 0.43 0.50 0.51 0.57 0.50 0.63 0.66

Table 2: Average success rates for tasks in the Libero10 benchmark. Video Policy achieves the
highest overall performance compared to baselines adopted from Li et al. (2025). Per-task results
are reported in the supplementary.

Model DP-C DP-T OpenVLA UniPi π0 π0-FAST UVA Video Policy

Avg. Task Success Rate 0.53 0.58 0.54 0.00 0.85 0.60 0.90 0.94

4.2 SIMULATION EXPERIMENTAL SETUP AND BASELINES

We perform quantitative evaluation of Video Policy using the RoboCasa (Nasiriany et al., 2024) and
Libero10 (Liu et al., 2023) simulation benchmarks, which span a total of 34 manipulation tasks.
For each task, both benchmarks provide 50 human demonstrations. In the RoboCasa benchmark,
demonstrations are replayed at a resolution of 256×256 pixels. For Libero10, the demonstrations
are resized to the same resolution.

The action space of the simulation benchmarks is defined as ai ∈ R7, which includes the 6-DoF
pose of the gripper and a scalar value representing the gripper’s open or closed state. For RoboCasa
evaluation, we follow the evaluation protocol outlined by Nasiriany et al. (2024); specifically, each
task is evaluated over a total of 50 rollouts executed in five different RoboCasa scenes. For Libero10
evaluation, we follow the evaluation protocol in Li et al. (2025).

As RoboCasa baselines, we train Unified Video Action (UVA) (Li et al., 2025) and (ImageNet pre-
trained) ResNet- and CLIP-based variants of Diffusion Policy on the same dataset, using identical
inputs and evaluation environments as Video Policy. For additional RoboCasa and Libero10 base-
lines, we compare to the results reported from several prior works (Donat et al., 2025; Bjorck et al.,
2025; Han et al., 2024; Li et al., 2025).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 QUANTITATIVE RESULTS

We begin by comparing Video Policy to the state-of-the-art on the validation set of the synthetic
RoboCasa benchmark and report the results in Table 1. Firstly, we observe that Video Policy out-
performs the baselines by a large margin on average, as well as on most individual tasks. The
improvements are especially noticeable on Pick and Place tasks which feature a significant distri-
bution shift between training and test environments, highlighting the robustness of our approach.
Methods capitalizing on explicit 3D representation of the environment (Ke et al., 2024; Ze et al.,
2024), including 3DA (Ke et al., 2024), DP3 (Ze et al., 2024) and recent FPV (Donat et al., 2025),
struggle to achieve competitive performance on this benchmark requiring rich semantic understand-
ing. Diffusion Policy (Chi et al., 2023) demonstrates robust performance, but fails to scale when
equipped with a strong CLIP (Radford et al., 2021) visual-language representation (columns 5, 6 in
Table 1).

Most notably, Video Policy demonstrates competitive performance to baselines that capitalize on
large-scale visual-language (DP-VLA from Han et al. (2024)) and video pre-training (GR00T
from Bjorck et al. (2025)). In addition, both of these methods use more RoboCasa demonstrations
for behavior cloning, with GR00T using 300 and DP-VLA 3000 automatically generated demon-
strations per task via MimicGen (Mandlekar et al., 2023). In contrast, Video Policy requires only
50 demonstrations per task to achieve state-of-the-art results by effectively aligning the video and
action generation objectives. Training Video Policy on more demonstrations further improves its
performance (last column in the table).

Finally, the concurrent UVA (Li et al., 2025) approach, which also proposes a joint model for video
and action prediction, fails to generalize to the challenging RoboCasa benchmark due to its over-
reliance to the single-camera setup. Specifically, UVA decodes a joint latent with a Transformer
that couples action chunks with future-frame tokens, restricting predictions to one camera stream
at a time. In contrast, our straightforward architecture can easily support any configuration of the
environment. We also compare Video Policy to UVA and other strong baselines on the Libero-10
benchmark in Table 2, where we achieve significantly higher average task success rates, consistent
with our results on RoboCasa benchmark. We analyze the key factors behind the effectiveness of
our approach in detail next.

4.4 ANALYSIS

Table 3: Ablation study on the RoboCasa vali-
dation set, analyzing the interplay between video
and action generation. Results show that learning
to generate policy-execution videos is both neces-
sary and sufficient for learning robust manipula-
tion representations.

Model Variant Avg. Task Success Rate
Joint 0.57
2-Stage 0.63
No Video Tuning 0.09

In this section, we set out to explore the inter-
play between the video and action generation.
To this end, we first investigate the effect of
isolating the two training objectives in Equa-
tions 4 and 5 compared to joint training. In
joint training we fine-tune the model with both
training objectives, whereas in 2-stage training
we first fine-tune SVD for video generation on
the training set of RoboCasa, then freeze the
video diffusion U-Net weights, and learn the
action denoising head on top of this frozen rep-
resentation. Remarkably, as shown in row 2 in
Table 3, the 2-stage variant has a significantly
higher performance in terms of average success rate compared to the end-to-end trained model (de-
noted as ‘Joint’ in the table, per-task results are reported in the supplementary). This result suggests
that learning to generate videos in the raw pixel space is a strictly more general objective than action
generation.

Next, we study the properties of the video generation objective in greater detail. Firstly, we explore
the importance of fine-tuning SVD on RoboCasa in the last row of Table 3. Our results indicate that
learning to generate videos of the robot executing a policy is a crucial component of our training
pipeline, whereas vanilla SVD pretraining is insufficient for the task. This finding further supports
our earlier observation that video generation of policy execution serves as a strong proxy for policy
learning. In Figure 3, we show that the prediction horizon of the video generation model is a key
factor in the effectiveness of this proxy objective. All model variants predict actions 1.6 seconds

6
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into the future, while the video prediction horizon is varied ranging from 0 (i.e., reconstructing
the conditioning frame) to longer rollouts. We plot the average task success rates on RoboCasa —
separately for tasks with and without distribution shift between training and evaluation environments
— as a function of the video prediction horizon used during training (distribution shift details and
per-task results are provided in the supplementary). We roll out action prediction for 0.8 seconds
across all variants. While longer-term video prediction universally improves performance, the effect
is more significant for tasks that require stronger generalization. These results highlight that learning
accurate environment dynamics is critical for achieving generalization in policy learning.

Figure 3: Success rate of Video Policy as a func-
tion of the video prediction horizon. Learning
the dynamics of the environment is critical for
achieving generalization in policy learning, as
evident by the larger effect of prediction hori-
zon on the task with distribution shift.

Action-free videos can provide a nearly limitless
data source for learning the environment dynam-
ics. To demonstrate their utility, we start from
SVD fine-tuned for video generation on the en-
tire training set of RoboCasa (Stage 1 from the 2-
Stage variant in Table 3), but learning the action
denoising head in Equation 3 on only half of the
tasks sampled at random. We evaluate the result-
ing model on the full set of 24 tasks and compare
to the DP-ResNet baseline trained on the same 12
tasks in Figure 4. The results demonstrate that
Video Policy can achieve strong generalization
to the unseen tasks during policy training (right
half of the figure) by capitalizing on action-free
video generation pre-training. In contrast, the
DP-ResNet baseline, which is not able to utilize
action-free data, only exhibits a minimal degree
of generalization to unseen tasks.
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Figure 4: Generalization to tasks with no policy supervision by capitalizing on action-free video
data. Both our behavior cloning head and the baseline DP are trained on 12 tasks on the left, but
our video generation model also has access to action-free videos for all 24 tasks. We demonstrate
that this additional data enables Video Policy to generalize to the unseen tasks on the right solely
through video generation training, without any action decoder supervision. In contrast, the DP
ResNet baseline is unable to benefit from the action-free video data and shows limited generalization
to the novel tasks.

4.5 REAL-WORLD RESULTS

In this section, we further validate the generalization advantages of policy learning via video genera-
tion in the real world. Our evaluation encompasses five tasks: Open Drawer, Pick and Place, M&Ms
to Cup, Upright Object and Stack Cups. The details of the evaluation are discussed below.

Robot Setup. For the five tasks, human demonstrations were collected using a handheld gripper
equipped with the same end effector as the robot. The setup closely mimics the RoboCasa camera

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

configuration. During each demonstration, a human operator performs the task with the gripper
while RGB video is recorded, along with action states of the gripper — including its 6D pose,
parallel jaw opening width, and the force exerted by the jaws. The gripper pose is tracked using an
Intel RealSense T265 camera, and the gripping force is measured with a uniaxial load cell. The data
collection and the robot execution setup are illustrated in Figure 2. For each task, 200 demonstrations
are collected for training.

Experiment Setup. We trained Video Policy following the simulation pipeline from the SVD check-
point and evaluated our model in 5 manipulation tasks, using a suite of experiments designed to test
its generalization with variations in object location, interacting with unseen objects, and changes in
background appearance. Details of the training and testing object sets for each task are provided in
the supplementary material.

The tasks are as follows: Open Drawer involves the robot grasping a drawer handle and opening
it to over 50% of its full extension, with two drawers at different heights. Pick and Place has the
robot picking up an object from a cluttered table and placing it into a container, with 11 objects
and 10 containers used. In M&Ms to Cup, the robot picks up an M&M and places it in a cup, with
distractors present; the training set includes 6 M&M colors and 5 cups. Upright Object involves the
robot repositioning an object on the table to stand upright, with 6 manipulable objects and distractors.
Stack Cups has the robot stacking one cup into another, using 6 different cups on a cluttered table.
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Figure 5: Qualitative results for Pick and Place generalization experiments in the real world. Video
Policy demonstrates strong robustness to object locations, appearance and background colour.

4.6 GENERALIZATION ANALYSIS

We report success rates over 10 roll-outs in Table 4, with qualitative examples in Figure 5 and the
supplementary material.

Generalization to Object Locations. In this experiment, we use the same objects as in the training
demonstrations but exact positions can vary between training and testing, serving as a baseline with
minimal distribution shift for comparison with other scenarios. We observe that the model performs
best on the Open Drawer, Pick and Place, and M&Ms to Cup. A successful example on the Pick and
Place task is shown in the first row of Figure 5, where the model accurately places an object into
a difficult-to-see transparent cup. Failures in Upright Object and Stack Cups are due to unrealistic
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video predictions — e.g., failing to generate upright placements or gripper-induced toppling —
likely due to limited real-world physics priors in the pretrained SVD model.

Generalization to Unseen Objects. When tested on novel objects with different shapes or colors,
the model maintains high performance across tasks. Figure 5 (second row) shows a successful
example of the Pick and Place task with an irregularly shaped object not seen during training. Video
Policy successfully adjusts the parallel-jaw gripper to find a suitable grasp and places the object into
the target cup. Notably, the Upright Object task shows significant improvement, likely due to the test
objects being opaque, in contrast to the transparent cups used during training. The results suggest
that policy learning through video generation can improve robustness to novel objects.

Generalization to Unseen Background. Training on a white surface, we now test with black, red,
or blue backgrounds. We find that Open Drawer, Pick and Place, Upright Object, and Stack Cups all
maintain strong performance under these conditions. As shown in the last row in Figure 5, the model
successfully completes the Pick and Place task even when the table is covered with an unseen blue
background. Once again, Upright Object shows improved performance likely because the colored
backgrounds enhance the visibility of the transparent cups. In contrast, performance on the M&Ms
to Cup task decreases. The robot gripper often fails to accurately localize the M&Ms, suggesting
that background color changes can adversely affect robot actions that require high precision.

Table 4: Generalization performance in real world. Success rates computed over 10 roll-outs per
task across three experiments, evaluating different generalization dimensions: object location, object
appearance, and background appearance. Video Policy shows strong robustness across all three
dimensions in the real world.

Tasks Vary Object Location Unseen Objects Unseen Background

Open Drawer 0.8 1.0 0.9
Pick and Place 1.0 0.9 0.8
M&Ms to Cup 0.8 0.9 0.2
Upright Object 0.3 0.7 0.8

Stack Cups 0.3 0.2 0.2

5 CONCLUSION

In this work, we investigate the interplay between video and action diffusion objectives for policy
learning. Our results show that generating pixels can serve as an effective proxy for learning policy,
substantially improving the robustness and generalization of behavior cloning. Moreover, we ob-
serve that separating the video generation objective from action generation substantially improves
performance, and a lightweight decoder can generalize action decoding to unseen tasks. These
findings suggest that the video generative model itself functions as the policy, while the decoder pri-
marily serves as an action decoder rather than the policy. A key insight from our study is that casting
policy learning as video generation unlocks the ability to leverage action-free data — broadening the
scope of usable training signals. As generative models continue to scale with massive in-the-wild
video datasets, this paradigm offers a promising path toward more scalable and generalizable policy
learning for real-world manipulation.

6 LIMITATIONS

Our study has several limitations. First, it is restricted in the scale of simulation benchmarks and a
single real-world embodiment. Additionally, we explore only one instantiation of video generation
models — Stable Video Diffusion. While our analysis is more extensive than prior works, broader
validation across tasks, environments, and model families would further strengthen the findings.
Second, the computational cost of video diffusion models remains a major practical bottleneck,
particularly for real-world deployment. However, recent advances in accelerating diffusion infer-
ence (Song et al., 2023; Esser et al., 2024; Zhou et al., 2024) offer a promising path toward real-time
performance, which could unlock broader applicability in robotics.
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A APPENDIX

A.1 VIDEO MODEL IMPLEMENTATION

We adapted the pretrained SVD model, which generates 25-frame video sequences. In our Robo-
Casa Experiments, frame 1 is a padded frame, frames 2–9 correspond to the gripper view, frames
10–17 to the left camera view, and frames 18–25 to the right camera view. To enable the model to
generate such multi-view videos, we modified the per-frame image embedding based on the view-
ing camera of each output frame. By default, the generated video contains 8 frames for each view
and represents the robot’s actions in default RoboCasa action space over 32-steps prediction hori-
zon (the videos are subsampled using a stride of 4). This setup is consistent across both simulation
and real-world experiments. Training hyperparameters are detailed in Table 5. We fine-tuned the
model on eight A100 GPUs over approximately two weeks and observed that training any further
did not yield performance improvements. For the real-world model, we initially trained at a res-
olution of 256×192 to speed up training, followed by training at a higher resolution of 448×320
to improve performance. During inference for all experiments, we use 30 denoising steps with a
constant classifier-free guidance scale of 2.0. On an A100 GPU, a 25 frame video takes around 9
seconds to generate with a resolution of 256×256 and 30 diffusion steps.

All RoboCasa experiments follow the standard RoboCasa evaluation protocol, except for our study
on video prediction horizons. Per-task results under the standard protocol are shown in Table 6. For
the video prediction horizon analysis in Figure 2, we adopt a different protocol to isolate the ef-
fect of distribution shift. Specifically, we aimed to investigate how per-task performance is affected
by distribution shift as a function of the prediction horizon. To isolate this effect, we do not use
the standard RoboCasa protocol where all evaluation environments are out-of-distribution and in-
stead evaluate on sampled environments from the MimicGen dataset. These environments share the
same layout and style as the training set but differ in object positions and object categories through
synthetic generation. In particular, the pick-and-place tasks involve the greatest variation in object
position and type. Figure 6 compares training and evaluation environments for two example tasks:
Open Single Door and PnP Counter to Cabinet. While the door type and position vary minimally in
Open Single Door, the PnP Counter to Cabinet task involves substantial differences in object types,
illustrating the degree of distribution shift. We are interested in comparing the performance of pick-
and-place tasks, which exhibit significant distribution shift, to other tasks with minimal shift, across
varying prediction horizons. The corresponding per-task results are presented in Table 8.

Table 5: Hyperparameters for video model training. Resolution: image and video resolution, Lr:
learning rate, Batch: batch size, Steps: training steps for the evaluation checkpoint, Precision: light-
ning trainer precision.

Models Resolution Lr Batch Steps Precision

Joint Training 256×256 1e-5 32 368866 16-mixed
2-Stage Training 256×256 1e-5 32 368866×2 16-mixed
No Video Tuning 256×256 1e-5 32 368866 16-mixed

Joint Training (16 Steps) 256×256 1e-5 32 368866 16-mixed
Joint Training (0 Steps) 256×256 1e-5 32 368866 16-mixed

2-Stage Training (Half Tasks) 256×256 1e-5 32 368866×2 16-mixed
2-Stage Training (Libero10) 256×256 1e-5 32 170000+140000 16-mixed
Joint Training (Real World) 256×192 → 448×320 1e-5 32 331500+92960 16-mixed
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Table 6: Per-task success rates out of 50 trials across different experimental variants following
the RoboCasa evaluation protocols. Joint: end-to-end trained model jointly predicting video and
actions. 2-Stages: video and action predictions are trained separately. No Video: frozen video U-
Net initialized with SVD pretraining. Half Tasks: video and action models trained separately, with
the action denoising head trained on only half of the tasks. DP Half Tasks: ResNet-based CNN
Diffusion Policy trained on only half of the tasks.

Category Task Joint 2-Stages No Video Half Tasks DP Half Tasks

Pick and Place

PnPCabToCounter 0.12 0.36 0.00 0.24 0.00
PnPCounterToCab 0.38 0.42 0.00 0.40 0.06
PnPCounterToMicrowave 0.42 0.52 0.00 0.20 0.00
PnPCounterToSink 0.36 0.44 0.00 0.36 0.04
PnPCounterToStove 0.54 0.58 0.00 0.52 0.00
PnPMicrowaveToCounter 0.34 0.44 0.00 0.28 0.06
PnPSinkToCounter 0.62 0.64 0.00 0.50 0.00
PnPStoveToCounter 0.60 0.64 0.00 0.48 0.00

Doors

OpenSingleDoor 0.58 0.68 0.06 0.66 0.52
OpenDoubleDoor 0.96 0.96 0.00 0.08 0.00
CloseDoubleDoor 0.76 0.98 0.14 0.12 0.00
CloseSingleDoor 0.96 1.00 0.28 0.96 0.62

Drawers OpenDrawer 0.60 0.46 0.00 0.68 0.66
CloseDrawer 0.96 0.96 0.10 0.94 0.56

Twisting Knobs TurnOnStove 0.38 0.30 0.10 0.16 0.20
TurnOffStove 0.12 0.06 0.06 0.04 0.14

Turning Levers
TurnOnSinkFaucet 0.40 0.84 0.34 0.58 0.56
TurnOffSinkFaucet 0.66 0.78 0.20 0.48 0.20
TurnSinkSpout 0.32 0.40 0.20 0.32 0.00

Pressing Buttons
CoffeePressButton 0.92 0.92 0.34 0.92 0.66
TurnOnMicrowave 0.86 0.92 0.10 0.58 0.72
TurnOffMicrowave 1.00 0.90 0.28 0.24 0.08

Insertion CoffeeServeMug 0.68 0.76 0.06 0.00 0.00
CoffeeSetupMug 0.12 0.22 0.00 0.18 0.06

Avg. Task Success Rate 0.57 0.63 0.09 0.41 0.21

make table top of page

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Per-task success rates on the RoboCasa benchmark, comparing GR00T trained with varying
numbers of demonstrations to Video Policy. The per-task GR00T results are reported from Bjorck
et al. (2025).

Category Task GR00T (Bjorck et al., 2025) Video Policy
30 demos 100 demos 300 demos 50 demos

Pick and Place

PnPCabToCounter 0.01 0.04 0.20 0.36
PnPCounterToCab 0.02 0.07 0.36 0.42
PnPCounterToMicrowave 0.00 0.00 0.13 0.52
PnPCounterToSink 0.00 0.01 0.10 0.44
PnPCounterToStove 0.00 0.00 0.24 0.58
PnPMicrowaveToCounter 0.00 0.00 0.16 0.44
PnPSinkToCounter 0.00 0.06 0.33 0.64
PnPStoveToCounter 0.00 0.00 0.29 0.64

Doors

OpenSingleDoor 0.20 0.55 0.59 0.68
OpenDoubleDoor 0.00 0.13 0.15 0.96
CloseDoubleDoor 0.00 0.43 0.75 0.98
CloseSingleDoor 0.49 0.68 0.83 1.00

Drawers OpenDrawer 0.09 0.42 0.79 0.46
CloseDrawer 0.77 0.96 0.99 0.96

Twisting Knobs TurnOnStove 0.15 0.26 0.56 0.30
TurnOffStove 0.05 0.16 0.27 0.06

Turning Levers
TurnOnSinkFaucet 0.33 0.60 0.63 0.84
TurnOffSinkFaucet 0.49 0.68 0.73 0.78
TurnSinkSpout 0.24 0.42 0.53 0.40

Pressing Buttons
CoffeePressButton 0.28 0.57 0.85 0.92
TurnOnMicrowave 0.56 0.74 0.78 0.92
TurnOffMicrowave 0.47 0.58 0.71 0.90

Insertion CoffeeServeMug 0.04 0.34 0.73 0.76
CoffeeSetupMug 0.00 0.02 0.23 0.22

Avg. Task Success Rate 0.17 0.32 0.50 0.63
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Table 8: Video Policy per-task success rates out of 50 trials for different video prediction horizon
variants evaluated in sampled environments from the MimicGen dataset. Joint 32-Steps: joint video-
action model trained with a 32-step video prediction horizon. Joint 16-Steps: same model trained
with a 16-step video prediction horizon. Joint 0-Steps: model where the video prediction output is
identical to the input images.

Category Task Joint 32-Steps Joint 16-Steps Joint 0-Steps

With Distribution Shift

PnPCabToCounter 0.28 0.24 0.14
PnPCounterToCab 0.70 0.50 0.22
PnPCounterToMicrowave 0.56 0.28 0.06
PnPCounterToSink 0.56 0.42 0.06
PnPCounterToStove 0.82 0.46 0.02
PnPMicrowaveToCounter 0.58 0.30 0.02
PnPSinkToCounter 0.62 0.52 0.12
PnPStoveToCounter 0.80 0.56 0.14

Without Distribution Shift

OpenSingleDoor 0.92 0.88 0.26
OpenDoubleDoor 0.98 0.96 0.58
CloseDoubleDoor 0.80 0.74 0.40
CloseSingleDoor 1.00 0.98 0.84
OpenDrawer 0.48 0.34 0.18
CloseDrawer 1.00 0.96 0.92
TurnOnStove 0.46 0.18 0.22
TurnOffStove 0.20 0.20 0.22
TurnOnSinkFaucet 0.36 0.40 0.16
TurnOffSinkFaucet 0.76 0.72 0.74
TurnSinkSpout 0.60 0.70 0.72
CoffeePressButton 0.96 0.92 0.22
TurnOnMicrowave 0.80 0.48 0.38
TurnOffMicrowave 0.80 0.42 0.22
CoffeeServeMug 0.74 0.66 0.36
CoffeeSetupMug 0.30 0.26 0.10

Avg. Task Success Rate 0.67 0.55 0.30

Table 9: Video Policy per-task success rates out of 50 trials for the 10 tasks in Libero10 benchmark,
following the evaluation protocol in UVA (Li et al., 2025).

Libero10 Tasks Success Rate

LIVING ROOM SCENE2 put both the alphabet soup and the tomato sauce in the basket 0.96
LIVING ROOM SCENE2 put both the cream cheese box and the butter in the basket 1.00
KITCHEN SCENE3 turn on the stove and put the moka pot on it 1.00
KITCHEN SCENE4 put the black bowl in the bottom drawer of the cabinet and close it 0.98
LIVING ROOM SCENE5 put the white mug on the left plate and put the yellow and white mug on the right plate 0.94
STUDY SCENE1 pick up the book and place it in the back compartment of the caddy 0.96
LIVING ROOM SCENE6 put the white mug on the plate and put the chocolate pudding to the right of the plate 0.88
LIVING ROOM SCENE1 put both the alphabet soup and the cream cheese box in the basket 1.00
KITCHEN SCENE8 put both moka pots on the stove 0.80
KITCHEN SCENE6 put the yellow and white mug in the microwave and close it 0.86

Average 0.94
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Open Single Door Human Demonstration 

Environments

Open Single Door MimicGen 

Environments

PnP Counter to Cabinet MimicGen 

Environments

PnP Counter to Cabinet Human Demonstration 

Environments

Figure 6: Example training and evaluation environments for the Open Single Door and PnP Counter
to Cabinet tasks. Evaluation environments are sampled from the MimicGen dataset, which intro-
duces variation in object types and positions for pick-and-place tasks such as PnP Counter to Cabi-
net, but have minimal variation for tasks like Open Single Door.
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A.2 UNIFIED VIDEO ACTION MODEL BASELINE

As a baseline, we train the Unified Video Action Model, initialized using a pretrained VAE and the
MAR image generation model (Li et al., 2024). We modify the model to accept three images as
conditioning frames and to generate all three camera views of the video at a resolution of 256×256,
by concatenating frames along the temporal axis. The model is trained on the same dataset and
evaluated under identical conditions as Video Policy.

A.3 DIFFUSION POLICY BASELINE

As baselines, we train ResNet- and CLIP-based variants of the CNN Diffusion Policy using the
implementation from UMI (Chi et al., 2024), both initialized with pretrained weights (ImageNet
pre-training in case of ResNet). We use ResNet18 and CLIP-Base variants. The models are trained
on the same dataset and evaluated under the same conditions as Video Policy. To match the text
conditioning in the video model, we condition both variants on the task name using the same CLIP
text encoder. The resulting text embedding is concatenated with the image observation embedding as
global context. Each variant uses three separate encoders for the three camera views. For the ResNet-
based model, input images are resized to 256×256, while the CLIP-based model uses 224×224
inputs. Both variants are trained with a batch size of 768 to predict 32 future steps and roll out 16
steps in simulation, matching the video model setup.

A.4 REAL-WORLD EXPERIMENT SETUP

The demonstrations are recorded using RGB cameras mounted on the left, right, and on the gripper
itself. The side-view RGB cameras are Intel RealSense D435, while the gripper-mounted camera
is a Basler fisheye camera. The gripper’s pose is tracked using a RealSense T265 camera, and the
parallel jaw opening is estimated via ArUco marker tracking. A uniaxial force sensor mounted on
the gripper measures grasping force. All sensors operate at 30 Hz. The model is trained to predict 32
steps into the future relative gripper pose, relative jaw position, and absolute grasping force, given
inputs of three RGB images from three camera views. During deployment, the robot follows the
predicted gripper pose and jaw position for 24 of the 32 predicted steps using impedance control. To
prevent the robot from grasping objects with insufficient force, a small gripper closing correction is
applied if the predicted gripper force during rollout exceeds the actual measured force by more than
300 grams. The object sets and experimental setups are shown in Figures 7-13.

Examples of alignment between video predictions and real-world executions during the Pick and
Place task are illustrated in Figures 14 and 15, highlighting the video policy’s ability to generate
coherent visual predictions and corresponding robot actions. Additional qualitative results are avail-
able in the supplementary video.

Training Background Unseen Backgrounds

Figure 7: Unseen backgrounds set. In the training set, the four tasks including Pick and Place,
M&Ms to Cup, Upright Object and Stack Cups are performed on a white table. In the unseen
backgrounds set, the same tasks are evaluated on tables covered with black, red, and blue cloths to
test generalization to novel background colors.
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Training Set / 

Vary Object Location Set Unseen Objects Set Unseen Background Set

Figure 8: Open Drawer object set. The training and vary object location sets include interactions
with both the upper and lower drawers of a single cabinet. In the unseen objects set, the cabinet is
covered with masking tape to simulate a different appearance. In the unseen background set, the
floor is replaced with a constant red and black fabric.

Training Set / 

Vary Object Location Set Unseen Objects Set

Figure 9: Pick and Place object set. The training set consists of 10 containers and 11 objects. The
testing set includes 4 objects with novel shapes and colors to evaluate object generalization.

Training Set / 

Vary Object Location Set Unseen Objects Set

Figure 10: M&Ms to Cup object set. The training set includes 5 cups and M&Ms in 6 different col-
ors. The testing set contains 5 novel objects with varying shapes and colors to assess generalization
to unseen items.
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Training Set / 

Vary Object Location Set Unseen Objects Set

Figure 11: Upright object set. The training set includes 6 objects and the testing set contains 5
objects with novel shapes and colors to evaluate object generalization.

Training Set / 

Vary Object Location Set Unseen Objects Set

Figure 12: Stack Cups object set. The training set includes 5 cups and the testing set contains 5 cups
with novel shapes and colors to evaluate object generalization.

Human Data Collection Setup Robot Experiment Setup

RGB

RGB + Tracking

RGB

Figure 13: Data collection and robot experiment setup. During data collection, a human demonstra-
tor performs the task using a modified robot gripper. In the robot experiment, the robot executes the
tasks with the same setup.
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Robot Execution
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Figure 14: Comparison between video prediction and real-world rollout. For an example Pick
and Place task while grasping the object, we show the three camera views during video prediction
alongside the corresponding real-world rollout. The alignment between the predicted video and the
resulting robot actions demonstrates the effectiveness of Video Policy in generating coherent video
and actions.
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Robot Execution
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Figure 15: Comparison between video prediction and real-world rollout. For an example Pick and
Place task while placing the object into the container, we show the three camera views during video
prediction alongside the corresponding real-world rollout. The alignment between the predicted
video and the resulting robot actions demonstrates the effectiveness of Video Policy in generating
coherent video and actions.
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