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ABSTRACT

There are various measures of predictive uncertainty in the literature, but their
relationships to each other remain unclear. This paper uses a decomposition
of statistical pointwise risk into components, associated with different sources
of predictive uncertainty, namely aleatoric uncertainty (inherent data variability)
and epistemic uncertainty (model-related uncertainty). Together with Bayesian
methods, applied as an approximation, we build a framework that allows one
to generate different predictive uncertainty measures. We validate our method
on image datasets by evaluating its performance in detecting out-of-distribution
and misclassified instances using the AUROC metric. The experimental results
confirm that the measures derived from our framework are useful for the considered
downstream tasks.

1 INTRODUCTION

Nowadays, predictive models are applied in a variety of fields requiring high-risk decisions such as
medical diagnosis (Shen et al., 2017; Litjens et al., 2017), finance (Ozbayoglu et al., 2020; Heaton
et al., 2017), autonomous driving (Grigorescu et al., 2020; Mozaffari et al., 2020) and others. A
careful analysis of model predictions is required to mitigate the risks. Hence, it is of high importance
to evaluate the predictive uncertainty of the models. In recent years, a variety of approaches to
quantify predictive uncertainty have been proposed (Kotelevskii et al., 2022; Lahlou et al., 2023;
Kendall & Gal, 2017; Van Amersfoort et al., 2020; Liu et al., 2020a; Lakshminarayanan et al., 2017;
Malinin & Gales, 2021; Schweighofer et al., 2023a;b) and others. Specific attention has been paid
to the distinction between different sources of uncertainty. It is commonly agreed to consider two
sources of uncertainty (Hüllermeier & Waegeman, 2021): aleatoric uncertainty, that effectively
reduces to the inherent stochastic relationship between the inputs (objects) and the outputs (labels),
and epistemic uncertainty, which is referred to as the uncertainty due to the “lack of knowledge”
about the true data distribution. Distinguishing between aleatoric and epistemic uncertainties is
crucial in practice because it helps identifying whether uncertainty can be reduced by gathering more
data (epistemic) or if it is inherent to the problem (aleatoric), thus guiding better decision-making
and model improvement.

Despite the practical importance and widespread usage of uncertainty quantification, there is still
no common strict formal definition of both types of uncertainty. This leads to a number of different
measures to quantify either type of uncertainty (see for example (Lakshminarayanan et al., 2017;
Gal et al., 2017; Malinin & Gales, 2021; Hüllermeier & Waegeman, 2021; Kotelevskii et al., 2022;
Schweighofer et al., 2023a)). Recently, for information-theoretical measures, the step towards unified
definition was made in (Schweighofer et al., 2023a). However, it is not clear how all these measures
of uncertainty are related to each other in general. Do they complement or contradict each other?
Are they special cases of some general class of measures? In this paper, we introduce a statistical
approach for predictive uncertainty quantification, reasoning in terms of pointwise risk estimation.
This allows us to reconstruct a lot of known and popular measures of predictive uncertainty, as well
as show how to build new ones. Our contributions are as follows:

1. Following (Kotelevskii et al., 2022; Lahlou et al., 2023; Liu et al., 2019), we consider
pointwise risk decomposition into distinct parts, that are responsible for capturing different
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sources of uncertainty. We show, that this decomposition, applied specifically to strictly
proper scoring rules (Gneiting & Raftery, 2007; Gruber & Buettner, 2023) leads to a general
framework, that is amenable for generation of uncertainty measures.

2. We show how one can make this framework practical with the help of Bayesian estima-
tion (see Section 4). We show that commonly used measures of epistemic uncertainty,
such as Mutual Information (Houlsby et al., 2011; Gal et al., 2017), Expected Pairwise
Kullback-Leibler divergence (EPKL) (Schweighofer et al., 2023a; Malinin & Gales, 2018),
predictive variance and maximum probability score are special cases within our general
approach. We also highlight the limitations of our framework, elaborating on discussions
from (Schweighofer et al., 2023a; Wimmer et al., 2023).

3. We experimentally evaluate different predictive uncertainty quantification measures from the
proposed framework in various tasks. Specifically, we consider out-of-distribution detection
and misclassification detection; see Section 6. Our results highlight the conditions under
which each measure is most effective, providing practical insights for selecting appropriate
uncertainty measures.

2 PREDICTIVE UNCERTAINTY QUANTIFICATION VIA RISKS

Assume we have a dataset Dtr = {(Xi, Yi)}Ni=1, where pairs Xi ∈ Rd, Yi ∈ Y are i.i.d. random
variables sampled from a joint training distribution Ptr(X,Y ). We consider a classification task over
K classes, i.e. Y = {1, . . . ,K}. We can express this joint distribution as a product: Ptr(X,Y ) =
Ptr(Y | X)Ptr(X).

In practice, we typically consider a parametric model P (Y | X, θ) with parameters θ to approximate
Ptr(Y | X). We denote the true class probabilities for an input x as η(x) = Ptr(Y | X = x), and
the predicted probabilities as ηθ(x) = P (Y | X = x, θ). We will often omit the index θ and denote
the predicted probability vector by η̂.

2.1 POINTWISE RISK AS A MEASURE OF UNCERTAINTY

The goal of uncertainty quantification is to measure the degree of confidence of predictive mod-
els, distinguishing between aleatoric and epistemic sources of uncertainty. In the paper, follow-
ing (Kotelevskii et al., 2022; Lahlou et al., 2023), we introduce uncertainty via the statistical concept
of risk.

In machine learning, the main concern is the model’s “error” at a particular input point x. One way to
express this error is through the expected risk. Let ℓ : RK × Y → R be a loss function that measures
how well η̂(x) matches the true label y. The pointwise risk R(η, η̂ | x) for a model η̂ is defined as:

R(η, η̂ | x) =
∫
ℓ(η̂(x), y) dP (y | X = x). (1)

Thus, pointwise risk is an expected loss received by a specific predictor η̂ at a particular input point
x. Importantly, pointwise risk, while being a natural measure of expected model error, can not be
used directly as a measure of uncertainty as it is not possible to compute it due to unknown true data
distribution. We will discuss possible ways to transform pointwise risk into the practical uncertainty
measure in Section 4.

Note, that we use distribution P , which might differ from Ptr. If P (X) ̸= Ptr(X) but P (Y | X =
x) = Ptr(Y | X = x) for any x, this situation is called “covariate shift”. We consider this setup and
assume η(x) = P (Y | X = x) is valid for any x, meaning it is a vector of length K regardless of
the input. Limitations of this assumption are discussed in Appendix B.

2.2 ALEATORIC AND EPISTEMIC UNCERTAINTIES VIA RISKS

Predictive uncertainty can be divided into two parts. Aleatoric uncertainty expresses the degree
of ambiguity in data and does not depend on the model, being an inherent property of the data
given a particular choice of feature representation. Epistemic uncertainty is vaguely defined but
typically is associated with the “lack of knowledge” of choosing the right model parameters θ and
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model misspecification. When the source of uncertainty is not important, practitioners consider total
uncertainty that aggregates all the sources.

Pointwise risk allows for the following decomposition:

R(η, η̂ | x)︸ ︷︷ ︸
Total risk

= RBayes(η | x)︸ ︷︷ ︸
Bayes risk

+R(η, η̂ | x)− RBayes(η | x)︸ ︷︷ ︸
Excess risk

, (2)

where RBayes is the pointwise Bayes risk, defined as:

RBayes(η | x) =
∫
ℓ(η(x), y) dP (y | X = x).

The Bayes risk represents the expected error from the true data-generative process η(x). It does
not depend on the parameters of the model nor the choice of model architecture, and hence can
be seen as a measure of aleatoric uncertainty. Note that in our analysis, we treat x as a noiseless
observed variable. Alternatively, one could assume that only noisy observations x̃ are available and
include the uncertainty in observations into the definition of aleatoric uncertainty. However, we do
not explore this scenario in this work. The second term in equation (2) is “Excess risk” and represents
the difference between the risks computed for the approximation and for the true model at a given
input point x. Thus, it naturally represents a lack of knowledge about the true data distribution, i.e.
epistemic uncertainty. We note that decomposition (2) was previously considered in the context of
uncertainty quantification in (Kotelevskii et al., 2022; Lahlou et al., 2023).

Although the decomposition (2) is useful, it doesn’t provide much information about the properties of
these risk functions in general cases. Therefore, we consider a specific class of loss functions, strictly
proper scoring rules, which allows us to do a theoretical analysis.

3 RISKS FOR STRICTLY PROPER SCORING RULES

Strictly proper scoring rules (Gneiting & Raftery, 2007) represent a class of loss functions that
ensure that the minimizing predictive distributions coincide with the data-generating distribution
P (Y | X). Let’s say a forecaster can produce a vector of predicted probabilities P ∈ PK , where PK

is a space of discrete probability distributions over K classes. Then, ℓ(P, y) : PK × Y → R is the
penalty the forecaster would have, given that event y is materialized. Its expected value with respect
to some distribution Q we will denote as ℓ(P,Q) =

∫
ℓ(P, y)dQ(y).

A scoring rule is called strictly proper if, for any P,Q ∈ PK , it satisfies the condition ℓ(P,Q) ≥
ℓ(Q,Q), with equality holding only when P = Q. Under mild assumptions (see Theorem 3.2
in (Gneiting & Raftery, 2007)), any strictly proper scoring rule can be represented as:

ℓ(η, y) = ⟨G′(η) , η⟩ −G′
y(η)−G(η),

where ⟨. , .⟩ is a scalar product, G : PK → R is a strictly convex function, and G′(η) =
{G′

1(η), . . . G
′
K(η)} is a vector of element-wise subgradients.

Risk decompositions for strictly proper scoring rules. Here we derive the explicit expressions for
different types of risks for strictly proper scoring rules (detailed derivations are given in Appendix C).

• Total Risk (Total Uncertainty):

RTot(η, η̂ | x) = ⟨G′(η̂) , η̂⟩ −G(η̂)− ⟨G′(η̂) , η⟩. (3)

Note, that Total risk depends linearly on the true data generative distribution η.
• Bayes Risk (Aleatoric Uncertainty):

RBayes(η | x) = −G(η). (4)

Note, that Bayes risk is a concave function of η, since function G is convex.
• Excess risk (Epistemic Uncertainty):

RExc(η, η̂ | x) = DG

(
η ∥ η̂

)
, (5)

where DG

(
η ∥ η̂

)
= G(η) − G(η̂) − ⟨G′(η̂) , η − η̂⟩ is Bregman divergence (Bregman,

1967).
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Log score Brier score Zero-one score Spherical score

G(η)
∑K

k=1 ηk log ηk −
∑K

k=1 ηk(1− ηk) maxk ηk − 1 ∥η∥2 − 1

η̄ expE log η∑
k′

(
expE log η

)
k′

Eη Not defined ∥x0∥2
[
n+ m√

1−∥m∥2
2

]
Aleatoric (Bayes risk) Hη 1− ∥η∥22 1−maxk ηk 1− ∥η∥2

Epistemic (Excess risk) DKL[η∥η̂] ∥η − η̂∥22 maxk ηk − ηargmaxk η̂k
∥η∥2(1− ⟨ η̂

∥η̂∥2
, η
∥η∥2

⟩)
Total (Risk) CE[η∥η̂] ∥η − η̂∥22 − ∥η∥22 + 1 1− ηargmaxk η̂k

1− ∥η∥2⟨ η̂
∥η̂∥2

, η
∥η∥2

⟩

Table 1: Expressions for risks and central predictions, computed for different strictly proper scoring
rules. We omitted x for clarity. DKL stands for Kullback-Leibler divergence and CE for Cross-
Entropy. See Section D for full derivations of risk instantiations and Section L for central predictions.

In what follows, we will assume the dependency of risks on η, η̂ and for clarity will omit it, writing it
as a function of x instead.

Specific Instances of Proper Scoring Rules. Different choices of the convex function G lead to
different proper scoring rules. Table 1 shows the results for some popular cases often used in machine
learning algorithms (see detailed derivations in Appendix D).

From Table 1, we see, that some of the risks correspond to well-known aleatoric uncertainty measures.
For example, the Bayes risk for the Log score is given by the entropy of the predictive distribution. For
the Zero-one score, this component is given by the so-called MaxProb, also widely applied (Geifman
& El-Yaniv, 2017; Kotelevskii et al., 2022; Lakshminarayanan et al., 2017). For the Excess risk,
we obtain different examples of Bregman divergence which lead to some well-known uncertainty
measures when coupled with the Bayesian approach to risk estimation (see Section 4).

Estimating risks. The derived equations are useful but require access to the true data-generative
distribution η, which is typically unknown. One approach to deal with this problem was introduced
in (Kotelevskii et al., 2022), where authors considered a specific model ηθ, namely Nadaraya-Watson
kernel regression, as it has useful asymptotic properties to approximate Excess risk. Another approach,
the DEUP (Lahlou et al., 2023) proposed a method for estimating Excess risk by directly training a
model to predict errors. However, in general cases, it is hardly possible to derive these results. In this
paper, we consider a Bayesian approach to approximate η that allows us to derive both well-known
from the literature and new uncertainty measures based on one unified framework.

4 BAYESIAN RISK ESTIMATION

The derived equations for risks depend on the true data generative distribution η and on some
approximation of it η̂. In particular, η appears in all the risks and is unknown. One needs to deal with
that to obtain a computable uncertainty measure. In the Bayesian paradigm, one considers a posterior
distribution over model parameters p(θ | Dtr) that immediately leads to a distribution over predictive
distributions ηθ|Dtr

. The goal of this section is to give a complete recipe for risk estimation under the
Bayesian approach.

One can think of the risks as functions of η and η̂ , namely g
(
η, η̂
)
, where g is a shortcut for any risk

function (Bayes risk is a function of only one argument). We can approximate the risks with the help
of posterior distribution using one of three ideas:

1. Bayesian averaging of risk. One can consider Eθg(ηθ, η̂) to approximate an impact of the
true model η. In a fully Bayesian paradigm, the same can be done with η̂ leading to the fully
Bayesian risk estimate EθEθ̃ g(ηθ̃, ηθ).

2. Central label (Posterior predictive distribution). One may use posterior predictive distri-
bution η̂Dtr

= argminz EθDG

(
ηθ ∥ z

)
= Eθηθ and plug it in risk equations instead of η

and/or η̂. This estimate naturally appears in decompositions of Bregman divergences (Pfau,
2013; Adlam et al., 2022), and in this context it is called “central label”.

3. Central prediction. Interestingly, there is another natural estimate, that appears in the
literature on Bregman divergences (Pfau, 2013; Adlam et al., 2022; Gruber & Buettner, 2023)
and is referred to as “central prediction”. It is defined as η̄ = argminz EθDG

(
z ∥ ηθ

)
.
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In general, one can consider nine approximations of Excess and Total risks (three approximation
options for each of the two arguments) and three of Bayes risk. We denote the specific type of
approximation listed above by positional indices 1, 2 and 3. For example, g̃(1,1) = Eθ̃Eθ g(ηθ̃, ηθ) ,
g̃(3,1) = Eθg(η̄, ηθ), and so on.

In this section, we present some of the formulas for the resulting aleatoric, and epistemic uncer-
tainty measures with brief remarks on different approximations. For detailed derivations, other
approximation options (not listed in the main part) and discussions, refer to Appendix E.

For Bayes risk we obtain three cases as it doesn’t depend on η̂:

R̃
(1)

Bayes(x) = −EθG(ηθ), R̃
(2)

Bayes(x) = −G(η̂Dtr
) and R̃

(3)

Bayes(x) = −G(η̄).

For Excess risk we obtain the whole family of approximations. We list some of them here (see others
in Appendix E):

• Expected Pairwise Bregman Divergence (EPBD):

R̃
(1,1)

Exc (x) = Eθ̃EθDG

(
ηθ̃ ∥ ηθ

)
.

In a special case of Log score, it is an Expected Pairwise KL (EPKL; Malinin & Gales
(2021); Schweighofer et al. (2023a)).

• Bregman Information (BI):

R̃
(1,2)

Exc (x) = EθDG

(
ηθ ∥ η̂Dtr

)
.

In a special case of Log score, it is Mutual Information (Gal et al., 2017; Houlsby et al.,
2011; Malinin & Gales, 2018). In case of Brier score, it is sum of predictive variances
(class-wise).

• Reverse Bregman Information (RBI):

R̃
(2,1)

Exc (x) = EθDG

(
η̂Dtr

∥ ηθ
)
.

Its special case for Log score is known as Reverse Mutual Information (RMI; Malinin &
Gales (2021)).

• Modified Bregman Information (MBI):

R̃
(1,3)

Exc (x) = EθDG

(
ηθ ∥ η̄

)
.

It is similar to Bregman Information, but the deviation is computed from the “central
prediction”, not the central label (BMA).

• Modified Reverse Bregman Information (MRBI):

R̃
(3,1)

Exc (x) = EθDG

(
η̄ ∥ ηθ

)
.

This has similar structure to Reverse Bregman Information (RBI). Again, the deviation here
is computed from another “central prediction”.

One advantage of Bayesian models over point predictors is that they can give different predictions for
the same input. This means we don’t have to average out uncertainty; instead, we can look at the
disagreements between different versions of the model. From this perspective, EPDB is especially
promising because it doesn’t rely on averaging but considers all possible pairwise disagreements
between models, therefore it does not average out uncertainty.

We observe that the general approach presented in this work allows us to obtain many existing
uncertainty measures in the case of the Log score loss function while leading to the whole family of
new measures (see Table 1). We refer to Appendix E for additional discussion and to Appendix F for
the discussion of connections of these approximations between each other. The limitations of the
approach are discussed in detail in Appendix B.
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4.1 BEST RISK APPROXIMATION CHOICE

Given the plethora of measures, one may fairly ask if there is a best risk approximation of each type.
For Excess and Total risks, we elaborate on it in Appendix E. Here, we address the choice for Bayes
risk.

Recall, that for the estimation of Bayes risk we have three options. However, it is not clear, which
of these approximations is better. To investigate it, we assume that there exists a vector of true
parameters θ∗, that for any input point x the following holds: η(x) = p(y | x) = p(y | x, θ∗). Note,
that according to equation (4), Bayes risk is concave. Using r(·) = −ExG(·), the following follows
from Jensen’s inequality:

Eθr(ηθ) ≤ r(Eθηθ).

At the same time, we know that for Bayes risk the following must hold for any θ:

r(η) = r
(
p(y | x, θ∗)

)
≤ r(ηθ).

Hence, the following holds: r(η) ≤ Eθr(ηθ). Therefore, we have the following relation:

r(η) ≤ Eθr(ηθ) ≤ r(Eθηθ), (6)

or in other words that R(1)
Bayes(x) is tighter approximation (on average), than R(2)

Bayes(x). However, there
is seemingly no general answer for r(η̄).

4.2 CONNECTION TO ENERGY-BASED MODELS

Interestingly, we can establish a connection of our framework and energy-based models (Liu et al.,
2020b). Let us consider a specific instantiation of MRBI for Logscore. Also, let us recap the free
energy function E(x; fθ) from (Liu et al., 2020b; Grathwohl et al., 2019):

E(x; fθ) = −T log
∑K

j=1
exp
[fθ(x)

T

]
j
.

It can be shown (see Section G) that

R̃
(3,1)

Exc (x) =
1

T

(
E(x;Eθfθ)− EθE(x; fθ)

)
. (7)

From this decomposition we see, that R̃
(3,1)

Exc is the difference between two different Bayesian estimates
of the energy, where the first term is the energy, induced by expected logit, while second is expected
energy, induced by each individual set of parameters. Therefore, it is interesting to check, whether
R̃
(3,1)

Exc , predicted by our framework, will be better, than either of its components.

5 RELATED WORK

The field of uncertainty quantification for predictive models, especially neural networks, has seen rapid
advancements in recent years. Among these, methods allowing explicit uncertainty disentanglement
are particularly interesting due to the ability to use estimates of different sources of uncertainty in
various downstream tasks. For instance, epistemic uncertainty is effective in out-of-distribution data
detection (Hüllermeier & Waegeman, 2021; Kotelevskii et al., 2024; Mukhoti et al., 2021) and active
learning (Beluch et al., 2018; Gal et al., 2017).

Another direction in uncertainty quantification involves credal set-based approaches, which represent
uncertainty using sets of probability distributions. Caprio et al. (2023) introduced Credal Bayesian
Deep Learning, leveraging credal sets for more conservative uncertainty estimates, while Caprio
et al. (2024) proposed a novel Bayes’ theorem for upper probabilities. These methods offer robust
uncertainty quantification but can be computationally intensive, limiting their scalability.

Bayesian methods have become popular because they naturally handle distributions of model param-
eters, leading to prediction uncertainty. Exact Bayesian inference is very computationally expen-
sive (Izmailov et al., 2021), so many lightweight versions are used in practice (Gal & Ghahramani,
2016; Thin et al., 2021; 2020; Blei et al., 2017; Lakshminarayanan et al., 2017). Early approaches

6
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Table 2: AUROC for different choices of function G for out-of-distribution detection with CIFAR10
as in-distribution. We used 5 groups of ensembles of size 4. We see, that in most cases, uncertainty
measures, based on Log Score, appear to be better. See more detailed results in Section J.

CIFAR100 SVHN TinyImageNet CIFAR10C-1 CIFAR10C-2 CIFAR10C-3 CIFAR10C-4 CIFAR10C-5

L
og

R̃
(1)

Bayes 91.36 ± 0.05 96.01 ± 0.39 90.84 ± 0.04 60.96 ± 0.09 67.84 ± 0.09 72.59 ± 0.08 77.31 ± 0.08 83.48 ± 0.13

R̃
(1,1)

Exc 90.17 ± 0.06 94.08 ± 1.02 89.32 ± 0.07 61.07 ± 0.11 67.82 ± 0.09 72.49 ± 0.08 77.15 ± 0.13 83.0 ± 0.2
R̃
(1,2)

Exc 90.38 ± 0.08 94.35 ± 0.94 89.57 ± 0.07 61.1 ± 0.11 67.87 ± 0.09 72.55 ± 0.09 77.23 ± 0.13 83.14 ± 0.2
R̃
(3,1)

Exc 90.38 ± 0.06 94.31 ± 0.91 89.54 ± 0.06 61.09 ± 0.11 67.86 ± 0.09 72.54 ± 0.09 77.22 ± 0.13 83.11 ± 0.19

B
ri

er

R̃
(1)

Bayes 90.44 ± 0.17 96.09 ± 0.52 89.89 ± 0.13 61.03 ± 0.12 68.04 ± 0.16 72.46 ± 0.18 76.83 ± 0.18 82.47 ± 0.1

R̃
(1,1)

Exc 89.24 ± 0.19 94.19 ± 0.49 88.37 ± 0.12 60.11 ± 0.15 66.59 ± 0.24 71.19 ± 0.3 75.7 ± 0.22 81.52 ± 0.16
R̃
(1,2)

Exc 89.24 ± 0.19 94.19 ± 0.49 88.37 ± 0.12 60.11 ± 0.15 66.59 ± 0.24 71.19 ± 0.3 75.7 ± 0.22 81.52 ± 0.16
R̃
(3,1)

Exc 89.24 ± 0.19 94.19 ± 0.49 88.37 ± 0.12 60.11 ± 0.15 66.59 ± 0.24 71.19 ± 0.3 75.7 ± 0.22 81.52 ± 0.16

Sp
he

ri
ca

l R̃
(1)

Bayes 90.46 ± 0.04 96.15 ± 0.4 89.95 ± 0.19 61.47 ± 0.19 68.54 ± 0.23 72.95 ± 0.28 77.39 ± 0.34 82.99 ± 0.43

R̃
(1,1)

Exc 89.11 ± 0.15 93.77 ± 0.66 88.28 ± 0.2 60.54 ± 0.18 66.88 ± 0.26 71.36 ± 0.29 75.96 ± 0.29 81.89 ± 0.33
R̃
(1,2)

Exc 89.17 ± 0.14 93.86 ± 0.66 88.35 ± 0.2 60.54 ± 0.18 66.88 ± 0.26 71.37 ± 0.3 75.97 ± 0.29 81.91 ± 0.34
R̃
(3,1)

Exc 89.1 ± 0.15 93.78 ± 0.66 88.27 ± 0.2 60.54 ± 0.18 66.88 ± 0.26 71.35 ± 0.29 75.95 ± 0.29 81.88 ± 0.33

inspired by Bayesian ideas (Gal et al., 2017; Kendall & Gal, 2017; Lakshminarayanan et al., 2017)
used information-based measures like Mutual Information (Houlsby et al., 2011; Malinin & Gales,
2021) to quantify epistemic uncertainty and measures like entropy or maximum probability for
aleatoric uncertainty. These methods, despite different computational costs, are widely used in the
field.

However, the practical expense of Bayesian inference, even in its approximate forms, has led to the
introduction of more simplified approaches. Some of these methods leverage hidden neural network
representations, considering distances in their hidden space as a proxy for epistemic uncertainty
estimation (Van Amersfoort et al., 2020; Liu et al., 2020a; Kotelevskii et al., 2022; Mukhoti et al.,
2021). While they offer the advantage of requiring only a single pass over the network, their notion
of epistemic uncertainty, often linked to the distance of an object’s representation to training data,
captures only a part of the full epistemic uncertainty. Despite this limitation, their efficiency and
effectiveness in out-of-distribution detection have made them widely used. Another class of models
for uncertainty quantification that utilizes generative models (e.g., diffusion models or normalizing
flows) has been recently explored (Berry & Meger, 2023; Chan et al., 2024). While these methods
offer a promising direction, they require training a generative model, which can be computationally
intensive and may limit their applicability in certain settings.

Works by Gruber & Buettner (2023); Adlam et al. (2022) are close to us. In both papers, decomposi-
tions of Bregman divergence loss functions are discussed. While the main focus of these papers is
generalized bias-variance decomposition, Gruber & Buettner (2023) also considers an application to
uncertainty quantification. In terms of our framework, they arrive to the following decomposition
(see derivation in Appendix F):

R̃
(1,1)

Tot = R̃
(2)

Bayes + R̃
(3,1)

Exc + R̃
(2,3)

Exc , (8)

which is only a partial case of our framework. There, they called R̃
(3,1)

Exc as generalized “variance”,
and use it as a measure of uncertainty for out-of-distribution detection. However, it is not clear,
why exactly this decomposition and approximations were chosen. For example, as we showed in
Section 4.1, R̃

(1)

Bayes leads to a tighter approximation of Bayes risk on average, than R̃
(2)

Bayes.

Works by Kotelevskii et al. (2022), Lahlou et al. (2023), and Liu et al. (2019) also consider the same
decomposition of risks. However, in all these papers, only specific approximations were explored,
and no general connection among existing measures was established.

Despite the diversity of these approaches, the arbitrary nature of choosing uncertainty measures has led
to ambiguity in understanding uncertainty. This paper aims to address this gap by proposing a unified
framework that not only categorizes these diverse methods but also offers a more comprehensive
understanding of uncertainty quantification.
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6 EXPERIMENTS

In this section, we test different uncertainty measures derived from our general framework. Any
Bayesian method that produces multiple samples of model weights (or parameters of the first-order
distribution) can be used to compute our proposed measures. However, deep ensembles are considered
the “gold standard” in uncertainty quantification (Lakshminarayanan et al., 2017). Therefore, for
our experiments, we use deep ensembles trained with various strictly proper scoring rules as loss
functions. As training (in-distribution) datasets, we consider CIFAR10, CIFAR100 (Krizhevsky et al.,
2009), and TinyImageNet.

We evaluate the proposed measures of uncertainty by focusing on two specific problems: out-of-
distribution detection and misclassification detection. For both problems, we trained five deep
ensembles independently, each consisting of four members—resulting in a total of 20 models trained
completely independently. All ensemble members shared the same architecture but differed due to
randomness in initialization and training. We used ResNet18 (He et al., 2016) as the architecture
(additional details can be found in Appendix H). Note that in all the tables below, we report the
average performance across different groups of ensembles (AUROC), along with the corresponding
standard deviation.

Our experimental evaluation aims to answer the following questions:

1. Is there a best function G that yields better results in the considered downstream tasks?
2. Is Excess risk always better than Bayes risk for out-of-distribution detection?
3. Is Total risk always better than Excess risk for misclassification detection?
4. Is the measure of uncertainty proposed by our framework better than other Bayesian esti-

mates of the energy?

We emphasize that the goal of our experimental evaluation is not to provide new state-of-the-art
measures or compete with other known approaches for uncertainty quantification. Instead, we aim to
verify whether different uncertainty estimates are indeed related to specific types of uncertainty. We
refer readers to Appendix A, where we discuss why one might expect either type of uncertainty to be
good for a specific task. Additionally, we refer the reader to Appendix M for a specific toy example
where our measures of epistemic uncertainty can be computed in closed form. In this example, we
also discuss cases of prior misspecification and model misspecification.

6.1 IS THERE A BEST FUNCTION PLUG-IN CHOICE?

In this section, we address the first question. For this, we consider some specific risks and different
plug-in choices for the function G. As a loss function, we use strictly proper scoring rules generated
by the same function G (hence, we do not include the Zero-One score, as it is not differentiable).
We present results in Table 2 (see additional results in Tables 5, 6, 7, 8 and 9). We see that, in
most cases, the Log Score performs better than the others. This result is reassuring because Log
Score-based measures are the popular choice in the literature on uncertainty quantification. As for
misclassification detection (see Tables 4, 10, 11, 12, and 13), the results are more comparable, but
Log Score is still a good choice.

Hence, the answer to the first question is the following: there is no all-time-best plug-in choice of G.
However, Log Score-based measures (that are already popular in practice) are typically a good choice
in the considered downstream tasks.

6.2 IS EXCESS RISK BETTER THAN BAYES RISK FOR OUT-OF-DISTRIBUTION DETECTION?

In this section, we evaluate different instances of our framework to identify out-of-distribution
samples. Since the uncertainty associated with OOD detection is of epistemic nature (see Appendix A
for discussion), we expect that Excess and Total risks will perform well for this task, while Bayes
risk will likely fail. In the main part, we consider two datasets as in-distribution, namely CIFAR10 in
Table 2 and TinyImageNet in Table 3. For more experiments, we refer to Appendix J.

We distinguish between two types of out-of-distribution data: “soft-OOD” and “hard-OOD”. Both are
special cases of covariate shift. “Soft-OOD” samples, such as slightly changed versions of CIFAR10
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Table 3: AUROC (Log Score) for OOD de-
tection with TinyImageNet in-distribution.

ImageNet-A ImageNet-R ImageNet-O

R̃
(1)

Bayes 83.22 ± 0.24 82.23 ± 0.39 72.21 ± 0.22

R̃
(2)

Bayes 83.76 ± 0.24 82.78 ± 0.37 73.18 ± 0.2

R̃
(3)

Bayes 83.61 ± 0.2 82.67 ± 0.37 72.86 ± 0.3

R̃
(1,1)

Exc 77.11 ± 0.34 76.52 ± 0.19 74.46 ± 0.18
R̃
(1,2)

Exc 79.09 ± 0.33 78.38 ± 0.17 74.79 ± 0.25
R̃
(2,1)

Exc 75.94 ± 0.36 75.4 ± 0.23 74.07 ± 0.18
R̃
(1,3)

Exc 76.21 ± 0.43 75.55 ± 0.21 73.84 ± 0.17
R̃
(3,1)

Exc 77.56 ± 0.28 77.02 ± 0.17 74.46 ± 0.22

R̃
(1,1)

Tot 84.26 ± 0.23 83.32 ± 0.31 74.93 ± 0.17
R̃
(1,2)

Tot 83.76 ± 0.24 82.78 ± 0.37 73.18 ± 0.2
R̃
(1,3)

Tot 83.93 ± 0.24 82.95 ± 0.36 73.72 ± 0.16
R̃
(3,1)

Tot 83.88 ± 0.19 82.99 ± 0.32 74.09 ± 0.27

E(x;Eθfθ) 83.96 ± 0.23 83.28 ± 0.41 72.72 ± 0.33
EθE(x; fθ) 82.99 ± 0.26 82.31 ± 0.45 71.15 ± 0.34

Table 4: AUROC (Log Score) for misclassification
detection. For loss function and uncertainty plug-in,
we use the same G, that corresponds to Log Score.
CIFAR10-N and CIFAR100-N stand for noisy versions
of these datasets (see Section I).

CIFAR10 CIFAR100 CIFAR10-N CIFAR100-N TinyImageNet

R̃
(1)

Bayes 94.39 ± 0.08 84.61 ± 0.35 78.26 ± 4.11 81.9 ± 0.29 84.99 ± 0.24

R̃
(2)

Bayes 94.7 ± 0.05 85.13 ± 0.35 78.36 ± 4.77 81.92 ± 0.36 85.5 ± 0.23

R̃
(3)

Bayes 94.76 ± 0.09 85.95 ± 0.31 80.44 ± 3.69 83.41 ± 0.23 86.55 ± 0.26

R̃
(1,1)

Exc 94.1 ± 0.14 81.58 ± 0.34 68.39 ± 6.07 74.52 ± 0.83 81.33 ± 0.29
R̃
(1,2)

Exc 94.23 ± 0.14 82.9 ± 0.31 69.64 ± 6.1 75.74 ± 0.78 83.22 ± 0.28
R̃
(2,1)

Exc 94.01 ± 0.14 80.69 ± 0.35 67.7 ± 6.09 73.7 ± 0.86 80.18 ± 0.31
R̃
(1,3)

Exc 93.72 ± 0.16 80.3 ± 0.33 66.85 ± 5.94 73.37 ± 0.87 79.25 ± 0.25
R̃
(3,1)

Exc 94.4 ± 0.13 82.62 ± 0.34 69.98 ± 6.08 75.51 ± 0.8 82.74 ± 0.34

R̃
(1,1)

Tot 94.5 ± 0.06 85.43 ± 0.35 75.73 ± 4.68 81.67 ± 0.41 85.58 ± 0.22
R̃
(1,2)

Tot 94.7 ± 0.05 85.13 ± 0.35 78.36 ± 4.77 81.92 ± 0.36 85.5 ± 0.23
R̃
(1,3)

Tot 94.4 ± 0.06 85.01 ± 0.37 76.26 ± 5.04 81.67 ± 0.39 85.18 ± 0.23
R̃
(3,1)

Tot 94.74 ± 0.07 86.22 ± 0.31 79.38 ± 3.85 83.18 ± 0.29 86.65 ± 0.26

or TinyImageNet, have predicted probability vectors that are still meaningful (see discussion in
Appendix B). In our experiments, CIFAR10C can be considered as “soft-OOD”, as it is a corrupted
version of CIFAR10, while ImageNet-O (see description in Appendix I) is “soft-OOD” for Tiny-
ImageNet. “Hard-OOD” samples, however, have completely non-informative predicted probability
vectors. For example, when a set of classes is considered during training, but an incoming image does
not belong to those classes, the resulting probability distribution over training classes is meaningless.

From the Tables 2 and 3, we see that Excess risk is a good choice for “soft-OOD” (especially in case
of Log score). However, as data become more “hard-OOD”, the results are unexpected – Bayes risk
typically outperforms Excess risk. We provide one possible explanation of this effect in Appendix A.

This highlights a crucial limitation of Excess risk (which includes ubiquitous BI, RBI, and EPBD)
as a measure of epistemic uncertainty. These measures naturally appear when approximating
Excess risk in a Bayesian way, which assumes a specific form of ground-truth distribution approxi-
mation. However, this approximation becomes inaccurate for “hard-OOD” samples, making these
measures a poor choice in these cases. This criticism aligns with findings from (Wimmer et al.,
2023; Schweighofer et al., 2023a; Bengs et al., 2023), which indicate that Bregman Information (in a
particular case of Log score) is not an intuitive measure of epistemic uncertainty and does not follow
their proposed axioms.

Therefore, the answer to the second question is not absolute. For “soft-OOD” samples, where
predicted probability vectors remain meaningful, Excess risk is a good choice. For “hard-OOD”
samples, Bayes risk is typically better. Total risk consistently shows decent results, making it a safe
choice when the nature of incoming data is unknown.

6.3 IS TOTAL RISK ALWAYS BETTER THAN EXCESS RISK FOR MISCLASSIFICATION
DETECTION?

We now consider misclassification detection. Misclassification detection is intuitively connected to
aleatoric and total uncertainties (see Appendix A). Therefore, we expect Bayes and Total risks to
perform well in this task, while all instances of Excess risk should perform typically worse (given the
scenario that there is enough training (in-distribution) data).

It is known that standard versions of CIFAR10 and CIFAR100 lack significant aleatoric uncer-
tainty (Kapoor et al., 2022), making it challenging to demonstrate the usefulness of the appropriate
uncertainty measures immediately. To address this, we create special versions of these datasets with
introduced label noise (see details in Appendix I).

From the Table 4 we see that Bayes and Total risks indeed outperform Excess risk for misclassification
detection (see additional results in Appendix K). Moreover, the difference in performance becomes
more significant as more aleatoric noise is introduced into the training dataset. Hence, the answer to
this question is mostly positive. Bayes risk and Total risk are better for misclassification detection.
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6.4 WHICH ENERGY ESTIMATE IS BETTER?

We discovered a connection between our approach and energy-based models that are used for out-
of-distribution detection. However, in our approach, energy appears as the difference between two
different Bayesian energy estimates for a particular choice of G. Which one of these three quantities,
based on energy, is better?

Based on the results in Table 3 (and in Tables 5, 9,10 and 13 in Appendix) we can conclude,
that E(x;Eθfθ) is consistently better, than EθE(x; fθ) in both considered problems. Specifically,

R̃
(3,1)

Exc performs better than both energy estimates for misclassification detection on all the datasets

in Table 10, while for TinyImageNet the results are close (see Table 13). R̃
(3,1)

Exc is also preferred
over energy estimates for Soft-OOD detection for ImageNet-O (see Tables 3 and Table 9) and
CIFAR10C[1,2] (see Table 5).

When the out-of-distribution detection problem is considered and “hard-OOD” is encountered,
R̃
(3,1)

Exc is typically worse than both of the energy estimates in terms of AUROC. However, when

“soft-OOD” is encountered, their difference R̃
(3,1)

Exc , as a particular instance of Excess risk, becomes
more effective than both of them (see results on ImageNet-O and extended Table 9). When the
misclassification detection problem is considered, R̃

(3,1)

Exc is better than both of the estimates.

Hence, the answer is in line with what we discussed above: Excess risk (and in particular R̃
(3,1)

Exc )

is a good choice for “soft-OOD.” Therefore, when this is the case, R̃
(3,1)

Exc performs well. When
“hard-OOD” is the case, E(x;Eθfθ) is typically better.

7 CONCLUSION

In this paper, we developed a general framework for predictive uncertainty estimation using pointwise
risk estimation and strictly proper scoring rules as loss functions. We proposed pointwise risk as a
natural measure of predictive uncertainty and derived general results for total, epistemic, and aleatoric
uncertainties, demonstrating that epistemic uncertainties can be represented as a Bregman divergence
within this framework.

We incorporated Bayesian reasoning into our framework, showing that commonly used measures
of epistemic uncertainty, such as Mutual Information and Expected Pairwise Kullback-Leibler
divergence, are special cases within our general approach. We also discussed the limitations of our
framework, elaborating on recent critiques in the literature (Wimmer et al., 2023; Schweighofer et al.,
2023a). Moreover, we showed, that even energy-based models fall into the framework, as a particular
approximation of Excess risk.

Finally, in our experiments on image datasets, we evaluated these measures for out-of-distribution
detection and misclassification detection tasks and discussed which measures are most suitable for
each scenario.
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A WHY IS EPISTEMIC UNCERTAINTY GOOD FOR OUT-OF-DISTRIBUTION
DETECTION, AND TOTAL FOR MISCLASSIFICATION DETECTION?

Generally speaking, the out-of-distribution detection problem is not directly related to the conditional
distribution p(y | x), which is at the core of our paper and generally of supervised learning. The
formally correct approach would be to consider some approximation of the covariate distribution
p(x) and perform out-of-distribution detection based on it.

However, in the literature, both aleatoric uncertainty (related solely to p(y | x)) and epistemic
uncertainty (associated with the quality of estimation for p(y | x)) are applied to solve the out-of-
distribution problem and demonstrate certain performance in the task.

The success of aleatoric uncertainty that we observe in our experiments for “hard-OOD”, might seem
mysterious as, conceptually, it is not related to the covariate distribution at all. The empirical success
of aleatoric uncertainty for detecting out-of-distribution is related to the fact that the models are
usually overconfident for in-distribution objects, leading to very low uncertainty. At the same time,
the model confidence for out-of-distribution samples is more arbitrary as nothing pushes the model to
be confident in them. Thus, out-of-distribution samples may have higher aleatoric uncertainty than
in-distribution objects.

At the same time, the application of epistemic uncertainty to out-of-distribution detection is more
grounded, as one can expect that we have less knowledge about the actual dependence for out-of-
distribution objects than we do for in-distribution objects. This relation can be formalized for some
models, such as kernel methods. For example, the work by Kotelevskii et al. (2022) shows that
p(x) epistemic uncertainty is proportional to the inverse of for Nadaraya-Watson kernel regression.
Moreover, this method falls into the same risk decomposition, but is built on another approximation.

For the Bayesian approximations we considered (except constant approximations), Excess risk can be
seen as a “measure of disagreement” between predictions of the members of the ensemble. One may
expect ensemble members to have arbitrarily different and diverse predictions for out-of-distribution
data, resulting in higher values of Excess risk. Lots of literature on the topic has the same flavor
of reasoning. For example, uncertainty papers about Mutual Information, EPKL (Malinin & Gales,
2021; Lakshminarayanan et al., 2017; Gal et al., 2017; Schweighofer et al., 2023a), etc., are the
particular case of our framework.

Similarly, total and aleatoric uncertainty measures are effective for misclassification detection because
they capture the inherent ambiguity or noise in the data associated with specific inputs. Aleatoric
uncertainty reflects the variability in the model’s predictions due to the inherent randomness or
non-deterministic dependency between covariates and labels, which is a common source of misclassi-
fication. Therefore, when a model encounters an input that is difficult to map to a certain class, the
aleatoric uncertainty increases.

Measures of epistemic uncertainty effectively capture the disagreement between different members
or samples of a Bayesian model. Hence, if there is a non-deterministic dependency between co-
variates and labels, epistemic uncertainty might increase as well, as different models may produce
varying predictions for the same input. Therefore, the sum of both uncertainties—namely, total
uncertainty—should be the most effective measure for detecting misclassification events.

B LIMITATIONS

We see two limitations to our approach.

Valid conditional η(x) = p(y | x) for all x. This assumption implies, that regardless of the input
x, the form of the probability distribution η(x) will not change. This means, that even for inputs,
that do not belong to Ptr(X), the conditional should produce some categorical vector over the same
number of classes. Let us consider an example of a binary classification problem, where we want
our model to distinguish between cats and dogs (see Figure 1). In this case, the distribution of
covariates Ptr(X) is the distribution over images of all possible cats and dogs. An image of a pigeon
under this distribution should have a negligible probability. Now imagine, that somehow it happened
that x is actually an image of a pigeon. Under our assumption, η(x) should be valid, so it should

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A dog, has sufficient probability
under Ptr . Conditional η(x) is
meaningful.

A cat, has sufficient probability
under Ptr . Conditional η(x) is
meaningful.

A pigeon, has almost no probabil-
ity mass under Ptr . Conditional
η(x) is vague.

Figure 1: The figure shows different examples of input objects in binary classification problem (cats
vs dogs). The limitation of our approach is that η(x) = Ptr(Y | X = x) should be defined even for
objects with tiny mass under Ptr (see discussion in Section B).

produce a vector of probabilities over two classes: Cats and Dogs, despite an input being an apparent
out-of-distribution object. There is no good way to define η(x) for such input objects, hence we
say it is vague. However, for unusual (but still in-distribution) inputs, like rare dog breeds, η(x) is
meaningful.

Incorporation of Bayesian reasoning for estimation of η. In practice, we do not have access to
η(x). Hence, we suggested approximating it using the Bayesian approach and proposed two ideas
to do it (inner and outer expectations). For Bayes risk the best Bayesian estimate is given by outer
expectation (see Appendix E). However, this is not the case for Excess risk. It appears (see discussion
in Appendix E) that Excess risk depends on the estimate of the Total risk. But we never know in
advance for a particular input x, in which regime (overestimated or underestimated Total risk) we are.
Thus, we do not know what is the best choice for an approximation to epistemic uncertainty.

C DERIVATIONS OF DIFFERENT RISKS WITH PROPER SCORING RULES

We will start with the derivation of Total risk. In what follows, we will omit dependency on x for
η(x) and ηθ(x).

RTot(ηθ | x) =
∫
ℓ(ηθ, y)dP (y | x) =

K∑
k=1

(
⟨G′(ηθ) , ηθ⟩ −G′

k(ηθ)−G(ηθ)
)
ηk =

⟨G′(ηθ) , ηθ⟩ −G(ηθ)− ⟨G′(ηθ) , η⟩.

Let us now consider Bayes risk:

RBayes(x) =

∫
ℓ(η, y)dP (y | x) =

K∑
k=1

(
⟨G′(η) , η⟩ −G′

k(η)−G(η)
)
ηk =

⟨G′(η) , η⟩ − ⟨G′(η) , η⟩ −G(η) = −G(η).

Finally, let us consider Excess risk:

RExc(ηθ | x) =
∫
ℓ(ηθ, y)dP (y | x)︸ ︷︷ ︸

Total risk

−
∫
ℓ(η, y)dP (y | x)︸ ︷︷ ︸

Bayes risk

=

⟨G′(ηθ) , ηθ⟩ −G(ηθ)− ⟨G′(ηθ) , η⟩+G(η) =

G(η)−G(ηθ)− ⟨G′(ηθ) , η − ηθ⟩ := DG

(
η∥ηθ

)
.
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D DERIVATION OF RISKS FOR SPECIFIC CHOICES OF SCORING RULES

In this section, we will derive specific equations for Total, Bayes, and Excess pointwise risks to get
the estimates of total, aleatoric, and epistemic uncertainties correspondingly. We will omit subscript
θ in this section, indicating an estimate by using a hat.

Recall equations for proper scoring rule and different risks:

ℓ(η, i) = ⟨G′(η) , η⟩ −G′
i(η)−G(η),

RTot = ⟨G′(η̂) , η̂⟩ −G(η̂)− ⟨G′(η̂) , η⟩,

RBayes = −G(η),

RExc = G(η)−G(η̂) + ⟨G′(η̂) , η̂ − η⟩.

D.1 LOG SCORE (CROSS-ENTROPY)

G(η) =

K∑
k=1

ηk log ηk,

G′(η)k = 1 + log ηk,

ℓ(η, i) = ⟨1 + log η , η⟩ − 1− log ηi −
K∑

k=1

ηk log ηk =

K∑
k=1

ηk log ηk + 1− 1− log ηi −
K∑

k=1

ηk log ηk = − log ηi,

RTot =

K∑
k=1

(
(1 + log η̂k)η̂k − η̂k log η̂k − (1 + log η̂k)ηk

)
=

K∑
k=1

(
η̂k log η̂k − η̂k log η̂k − ηk log η̂k

)
= CE

[
η∥η̂
]
,

RBayes = −
K∑

k=1

ηk log ηk = Hη,

RExc = RTot − RBayes = CE
[
η∥η̂
]
−Hη = KL

[
η∥η̂
]
.

D.2 QUADRATIC SCORE (BRIER SCORE)

G(η) = −
K∑

k=1

ηk(1− ηk),

G′(η)k = 2ηk − 1,

ℓ(η, i) = ⟨2η − 1 , η⟩ − 2ηi + 1 +

K∑
k=1

ηk(1− ηk) =

2

K∑
k=1

η2k − 1− 2ηi + 1 + 1−
K∑

k=1

η2k =

K∑
k=1

η2k − 2ηi + 1,
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since constant does not affect optimization, we will use the following:

ℓ(η, i) =

K∑
k=1

η2k − 2ηi.

RTot =

K∑
k=1

(2η̂k − 1)η̂k +

K∑
k=1

η̂k(1− η̂k)−
K∑

k=1

(2η̂k − 1)ηk =

K∑
k=1

(η̂2k − 2η̂kηk + η2k − η2k) + 1 = ∥η̂ − η∥22 − ∥η∥22 + 1,

RBayes =

K∑
k=1

ηk(1− ηk) = 1− ∥ηk∥22,

RExc = RTot − RBayes = ∥η̂ − η∥22 − ∥η∥22 + 1− 1 + ∥ηk∥22 = ∥η̂ − η∥22.

D.3 ZERO-ONE SCORE

G(η) = max
k

ηk − 1,

G′(η)k = I[k = argmax
j

ηj ],

ℓ(η, i) = ⟨I[k = argmax
j

ηj ] , η⟩ − I[i = argmax
j

ηj ]−max
k

ηk + 1 =

max
k

ηk − I[i = argmax
j

ηj ]−max
k

ηk + 1 = 1− I[i = argmax
j

ηj ] = I[i ̸= argmax
j

ηj ],

RTot =

K∑
k=1

(
η̂kI[k = argmax

j
η̂k]− ηkI[k = argmax

j
η̂k]
)
−max

k
η̂k + 1 =

max
k

η̂k − ηargmaxj η̂k
−max

k
η̂k + 1 = 1− ηargmaxj η̂k

,

RBayes = 1−max
k

ηk,

RExc = RTot − RBayes = 1− ηargmaxj η̂k
− 1 + max

k
ηk = ηargmaxj ηk

− ηargmaxj η̂k
.

D.4 SPHERICAL SCORE

G(η) = ∥η∥2 − 1,

G′(η)k =
ηk
∥η∥2

,

ℓ(η, i) = ⟨ η

∥η∥2
, η⟩ − ηi

∥η∥2
− ∥η∥2 + 1 = ∥η∥2 −

ηi
∥η∥2

− ∥η∥2 + 1 = 1− ηi
∥η∥2

,

RTot =

K∑
k=1

( η̂kη̂k
∥η̂∥2

− ηkη̂k
∥η̂∥2

)
− ∥η̂∥2 + 1 = 1−

K∑
k=1

ηkη̂k
∥η̂∥2

= 1− ∥η∥2⟨
η

∥η∥2
,

η̂

∥η̂∥2
⟩,

RBayes = 1− ∥η∥2,

RExc = RTot − RBayes = 1− ∥η∥2⟨
η

∥η∥2
,

η̂

∥η̂∥2
⟩+ ∥η∥2 − 1 = ∥η∥2

(
1− ⟨ η

∥η∥2
,

η̂

∥η̂∥2
⟩
)
.
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D.5 NEGATIVE LOG SCORE

G(η) = −
K∑

k=1

log ηk,

G′(η)k = − 1

ηk
,

ℓ(η, i) = ⟨−1

η
, η⟩+ 1

ηi
+

K∑
k=1

log ηk = −K +
1

ηi
+

K∑
k=1

log ηk,

since constant does not affect optimization, we will have:

ℓ(η, i) =
1

ηk
+

K∑
k=1

log ηk,

RTot =

K∑
k=1

(
− η̂k
η̂k

+
ηk
η̂k

+ log η̂k

)
=

K∑
k=1

(ηk
η̂k

+ log η̂k − 1
)
,

RBayes =

K∑
k=1

log ηk,

RExc = RTot − RBayes =

K∑
k=1

(ηk
η̂k

+ log η̂k − 1− log ηk

)
=

K∑
k=1

(ηk
η̂k

− log
ηk
η̂k

− 1
)
= DIS[η∥η̂].

E IS THERE THE BEST APPROXIMATION?

We discussed the choice of the approximation for Bayes risk in the main part of the paper. Here, we
discuss whether there is a best choice of Excess risk. If we know it, we can choose the best Total risk.

Recall that for Excess risk there are 9 possible options:

• Expected Pairwise Bregman Divergence (EPBD):

R̃
(1,1)

Exc (x) = Ep(θ̃|Dtr)
Ep(θ|Dtr)DG

(
ηθ̃ ∥ ηθ

)
.

Note, that since KL divergence is a special case of Bregman divergence, Expected Pairwise
KL (EPKL (Malinin & Gales, 2021; Schweighofer et al., 2023a)) is one of the special cases
of this Excess risk estimate.

• Bregman Information (BI):

R̃
(1,2)

Exc (x) = Ep(θ̃|Dtr)
DG

(
ηθ̃ ∥ η̂Dtr

)
,

which special case is BALD (Gal et al., 2017; Houlsby et al., 2011).

• Reverse Bregman Information (RBI):

R̃
(2,1)

Exc (x) = Ep(θ|Dtr)DG

(
η̂Dtr

∥ ηθ
)
.

Its special case for Log score is known as Reverse Mutual Information (Malinin & Gales,
2021).

• Modified Bregman Information (MBI):

R̃
(1,3)

Exc (x) = Ep(θ|Dtr)DG

(
ηθ ∥ η̄

)
.

It is similar to Bregman Information, but the deviation is computed from the “central
prediction”, not central label (BMA).
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• Modified Reverse Bregman Information (MRBI):

R̃
(3,1)

Exc (x) = Ep(θ|Dtr)DG

(
η̄ ∥ ηθ

)
.

This has similar structure to Reverse Bregman Information (RBI). Again, the deviation here
is computed from another “central” prediction.

• Forward Bias term:
R̃
(2,3)

Exc (x) = DG

(
η̂Dtr ∥ η̄

)
.

It represents a Bregman divergence between two different Bayesian estimates and can be
viewed as a bias.

• Reverse Bias term:
R̃
(3,2)

Exc (x) = DG

(
η̄ ∥ η̂Dtr

)
.

This applies similar reasoning to the Forward Bias Term.
• Finally, we obtain two similar constant measures:

R̃
(3,3)

Exc (x) = DG

(
η̄ ∥ η̄

)
= 0.

and
R̃
(2,2)

Exc (x) = DG

(
η̂Dtr

∥ η̂Dtr

)
= 0,

which is coherent with the result obtained for the Total risk, when Excess risk (epistemic
uncertainty) is equal to 0.

However, it is not clear, what estimate of the Excess risk we should use. Indeed, neither of these
estimates are upper nor lower bounds for the true Excess risk. This is because contrary to Bayes risk,
we don’t have any idea if Excess risk with ground truth η reaches any extreme. For another explanation,
see Figure 2 and discussion in Section B. For simplicity, we will consider only approximations with
strategies (1) and (2), as for them we know, at least, which estimate of Bayes risk is better.

RTot

R̃Tot

RBayes

R̃
(1)

Bayes R̃
(2)

Bayes

RExc

RTot

R̃Tot

RBayes

R̃
(1)

Bayes R̃
(2)

Bayes

RExc

R0

R0

Figure 2: Different situations for risk estimates. Risks typed in black and above the axis are the true
ones. Risks, typed in color, and below are estimates. Two-pointed arrows show Excess risks.
Top. R̃Tot underestimates RTot, R̃

(1)

Bayes better estimates RBayes, and R̃
(1)

Exc better estimates RExc.

Bottom. R̃Tot overestimates RTot, R̃
(1)

Bayes better estimates RBayes, and R̃
(2)

Exc better estimates RExc. We
see, that for different estimates of RTot, we have different best approximations for RExc. See discussion
in Section B.

In Figure 2, for simplicity, we consider only the Bayesian approximation of the first argument
(ground-truth probability). In black, we have actual (real risks), while in color we have different
estimates of risks. Also, as two-sided arrows, we show the Excess risk.

If we underestimate the Total risk (see top plot in Figure 2), the best choice for Excess risk will be
R̃
(1)

Exc, as despite being a lower bound on Excess risk, it is the best we can do (R̃
(2)

Exc in this case will
be even worse). However, if we overestimate Total risk, then there is no single best choice. In the
bottom plot, when R̃Tot significantly overestimates RTot, the second idea for estimating Excess risk
gives a better estimate, despite the first idea for Bayes risk still better.
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Hence, the best estimate of Excess risk depends on how well we estimate Total risk. But we never
know in advance for a particular input x, in which regime (overestimated or underestimated Total
risk) we are. Thus, there is no best choice among these risks to approximate epistemic uncertainty.

F RELATIONS BETWEEN THE ESTIMATES

In this section, we discuss how the measures of uncertainty are connected. In the main text, we
discussed several ways how one can estimate risk given an ensemble of models, posterior, or samples
from it. In what follows, we show how one can further decompose these estimates of Excess risk.

Let us start with R̃
(1,1)

Exc (x). Using results of (Pfau, 2013), we have:

R̃
(1,1)

Exc (x) = Ep(θ|Dtr)Ep(θ̃|Dtr)
DG

(
ηθ̃∥ηθ

)
=

Ep(θ|Dtr)DG

(
η̂Dtr

∥ηθ
)
+ Ep(θ̃|Dtr)

DG

(
ηθ̃∥η̂Dtr

)
= R̃

(2,1)

Exc (x) + R̃
(1,2)

Exc (x).

Since all of these estimates are non-negative, the following holds true:

R̃
(1,1)

Exc (x) ≥ R̃
(2,1)

Exc (x) ≥ R̃
(2,2)

Exc (x) = 0,

and
R̃
(1,1)

Exc (x) ≥ R̃
(1,2)

Exc (x) ≥ R̃
(2,2)

Exc (x) = 0

for any x.

Moreover, one can show that the following holds:

R̃
(1,1)

Tot (x) = R̃
(2,1)

Tot (x) = R̃
(1)

Bayes(x) + R̃
(1,1)

Exc (x) = R̃
(2)

Bayes(x) + R̃
(2,1)

Exc (x),

R̃
(1,2)

Tot (x) = R̃
(2,2)

Tot (x) = R̃
(2)

Bayes(x) + R̃
(2,2)

Exc (x) = R̃
(1)

Bayes(x) + R̃
(1,2)

Exc (x).

R̃
(3,3)

Tot (x) = R̃
(3)

Bayes(x) + R̃
(3,3)

Exc (x) = R̃
(3)

Bayes(x) = R̃
(3,1)

Tot (x)− R̃
(3,1)

Exc (x).

R̃
(1,3)

Tot (x) = R̃
(2,3)

Tot (x) = R̃
(2,1)

Tot (x)− R̃
(3,1)

Exc (x).

From Pfau (2013) the following holds:

R̃
(2,1)

Exc (x) = R̃
(2,3)

Exc (x) + R̃
(3,1)

Exc . (9)

Additionally, Bregman information can be received as follows:

BI(x) = R̃
(1,1)

Exc (x)− R̃
(2,1)

Exc (x) = R̃
(1,2)

Exc (x)− R̃
(2,2)

Exc (x) = R̃
(2)

Bayes(x)− R̃
(1)

Bayes(x). (10)

Reverse Bregman Information:

RBI(x) = R̃
(2,1)

Exc (x)− R̃
(2,2)

Exc (x) = R̃
(1,1)

Exc (x)− R̃
(1,2)

Exc (x) = R̃
(1,1)

Tot (x)− R̃
(1,2)

Tot (x).

Interestingly, the EPBD can be written in two equivalent forms:

R̃
(1,1)

Exc (x) = R̃
(1,2)

Exc (x) + R̃
(2,1)

Exc (x) = R̃
(1,3)

Exc (x) + R̃
(3,1)

Exc (x). (11)

An interesting observation from the (11) is that in general there are two central points: central label
and central prediction—where the sum of expected deviations in terms of Bregman divergence lead
to the same result, known as EPBD. To the best of our knowledge, this is a novel finding.

Now we are fully equipped to recover the decomposition, used in Gruber & Buettner (2023) (Equa-
tion (8)), which is naturally appears, when using R̃

(1,1)

Tot from the above, as well as Equation (9) and
Equation (10).
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G CONNECTION TO ENERGY-BASED MODELS

Here, we will consider a specific case of the framework, instantiated for Logscore. In what follows,
we will sometimes omit explicit dependency on x for better presentation. However, this dependency
is always assumed.

Recap, that for the special case of Logscore, Bregman divergence is Kullback-Leibler divergence.
Hence, R̃

(3,1)

Exc = EθKL(η̄ | ηθ). Using results from Table 1, we can derive that:

log η̄i =
[
Eθ log ηθ

]
i
− log

∑
j

exp
[
Eθ log ηθ

]
j
.

Moreover fθ(x)
T = Softmax−1(ηθ(x)), where T is temperature, that scales logits fθ(x).

Hence, the logarithm of a probability vector can be further expanded:

[
log ηθ

]
i
= log

[
exp fθ

T

]
i∑

j

[
exp fθ

T

]
j

=
[fθ
T

]
i
− log

∑
j

exp
[fθ
T

]
j
.

From these equations, we can derive:

R̃
(3,1)

Exc = EθKL(η̄ | ηθ) = Eθ

∑
i

η̄i

[
log

η̄

ηθ

]
i
=
∑
i

η̄i log η̄i −
∑
i

η̄i

[
Eθ log ηθ

]
i
=

∑
i

η̄i

[
Eθ log ηθ

]
i
−
∑
i

η̄i log
∑
j

exp
[
Eθ log ηθ

]
j
−
∑
i

η̄i

[
Eθ log ηθ

]
i
=

− log
∑
j

exp
[
Eθ log ηθ

]
j
,

Furthermore, one may show that:

R̃
(3,1)

Exc = − log
∑
i

exp
[
Eθ log ηθ

]
i
= − log

∑
i

exp
[[Eθfθ

T

]
i
− Eθ log

∑
j

exp
[fθ
T

]
j

]
=

− log

∑
i exp

[
Eθfθ
T

]
i

expEθ log
∑

j exp
[
fθ
T

]
j

= − log
∑
i

exp
[Eθfθ
T

]
i
+Eθ log

∑
j

exp
[fθ
T

]
j
=

1

T

(
−T log

∑
i

exp
[Eθfθ
T

]
i
−

[
−TEθ log

∑
j

exp
[fθ
T

]
j

])
.

Hence:

T R̃
(3,1)

Exc (x) = −T log
∑
i

exp
[Eθfθ
T

]
i︸ ︷︷ ︸

E(x;Eθfθ)

−
(
−TEθ log

∑
j

exp
[fθ
T

]
j︸ ︷︷ ︸

EθE(x;fθ)

)
.

Therefore,

R̃
(3,1)

Exc (x) =
1

T

(
E(x;Eθfθ)− EθE(x; fθ)

)
.
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Next, we can consider another approximation, namely R̃
(1,3)

Exc :

R̃
(1,3)

Exc = EθKL(ηθ | η̄) =
∑
i

Eθ

[
ηθ log ηθ

]
i
−
∑
i

[
Eθηθ log η̄

]
i
=

∑
i

Eθ

[
ηθ
fθ
T

]
i
− Eθ log

∑
j

exp
[fθ
T

]
j
−
∑
i

[
EθηθEθ log ηθ

]
i
+ log

∑
j

exp
[
Eθ log ηθ

]
j
=

∑
i

Eθ

[
ηθ
fθ
T

]
i
− Eθ log

∑
j

exp
[fθ
T

]
j
−

−
∑
i

[
EθηθEθ

[[fθ
T

]
i
− log

∑
j

exp
[fθ
T

]
j

]]
+ log

∑
j

exp
[
Eθ log ηθ

]
j
=

∑
i

Eθ

[
ηθ
fθ
T

]
i
− Eθ log

∑
j

exp
[fθ
T

]
j
−
∑
i

EθηθEθ

[fθ
T

]
i
+ Eθ log

∑
j

exp
[fθ
T

]
j
+

+ log
∑
j

exp
[
Eθ log ηθ

]
j
=
∑
i

cov
[[
ηθ
]
i
,
[fθ
T

]
i

]
+ log

∑
j

exp
[
Eθ log ηθ

]
j
=

∑
i

cov
[[
ηθ
]
i
,
[fθ
T

]
i

]
− R̃

(3,1)

Exc .

Therefore,

R̃
(1,3)

Exc + R̃
(3,1)

Exc = R̃
(1,1)

Exc =
∑
i

cov
[[
ηθ
]
i
,
[fθ
T

]
i

]
.

Therefore, Expected Pairwise Kullback-Leibler divergence (EPBD in the partial case of Logscore)
is equal to the sum of covariances, between predicted probability of a class, and the corresponding
scaled (tempered) logit. To our best knowledge, it is the first interpretation of the result.

H TRAINING DETAILS

Training procedures for each dataset were similar. We used ResNet18 architecture. All the networks in
the ensemble were trained entirely independently, each starting from a different random initialization
of weights. They did not share any parameters.

For CIFAR10-based datasets, we used code from this repository: https://github.com/
kuangliu/pytorch-cifar. The training procedure consisted of 200 epochs with a cosine
annealing learning rate. For an optimizer, we use SGD with momentum and weight decay. For more
details see the code.

In Figure 3 (left) we present performance summary statistics of the ensembles. Specifically, we show
accuracy, macro averaged precision, recall, and F1-score.

For CIFAR100-based datasets, we used code from this repository: https://github.com/
weiaicunzai/pytorch-cifar100. The training procedure consisted of 200 epochs with
learning rate decay at particular milestones: [60, 120, 160]. For an optimizer, we use SGD with
momentum and weight decay. For more details see the code.

Similarly to CIFAR10, in Figure 3 (middle) we present performance summary statistics of the
ensembles of ResNet18 architecture.

For TinyImageNet, we used pre-trained models, provided by Torch-Uncertainty team
https://github.com/ENSTA-U2IS-AI/torch-uncertainty. They are provided with a single training
loss function. Training statistics for this dataset are in Figure 3 (right).

Please note, that for all these datasets, we used different loss functions during training and various
instantiations of G for the uncertainty quantification measures. The specific configurations are
specified in the captions of the result tables.
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Figure 3: Violin plots for different training loss functions and different metrics for ResNet18 Left:
CIFAR10; Middle: CIFAR100; Right: TinyImageNet.

I DESCRIPTION OF DATASETS

I.1 NOISY DATASETS

In this section, we describe the noisy versions of CIFAR10 and CIFAR100 datasets created for our
experiments, namely CIFAR10-N and CIFAR100-N (N stands for “noisy”).

In the datasets, the images are the same as in the original dataset (covariates are not changed).
However, some of the labels are randomly swapped. Hence, only labels were changed, while
covariates were kept as in the original dataset. The motivation for the creation of this dataset
is due to the fact that conventional image classification datasets essentially contain no aleatoric
uncertainty (Kapoor et al., 2022). To mitigate the limitation, which is critical for our evaluation, we
introduce the label noise manually. By nature, this noise is aleatoric.

CIFAR10-N. We decide to do the following pairs of labels that are randomly swapped: 1 to 7, 7 to
1, 3 to 8, 8 to 3, 2 to 5, and 5 to 2.

CIFAR100-N. We decided to randomly swap the following pairs of labels: 1 to 7, 7 to 1, 3 to 8, 8
to 3, 2 to 5, 5 to 2, 10 to 20, 20 to 10, 40 to 50, 50 to 40, 90 to 99, 99 to 90, 25 to 75, 75 to 25, 17 to
71, 71 to 17, 13 to 31, 31 to 13, and 24 to 42, 42 to 24.

Both there noisy datasets were used in training. When evaluating misclassification detection, we use
original versions of these datasets.

I.2 IMAGENET DATASETS

Here we present descriptions of variations of ImageNet datasets we have used.

ImageNet-A ImageNet-A (Hendrycks et al., 2021b) is dataset very similar to ImageNet test set, but
proven to be more challenging for existing classification models. It contains real-world, unmodified,
and naturally occurring examples that are misclassified by ResNet models.

ImageNet-O Closely related to ImageNet-A, ImageNet-O (Hendrycks et al., 2021b) is dataset that
contains real-world examples, with classes that are not present in standard ImageNet dataset. It can
be used to test out of distribution detection.

ImageNet-R This dataset contains renditions of 200 classes from ImageNet (Hendrycks et al.,
2021a). Artistic rendition introduces a significant distribution shift and present a challenging task for
classification models. It can be used to test robustness of model and out of distribution detection.

J ADDITIONAL EXPERIMENTS ON OUT-OF-DISTRIBUTION DETECTION

In this section, we provide additional experiments on out-of-distribution detection. Here, we use
different instantiations ofG for loss function and for uncertainty quantification, as well as try different
in-distribution datasets. Results for CIFAR10 are in Tables 5, 6 and 7. For CIFAR100, additional
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Table 5: AUROC for out-of-distribution detection for CIFAR10 (in-distribution). As a loss function
for training and for uncertainty quantification we used Log Score.

CIFAR100 SVHN TinyImageNet CIFAR10C-1 CIFAR10C-2 CIFAR10C-3 CIFAR10C-4 CIFAR10C-5

LogScore R̃
(3)

Bayes 90.93 ± 0.03 95.76 ± 0.41 90.35 ± 0.07 60.66 ± 0.11 67.44 ± 0.11 72.14 ± 0.09 76.82 ± 0.09 82.93 ± 0.14

LogScore R̃
(2)

Bayes 91.3 ± 0.05 96.06 ± 0.49 90.67 ± 0.04 60.98 ± 0.1 67.87 ± 0.09 72.61 ± 0.08 77.33 ± 0.09 83.48 ± 0.15

LogScore R̃
(1)

Bayes 91.36 ± 0.05 96.01 ± 0.39 90.84 ± 0.04 60.96 ± 0.09 67.84 ± 0.09 72.59 ± 0.08 77.31 ± 0.08 83.48 ± 0.13

LogScore R̃
(3,3)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
LogScore R̃

(3,2)

Exc 89.08 ± 0.14 92.57 ± 1.18 88.15 ± 0.13 60.87 ± 0.12 67.46 ± 0.1 72.04 ± 0.09 76.58 ± 0.12 82.24 ± 0.18
LogScore R̃

(3,1)

Exc 90.38 ± 0.06 94.31 ± 0.91 89.54 ± 0.06 61.09 ± 0.11 67.86 ± 0.09 72.54 ± 0.09 77.22 ± 0.13 83.11 ± 0.19
LogScore R̃

(2,3)

Exc 88.64 ± 0.15 91.95 ± 1.18 87.68 ± 0.13 60.82 ± 0.12 67.36 ± 0.09 71.89 ± 0.08 76.38 ± 0.12 81.94 ± 0.18
LogScore R̃

(2,2)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
LogScore R̃

(2,1)

Exc 90.06 ± 0.06 93.92 ± 1.06 89.19 ± 0.07 61.06 ± 0.11 67.8 ± 0.09 72.45 ± 0.08 77.1 ± 0.13 82.93 ± 0.2
LogScore R̃

(1,3)

Exc 89.99 ± 0.08 93.84 ± 1.06 89.12 ± 0.07 61.06 ± 0.11 67.79 ± 0.09 72.43 ± 0.08 77.07 ± 0.13 82.9 ± 0.2
LogScore R̃

(1,2)

Exc 90.38 ± 0.08 94.35 ± 0.94 89.57 ± 0.07 61.1 ± 0.11 67.87 ± 0.09 72.55 ± 0.09 77.23 ± 0.13 83.14 ± 0.2
LogScore R̃

(1,1)

Exc 90.17 ± 0.06 94.08 ± 1.02 89.32 ± 0.07 61.07 ± 0.11 67.82 ± 0.09 72.49 ± 0.08 77.15 ± 0.13 83.0 ± 0.2

LogScore R̃
(3,3)

Tot 90.93 ± 0.03 95.76 ± 0.41 90.35 ± 0.07 60.66 ± 0.11 67.44 ± 0.11 72.14 ± 0.09 76.82 ± 0.09 82.93 ± 0.14
LogScore R̃

(3,2)

Tot 90.95 ± 0.04 95.8 ± 0.44 90.33 ± 0.06 60.7 ± 0.11 67.49 ± 0.1 72.19 ± 0.09 76.88 ± 0.09 83.0 ± 0.15
LogScore R̃

(3,1)

Tot 90.72 ± 0.04 95.44 ± 0.53 90.03 ± 0.06 60.71 ± 0.11 67.49 ± 0.1 72.17 ± 0.09 76.83 ± 0.1 82.88 ± 0.17
LogScore R̃

(2,3)

Tot 91.15 ± 0.05 95.91 ± 0.56 90.49 ± 0.04 60.98 ± 0.09 67.85 ± 0.09 72.58 ± 0.08 77.29 ± 0.09 83.41 ± 0.17
LogScore R̃

(2,2)

Tot 91.3 ± 0.05 96.06 ± 0.49 90.67 ± 0.04 60.98 ± 0.1 67.87 ± 0.09 72.61 ± 0.08 77.33 ± 0.09 83.48 ± 0.15
LogScore R̃

(2,1)

Tot 90.81 ± 0.04 95.39 ± 0.71 90.06 ± 0.05 60.96 ± 0.1 67.8 ± 0.1 72.49 ± 0.09 77.16 ± 0.11 83.18 ± 0.19
LogScore R̃

(1,3)

Tot 91.15 ± 0.05 95.91 ± 0.56 90.49 ± 0.04 60.98 ± 0.09 67.85 ± 0.09 72.58 ± 0.08 77.29 ± 0.09 83.41 ± 0.17
LogScore R̃

(1,2)

Tot 91.3 ± 0.05 96.06 ± 0.49 90.67 ± 0.04 60.98 ± 0.1 67.87 ± 0.09 72.61 ± 0.08 77.33 ± 0.09 83.48 ± 0.15
LogScore R̃

(1,1)

Tot 90.81 ± 0.04 95.39 ± 0.71 90.06 ± 0.05 60.96 ± 0.1 67.8 ± 0.1 72.49 ± 0.09 77.16 ± 0.11 83.18 ± 0.19

LogScore E(x;Eθfθ) 91.12 ± 0.02 96.69 ± 0.34 90.68 ± 0.05 60.61 ± 0.13 67.46 ± 0.14 72.25 ± 0.12 76.97 ± 0.12 83.22 ± 0.18
LogScore EθE(x; fθ) 91.1 ± 0.01 96.56 ± 0.44 90.77 ± 0.04 60.6 ± 0.13 67.46 ± 0.13 72.25 ± 0.11 76.96 ± 0.11 83.21 ± 0.16

results are in Table 8. For TinyImageNet, results are in Table 9. In all these experiments, we computed
energy scores only for Log score, as these terms naturally appear only for this instantiation.

Note, that for CIFAR10 and CIFAR100, we used matching function G for the loss function and for
uncertainty quantification. For TinyImageNet, we had only one loss function, and we apply different
instantiations of G only for the evaluation of uncertainty measures.

From all these tables one can observe, that Log Score-based measures typically outperform others,
that justifies them as a popular practical choice in uncertainty quantification problems. Also, we
see that for “hard-OOD” datasets, Bayes (and Total) risks usually perform better, than Excess risk.
In “soft-OOD” cases, such as CIFAR10C for CIFAR10 and ImageNet-O for TinyImageNet, their
performance is close, and Excess risk is a good choice.

From the results for TinyImageNet 9, we see, that matching combination of Log Score is usually
better, than other instantiations. Note, that since central prediction for Zero One Score is not well
defined, we excluded it from the table.
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Table 6: AUROC for out-of-distribution detection for CIFAR10 (in-distribution). As a loss function
for training and for uncertainty quantification we used Brier Score. Note, that due to the symmetrical
nature of Brier score, many instances results to the same values.

CIFAR100 SVHN TinyImageNet CIFAR10C-1 CIFAR10C-2 CIFAR10C-3 CIFAR10C-4 CIFAR10C-5

BrierScore R̃
(3)

Bayes 90.38 ± 0.18 96.26 ± 0.34 89.71 ± 0.12 61.02 ± 0.13 68.04 ± 0.17 72.46 ± 0.19 76.82 ± 0.19 82.45 ± 0.11

BrierScore R̃
(2)

Bayes 90.38 ± 0.18 96.26 ± 0.34 89.71 ± 0.12 61.02 ± 0.13 68.04 ± 0.17 72.46 ± 0.19 76.82 ± 0.19 82.45 ± 0.11

BrierScore R̃
(1)

Bayes 90.44 ± 0.17 96.09 ± 0.52 89.89 ± 0.13 61.03 ± 0.12 68.04 ± 0.16 72.46 ± 0.18 76.83 ± 0.18 82.47 ± 0.1

BrierScore R̃
(3,3)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
BrierScore R̃

(3,2)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
BrierScore R̃

(3,1)

Exc 89.24 ± 0.19 94.19 ± 0.49 88.37 ± 0.12 60.11 ± 0.15 66.59 ± 0.24 71.19 ± 0.3 75.7 ± 0.22 81.52 ± 0.16
BrierScore R̃

(2,3)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
BrierScore R̃

(2,2)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
BrierScore R̃

(2,1)

Exc 89.24 ± 0.19 94.19 ± 0.49 88.37 ± 0.12 60.11 ± 0.15 66.59 ± 0.24 71.19 ± 0.3 75.7 ± 0.22 81.52 ± 0.16
BrierScore R̃

(1,3)

Exc 89.24 ± 0.19 94.19 ± 0.49 88.37 ± 0.12 60.11 ± 0.15 66.59 ± 0.24 71.19 ± 0.3 75.7 ± 0.22 81.52 ± 0.16
BrierScore R̃

(1,2)

Exc 89.24 ± 0.19 94.19 ± 0.49 88.37 ± 0.12 60.11 ± 0.15 66.59 ± 0.24 71.19 ± 0.3 75.7 ± 0.22 81.52 ± 0.16
BrierScore R̃

(1,1)

Exc 89.24 ± 0.19 94.19 ± 0.49 88.37 ± 0.12 60.11 ± 0.15 66.59 ± 0.24 71.19 ± 0.3 75.7 ± 0.22 81.52 ± 0.16

BrierScore R̃
(3,3)

Tot 90.38 ± 0.18 96.26 ± 0.34 89.71 ± 0.12 61.02 ± 0.13 68.04 ± 0.17 72.46 ± 0.19 76.82 ± 0.19 82.45 ± 0.11
BrierScore R̃

(3,2)

Tot 90.38 ± 0.18 96.26 ± 0.34 89.71 ± 0.12 61.02 ± 0.13 68.04 ± 0.17 72.46 ± 0.19 76.82 ± 0.19 82.45 ± 0.11
BrierScore R̃

(3,1)

Tot 90.04 ± 0.18 95.83 ± 0.34 89.29 ± 0.12 60.99 ± 0.13 67.98 ± 0.17 72.37 ± 0.19 76.7 ± 0.2 82.25 ± 0.13
BrierScore R̃

(2,3)

Tot 90.38 ± 0.18 96.26 ± 0.34 89.71 ± 0.12 61.02 ± 0.13 68.04 ± 0.17 72.46 ± 0.19 76.82 ± 0.19 82.45 ± 0.11
BrierScore R̃

(2,2)

Tot 90.38 ± 0.18 96.26 ± 0.34 89.71 ± 0.12 61.02 ± 0.13 68.04 ± 0.17 72.46 ± 0.19 76.82 ± 0.19 82.45 ± 0.11
BrierScore R̃

(2,1)

Tot 90.04 ± 0.18 95.83 ± 0.34 89.29 ± 0.12 60.99 ± 0.13 67.98 ± 0.17 72.37 ± 0.19 76.7 ± 0.2 82.25 ± 0.13
BrierScore R̃

(1,3)

Tot 90.38 ± 0.18 96.26 ± 0.34 89.71 ± 0.12 61.02 ± 0.13 68.04 ± 0.17 72.46 ± 0.19 76.82 ± 0.19 82.45 ± 0.11
BrierScore R̃

(1,2)

Tot 90.38 ± 0.18 96.26 ± 0.34 89.71 ± 0.12 61.02 ± 0.13 68.04 ± 0.17 72.46 ± 0.19 76.82 ± 0.19 82.45 ± 0.11
BrierScore R̃

(1,1)

Tot 90.04 ± 0.18 95.83 ± 0.34 89.29 ± 0.12 60.99 ± 0.13 67.98 ± 0.17 72.37 ± 0.19 76.7 ± 0.2 82.25 ± 0.13

Table 7: AUROC for out-of-distribution detection for CIFAR10 (in-distribution). As a loss function
for training and for uncertainty quantification we used Spherical Score. Note, that due to the
symmetrical nature of Brier score, many instances results to the same values.

CIFAR100 SVHN TinyImageNet CIFAR10C-1 CIFAR10C-2 CIFAR10C-3 CIFAR10C-4 CIFAR10C-5

SphericalScore R̃
(3)

Bayes 90.09 ± 0.04 95.78 ± 0.64 89.4 ± 0.18 61.42 ± 0.19 68.45 ± 0.22 72.86 ± 0.26 77.3 ± 0.31 82.89 ± 0.39

SphericalScore R̃
(2)

Bayes 90.42 ± 0.03 96.22 ± 0.54 89.81 ± 0.18 61.46 ± 0.2 68.52 ± 0.23 72.94 ± 0.28 77.41 ± 0.33 83.03 ± 0.42

SphericalScore R̃
(1)

Bayes 90.46 ± 0.04 96.15 ± 0.4 89.95 ± 0.19 61.47 ± 0.19 68.54 ± 0.23 72.95 ± 0.28 77.39 ± 0.34 82.99 ± 0.43

SphericalScore R̃
(3,3)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
SphericalScore R̃

(3,2)

Exc 87.97 ± 0.09 93.18 ± 0.55 87.2 ± 0.18 59.2 ± 0.19 65.18 ± 0.2 69.61 ± 0.23 74.24 ± 0.22 80.43 ± 0.23
SphericalScore R̃

(3,1)

Exc 89.1 ± 0.15 93.78 ± 0.66 88.27 ± 0.2 60.54 ± 0.18 66.88 ± 0.26 71.35 ± 0.29 75.95 ± 0.29 81.88 ± 0.33
SphericalScore R̃

(2,3)

Exc 88.0 ± 0.17 93.06 ± 0.52 87.1 ± 0.13 59.29 ± 0.11 65.18 ± 0.09 69.61 ± 0.1 74.24 ± 0.17 80.39 ± 0.21
SphericalScore R̃

(2,2)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
SphericalScore R̃

(2,1)

Exc 89.03 ± 0.15 93.66 ± 0.64 88.2 ± 0.19 60.53 ± 0.18 66.87 ± 0.25 71.34 ± 0.29 75.93 ± 0.29 81.85 ± 0.33
SphericalScore R̃

(1,3)

Exc 89.12 ± 0.15 93.77 ± 0.65 88.29 ± 0.2 60.54 ± 0.18 66.88 ± 0.26 71.36 ± 0.3 75.96 ± 0.29 81.89 ± 0.34
SphericalScore R̃

(1,2)

Exc 89.17 ± 0.14 93.86 ± 0.66 88.35 ± 0.2 60.54 ± 0.18 66.88 ± 0.26 71.37 ± 0.3 75.97 ± 0.29 81.91 ± 0.34
SphericalScore R̃

(1,1)

Exc 89.11 ± 0.15 93.77 ± 0.66 88.28 ± 0.2 60.54 ± 0.18 66.88 ± 0.26 71.36 ± 0.29 75.96 ± 0.29 81.89 ± 0.33

SphericalScore R̃
(3,3)

Tot 90.09 ± 0.04 95.78 ± 0.64 89.4 ± 0.18 61.42 ± 0.19 68.45 ± 0.22 72.86 ± 0.26 77.3 ± 0.31 82.89 ± 0.39
SphericalScore R̃

(3,2)

Tot 90.03 ± 0.05 95.7 ± 0.65 89.33 ± 0.18 61.42 ± 0.19 68.44 ± 0.22 72.84 ± 0.26 77.28 ± 0.31 82.86 ± 0.38
SphericalScore R̃

(3,1)

Tot 89.82 ± 0.06 95.36 ± 0.68 89.08 ± 0.17 61.39 ± 0.19 68.4 ± 0.22 72.78 ± 0.26 77.21 ± 0.31 82.75 ± 0.38
SphericalScore R̃

(2,3)

Tot 90.39 ± 0.03 96.2 ± 0.55 89.77 ± 0.18 61.46 ± 0.2 68.52 ± 0.23 72.94 ± 0.27 77.41 ± 0.33 83.03 ± 0.41
SphericalScore R̃

(2,2)

Tot 90.42 ± 0.03 96.22 ± 0.54 89.81 ± 0.18 61.46 ± 0.2 68.52 ± 0.23 72.94 ± 0.28 77.41 ± 0.33 83.03 ± 0.42
SphericalScore R̃

(2,1)

Tot 90.24 ± 0.03 96.0 ± 0.6 89.59 ± 0.18 61.44 ± 0.19 68.49 ± 0.23 72.9 ± 0.27 77.36 ± 0.32 82.96 ± 0.4
SphericalScore R̃

(1,3)

Tot 90.39 ± 0.03 96.2 ± 0.55 89.77 ± 0.18 61.46 ± 0.2 68.52 ± 0.23 72.94 ± 0.27 77.41 ± 0.33 83.03 ± 0.41
SphericalScore R̃

(1,2)

Tot 90.42 ± 0.03 96.22 ± 0.54 89.81 ± 0.18 61.46 ± 0.2 68.52 ± 0.23 72.94 ± 0.28 77.41 ± 0.33 83.03 ± 0.42
SphericalScore R̃

(1,1)

Tot 90.24 ± 0.03 96.0 ± 0.6 89.59 ± 0.18 61.44 ± 0.19 68.49 ± 0.23 72.9 ± 0.27 77.36 ± 0.32 82.96 ± 0.4
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Table 8: AUROC for out-of-distribution detection for CIFAR100 (in-distribution). As a loss function
for training and for uncertainty quantification we used (Left): Log Score; (Middle): Brier Score;
(Right): Spherical Score; Note, that due to the symmetrical nature of Brier score, many instances
results to the same values.

Log Score BrierScore Log Score
CIFAR10 SVHN CIFAR10 SVHN CIFAR10 SVHN

R̃
(3)

Bayes 77.53 ± 0.24 86.72 ± 0.53 77.18 ± 0.36 83.64 ± 0.82 77.35 ± 0.17 84.55 ± 1.36

R̃
(2)

Bayes 77.44 ± 0.23 86.99 ± 0.59 77.18 ± 0.36 83.64 ± 0.82 77.57 ± 0.16 84.26 ± 1.56

R̃
(1)

Bayes 77.3 ± 0.23 86.96 ± 0.6 76.93 ± 0.35 83.65 ± 0.97 77.39 ± 0.15 83.74 ± 1.66

R̃
(3,3)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
R̃
(3,2)

Exc 65.33 ± 0.17 66.83 ± 1.92 50.0 ± 0.0 50.0 ± 0.0 57.9 ± 0.44 57.16 ± 2.88
R̃
(3,1)

Exc 72.68 ± 0.13 75.98 ± 0.72 63.26 ± 0.51 61.34 ± 1.7 66.32 ± 0.46 69.07 ± 2.06
R̃
(2,3)

Exc 62.97 ± 0.2 63.81 ± 2.0 50.0 ± 0.0 50.0 ± 0.0 57.11 ± 0.45 56.03 ± 2.86
R̃
(2,2)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
R̃
(2,1)

Exc 71.35 ± 0.11 74.17 ± 0.95 63.26 ± 0.51 61.34 ± 1.7 63.94 ± 0.5 65.66 ± 2.25
R̃
(1,3)

Exc 71.42 ± 0.1 74.61 ± 1.06 63.26 ± 0.51 61.34 ± 1.7 64.77 ± 0.48 66.78 ± 2.23
R̃
(1,2)

Exc 73.2 ± 0.13 77.06 ± 0.79 63.26 ± 0.51 61.34 ± 1.7 66.97 ± 0.43 69.85 ± 2.02
R̃
(1,1)

Exc 72.08 ± 0.12 75.3 ± 0.88 63.26 ± 0.51 61.34 ± 1.7 65.3 ± 0.48 67.55 ± 2.18

R̃
(3,3)

Tot 77.53 ± 0.24 86.72 ± 0.53 77.18 ± 0.36 83.64 ± 0.82 77.35 ± 0.17 84.55 ± 1.36
R̃
(3,2)

Tot 77.55 ± 0.24 86.74 ± 0.52 77.18 ± 0.36 83.64 ± 0.82 77.08 ± 0.18 84.31 ± 1.29
R̃
(3,1)

Tot 77.5 ± 0.24 86.49 ± 0.5 76.46 ± 0.38 81.88 ± 0.48 76.78 ± 0.2 84.2 ± 1.16
R̃
(2,3)

Tot 77.41 ± 0.23 87.0 ± 0.58 77.18 ± 0.36 83.64 ± 0.82 77.62 ± 0.15 84.4 ± 1.53
R̃
(2,2)

Tot 77.44 ± 0.23 86.99 ± 0.59 77.18 ± 0.36 83.64 ± 0.82 77.57 ± 0.16 84.26 ± 1.56
R̃
(2,1)

Tot 77.39 ± 0.24 86.77 ± 0.55 76.46 ± 0.38 81.88 ± 0.48 77.65 ± 0.16 84.75 ± 1.44
R̃
(1,3)

Tot 77.41 ± 0.23 87.0 ± 0.58 77.18 ± 0.36 83.64 ± 0.82 77.62 ± 0.15 84.4 ± 1.53
R̃
(1,2)

Tot 77.44 ± 0.23 86.99 ± 0.59 77.18 ± 0.36 83.64 ± 0.82 77.57 ± 0.16 84.26 ± 1.56
R̃
(1,1)

Tot 77.39 ± 0.24 86.77 ± 0.55 76.46 ± 0.38 81.88 ± 0.48 77.65 ± 0.16 84.75 ± 1.44

E(x;Eθfθ) 77.05 ± 0.32 87.98 ± 0.65 - - - -
EθE(x; fθ) 76.71 ± 0.32 87.71 ± 0.69 - - - -
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Table 9: AUROC for out-of-distribution detection for TinyImageNet (in-distribution). As a loss
function for training, we used Cross-Entropy(corresponds to Log Score). For uncertainty estimates,
we used different options. From left to right: Log Score, Brier Score, Spherical Score, Zero One
Score. Note, that ImageNet-O can be considered as “soft-OOD” for TinyImageNet. Note, that due to
the symmetrical nature of Brier score, many instances results to the same values.

Log Score Spherical Score Brier Score Zero One Score
ImageNet-A ImageNet-R ImageNet-O ImageNet-A ImageNet-R ImageNet-O ImageNet-A ImageNet-R ImageNet-O ImageNet-A ImageNet-R ImageNet-O

R̃
(3)

Bayes 83.61 ± 0.2 82.67 ± 0.37 72.86 ± 0.3 83.16 ± 0.24 82.14 ± 0.34 73.3 ± 0.18 81.51 ± 0.22 80.67 ± 0.23 74.17 ± 0.22 - - -

R̃
(2)

Bayes 83.76 ± 0.24 82.78 ± 0.37 73.18 ± 0.2 83.16 ± 0.24 82.14 ± 0.34 73.3 ± 0.18 83.16 ± 0.24 82.14 ± 0.34 73.3 ± 0.18 82.41 ± 0.25 81.41 ± 0.31 73.18 ± 0.16

R̃
(1)

Bayes 83.22 ± 0.24 82.23 ± 0.39 72.21 ± 0.22 82.4 ± 0.24 81.31 ± 0.37 71.89 ± 0.17 82.68 ± 0.24 81.6 ± 0.36 72.06 ± 0.17 82.27 ± 0.23 81.2 ± 0.34 71.9 ± 0.14

R̃
(3,3)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 - - -
R̃
(3,2)

Exc 70.4 ± 0.45 69.75 ± 0.33 70.31 ± 0.33 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 74.49 ± 0.28 74.43 ± 0.19 72.75 ± 0.3 - - -
R̃
(3,1)

Exc 77.56 ± 0.28 77.02 ± 0.17 74.46 ± 0.22 65.46 ± 0.39 65.99 ± 0.37 68.81 ± 0.25 76.55 ± 0.3 76.16 ± 0.12 73.16 ± 0.22 - - -
R̃
(2,3)

Exc 65.94 ± 0.44 65.34 ± 0.37 67.49 ± 0.36 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 68.85 ± 0.33 69.15 ± 0.27 70.18 ± 0.28 - - -
R̃
(2,2)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
R̃
(2,1)

Exc 75.94 ± 0.36 75.4 ± 0.23 74.07 ± 0.18 65.46 ± 0.39 65.99 ± 0.37 68.81 ± 0.25 70.64 ± 0.3 70.78 ± 0.23 71.04 ± 0.24 67.15 ± 0.31 67.28 ± 0.19 65.96 ± 0.33
R̃
(1,3)

Exc 76.21 ± 0.43 75.55 ± 0.21 73.84 ± 0.17 65.46 ± 0.39 65.99 ± 0.37 68.81 ± 0.25 71.41 ± 0.3 71.46 ± 0.2 71.36 ± 0.21 - - -
R̃
(1,2)

Exc 79.09 ± 0.33 78.38 ± 0.17 74.79 ± 0.25 65.46 ± 0.39 65.99 ± 0.37 68.81 ± 0.25 72.78 ± 0.28 72.67 ± 0.15 71.76 ± 0.17 70.83 ± 0.24 70.66 ± 0.13 69.13 ± 0.31
R̃
(1,1)

Exc 77.11 ± 0.34 76.52 ± 0.19 74.46 ± 0.18 65.46 ± 0.39 65.99 ± 0.37 68.81 ± 0.25 71.9 ± 0.29 71.91 ± 0.18 71.56 ± 0.21 68.05 ± 0.32 68.21 ± 0.18 68.22 ± 0.27

R̃
(3,3)

Tot 83.61 ± 0.2 82.67 ± 0.37 72.86 ± 0.3 83.16 ± 0.24 82.14 ± 0.34 73.3 ± 0.18 81.51 ± 0.22 80.67 ± 0.23 74.17 ± 0.22 - - -
R̃
(3,2)

Tot 83.77 ± 0.2 82.84 ± 0.36 73.3 ± 0.27 83.16 ± 0.24 82.14 ± 0.34 73.3 ± 0.18 80.62 ± 0.24 79.92 ± 0.19 74.21 ± 0.25 - - -
R̃
(3,1)

Tot 83.88 ± 0.19 82.99 ± 0.32 74.09 ± 0.27 81.75 ± 0.25 81.08 ± 0.22 74.68 ± 0.27 80.47 ± 0.26 79.74 ± 0.19 74.11 ± 0.23 - - -
R̃
(2,3)

Tot 83.93 ± 0.24 82.95 ± 0.36 73.72 ± 0.16 83.16 ± 0.24 82.14 ± 0.34 73.3 ± 0.18 83.27 ± 0.23 82.28 ± 0.32 73.76 ± 0.19 - - -
R̃
(2,2)

Tot 83.76 ± 0.24 82.78 ± 0.37 73.18 ± 0.2 83.16 ± 0.24 82.14 ± 0.34 73.3 ± 0.18 83.16 ± 0.24 82.14 ± 0.34 73.3 ± 0.18 82.41 ± 0.25 81.41 ± 0.31 73.18 ± 0.16
R̃
(2,1)

Tot 84.26 ± 0.23 83.32 ± 0.31 74.93 ± 0.17 81.75 ± 0.25 81.08 ± 0.22 74.68 ± 0.27 83.25 ± 0.23 82.27 ± 0.31 73.86 ± 0.19 82.52 ± 0.23 81.56 ± 0.3 73.35 ± 0.19
R̃
(1,3)

Tot 83.93 ± 0.24 82.95 ± 0.36 73.72 ± 0.16 83.16 ± 0.24 82.14 ± 0.34 73.3 ± 0.18 83.27 ± 0.23 82.28 ± 0.32 73.76 ± 0.19 - - -
R̃
(1,2)

Tot 83.76 ± 0.24 82.78 ± 0.37 73.18 ± 0.2 83.16 ± 0.24 82.14 ± 0.34 73.3 ± 0.18 83.16 ± 0.24 82.14 ± 0.34 73.3 ± 0.18 82.41 ± 0.25 81.41 ± 0.31 73.18 ± 0.16
R̃
(1,1)

Tot 84.26 ± 0.23 83.32 ± 0.31 74.93 ± 0.17 81.75 ± 0.25 81.08 ± 0.22 74.68 ± 0.27 83.25 ± 0.23 82.27 ± 0.31 73.86 ± 0.19 82.52 ± 0.23 81.56 ± 0.3 73.35 ± 0.19

E(x;Eθfθ) 83.96 ± 0.23 83.28 ± 0.41 72.72 ± 0.33 - - - - - - - - -
EθE(x; fθ) 82.99 ± 0.26 82.31 ± 0.45 71.15 ± 0.34 - - - - - - - - -
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Table 10: AUROC for misclassification detection. As a loss function for training and for uncertainty
quantification we used Log Score.

CIFAR10 CIFAR100 CIFAR10-N CIFAR100-N TinyImageNet

LogScore R̃
(3)

Bayes 94.76 ± 0.09 85.95 ± 0.31 80.44 ± 3.69 83.41 ± 0.23 86.55 ± 0.26

LogScore R̃
(2)

Bayes 94.7 ± 0.05 85.13 ± 0.35 78.36 ± 4.77 81.92 ± 0.36 85.5 ± 0.23

LogScore R̃
(1)

Bayes 94.39 ± 0.08 84.61 ± 0.35 78.26 ± 4.11 81.9 ± 0.29 84.99 ± 0.24

LogScore R̃
(3,3)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
LogScore R̃

(3,2)

Exc 92.14 ± 0.19 70.77 ± 0.38 61.28 ± 6.53 65.51 ± 0.99 71.77 ± 0.13
LogScore R̃

(3,1)

Exc 94.4 ± 0.13 82.62 ± 0.34 69.98 ± 6.08 75.51 ± 0.8 82.74 ± 0.34
LogScore R̃

(2,3)

Exc 91.54 ± 0.19 67.42 ± 0.4 59.24 ± 6.11 62.79 ± 0.97 66.83 ± 0.11
LogScore R̃

(2,2)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
LogScore R̃

(2,1)

Exc 94.01 ± 0.14 80.69 ± 0.35 67.7 ± 6.09 73.7 ± 0.86 80.18 ± 0.31
LogScore R̃

(1,3)

Exc 93.72 ± 0.16 80.3 ± 0.33 66.85 ± 5.94 73.37 ± 0.87 79.25 ± 0.25
LogScore R̃

(1,2)

Exc 94.23 ± 0.14 82.9 ± 0.31 69.64 ± 6.1 75.74 ± 0.78 83.22 ± 0.28
LogScore R̃

(1,1)

Exc 94.1 ± 0.14 81.58 ± 0.34 68.39 ± 6.07 74.52 ± 0.83 81.33 ± 0.29

LogScore R̃
(3,3)

Tot 94.76 ± 0.09 85.95 ± 0.31 80.44 ± 3.69 83.41 ± 0.23 86.55 ± 0.26
LogScore R̃

(3,2)

Tot 94.77 ± 0.05 85.96 ± 0.32 80.21 ± 3.96 83.33 ± 0.26 86.5 ± 0.25
LogScore R̃

(3,1)

Tot 94.74 ± 0.07 86.22 ± 0.31 79.38 ± 3.85 83.18 ± 0.29 86.65 ± 0.26
LogScore R̃

(2,3)

Tot 94.4 ± 0.06 85.01 ± 0.37 76.26 ± 5.04 81.67 ± 0.39 85.18 ± 0.23
LogScore R̃

(2,2)

Tot 94.7 ± 0.05 85.13 ± 0.35 78.36 ± 4.77 81.92 ± 0.36 85.5 ± 0.23
LogScore R̃

(2,1)

Tot 94.5 ± 0.06 85.43 ± 0.35 75.73 ± 4.68 81.67 ± 0.41 85.58 ± 0.22
LogScore R̃

(1,3)

Tot 94.4 ± 0.06 85.01 ± 0.37 76.26 ± 5.04 81.67 ± 0.39 85.18 ± 0.23
LogScore R̃

(1,2)

Tot 94.7 ± 0.05 85.13 ± 0.35 78.36 ± 4.77 81.92 ± 0.36 85.5 ± 0.23
LogScore R̃

(1,1)

Tot 94.5 ± 0.06 85.43 ± 0.35 75.73 ± 4.68 81.67 ± 0.41 85.58 ± 0.22

LogScore E(x;Eθfθ) 93.89 ± 0.11 82.95 ± 0.34 74.82 ± 5.48 76.74 ± 0.64 83.34 ± 0.23
LogScore EθE(x; fθ) 93.38 ± 0.15 82.07 ± 0.34 74.61 ± 5.23 76.12 ± 0.63 82.4 ± 0.24

K ADDITIONAL EXPERIMENTS ON MISCLASSIFICATION DETECTION

In this section, we present additional results for misclassification detection.

As training datasets, we consider CIFAR10, CIFAR100, their noisy versions as well as TinyImageNet
(only with Cross-Entropy loss function).

In Table 10 we present results for all these datasets, when loss function and instantiation are generated
by Log Score. In Tables 11 and 12, we present results for CIFAR-like datasets, as for TinyImageNet
we have only Cross-Entropy loss function. From all these tables we see that, indeed, Bayes risk and
Total risk are the best choices when encounter misclassification detection problem. The gap is even
more significant, when more label noise is introduced. Moreover, instantiations for Log Score are
typically provide better AUROC, than others. Similarly to the out-of-distribution detection, it justifies
typical practical choice for Log Score-based measures.

For TinyImageNet, results are presented in Table 13. Similarly to Table 9, one loss function was used
for training, while different instantiations ofGwere used for the measures of uncertainty. Interestingly,
the best results are reached by Zero One score, that is also a popular choice of practitioners.
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Table 11: AUROC for misclassification detection. As a loss function for training and for uncertainty
quantification we used Brier Score. Note, that due to the symmetrical nature of Brier score, many
instances results to the same values.

CIFAR10 CIFAR100 CIFAR10-N CIFAR100-N

BrierScore R̃
(3)

Bayes 94.68 ± 0.3 86.02 ± 0.26 80.64 ± 3.17 84.1 ± 0.13

BrierScore R̃
(2)

Bayes 94.68 ± 0.3 86.02 ± 0.26 80.64 ± 3.17 84.1 ± 0.13

BrierScore R̃
(1)

Bayes 94.22 ± 0.27 85.09 ± 0.27 79.2 ± 2.35 83.95 ± 0.14

BrierScore R̃
(3,3)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
BrierScore R̃

(3,2)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
BrierScore R̃

(3,1)

Exc 94.2 ± 0.34 72.71 ± 0.34 76.31 ± 3.39 65.34 ± 0.43
BrierScore R̃

(2,3)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
BrierScore R̃

(2,2)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
BrierScore R̃

(2,1)

Exc 94.2 ± 0.34 72.71 ± 0.34 76.31 ± 3.39 65.34 ± 0.43
BrierScore R̃

(1,3)

Exc 94.2 ± 0.34 72.71 ± 0.34 76.31 ± 3.39 65.34 ± 0.43
BrierScore R̃

(1,2)

Exc 94.2 ± 0.34 72.71 ± 0.34 76.31 ± 3.39 65.34 ± 0.43
BrierScore R̃

(1,1)

Exc 94.2 ± 0.34 72.71 ± 0.34 76.31 ± 3.39 65.34 ± 0.43

BrierScore R̃
(3,3)

Tot 94.68 ± 0.3 86.02 ± 0.26 80.64 ± 3.17 84.1 ± 0.13
BrierScore R̃

(3,2)

Tot 94.68 ± 0.3 86.02 ± 0.26 80.64 ± 3.17 84.1 ± 0.13
BrierScore R̃

(3,1)

Tot 94.61 ± 0.31 86.11 ± 0.23 79.78 ± 3.23 83.24 ± 0.19
BrierScore R̃

(2,3)

Tot 94.68 ± 0.3 86.02 ± 0.26 80.64 ± 3.17 84.1 ± 0.13
BrierScore R̃

(2,2)

Tot 94.68 ± 0.3 86.02 ± 0.26 80.64 ± 3.17 84.1 ± 0.13
BrierScore R̃

(2,1)

Tot 94.61 ± 0.31 86.11 ± 0.23 79.78 ± 3.23 83.24 ± 0.19
BrierScore R̃

(1,3)

Tot 94.68 ± 0.3 86.02 ± 0.26 80.64 ± 3.17 84.1 ± 0.13
BrierScore R̃

(1,2)

Tot 94.68 ± 0.3 86.02 ± 0.26 80.64 ± 3.17 84.1 ± 0.13
BrierScore R̃

(1,1)

Tot 94.61 ± 0.31 86.11 ± 0.23 79.78 ± 3.23 83.24 ± 0.19

Table 12: AUROC for misclassification detection. As a loss function for training and for uncertainty
quantification we used Spherical Score.

CIFAR10 CIFAR100 CIFAR10-N CIFAR100-N

SphericalScore R̃
(3)

Bayes 94.01 ± 0.31 85.37 ± 0.25 79.36 ± 2.85 80.13 ± 0.6

SphericalScore R̃
(2)

Bayes 94.15 ± 0.29 84.73 ± 0.24 80.8 ± 3.0 80.53 ± 0.54

SphericalScore R̃
(1)

Bayes 93.64 ± 0.28 83.97 ± 0.25 80.35 ± 3.11 80.03 ± 0.52

SphericalScore R̃
(3,3)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
SphericalScore R̃

(3,2)

Exc 92.81 ± 0.49 65.29 ± 0.48 69.95 ± 5.62 61.62 ± 0.33
SphericalScore R̃

(3,1)

Exc 93.46 ± 0.47 77.3 ± 0.35 75.18 ± 3.6 71.81 ± 0.46
SphericalScore R̃

(2,3)

Exc 92.76 ± 0.41 64.33 ± 0.47 70.03 ± 5.53 60.8 ± 0.32
SphericalScore R̃

(2,2)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
SphericalScore R̃

(2,1)

Exc 93.39 ± 0.47 73.76 ± 0.36 75.06 ± 3.53 68.84 ± 0.42
SphericalScore R̃

(1,3)

Exc 93.51 ± 0.47 75.08 ± 0.36 75.22 ± 3.63 69.97 ± 0.42
SphericalScore R̃

(1,2)

Exc 93.57 ± 0.46 78.25 ± 0.34 75.32 ± 3.69 72.69 ± 0.44
SphericalScore R̃

(1,1)

Exc 93.49 ± 0.47 75.83 ± 0.35 75.2 ± 3.61 70.59 ± 0.43

SphericalScore R̃
(3,3)

Tot 94.01 ± 0.31 85.37 ± 0.25 79.36 ± 2.85 80.13 ± 0.6
SphericalScore R̃

(3,2)

Tot 93.98 ± 0.31 85.16 ± 0.24 79.29 ± 2.84 79.95 ± 0.6
SphericalScore R̃

(3,1)

Tot 93.92 ± 0.31 85.42 ± 0.24 79.21 ± 2.79 80.13 ± 0.61
SphericalScore R̃

(2,3)

Tot 94.15 ± 0.29 84.88 ± 0.24 80.66 ± 3.03 80.6 ± 0.54
SphericalScore R̃

(2,2)

Tot 94.15 ± 0.29 84.73 ± 0.24 80.8 ± 3.0 80.53 ± 0.54
SphericalScore R̃

(2,1)

Tot 94.14 ± 0.3 85.23 ± 0.23 80.15 ± 2.99 80.82 ± 0.55
SphericalScore R̃

(1,3)

Tot 94.15 ± 0.29 84.88 ± 0.24 80.66 ± 3.03 80.6 ± 0.54
SphericalScore R̃

(1,2)

Tot 94.15 ± 0.29 84.73 ± 0.24 80.8 ± 3.0 80.53 ± 0.54
SphericalScore R̃

(1,1)

Tot 94.14 ± 0.3 85.23 ± 0.23 80.15 ± 2.99 80.82 ± 0.55
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Table 13: AUROC for misclassification detection (TinyImageNet). As a loss function for training we
used Cross-Entropy. Here, we try different instantiations of G for uncertainty measures. Note, that
due to the symmetrical nature of Brier score, many instances results to the same values.

Log Score Brier Score Spherical Score Zero One Score

R̃
(3)

Bayes 86.55 ± 0.26 86.8 ± 0.28 85.83 ± 0.36 -

R̃
(2)

Bayes 85.5 ± 0.23 86.8 ± 0.28 86.8 ± 0.28 87.23 ± 0.35

R̃
(1)

Bayes 84.99 ± 0.24 85.89 ± 0.27 85.76 ± 0.26 85.88 ± 0.27

R̃
(3,3)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 -
R̃
(3,2)

Exc 71.77 ± 0.13 50.0 ± 0.0 81.82 ± 0.47 -
R̃
(3,1)

Exc 82.74 ± 0.34 75.91 ± 0.59 83.6 ± 0.47 -
R̃
(2,3)

Exc 66.83 ± 0.11 50.0 ± 0.0 78.32 ± 0.58 -
R̃
(2,2)

Exc 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
R̃
(2,1)

Exc 80.18 ± 0.31 75.91 ± 0.59 79.62 ± 0.54 73.59 ± 0.44
R̃
(1,3)

Exc 79.25 ± 0.25 75.91 ± 0.59 80.73 ± 0.54 -
R̃
(1,2)

Exc 83.22 ± 0.28 75.91 ± 0.59 81.95 ± 0.55 79.52 ± 0.68
R̃
(1,1)

Exc 81.33 ± 0.29 75.91 ± 0.59 81.02 ± 0.54 76.78 ± 0.56

R̃
(3,3)

Tot 86.55 ± 0.26 86.8 ± 0.28 85.83 ± 0.36 -
R̃
(3,2)

Tot 86.5 ± 0.25 86.8 ± 0.28 85.39 ± 0.37 -
R̃
(3,1)

Tot 86.65 ± 0.26 86.4 ± 0.32 85.43 ± 0.39 -
R̃
(2,3)

Tot 85.18 ± 0.23 86.8 ± 0.28 86.9 ± 0.29 -
R̃
(2,2)

Tot 85.5 ± 0.23 86.8 ± 0.28 86.8 ± 0.28 87.23 ± 0.35
R̃
(2,1)

Tot 85.58 ± 0.22 86.4 ± 0.32 86.92 ± 0.3 86.95 ± 0.31
R̃
(1,3)

Tot 85.18 ± 0.23 86.8 ± 0.28 86.9 ± 0.29 -
R̃
(1,2)

Tot 85.5 ± 0.23 86.8 ± 0.28 86.8 ± 0.28 87.23 ± 0.35
R̃
(1,1)

Tot 85.58 ± 0.22 86.4 ± 0.32 86.92 ± 0.3 86.95 ± 0.31

E(x;Eθfθ) 83.34 ± 0.23 - - -
EθE(x; fθ) 82.4 ± 0.24 - - -
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L DERIVATION OF CENTRAL PREDICTIONS

Central prediction is defined as η̄ = argminz EθDG(z∥ηθ). For different instantiations of G, there
will be different central predictions. In what follows, we will abuse the subscription θ, and simply
write E and η, assuming expectation with respect to θ.

Recall, that Bregman divergence is:

DG

(
z∥η
)
= G(z)−G(η)− ⟨G′(η) , z − η⟩

L.1 LOGSCORE

G(η) =

K∑
k=1

ηk log ηk,

G′(η)k = 1 + log ηk,

η̄ = argmin
z

[∑
k

zk log zk − E
∑
k

ηk log ηk − ⟨1 + E log η , z⟩+ E⟨1 + log η , η⟩
]
=

argmin
z

[∑
k

zk log zk − E
∑
k

ηk log ηk −
∑
k

zk log
(
expE log η

)
k
+ E

∑
k

ηk log ηk

]
=

argmin
z

[∑
k

zk log zk −
∑
k

zk log
(
expE log η

)
k

]
=

argmin
z

[∑
k

zk log zk −
∑
k

zk log
(
expE log η

)
k
−

∑
k

zk
∑
k′

log
(
expE log η

)
k′ +

∑
k

zk
∑
k′

log
(
expE log η

)
k′

]
=

argmin
z

[∑
k

zk log zk −
∑
k

zk log

(
expE log η

)
k∑

k′

(
expE log η

)
k′

]
=

argmin
z

[
KL(z∥

(
expE log η

)
k∑

k′

(
expE log η

)
k′

)
]
,

hence, η̄k =

(
expE log η

)
k∑

k′

(
expE log η

)
k′

.

L.2 BRIER SCORE

G(η) = −
K∑

k=1

ηk(1− ηk),

G′(η)k = 2ηk − 1,
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η̄ = argmin
z

[
−
∑
k

zk(1− zk) + E
∑
k

ηk(1− ηk)− ⟨2Eη − 1 , z⟩+ E⟨2η − 1 , η⟩
]
=

argmin
z

[
−
∑
k

zk(1− zk) + E
∑
k

ηk(1− ηk)− 2
∑
k

zkEηk + 2E
∑
k

η2k

]
=

argmin
z

[ K∑
k

z2k − E
∑
k

η2k − 2
∑
k

zkEηk + 2E
∑
k

η2k

]
=

= argmin
z

[∑
k

z2k − 2
∑
k

zkEηk + E
∑
k

η2k

]
=

argmin
z

[∑
k

z2k − 2
∑
k

zkEηk + E
∑
k

η2k +
∑
k

(Eηk)2 −
∑
k

(Eηk)2
]
=

argmin
z

[
∥z − Eη∥22 + E

∑
k

η2k −
∑
k

(Eηk)2
]
=

argmin
z

[
∥z − Eη∥22

]
,

hence, η̄ = Eη.

L.3 ZERO-ONE SCORE

G(η) = max
k

ηk − 1,

G′(η)k = I[k = argmax
j

ηj ],

η̄ = argmin
z

E
[
max

k
zk − 1−max

k
ηk + 1− ⟨I[argmax

j
ηj ] , z − η⟩

]
=

argmin
z

E
[
max

k
zk −max

k
ηk − (z − η)argmaxj ηj

]
= argmin

z
E
[
max

k
zk − zargmaxj ηj

]
=

argmin
z

[
max

k
zk − ⟨z , EI[argmax

j
ηj ]⟩

]
= argmin

z

[
max

k
zk − ⟨z , p̃⟩

]
=

argmin
z

⟨z , I[argmax
j

zj ]− p̃⟩ = 0

where p̃ = EI[argmaxj ηj ] are empirical frequencies of class labels, predicted by models,
parametrized by samples from p(θ | Dtr).

We can see, that minimum is always reached with η̄ = Uniform(K), where Uniform(K) is a uniform
categorical distribution over K classes. Please note, that there might be infinitely many solutions,
when at least one of the components of p̃ is 0.

Let us assume that there are no zero components, hence uniform distribution will be the only solution.

However, uniform distribution plug-in violates general decomposition in equation (11).

This might be due to the requirement, that G must be a strictly convex, while G(η) = maxk ηk − 1
is only convex, and effectively operates with the single (maximal) component of the categorical
distribution η, while undetermine others.

L.4 SPHERICAL SCORE

G(η) = ∥η∥2 − 1

G′(η)k =
ηk
∥η∥2
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η̄ = argmin
z

E
[
∥z∥2 − ∥η∥2 + ⟨ η

∥η∥2
, η − z⟩

]
= argmin

z
E
[
∥z∥2 − ⟨ η

∥η∥2
, z⟩
]

= argmin
z

∥z∥2 − ⟨z , E
[ η

∥η∥2

]
⟩

Lets introduce following notation:

f(z, η) = argmin
z

∥z∥2 − ⟨z , E
[ η

∥η∥2

]
⟩

ηE = E
[ η

∥η∥2

]
x0 =

( 1

K
, ... ,

1

K

)
∈ RK

x∥ := x∥ ∈ RK s.t. x∥∥x0
x⊥ := x⊥ ∈ RK s.t. x⊥ ⊥ x0, ∥x⊥∥ = 1

a := a ∈ RK s.t. a ⊥ x0, a ⊥ x⊥, ∥a∥2 = 1.

Then we can say, that there exists kη, k, ka such that:

ηE = x∥ + kηx⊥, z = x0 + kx⊥ + kaa,

f(kη, k, ka) = ∥x0 + kx⊥ + kaa∥2
− ⟨x0 + kx⊥ + kaa , x∥ + kηx⊥⟩

=

√∑
i

(x0)2i + k2
∑
i

(x⊥)2i + k2a
∑
i

a2i

− (kηk + ⟨x0 , x∥⟩)

=

√∑
i

(x0)2i + k2 + k2a − kηk − ⟨x0 , x∥⟩.

Lets takes derivatives of f(·) w.r.t k, ka to find values, that minimize it:

df(kη, k, ka)

dka
=

ka√∑
i(x0)

2
i + k2 + k2a

= 0∑
i

(x0)
2
i + k2 ̸= 0 =⇒ ka = 0

df(kη, k, ka)

dk
=

k√∑
i(x0)

2
i + k2

− kη = 0

k2 = k2η(
∑
i

(x0)
2
i + k2)

k2(1− k2η) = k2η∥x0∥22 =⇒ k =
kη∥x0∥2√
1− k2η

x∥ = ⟨ηE , x0⟩
x0

∥x0∥22

kη = kη∥x⊥∥2 = ∥ηE − x∥∥22
= ∥ηE − ⟨ηE , x0⟩

x0
∥x0∥22

∥2.
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Finally we have:

z = x0 + kx⊥ + kaa

= x0 +
k

kη
(ηE − x∥) = x0 +

ηE − x∥√
1− k2η

∥x0∥2

= x0 +
ηE − ⟨ηE , x0⟩ x0

∥x0∥2
2√

1− ∥ηE − ⟨ηE , x0⟩ x0

∥x0∥2
2
∥22

∥x0∥2.

Setting n = x0

∥x0∥ and m = ηE − ⟨ηE , x0⟩ x0

∥x0∥2
2

we conclude:

z = ∥x0∥2
[
n+

m√
1− ∥m∥22

]
.

M TOY EXAMPLE

In this section, we consider a specific toy example, in which uncertainty measures can be computed
in closed form.

Specifically, we consider the problem of binary classification, where the likelihood (predictive model)
is simply a Bernoulli distribution, and the prior distribution over model parameter (the probability of
success) is Beta distribution. Therefore, prior and likelihood are conjugate, and the posterior is Beta
distribution as well.

Expected Pairwise Kullback–Leibler (EPKL). Here, we want to estimate

Eθ∗EθKL(θ
∗∥θ) =

Eθ∗
[
θ∗ log θ∗

]
−Eθ∗

[
θ∗
]
Eθ

[
log θ

]
+Eθ∗

[
(1−θ∗) log(1−θ∗)

]
−Eθ∗

[
(1−θ∗)

]
Eθ

[
log(1−θ)

]
.

We assume that p(θ∗ | D) = Beta(α∗, β∗), and p(θ | D) = Beta(α, β). Each of the components can
be computed analytically:

1. Eθ∗
[
θ∗ log θ∗

]
= α∗

α∗+β∗

[
ψ(α∗ + 1)− ψ(α∗ + β∗ + 1)

]
;

2. Eθ∗θ∗ = α∗

α∗+β∗ ;

3. Eθ log θ = ψ(α)− ψ(α+ β);

4. Eθ∗
[
(1− θ∗) log(1− θ∗)

]
= β∗

α∗+β∗

[
ψ(β∗ + 1)− ψ(α∗ + β∗ + 1)

]
;

5. Eθ∗(1− θ∗) = β∗

α∗+β∗ ;

6. Eθ

[
log(1− θ)

]
= ψ(β)− ψ(α+ β).

If we assume, that α∗ = α and β∗ = β (the setup we considered in the main part), then one can show,
using these six equations that

EPKL =
1

α+ β
.

Note, that this assumption (on the equal parameters) was done for simplicity. In general case, one can
indeed consider different Bayesian models for the approximation of the ground truth distribution and
for the approximation of the prediction. But since it is done at the cost of training a separate Bayesian
model, we believe it might be not of a big practical value.

Mutual Information (MI). Following the derivations from the main part, MI can be represented
as:

EθKL(θ
∗∥Eθθ) =

Eθ∗
[
θ∗ log θ∗

]
− Eθ∗

[
θ∗
]
logEθθ + Eθ∗

[
(1− θ∗) log(1− θ∗)

]
− Eθ∗

[
(1− θ∗)

]
log(1− Eθθ).
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Again, we use the same assumption on the equal parameters of the posterior distributions. With the
equations from the above, we obtain:

MI =
1

α+ β
+

α

α+ β

[
ψ(α)−ψ(α+β)− logα

]
+

β

α+ β

[
ψ(β)−ψ(α+β)− log β

]
+log(α+β).

Reverse Mutual Information (RMI). As we showed in the main part, RMI can be presented as
follows:

EθKL(Eθ∗θ∗∥θ) =
Eθ∗
[
θ∗
][
logEθ∗θ∗

]
−Eθ∗

[
θ∗
]
Eθ

[
log θ

]
+(1−Eθ∗θ∗) log(1−Eθ∗θ∗)−(1−Eθ∗θ∗)Eθ

[
log(1−θ)

]
.

Following the same methodology as for previous cases, we obtain:

RMI =
α

α+ β

(
logα−ψ(α)+ψ(α+β)

)
+

β

α+ β

(
log β−ψ(β)+ψ(α+β)

)
− log(α+β).

It is easy to see, that EPKL = MI + RMI (which is consistent with the general result that R̃
(1,1)

Exc =

R̃
(1,2)

Exc + R̃
(2,1)

Exc ).

Expected Pairwise Brier Score (EPBS). In this case, we would like to estimate the following
quantity:

Eθ∗E(θ∗ − θ)2 = Eθ∗
[
θ∗
]2 − 2Eθ∗

[
θ∗
]
Eθ

[
θ
]
+ Eθ

[
θ
]2
.

If we assume, that the parameters of the posterior distributions are equal, then the whole equation
above reduces to the double variance of θ. In case of Beta distribution, it equals to:

EPBS = 2varθ =
2αβ

(α+ β)2(α+ β + 1)
.

Note, that the posterior update rule for this simple Beta-Bernoulli model is:

α = αprior + x,

and
β = βprior + n− x,

where by subscript “prior” we highlight the parameters of the prior distribution, x is the number of
successes in observed training dataset, and n is the total number of observations.

Therefore we see, that given larger training dataset, the estimates of epistemic uncertainty will shrink.
This is the property we typically want to have from the epistemic uncertainty estimates – the bigger
the dataset, the less uncertainty.

However, in case of the prior misspecification (will be discussed below), it leads to certain problems.
If the prior parameters αprior and βprior are already large (indicating a highly concentrated prior), the
posterior will also be highly concentrated, regardless of the data. This can lead to an underestimation
of epistemic uncertainty because the model appears more certain than it should be.

M.1 VARIOUS DISTRIBUTION SHAPES

In this section, we explore different choices of the parameters and demonstrate, how the resulting
posterior distribution will look like, given different prior and different sizes of training datasets. We
show the resulting plots at the Figure 4. Note, that as a ground-truth we used θ∗ = 0.9. We see, that
given enough data, the mass of the posterior is concentrated around the correct value of the parameter,
regardless of the prior misspecification.
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(a) Uniform prior. α = β = 1.
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Figure 4: Different shapes of the posterior distributions.

M.2 PRIOR MISSPECIFICATION

In this section, we demonstrate, how the metrics of epistemic uncertainty behave, given different
(possibly misspecified) priors. We present the results in Figure 5. We see, that as we discussed
above, these metrics depend on the values if α and β. Therefore, the more these values are, the
less is the estimate of epistemic uncertainty. Since uniform prior contains minimal evidence, it
demonstrates maximal uncertainty, and therefor less vulnerable for prior misspecification. Note, that
in our experiments on deep ensembles, we considered uniform prior over parameters, therefore the
effect of prior misspecification should be negligible.
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(a) EPKL for different prior choices.
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(b) EPBS for different prior choices.

20 40 60 80 100
Sample Size

0.02

0.04

0.06

M
I

Mutual Information vs. Sample Size

Prior
Correct Prior

Underestimating Prior

Non-informative Prior

(c) MI for different prior choices.
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Figure 5: Epistemic uncertainty metrics, given prior misspecification and different samples sizes.

M.3 ERROR IN POSTERIOR APPROXIMATION

In this section, we consider the case of choosing wrong posterior distribution for inference. We
know, that in our toy example, the correct family to consider for inference is Beta. However, we
will misspecify the choice and consider Normal distribution instead. We use two approaches for
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inference. Namely, Laplace Approximation (approximates the posterior around the mode), and
Moment Matching (matches the mean and variance of the Beta distribution with a Gaussian).

We present results in Figure 6. We considered uniform distribution as a prior, and we used training
datasets of sizes 20 and 100. As expected, we see, that the given less data, errors in approximations
are more severe. However, if a bigger dataset is provided, the approximation becomes more accurate.
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(a) Approximations for n=20.
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(b) Approximations for n=100.

Figure 6: Resulting approximations given different sizes of training datasets.
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