
Understanding Differential Transformer
Unchains Pretrained Self-Attentions

Chaerin Kong1,2∗ Jiho Jang2∗ Nojun Kwak2

1 TwelveLabs 2 Seoul National University

chaerin.k.kong@gmail.com

Abstract

Differential Transformer has recently gained significant attention for its impressive
empirical performance, often attributed to its ability to perform noise canceled
attention. However, precisely how differential attention achieves its empirical
benefits remains poorly understood. Moreover, Differential Transformer archi-
tecture demands large-scale training from scratch, hindering utilization of open
pretrained weights. In this work, we conduct an in-depth investigation of Differ-
ential Transformer, uncovering three key factors behind its success: (1) enhanced
expressivity via negative attention, (2) reduced redundancy among attention heads,
and (3) improved learning dynamics. Based on these findings, we propose DEX, a
novel method to efficiently integrate the advantages of differential attention into
pretrained language models. By reusing the softmax attention scores and adding a
lightweight differential operation on the output value matrix, DEX effectively incor-
porates the key advantages of differential attention while remaining lightweight in
both training and inference. Evaluations confirm that DEX substantially improves
the pretrained LLMs across diverse benchmarks, achieving significant performance
gains with minimal adaptation data (< 0.01%).

1 Introduction

Transformer-based architectures have emerged as the cornerstone of modern deep learning across
multiple domains [74, 22, 65, 13, 67, 9, 34, 40, 11, 20, 41, 33]. With their attention mechanism,
transformers effectively model long-range dependencies, leading to significant advances in large
language models [73, 5, 48, 70, 1, 9]. However, a growing body of work [39, 50, 52] highlights that
these language models struggle with key information retrieval due to inherent attention noise.

To address this issue, Differential (DIFF) Transformer [85] introduces differential attention that
computes the difference between two attention scores, thereby boosting attention on key tokens
while suppressing common noise. Although its strong empirical performance has established it as a
promising alternative to standard transformers, how this simple architecture consistently harnesses
the differential operation for effective noise cancellation without explicit guidance remains elusive.
Moreover, due to the gap in architecture, employing DIFF attention requires training from scratch,
which prohibits utilization of open pretrained weights [73, 5, 70, 48, 59, 27, 1] and incurs huge cost.

In this paper, we aim to fill this gap by providing an in-depth analysis of the mechanisms of DIFF
Transformer and presenting a method to efficiently integrate its benefits into existing pretrained
transformers. Our key observations are threefold. (1) DIFF attention enhances expressivity through
negative attention scores. (2) DIFF attention reduces redundancy among its attention heads. (3) DIFF
Transformer exhibits improved learning dynamics.

Building on these insights, we present DEX (Differential Extension), an efficient framework that
injects the strengths of DIFF Transformer into a pretrained LLM without training from scratch.
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(a) Rank Correlation (b) Pearson’s Correlation (c) JS Divergence (d) Cosine Distance

Figure 1: Attention score comparison between the two groups in DIFF attention. Top 5% refers
to top-5% tokens with highest attention score in each sequence. It clearly shows that the overlap
between the two attention scores is much greater in non-salient tokens.

Unlike most finetuning methods that fit the model to downstream data, DEX is an architectural
adaptation strategy that introduces a key mechanism from a different architecture to a pretrained
model, conceptually similar to MHA2MLA [38]. Specifically, DEX operates by reusing the pretrained
softmax attention scores (softmax(QKT )) and applying its learnable differential mechanism to the
output value matrix (softmax(QKT )V), making the adaptation lightweight (in both training and
inference) yet effective, as demonstrated empirically. To facilitate stable and performant transition,
we introduce additional techniques for head selection and λ-annealing, which controls the critical
balance between original knowledge and incoming architectural changes. We validate DEX across
multiple model families (Llama-3 [26] and Qwen-2.5 [84]) and scales (0.5B-8B), using diverse
benchmarks such as language modeling [25, 77, 79], key information retrieval [39] and in-context
learning [6]. DEX consistently achieves significant gains using less than 0.01% the size of the original
training data (<1B tokens), without incurring nontrivial test-time overhead.

2 How Does Differential Transformer Work?

In this section, we systematically analyze the internal mechanics of DIFF Transformer. Since the
original weights are not publicly available at the time of writing, we train a DIFF Transformer on a
similar data mix to carry out our analyses. Please refer to Appendix E.2 for full details.

2.1 Preliminary: DIFF Transformer

The key innovation of DIFF Transformer is replacing the softmax attentions with DIFF attentions.
DIFF attention introduces a mechanism designed to suppress attention noise by computing the
difference between attention scores from two separate groups. Given an input sequence X ∈
RN×dmodel , it is first projected into queries, keys, and values as follows:

[Q1;Q2] = XWQ, [K1;K2] = XWK , V = XWV , (1)

where Q1, Q2,K1,K2 ∈ RN×d and V ∈ RN×2d denote projected matrices, and WQ,WK ,WV ∈
Rdmodel×2d are learnable parameters. The differential attention is then computed as:

DiffAttn(X) =

(
softmax

(
Q1K

⊤
1√

d

)
− λ · softmax

(
Q2K

⊤
2√

d

))
V, (2)

where λ is a learnable scalar. This differential mechanism enhances robustness by canceling common-
mode attention noise, similar in spirit to differential amplifiers. We note that despite DIFF attention
having the same number of parameters, it exhibits significantly higher compute cost and peak memory
usage in practice due to enlarged dimensions (see Fig.12). Refer to the original paper [85] for details.

2.2 Higher Expressivity via Negative Attentions

The empirical success of DIFF Transformer is often attributed to its noise-canceling effect, achieved
through subtraction between attention groups. Such noise cancellation is commonly hypothesized to
enhance performance by inducing sparsity [85], concentrating attention on relevant context while
suppressing irrelevant information. We investigate whether DIFF attention operates primarily through
this lens of conventional sparsity [72, 30].
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(a) Sparsity ratio (ϵ=1e-4) (b) Sparsity ratio (ϵ=1e-6) (c) Attention ent. (abs) (d) Attention ent. (group)

Figure 2: (a), (b): ratio of attention scores whose absolute value is smaller than ϵ. Except for the
bottom layers, DIFF Transformer displays lower sparsity ratio. (c), (d): Attention score entropy.
Entropy in (c) measures magnitude concentration, calculated on renormalized absolute values of the
final differential attention scores. Group refers to the two separate attentions in DIFF.

Our analysis of DIFF attention’s dual attention groups (Fig.1) indeed indicates a form of selective
filtering. Metrics such as correlations, Jensen-Shannon divergence [47], and cosine distance between
the groups’ attention scores (computed pairwise between corresponding heads) reveal high overall
similarity (blue) but notably weaker correspondence for the most salient tokens (green). This points
to a selective cancellation where shared, less critical attention patterns are offset by the subtraction,
while distinct signals for key tokens are largely preserved or emphasized. However, this observed
filtering does not directly translate to increased sparsity in its traditional definition (i.e., having many
close-to-zero values). In fact, Fig.2(a) and (b) show that DIFF attention often exhibits lower sparsity
ratios, while Fig.2(c) and (d) reveal higher entropy values, both indicative of lower sparsity when
compared to standard softmax attention.

(a) Proportion (b) Magnitude
Figure 3: The proportion and average magnitude of
positive/negative attention scores.

Figure 4: Attention scores on Indirect Object Iden-
tification (IOI, top two) and sarcastic expression
(bottom two). Blue indicates negative and red repre-
sents positive. Green boxes highlight the difference.

This suggests that DIFF attention’s noise canceling
embodies a more nuanced mechanism than simply
zeroing out non-salient contexts. As Fig.3 shows,
DIFF attention assigns negative scores to a substan-
tial fraction of context tokens, whose relative atten-
tion magnitude generally increases in higher layers.
Hence, DIFF attention does not uniformly zero out
irrelevant contexts, but is capable of flexibly contex-
tualizing them using these signed scores. As [53]
shows, employing negative attention to explicitly
model negative relevance in the query-key (QK) cir-
cuit provides greater flexibility to the output-value
(OV) matrix, reducing its need for implicit informa-
tion filtering and thereby fostering more expressive
representations. Qualitative examples in Fig.4, such
as down-weighting irrelevant subject in Indirect Ob-
ject Identification task [80] or non-literal interpre-
tation in sarcasm detection, illustrate how DIFF at-
tention can achieve a more refined information flow
using negative attention (green boxes). This con-
trasts with standard softmax attention that assigns
high scores even to these highly irrelevant contexts,
whose sign-insensitivity often burdens its OV matrix
with implicit information filtering [53]. (Additional
examples are in Appendix B.5).

2.3 Reduced Redundancy among Attention Heads

Multi-head self-attention is powerful but can be redundant [75, 21, 45, 83, 57, 7]. Our analysis reveals
that DIFF attention significantly reduces redundancy among attention heads. Fig.5 presents cosine
distance between per-head attention scores (higher distance relates to lower redundancy) and Centered
Kernel Alignment [61] between value-projected head features (higher alignment translates to higher
redundancy). The plots clearly indicate that DIFF attention exhibits reduced redundancy at both the
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(a) Cosine distance between attention scores. (b) CKA between attention head features.

Figure 5: (Left) Pairwise cosine distance between per-head attention scores (flattened across layers)
Brighter indicates larger distance, hence less redundancy. (Right) CKA [61] between per-head
features. Brighter means higher alignment, hence higher redundancy. See Appendix B.2.

attention score (left) and feature (right) levels. One might attribute this to DIFF having fewer effective
heads. However, our experiments demonstrate that merely employing fewer, wider attention heads
does not alleviate redundancy (see Appendix B.2). We hypothesize that the differential mechanism
grants greater flexibility in controlling attention patterns, reducing inter-head redundancy.

Figure 6: Layerwise head importance
distributions, normalized and sorted.

Examining attention head importance provides further in-
sights into head utilization. Fig.6 demonstrates the head
importances [60, 15], normalized by the maximum value
and sorted. In DIFF Transformer, importance is distributed
more uniformly across attention heads (Fig.6 blue), indi-
cating that each head contributes more evenly to the final
representation. Combined with the reduced redundancy,
this balanced contribution allows DIFF attention to cap-
ture a broader spectrum of diverse features compared to
conventional multi-head attention.

2.4 Improved Learning Dynamics

DIFF attention introduces novel components, including the differential operation and a learnable
parameter λ. To understand their impact on learning dynamics, we analyze the Hessian maximum
eigenvalue spectra (Fig.7), following the procedure of [64]. As discussed in [64], a high prevalence
of negative eigenvalues indicates non-convexity in the loss landscape, which can hinder training,
particularly during early phases [63, 19, 36, 35]. We observe significantly fewer negative eigenvalues
for DIFF Transformer compared to the standard transformer, suggesting improved optimization
dynamics. Notably, this benefit is largely lost when the learnable λ is removed (green line in Fig.7).

Training statistics further corroborate this finding. Fig.8 plots the language modeling loss and gradient
norms for the standard and DIFF transformer. While DIFF consistently achieves lower loss and more
stable grad norms, removing the learnable λ notably impairs optimization. We hypothesize that the
learnable λ plays a key role in stabilizing training dynamics, especially during the early stages.

Figure 7: Hessian max eigenvalue spectra.
While transformer and DIFF without learnable λ
(DIFFT-Lam) shows a number of negative eigen-
values, DIFF has much less.

(a) Loss curve. (b) Gradient norm.
Figure 8: Loss and gradient norm. DIFF shows
the best dynamic while DIFFT-Lam, DIFF with
non-learnable λ, shows instability.
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def Attn(X,W_q ,W_k ,W_v ,f_D ,λ,do):
# standard softmax attention
Q, K, V = X @ W_q , X @ W_k , X @ W_v
s = 1 / sqrt(d)
A = Q @ K.transpose(-1, -2) * s
O = softmax(A) @ V
# implicit differential adaptation
O = O - λ·f_D(O) if do else O
return O

def MHA(X,W_q ,W_k ,W_v ,f_D ,W_o ,λ,hs):
O = [Attn(X,...,λ,do=(i in hs)) for
i in range(h)] # hs: selected heads
return Concat(O) @ W_o

Figure 9: Differential Extension (DEX). The output value matrix O is transformed by subtracting a
λ-modulated projection from itself. This operation targets a layer-specific subset of attention heads.

3 Differential Extension

Based on the insights from Sec.2, we present DEX, a framework that integrates differential mechanism
into pretrained self-attentions. In designing DEX, we identify three primary desiderata: (1) effectively
integrating the beneficial properties of DIFF Transformer; (2) ensuring a lightweight transition
by maximally preserving and leveraging the pretrained knowledge; and (3) minimizing test-time
computational or memory overhead. In the following subsections, we describe each component of our
framework in detail, explicitly connecting the lessons learned from Sec.2 to satisfy these desiderata.

3.1 Implicit Differential Adaptation

Our analysis (Sec.2.2) suggests that DIFF attention’s ability to model negative relevance in its QK
circuit enhances representational power by facilitating more nuanced information processing in the
OV matrix. While this is achieved in DIFF attention by explicitly subtracting two attention scores,
naively retrofitting such a dual-group structure onto pretrained models can be problematic. Splitting
existing heads into two groups risks significant knowledge loss and instability; duplicating them
incurs prohibitive computational and parameter overhead. With DEX, we aim to achieve similar
enhancements in information processing, but stably and efficiently.

DEX introduces its learnable differential mechanism directly to the attention output instead of the
query-key (QK) circuit, an approach we term implicit adaptation. This strategy is motivated by the
reusability of pretrained attention magnitude signals, supported by our empirical findings that the
absolute scores of DIFF attention often mirror standard softmax scores (Fig.4, Appendix B.1). By
targeting the OV matrix, which is known to control information flow and perform implicit filtering
(Sec.2, [53, 23]), DEX empowers the pretrained attention with improved processing of standard
attention patterns.

Formally, our implicit differential adaptation is defined as follows:

O = softmax
(
QK⊤
√
d

)
V, O′ = O− λfD(O), (3)

where fD denotes a learnable projection parameterized by WD and λ is a learnable scalar. This design
offers several notable advantages, including lightweight adaptation through effective knowledge
reuse, minimal parameter and test-time compute overhead, and high compatibility with existing
transformers. We empirically demonstrate that despite being implicit, DEX effectively delivers the
empirical strengths of differential attention.

3.2 Selective Adaptation

Attention heads in standard multi-head attention can be highly redundant, and their contribution
to the final representation is seldom equal [75, 57]. Further motivated by our findings on effective
head utilization in differential attention (Sec.2.3), we propose to leverage this inherent heterogeneity
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via selective adaptation, applying the implicit adaptation (Eq. 3) only to a subset of heads within
each layer, typically targeting those identified as less critical. This selective approach enhances
underutilized heads while preserving critical ones, thereby improving overall representational capacity
and safeguarding vital pretrained knowledge. We introduce two data-driven head selection strategies:
Low-Importance Head Selection. The first method selects heads based on low representational
importance, following headwise importance criteria established in [60, 15]. We compute importance
scores and apply differential adaptation to the top-k heads with the lowest scores in each layer.
High-Entropy Head Selection. The second strategy targets attention heads with high entropy, a
state often associated with weaker representational focus, reduced functional specialization, or poten-
tial under-utilization [89, 37, 55, 43]. Similarly, we select and adapt the top-k heads demonstrating
the highest entropy within each layer.

3.3 Balancing Adaptation with Pretrained Knowledge via λ-Annealing

Our analysis in Sec.2.4 reveals that adaptive modulation of the differential mechanism is critical for
stable optimization. In our scenario, maintaining a careful balance between pretrained knowledge
and newly introduced architectural modifications is crucial. Zero-initializing the learnable λ would
be a typical way to safely introduce DEX [32, 88, 28], but that alone does not sufficiently encourage
the model to adopt the differential mechanism, as λ could remain near zero if the pretrained model is
already strong. To facilitate a stable and effective transition, we propose a scheduled annealing of λ:

λ(t) = (1− α)

[
t

T
λinit

]
+ αλlearn, α = min

(
1,

t

T

)
(4)

where t is the current training step, T is the annealing duration, λinit is a constant, and λlearn is a
learnable parameter initialized around zero. This schedule initiates λ(t) with zero for stability, uses
annealed λinit to provide a gradual learning signal for the differential mechanism (e.g., WD) when
0 < t < T , and transitions control to the learnable λlearn for optimal adaptation as t ≥ T .

3.4 Overall Framework

The complete formulation of DEX for a given head h is expressed as follows:

O = softmax
(
QK⊤
√
d

)
V, O′ = O− λ(t)I(h ∈ H)fD(O), (5)

where H is the set of heads selected for differential adaptation, and O′ is concatenated across all
heads and passed into the output projection. During training, we update WK,WV, and WO along
with WD and λlearn within self-attention, keeping all other parameters (e.g., FFN) frozen. This
targeted update strategy provides the necessary flexibility to integrate DEX into standard transformers,
while keeping the training lightweight, especially under standard GQA [2] setting.

4 Experiments

DIFF Transformer has demonstrated strong performance across a wide variety of tasks, including
general language modeling, key information retrieval, and in-context learning. We quantitatively
validate the effectiveness of DEX in integrating these strengths into pretrained LLMs. We conduct
ablation experiments and analyses to further verify our design choices.

4.1 Language Modeling Evaluation

Setup We apply DEX to Llama-3.1-8B [26], Llama-3.2-3B/1B [56], and Qwen-2.5-1.5B/0.5B [84].
As the original pretraining data for these models is unavailable, we build a custom corpus of web
pages, papers, encyclopedias, and code from open datasets [44, 82], similar to OLMo [62]. This
corpus contains 887M tokens (Llama-3 tokenizer), less than 0.01% of the models’ original pretraining
data size. Although DEX is not presented as a fine-tuning method, we compare against baselines
trained on the same data—including parameter-efficient tuning (PEFT; LoRA [32], PiSSA [54]) and
full fine-tuning (FT; Galore [90], APOLLO [93])—to control for the influence of this corpus. Direct
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Table 1: Language modeling benchmark scores across model variants and training methods. Green
indicates improvement over the baseline, while gray indicates a decrease.

Model Arc-C Arc-E BoolQ COPA Hellaswag MNLI OBQA PIQA WIC Winogrande WSC AVG ∆

Llama-3B 46.3 71.7 73.1 85.0 73.6 35.0 43.2 77.5 49.8 69.1 37.5 60.2 -
LoRA (r=8) 43.4 70.2 75.3 82.0 74.2 54.5 43.0 77.1 53.8 70.1 36.5 61.8 +1.6
LoRA (r=32) 43.7 72.0 76.2 83.0 74.7 46.7 43.2 77.7 55.2 70.0 36.5 61.7 +1.5
PiSSA 45.4 73.8 74.1 82.0 74.3 46.6 42.4 78.3 56.1 69.9 38.5 61.9 +1.7
FT 45.7 73.7 73.8 84.0 74.7 38.5 41.4 78.0 55.3 70.7 40.4 61.5 +1.3
GaLore 46.1 74.9 76.2 87.0 74.1 33.1 42.6 77.9 53.0 70.2 38.5 61.2 +1.0
APOLLO 45.8 74.4 73.5 84.0 74.7 35.0 42.8 77.5 56.1 70.2 45.2 61.7 +1.5
Ours 45.5 73.3 74.8 84.0 74.1 49.5 42.6 78.2 51.9 69.1 63.5 64.2 +4.0

Llama-1B 36.3 60.6 63.4 77.0 63.6 36.0 37.2 74.5 48.6 59.9 42.3 54.5 -
LoRA (r=8) 34.6 63.3 46.4 78.0 64.1 32.9 36.6 75.1 47.9 60.9 40.4 52.7 -1.8
LoRA (r=32) 35.9 65.4 61.5 78.0 64.4 32.6 38.2 75.1 48.7 60.3 37.5 54.3 -0.2
PiSSA 36.3 65.2 59.8 79.0 64.2 33.1 37.2 75.1 49.7 60.7 38.5 54.4 -0.1
FT 36.8 65.5 60.7 76.0 64.5 41.2 38.2 74.9 49.2 60.7 36.5 54.9 +0.4
GaLore 36.3 65.7 60.2 77.0 64.2 34.4 37.6 75.2 50.6 60.7 36.5 54.4 -0.1
APOLLO 37.1 65.0 58.1 77.0 64.4 37.5 36.8 74.9 51.6 60.4 36.5 54.5 +0.0
Ours 35.2 64.2 57.8 79.0 64.0 38.0 38.0 75.0 51.9 60.6 48.1 55.6 +1.1

Qwen-1.5B 45.1 72.2 72.8 83.0 67.8 52.6 40.6 76.0 53.0 63.5 57.7 62.2 -
LoRA (r=8) 43.3 70.3 73.5 84.0 67.5 49.3 39.2 75.1 53.3 64.3 51.0 61.0 -1.2
LoRA (r=32) 43.4 70.2 71.0 85.0 67.5 50.7 39.2 75.5 52.0 64.7 47.1 60.6 -1.6
PiSSA 44.3 70.1 72.6 84.0 66.7 47.5 40.0 74.3 54.7 63.9 52.9 61.0 -1.2
FT 43.9 71.9 68.7 84.0 67.6 51.5 40.2 75.7 53.6 64.5 48.1 60.9 -1.3
GaLore 44.3 72.7 72.0 84.0 67.4 47.6 39.6 75.0 53.1 64.7 51.9 61.1 -1.1
APOLLO 45.1 73.4 72.4 83.0 67.7 50.1 39.4 75.7 53.9 64.8 43.3 60.8 -1.4

Ours 45.3 74.1 70.1 84.0 67.8 50.2 40.8 76.4 53.3 63.2 61.6 62.4 +0.2

Qwen-0.5B 31.8 58.7 62.3 74.0 52.2 38.3 35.4 69.9 49.2 56.2 41.3 51.8 -
LoRA (r=8) 34.3 66.1 57.2 74.0 52.3 33.9 33.6 69.4 50.0 56.2 43.3 51.8 +0.0
LoRA (r=32) 33.4 63.9 60.6 73.0 52.1 39.1 34.4 69.7 49.2 55.6 36.5 51.6 -0.2
PiSSA 34.6 66.7 59.6 73.0 51.7 33.3 33.4 69.4 50.2 56.3 36.5 51.3 -0.5
FT 35.5 65.6 60.4 74.0 52.3 37.4 34.0 70.1 50.8 56.7 36.5 52.1 +0.3
GaLore 35.2 65.3 58.2 74.0 52.2 34.4 33.6 70.2 49.7 56.4 36.5 51.4 -0.4
APOLLO 35.3 65.7 58.0 72.0 52.3 34.7 34.0 70.2 50.3 57.0 36.5 51.5 -0.3

Ours 34.8 65.2 56.5 73.0 52.3 40.1 35.4 70.1 51.6 57.6 61.5 54.4 +2.6

Llama-8B 53.6 81.1 82.1 87.0 79.0 49.7 45.0 81.3 51.9 73.3 59.6 67.6 -
LoRA (r=8) 53.1 79.5 78.3 89.0 80.4 62.1 44.8 80.5 57.8 74.9 54.8 68.7 +1.1
FT 52.3 80.2 80.5 91.0 80.6 60.8 45.6 81.1 58.8 73.7 57.7 69.3 +1.7

Ours 52.1 79.5 79.6 91.0 80.4 58.6 46.4 80.5 58.3 75.2 64.4 69.6 +2.0

comparison with original DIFF Transformer is limited by unavailable pretrained weights, and we
defer evaluations in smaller settings to Appendix along with other details. For head selection we
simply set k to be half the total number of heads for each model, and we adopt the λinit from [85]
(we provide ablations in Appendix B.3). For PiSSA we report r = 32 case as this yields good results.

Results We report performances on 11 widely used language modeling benchmarks [16, 78, 76, 86,
58, 8, 68] using [25]. As shown in Table 1, DEX achieves significant improvements across model
sizes and families. Given the discrepancy between our training corpus, original pretraining data and
the downstream tasks, it is natural to observe degradation after additional training in some cases.
Nevertheless, DEX demonstrates robust performance gains on the majority of benchmarks, even
when other methods—all trained on the same corpus—exhibit performance drops. In particular, we
attribute DEX’s strong performance on WSC to its enhanced anaphora resolution granted by the
capacity to model negative relevance for incorrect antecedents, which aligns with our intuitions.
Notably, although DEX only updates self-attentions, it consistently outperforms both PEFT and full
fine-tuning even when full tuning steadily outperforms PEFT (e.g., Llama-1B).

4.2 Key Information Retrieval

Needle-in-a-Haystack test [39] is widely adopted to assess LLM’s ability to identify critical informa-
tion embedded in an extensive context. Following the multi-needle retrieval setting of [49, 69, 85],
we place the needle at five distinct depths within the context: 0%, 25%, 50%, 75%, and 100%,
accompanied by distracting needles. We note the total number of needles placed in the context as N ,
and the number of target needles actually being queried as R. Each combination of depth and context
length is assessed using 20 samples.
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(a) LLAMA (b) LLAMA + DEX

Figure 10: Multi-needle retrieval results. N : total number of needles, R: number of queries.

Fig.10 shows the result for N = 8, R = 1 case. DEX significantly enhances the retrieval performance
of the base Llama-3B model across all context lengths and embedding depths. Notably, DEX improves
the average accuracy score by 11.4% (absolute increase from 66.9% to 78.3%), highlighting its
effectiveness in improving key information retrieval capabilities.

Table 2: Effective attention scores allocated to
the answer spans inserted at different depths
in key information retrieval.

Attention to Answer ↑
Model 0% 25% 50% 75% 100% Avg

Llama 0.06 0.04 0.06 0.05 0.08 0.06
DEX 0.21 0.13 0.18 0.16 0.27 0.19

Increased attention to answer ratio in Table 2 further
demonstrates that DEX effectively transfers the core
capability of DIFF attention: attention noise cancel-
ing. Despite being implicitly applied to the output
value matrix, DEX notably alters the effective atten-
tion pattern to focus on relevant information. This
result empirically supports our design choice, plac-
ing DEX on the sweetspot between efficiency and
efficacy. We provide details in Appendix E.3.

4.3 In-Context Learning

Table 3: In-context learning performance.

N-shot

Dataset 1 10 100 500 1000 2000 Avg

TREC
Llama 20.0 71.1 88.9 93.3 88.9 93.3 75.9
LoRA 20.0 68.9 93.3 93.3 91.1 93.3 76.7
FT 16.0 76.0 86.0 92.4 91.1 93.3 75.8
DEX 26.7 84.4 86.7 93.3 88.9 93.3 78.9

Banking-77
Llama 24.4 35.6 55.6 86.7 91.1 91.1 64.1
LoRA 26.7 40.0 53.3 88.9 88.9 91.1 64.8
FT 21.6 34.4 56.0 84.4 88.8 92.4 62.9
DEX 22.2 37.8 60.0 91.1 95.6 95.6 67.0

Clinic-150
Llama 15.6 44.4 60.0 82.2 95.6 95.6 65.6
LoRA 22.2 42.2 57.8 82.2 95.6 95.6 65.9
FT 22.2 42.2 60.0 82.2 93.3 95.6 65.9
DEX 22.2 40.0 57.8 82.2 97.8 97.8 66.3

DIFF Transformer notably enhances in-context learn-
ing performance compared to standard transformer
models. To validate whether DEX can achieve similar
improvements, we conduct a comprehensive evalua-
tion using three established benchmarks: TREC [31],
Banking-77 [12], and Clinic-150 [42]. Following
the setup of [6], we adopt a random selection proce-
dure for N-shot examples, as retrieval-based scores
quickly saturate with state-of-the-art LLMs.

The results summarized in Table 3 clearly illustrate
that DEX consistently delivers performance gains
across all evaluated benchmarks compared to both the
base Llama model and fine-tuning baselines (LoRA
and FT). DEX achieves the highest average accu-
racy across varying N-shot settings, demonstrating its
robustness and efficacy in enhancing the in-context
learning capabilities of pretrained models.

4.4 Application to Instruction Tuning

We investigate whether DEX can likewise enhance performance on instruction-following tasks. To
fairly assess the effect of DEX, we adopt two complementary settings. First, we apply DEX on
a publicly available instruction-tuned checkpoint trained on an open-source instruction corpus
OpenHermes-2.5 [71]2 using the same training data (OH-2.5). This continued instruction tuning
setting eliminates the confounding effect of training data and lets us verify whether DEX improves

2https://huggingface.co/artificialguybr/Meta-Llama-3.1-8B-openhermes-2.5
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Table 4: Instruction-tuning results on 8 benchmarks. The top four rows correspond to the first
setting, while the bottom two rows correspond to the second.

Model MMLU Arc-C IFEval MBPP++ GSM8K AGIEval HumanEval Math500 AVG ∆

Instruction-tuned
Base 62.9 78.3 46.8 68.3 71.1 32.2 44.5 13.4 52.2 -
+ LoRA 63.1 79.5 45.7 65.3 70.3 40.6 47.0 4.0 51.9 -0.3
+ FT 63.0 78.6 49.2 63.2 68.8 42.3 36.6 20.0 53.7 +1.5
+ DEX 63.1 77.7 57.2 64.8 74.3 40.7 47.6 19.2 55.6 +3.4
Pretrained
+ LoRA 63.7 70.5 42.0 65.3 57.4 35.4 45.7 2.0 47.8 -4.4
+ DEX 63.6 77.3 51.0 66.1 68.4 37.9 50.7 16.2 53.9 +1.7

the performance of an existing instruct model. Second, we directly apply DEX to a base pretrained
model as an instruction-tuning method itself, similarly using OH-2.5 but in single stage. We examine
if DEX can effectively induce instruction-following capabilities without prior end-to-end instruction
tuning. Note that we include FT (further fine-tuning the open-source checkpoint on the same
OpenHermes data for more steps) as an additional baseline to alleviate the concern for underfitting,
which clearly distinguishes the contribution of DEX from the benefit of more training steps.

Table 4 reports results on eight representative benchmarks that span language understanding [29],
commonsense reasoning [16], instruction following [92], math [17, 29], code generation [4, 14],
and general human task [91]. We observe that DEX delivers favorable results on diverse settings,
significantly outperforming baselines on benchmarks like GSM8K, HumanEval and IFEval. When
directly applied to a base pretrained model, DEX achieves notably higher performance than LoRA,
demonstrating comparable performance to more heavily tuned baselines (top 3 rows) without any
end-to-end SFT. These results indicate DEX’s effectiveness in inducing and reinforcing instruction-
following capabilities efficiently.

4.5 Ablation and Analysis

We conduct ablation experiments using Llama-3B model. We mainly focus on two critical compo-
nents: head selection strategies and learnable lambda annealing. We report the average score for the
11 language modeling benchmarks (similar to Table 1). Appendix B presents full results.

Table 5: Ablation with head selection and lambda
control strategies. imp. refers to importance-
based and ent. stands for entropy-based.

Model Head Selection λ-learned λ-annealed LM Acc (%)
Llama - - - 60.2
DEX all ✓ ✓ 61.9
DEX imp. ✓ ✓ 63.9
DEX ent. (↓) ✓ ✓ 62.8
DEX ent. (↑) ✓ ✓ 64.2
DEX ent. ✓ ✗ 63.8
DEX ent. ✗ ✓ 63.4
DEX ent. ✗ ✗ 62.4

From Table 5, it is evident that incorporating
entropy-based head selection combined with both
learnable and annealed lambda methods yields
the best performance, achieving the overall accu-
racy of 64.2%. Removing either component from
lambda leads to noticeable performance drops, in-
dicating the necessity of both. Additionally, both
head selection strategies outperform the config-
uration without head selection, with the entropy-
based strategy pushing the boundary further. The
fact that choosing low entropy heads (↓) under-
performs further supports our design. These findings underline the complementary roles of the head
selection and lambda annealing mechanisms in maximizing the effectiveness of DEX.

We also analyze the inner working mechanism of DEX. First, we investigate how DEX modifies the
original attention output O via the subtracted term ∆ = λfD(O). Fig. 11a plots cosine similarity
(indicating modification direction, e.g., positive for suppression) against relative norm (modification
magnitude). We observe that while the similarity distribution suggests DEX’s capacity to both
reinforce and suppress features, heads exhibit distinct patterns, with some focusing on amplification
(higher norm for negative cosine, left) and others on attenuation (higher norm for positive cosine,
right). Second, CKA on head output features reveals that DEX notably reduces inter-head redundancy
(Fig.11b), implying more diverse head specialization. Lastly, we monitor λ during training in Fig.11c.
Simply zero-initializing the learnable λ (red) completely fails to introduce DEX, while removing
annealing (green) results in instability at the initial phase. Our approach (blue) smoothly introduces
DEX with minimal damage to the pretrained knowledge. Refer to Appendix for full results.
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(a) Jointplot between O and λfD(O). (b) Head CKA. (c) λ during training.

Figure 11: Analysis on DEX. (a) Cosine similarity (cosine(O,∆)) vs. Relative Norm (||∆||/||O||,
where ∆ = λfD(O)) (b) CKA of attention head output features (brighter means higher redundancy).
(c) Training dynamics of learnable λ under different initialization/annealing schemes.

We verify the test-time efficiency of DEX by comparing the throughput (tokens per second) and latency
with base Llama and DIFF Transformer (3B). Fig.12 clearly shows that both in terms of throughput
and latency, DEX demonstrates superior inference time efficiency. While DIFF Transformer exhibits
increasing inefficiency with longer context due to its compute-heavy attention operation, DEX remains
competitive to the original Llama baseline thanks to its lightweight design.

(a) Throughput comparison. (b) Latency Comparison.

Figure 12: Inference time efficiency analysis. We benchmark (a) throughput and (b) latency of three
attention variants. While DIFF attention costs significantly more compute at test-time compared to
the original Llama attention, DEX incurs negligible overhead thanks to its lightweight design. All
benchmarks are measured on a single Nvidia A100 GPU.

Figure 13: DEX with varying data size.

Finally, we evaluate the effect of training data size on the
application of DEX (Fig. 13). Notable gains appear with
just 400M tokens, highlighting the lightweight nature of
DEX. Since our training data lacks direct correlation with
the downstream benchmarks, modest amount of data (<1B)
is sufficient to elicit the full potential of DEX, and simply
adding more general data yields diminishing returns in
downstream tasks.

5 Conclusion

In this work, we study the internal mechanism of DIFF Transformer to identify three key factors
behind its empirical success: enhanced expressivity via negative attention, reduced redundancy
among attention heads and improved optimization dynamics. Based on these insights, we propose
DEX, an architectural adaptation method that efficiently integrates the empirical strengths of DIFF
Transformer into pretrained LLMs with standard transformer architecture. Diverse evaluation results
confirm the effectiveness and versatility of DEX.
Limitations For DIFF Transformer analysis, we followed the original setup as much as possible,
but different behaviors can emerge under different model scale, data composition, etc. Similarly,
though DEX works well across model sizes, it has not been tested beyond 8B parameter scale. We
leave it for future works.
Acknowledgement N. Kwak was supported by NRF (2021R1A2C3006659) and IITP grants
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We present analyses in Sec.2, our extension method in Sec.3 and experiments
in Sec.4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention the limitations in Sec.5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our work does not include theoretical results that demand disclosure of their
assumptions or proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We briefly explain our experimental setup in Sec.4.1. We provide comprehen-
sive details in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Some part of the code is proprietary asset, which prohibits disclosure.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present all the relevant details in Sec.4 and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments are generally too expensive to run multiple times and provide
error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide relevant information in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does not involve any human subject, and we rely completely on
publicly available open-source data.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss this in Appendix F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not contain any contributions that pose high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We add proper citations to all the open-source data, code and models we use in
this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work does not include release of new assets at this point.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Related Works

Differential Transformer [85] introduces an architecture designed to mitigate attention noise [39,
50, 52], a known challenge in transformer models. Its core mechanism involves computing attention
scores using two groups and then subtracting the resulting attention maps, aiming to cancel out
common-mode noise components. Building on this, DINT Transformer [10] aims to improve
numerical stability and training dynamics by incorporating an integral term alongside the differential
one. However, these pioneering works do not provide detailed mechanistic analyses explaining why
differential attention is effective. Furthermore, both architectures inherently require computing two
separate attention pathways, resulting in substantial computational overhead compared to standard
attention. This increased cost hinders practical deployment, particularly for large-scale models.
Building on top of our analysis on DIFF Transformer’s success, we propose DEX that implicitly
embeds the benefits of differential attention into pretrained language models without nontrivial
computational overhead.

Negative Attention Scores. Several approaches explicitly introduce negative attention scores.
Centered Attention [3], for instance, adds offsets to the softmax calculation, forcing attention weights
per query to sum to zero (rather than one) to mitigate over-smoothing. Other methods achieve
negative weighting through direct manipulations of the softmax operation or via linear attention
approximations [53, 55], often demonstrating enhanced representational expressivity. However,
methods that explicitly alter the core attention computation can introduce training stability challenges
and often lack compatibility with highly optimized implementations like FlashAttention [18]. In
contrast, DEX aims to capture the benefits of signed, differential attention implicitly. By applying
its learnable transformation after the standard softmax attention calculation (i.e., to the output
values), DEX avoids modifying the core QK-softmax pathway, thereby maintaining compatibility and
potentially simplifying integration and training.

Attention Redundancy and Entropy. Numerous works [15, 60, 57, 75, 21, 45, 83, 7] have shown
that there is significant redundancy among attention heads in multi-head attention, and propose head
pruning methods to enhance efficiency. Instead of getting rid of unimportant heads, our approach
applies implicit differential adaptation to redundant heads, effectively revitalizing them and modeling
richer attention representations. Meanwhile, attention entropy-based analyses have provided insights
into the transformer attention mechanisms. [89, 55] argues that excessively high attention entropy
negatively impacts performance, while [37, 87] associates entropy with training stability. In this
work, we leverage attention entropy in two ways: (1) understanding the attention score distribution
(and potential sparsity), and (2) identifying less critical attention heads.

B Ablation and Analysis

In this section, we present additional empirical results to support our design choice and analysis.

B.1 Attention Magnitude Correlation

(a) Rank Corr. (b) Pearson’s Corr.

Figure 14: Correlation between Llama atten-
tion and DIFF attention.

In Fig.14, we present the correlation between attention
scores from Llama and DIFF Transformer, computed
layer by layer. Specifically, we compare Llama’s soft-
max scores against both the original signed scores
from DIFF attention (green) and their absolute val-
ues (blue). Note that while standard Llama attention
scores are non-negative (due to softmax), DIFF atten-
tion scores can be negative. Interestingly, both rank
and Pearson correlations are significantly higher when
using absolute values (blue) compared to signed val-
ues (green). This suggests strong correspondence in
the magnitude of attention (indicating relative impor-
tance), even when the signed scores differ. This observation motivates our DEX design: since the
relative importance signals (magnitudes) from the standard QK/softmax pathway are largely pre-
served, we reuse them and focus our adaptation efforts on enhancing the subsequent OV circuit to
incorporate differential mechanism.
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B.2 Attention Head Redundancy

We address the potential concern that lower inter-head redundancy in DIFF Transformer stems from
its common configuration using fewer, wider attention heads (typically halving head count while
doubling head dimension 3).

Figure 15: Mean pairwise cosine distance
between attention scores from different heads.

We plot the average pairwise cosine distance between
head attention scores per layer (Fig.15). The figure
shows DIFF attention exhibiting significantly higher
average cosine distance, indicating lower redundancy
(greater pattern dissimilarity) among its heads. No-
tably, merely using fewer, wider heads does not repli-
cate this effect, as demonstrated by our LLAMA-half
baseline (green), configured with halved head count
and doubled head dimension. We hypothesize that
the differential mechanism grants greater flexibility
in controlling attention patterns, thus reducing inter-
head redundancy.

Heatmaps visualizing the pairwise cosine distances
between attention maps from different heads (Fig.16)
further corroborate our findings. They show lower inter-head distances (indicating higher similarity
and redundancy) in the standard transformer (LLAMA), whereas DIFF Transformer maintains higher
distances, demonstrating more diverse attention patterns.

Figure 16: Pairwise cosine distance between attention maps from different attention heads in each layer. Brighter
color indicates larger distance, hence lower redundancy.

Centered Kernel Alignment (CKA) analysis comparing attention heads before and after applying
DEX (Fig.17) further confirms that DEX reduces inter-head redundancy. The results clearly show
lower overall alignment between heads after adaptation in the pretrained models, indicating increased
functional diversity.

3https://github.com/microsoft/unilm/issues/1663
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Figure 17: Centered Kernel Alignment for attention heads. Brighter colors indicate higher alignment/similarity.
(Top) Llama, (Bottom) DEX.

B.3 Abalation on λinit

Table 6: Ablation on λinit. DIFF refers to
depth-aware initialization following [85].

λinit 0.8 0.5 0.3 DIFF

LM Acc (%) 54.3 54.0 54.2 54.4

Table 6 shows DEX performance on the language
modeling benchmarks (average over 11 tasks from
Table 1, using Qwen-0.5B) when varying the λinit

strategy. The results indicate relative robustness to
different fixed scalar initializations (0.3-0.8). How-
ever, adopting the initialization scheme from the orig-
inal DIFF Transformer setting yields slightly the best
performance. We hypothesize the layer-aware initialization is beneficial for training.

B.4 Ablation on Head Selection k

Table 7: Ablation on head selection k.

k 8 16 24 32

LM Acc (%) 53.7 55.6 54.4 54.1

In Table 7, we present the average performance of
DEX with different number of target attention heads
(k) on 11 language modeling benchmarks. Select-
ing too few heads (e.g., k = 8) provides insufficient
capacity for the differential adaptation, while modify-
ing too many heads risks disrupting critical pretrained
knowledge, leading to performance degradation. We empirically find modifying about 50% of the
attention heads tends to be optimal in general (note we use Llama-1B with 32 heads for ease of
demonstration).

B.5 Qualitative Results

We display additional examples from qualitative analysis in Sec.2.2.

Figure 18: Qualitative examples for DIFF Transformer and Llama.

Fig.18 aligns with the observations from Fig.4, illustrating how DIFF attention leverages negative
attention scores. The left example shows an Indirect Object Identification task where DIFF Trans-
former assigns a negative attention score to mark the subject (i.e., John) as irrelevant. The right
example shows sarcasm detection, where DIFF attention identifies the non-literal expression and
explicitly allocates negative attention scores accordingly.

C Comparison to DIFF Transformer

A direct comparison with the original DIFF Transformer model is not possible due to unavailable
weights. Therefore, to establish a point of reference, we compare DEX with a DIFF Transformer model
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that we trained ourselves at a smaller scale, following the procedures detailed in Appendix E.2. To
set up this comparison, we first train two models from scratch on the exact same training data: (1) a
standard transformer baseline using the Llama architecture (Llama), and (2) DIFF Transformer model
(DIFF). Subsequently, we apply DEX to the Llama baseline using a small subset of the pretraining
data (<1B tokens) to create the third model, simply noted DEX. We additionally train a separate Llama
model from scratch with DEX attached from the beginning, to understand DEX’s architectural capacity
beyond its original purpose of adaptation, which we refer to as DEX-S. We report the performance of
these four models (Llama, DIFF, DEX, DEX-S) on the 11 language modeling benchmarks in Table 8.

Table 8: Scores on 11 benchmarks. Green indicates increases and gray indicates decreases. All
values are rounded to one decimal place.

Model Arc-C Arc-E BoolQ COPA Hellaswag MNLI OBQA PIQA WIC Winogrande WSC AVG ∆

Llama 21.8 37.0 60.5 63.0 29.0 35.1 25.2 58.4 50.6 49.6 36.5 42.4 -
DIFF 24.2 37.2 54.0 68.0 29.0 35.5 26.4 58.9 50.0 52.2 36.5 42.9 +0.5
DEX 22.2 37.1 60.5 64.0 29.0 35.1 25.8 58.3 50.6 51.2 36.5 42.8 +0.4
DEX-S 22.5 37.1 61.5 63.0 28.7 35.2 27.4 58.1 50.0 51.0 36.5 42.8 +0.4

From the table, we first observe that DIFF Transformer generally outperforms standard transformer
on the majority of benchmarks, which supports the strength of DIFF Transformer as a general purpose
language model. Furthermore, the results clearly demonstrate that DEX, despite being lightweight
both during training and inference, effectively enhances the pretrained Llama model, closing the gap
between standard transformer and DIFF Transformer. DEX-S, a variant of DEX applied from scratch,
also delivers competitive performances beyond standard Llama model.

Figure 19: Head CKA comparison between Llama vs DEX vs DIFF.

Head CKA results further support the effectiveness of DEX (Fig.19). Compared to standard trans-
former (left), DEX significantly reduces the inter-head redundancy (indicated by lower alignment),
yielding similar results to DIFF Transformer.

D Efficiency Analysis

To evaluate inference efficiency, we benchmark throughput (tokens per second) for 3B-parameter
versions of Llama, DIFF Transformer, and DEX, presenting the results in Fig.12a. Context lengths
were varied from 1k to 64k tokens to cover a comprehensive range of use cases. All tests were
conducted on a single NVIDIA A100-80GB GPU, utilizing PyTorch’s standard scaled dot-product
attention implementation4. The reported throughputs are averaged over 30 batches, following an
initial 5 warm-up batches.

E Implementation Details

In this section, we provide comprehensive details for our experiments, some of which were abbreviated
in the main manuscript for brevity.

4https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_
product_attention.html
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E.1 Language Modeling Evaluation

Dataset We constructed our custom training corpus using a subset of the Dolmino dataset5. Specifi-
cally, we mixed web pages, academic papers, encyclopedia entries, and code texts in approximate
ratios of 74.3%, 6.5%, 7.9%, and 11.3% respectively. This resulted in a corpus totaling 887M tokens
(measured using the Llama-3 tokenizer). Our data preparation generally followed the recipe of
OLMo2 [62], with the main exception being a greater upsampling of the code text component.

Training All models, including baselines and DEX variants, were trained on our custom corpus
for 1 epoch. A context length of 32k tokens was used for all Llama and Qwen models during this
training phase. We employed a cosine learning rate schedule, using a peak learning rate of 1× 10−4

for partial fine-tuning methods (including DEX) and 1× 10−5 for full fine-tuning baselines, as these
settings generally yielded the best outcomes in preliminary experiments. A learning rate warm-up
ratio of 0.03 was used. All experiments were conducted using 8 NVIDIA A100-80GB GPUs, with
the run time ranging from 2.5-16 hours depending on the model size.

E.2 Training DIFF Transformer

We train our own DIFF Transformer model for analysis. This subsection details its training procedure.

Dataset We followed the recipe of DIFF Transformer and StableLM-3B6, using various open-source
datasets [66, 24, 46, 81] to create a corpus of approximately 30 billion tokens (Llama-3 tokenizer).
This corpus encompasses a diverse range of domains, including academic papers, source code,
encyclopedic articles, and literature.

Model We trained a 0.4-billion parameter version of DIFF Transformer. Key architectural parame-
ters are provided in Table 9.

Table 9: Configuration for 0.4B DIFF Transformer.
params values

# Layers 16
# Heads 16
# KV Heads 4
Hidden size 1024
FFN size 4096

Training For training, we employed the AdamW optimizer [51] with a cosine learning rate schedule.
The peak learning rate was set to 1×10−4, the global batch size to 256, and the learning rate warm-up
to 0.1. The λ parameters within the differential attention were initialized according to the exact
schedule specified in the original DIFF Transformer paper [85].

E.3 Approximating Effective Attention Scores for DEX Interpretability

Because DEX directly alters the attention block’s output value matrix O rather than the initial softmax
scores, standard attention visualization can be misleading. To provide insight into its effective learned
behavior, we propose methods to approximate the effective attention scores that would yield DEX’s
modified output using the original value matrix.

Least-Squares Approximation This method uses the Moore-Penrose pseudoinverse to derive
effective attention scores X that best reconstruct DEX’s output transformation. Specifically, let
A = softmax(QKT /

√
dk) be the original softmax attention scores from a given head, V ∈ RN×dv

be the corresponding value matrix (where N is sequence length, dk is key dimension, dv is value
dimension), and WD ∈ Rdv×dv be the learnable weight matrix for fD in DEX (assuming λ(t) is

5https://huggingface.co/datasets/allenai/dolmino-mix-1124
6https://github.com/Stability-AI/StableLM
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absorbed into WD or considered ≈ 1 for this analysis). The original head output is O = AV, and
the DEX-modified output is O′ = O(I −WD). We seek an effective attention score matrix X such
that XV ≈ O′.

The least-squares solution for X is:

X = O′V+ = AV(I −WD)V+ (6)

where V+ denotes the Moore-Penrose pseudoinverse of V, computed numerically in practice.

This X represents the attention pattern that, if applied to the original values V, would best reconstruct
DEX’s modified output for that head. Since this involves an approximation and the use of a pseu-
doinverse (which can be sensitive if V is ill-conditioned or has a significant null space), numerical
considerations are important. We therefore complement and cross-check these results using a second
technique.

Optimization-based Approximation As with the pseudoinverse method, we aim to find an effective
attention score matrix X such that XV approximates the DEX output O′ = AV(I −WD). Rather
than a closed-form pseudoinverse solution, this approach directly optimizes for X for each input
sample for which O′ and V are computed. For each sample, X is typically initialized (e.g., as the
original attention scores A) and then updated for 100 iterations using gradient descent (learning rate
1× 10−3) to minimize a reconstruction loss with the form ||XV −O′||22.

The primary interpretable attention scores reported in our main analyses (e.g., Table 2) were derived
using the pseudoinverse method. This optimization-based approach served as a cross-validation, and
we confirmed strong agreement between the effective attention scores obtained from both techniques.
While both methods yield approximations subject to numerical precision, they offer valuable tools
for understanding the internal mechanisms and effective attention patterns of DEX.

F Broader Impact

Potential Positive Societal Impacts: By improving core LLM capabilities such as information
retrieval, in-context learning, and overall representational quality, DEX could contribute to more
effective and reliable AI systems. This includes advancements in AI-assisted education, more capable
research tools, improved accessibility to information, and more helpful AI assistants. Furthermore,
DEX’s design emphasizes lightweight adaptation, which could make powerful LLM enhancements
more resource-efficient and accessible, potentially reducing the computational burden associated with
adapting large models.

Potential Negative Societal Impacts: As DEX is designed to improve the capabilities of LLMs, it
shares the potential negative societal impacts inherent in more powerful language model technology.
Enhancements in LLM performance and efficiency could inadvertently facilitate the creation of more
sophisticated or scalable misuse scenarios, such as generating convincing disinformation, spam, or
impersonations. If an LLM enhanced by DEX produces incorrect or biased information, its improved
fluency might make such outputs seem more authoritative, potentially exacerbating harm. While
DEX is a foundational architectural improvement rather than a specific end-user application, the
dual-use nature of advancements in LLM capabilities warrants careful consideration.

We believe that continued research into robust AI safety measures, ethical development guidelines,
bias detection and mitigation, and responsible deployment practices for all LLMs is crucial as their
capabilities, including those enhanced by methods like DEX, advance.
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