
Published as a conference paper at ICLR 2023

MIND THE POOL: CONVOLUTIONAL NEURAL NET-
WORKS CAN OVERFIT INPUT SIZE

Bilal Alsallakh
Voxel AI ∗

David Yan
Meta

Narine Kokhlikyan
Meta AI

Vivek Miglani
Meta AI

Orion Reblitz-Richardson
Meta AI

Pamela Bhattacharya
Meta

ABSTRACT

We demonstrate how convolutional neural networks can overfit the input size: The
accuracy drops significantly when using certain sizes, compared with favorable
ones. This issue is inherent to pooling arithmetic, with standard downsampling
layers playing a major role in favoring certain input sizes and skewing the weights
accordingly. We present a solution to this problem by depriving these layers from
the arithmetic cues they use to overfit the input size. Through various examples,
we show how our proposed spatially-balanced pooling improves the generaliza-
tion of the network to arbitrary input sizes and its robustness to translational shifts.

1 INTRODUCTION

Convolutional neural networks (CNNs) are versatile models in machine learning. Early CNN
architectures used in image classification were restricted to a fixed input size. For example,
AlexNet (Krizhevsky et al., 2012) was designed to classify 224×224 images from ImageNet (Deng
et al., 2009). To facilitate model comparison, this size has been adopted in subsequent ImageNet
classifiers such as VGGNet (Simonyan & Zisserman, 2015) and ResNet (He et al., 2016).

The adoption of fully-convolutional architectures (Long et al., 2015; Springenberg et al., 2015) and
global pooling methods (Lin et al., 2014; He et al., 2015) demonstrated how CNNs can process
inputs of arbitrary size. Fully convolutional networks eliminate the use of fully-connected layers
in CNN backbones, preserving 2D feature maps as the output of these backbones. Global pooling
summarizes feature maps of arbitrary sizes into fixed-size vectors that can be processed using fully-
connected classification layers. This ability to process inputs of varying sizes enables CNN-based
classifiers to leverage their full resolution and preserving their aspect ratios.

The role of input size in CNNs has been mainly studied with respect to computational efficiency,
receptive field adequacy, and model performance (Richter et al., 2021). In this paper, we study the
impact of input size on the robustness and generalization of CNNs. In particular, we are interested
in analyzing the sensitivity of CNNs with flexible input size to variations in this size, as illustrated
in Figure 1. We demonstrate how the input size(s) used during training can strongly impact this
sensitivity, and in turn, the robustness of CNNs to input shifts. We further introduce a solution to
reduce this sensitivity. Our contributions are:

• Demonstrating how CNNs can overfit the boundary conditions dictated by the input size
used during training 1, and identifying pooling arithmetic 2 as the culprit (Section 2).

• Introducing a modification to stride-based downsampling layers such as maxpooling and
strided convolution to mitigate size overfitting (Section 3) and demonstrating how it can
improve the accuracy and shift robustness of CNNs in two exemplary tasks.

In Section 4 we discuss the implications of size overfitting and link our observations with relevant
findings in the literature.

∗Work done mainly while at Meta AI.
1We refer to this as size overfitting for brevity.
2By pooling we refer to any stride-based downsampling such as maxpooling and strided convolution.

1

Published as a conference paper at ICLR 2023

192 x 192 224 x 224 256 x 256 288 x 288

Input size at inference time (width = height)

64

66

68

70

To
p-

1
ac

cu
ra

cy
on

Im
ag

eN
et

Input size
during training:
224x224

Size of the final
feature maps

7x7
8x8

9x9
10x10

Standard CNN

Spatially-
balanced CNN

Figure 1: The ImageNet top-1 accuracy of two ResNet-18 models as a function of input size. Both
models are trained on 224 × 224 images. The standard CNN represents the baseline available in
PyTorch. Our spatially-balanced CNN mitigates periodic size overfitting.

2 HOW DO CNNS OVERFIT INPUT SIZE?

Consider the ResNet-18 implementation available in PyTorch (Paszke et al., 2019). We analyze the
sensitivity of the provided pretrained model to variations in input size. The model is trained on
ImageNet using 224× 224 images. It uses global average pooling to summarize the feature maps of
the last convolutional layers into scalar values.

2.1 VARYING THE INPUT SIZE

For the purpose of our analysis, we vary the input size from 192×192 to 299×299. This is done by
simultaneously increasing the width and the height by 1 pixel, limiting the input to a square shape.
This simplifies the analysis and preserves the aspect ratio used during training.

We follow the same resizing method used during training when possible. This method first resizes
the image so that the smaller dimension is equal to s = 256. Then, the method applies a random
crop of size 224 × 224. We use the same steps, changing mainly the crop size, and applying a
centered crop instead of a random crop. This maintains the object scale to match the training images.
Centered crops are typically used in the validation phase to eliminate randomness. A crop smaller
than 224 × 224 incurs a loss of information at the periphery. A crop s′ × s′ larger than 256 × 256
would require padding. To avoid padding artifacts, we change the first step to use s = max(s′, 256).

The information loss in crops smaller than 224× 224 and the increased object scale in crops larger
than 256×256 can potentially impact the classification result of certain instances. Nevertheless, the
analysis helps identify a fundamental impact of input size on CNNs, as we explain next.

2.2 ANALYZING SENSITIVITY TO INPUT SIZE

For each input size, we compute the accuracy of the pretrained model on the ImageNet validation
set after resizing the images as described above. Figure 1 depicts in blue the accuracy as a function
of the input dimension. Both input dimensions are increased simultaneously.

The validation accuracy generally increases with the input size in the range we considered. However,
there are remarkable drops in accuracy that occur periodically at an interval of 32, immediately
after reaching a peak. This suggests that the model favors spec ific input sizes that correspond to
these peaks, while it struggles with inputs that are 1-pixel larger in width and in height. We next
demonstrate how these peaks and drops in accuracy are a byproduct of pooling arithmetic.

2

Published as a conference paper at ICLR 2023

224 x 224

(3, 3, 2, 2)

(3, 3, 3, 3)

Input size:

Thereof
used:

Padding:

225 x 225

(3, 3, 3, 3)

(3, 3, 3, 3)

Input size:

Thereof
used:

Padding:

256 x 256

(3, 3, 2, 2)

(3, 3, 3, 3)

Input size:

Thereof
used:

Padding:

257 x 257

(3, 3, 3, 3)

(3, 3, 3, 3)

Input size:

Thereof
used:

Padding:

unconsumed 1-pixel line of padding

conv1 maxpool L2.0.conv2 L3.0.conv2 L4.0.conv2

K
e

rn
el

 s
iz

e
=

 (
7,

 7
)

st

rid
e

=
 (

2,
 2

)

pa
dd

in
g

=
 (

3,
 3

, 3
, 3

)

K
er

ne
l s

iz
e

=
 (

3,
 3

)

st
rid

e
=

 (
2,

 2
)

pa

dd
in

g
=

 (
1,

 1
, 1

, 1
)

K
e

rn
el

 s
iz

e
=

 (
3,

 3
)

st

rid
e

=
 (

2,
 2

)

pa
dd

in
g

=
 (

1,
 1

, 1
, 1

)

K
er

ne
l s

iz
e

=
 (

3,
 3

)

st
rid

e
=

 (
2,

 2
)

pa

dd
in

g
=

 (
1,

 1
, 1

, 1
)

K
er

ne
l s

iz
e

=
 (

3,
 3

)

st
rid

e
=

 (
2,

 2
)

pa

dd
in

g
=

 (
1,

 1
, 1

, 1
)

112 x 112
56 x 56 28 x 28 14 x 14

7 x 7

128 x 128

57 x 57
15 x 15

8 x 8
29 x 29

113 x 113

64 x 64 32 x 32 16 x 16
8 x 8

9 x 9

129 x 129
65 x 65 33 x 33 17 x 17

 o
ut

pu
t f

ea
tu

re
 m

ap
s

Figure 2: Illustrating how input size impacts pooling arithmetic in ResNet-18. Each column repre-
sents a stride-2 downsampling layer. An input of size 224 × 224 or 256 × 256 leads each layer to
leave out 1-pixel row and column of the applied padding. In contrast, an input of size 225× 225 or
257× 257 causes all of these maps to have odd dimensions, leaving no padding unconsumed.

2.3 EXPLAINING PERIODIC SIZE OVERFITTING

To understand why the model overfits specific input sizes, we analyze how it processes inputs of
different sizes. We focus on downsampling layers since the remaining layers in the convolutional
backbone do not impact the size. The PyTorch implementation of ResNet-18 uses both maxpooling
and strided convolution (Springenberg et al., 2015) for downsampling, with a total of five such
layers. All of these layers use odd-sized kernels.

Figure 2 illustrates how four inputs of different sizes are processed by the downsampling layers. In
particular, we show the output size computed by each of these layers, and whether the layer leaves
parts of the padding applied to its input unconsumed. This happens when the dimensions of this
input are of a different parity than the odd-sized kernel (Alsallakh et al., 2021b).

An image of size 224 × 224 results in an even-sized input at each layer, leading to unconsumed
padding at the right and bottom sides of those inputs. The same happens with input images of size
256 × 256. In contrast, images of size 225 × 225 and 257 × 257 result in odd-sized inputs at each
intermediate layer, leaving no padding unconsumed. Input sizes between the above edge cases result
in unconsumed padding at a subset of the layers. For example, a 226 × 226 input impacts only the
first downsampling layer while a 227× 227 input impacts only the second layer. A 228× 228 input
impacts the first and the second downsampling layers only.

Since the model is trained on 224× 224 images, it expects to consume padding only at the left and
top sides of the input of each downsampling layer. The peaks of the blue plot in Figure 1 correspond
to input sizes that result in the same behavior at these layers. The behavior is periodic with respect to
input size. It recurs at an interval of 2|D|, where |D| is the number of stride-2 downsampling layers
and is equal to |D| = 5 in our model. The sharp drops in Figure 1 correspond to input sizes that
lead to the opposite behavior: The padding is consumed at both sides of every downsampling layer,
deviating significantly from the training-time behavior. These drops recur at the same interval, e.g.
at 193× 193, 225× 225 and 257× 257.

Appendix C demonstrates the above issue in various models besides ResNets such as Efficient-
Net (Tan & Le, 2019), MobileNet (Sandler et al., 2018), MNASNet (Tan et al., 2019), RegNet (Ra-
dosavovic et al., 2020), ResNeXt (Xie et al., 2017) and VGGNet Simonyan & Zisserman (2015).

3

Published as a conference paper at ICLR 2023

2.4 VALIDATING THE ROLE OF POOLING ARITHMETIC

To validate our observation about periodic size overfitting, we retrain the aforementioned ResNet-18
using three different input sizes: 193× 193, 225× 225 and 256× 256. The first two sizes leave no
padding unconsumed, while the third size exhibits the opposite behavior as Figure 2 illustrates.

192 x 192 224 x 224 256 x 256
input size at inference time (width = height)

0.65

0.67

0.69

0.71

To
p-

1
ac

cu
ra

cy
 o

n
Im

ag
eN

et ResNet-18 trained on 193x193 images

192 x 192 224 x 224 256 x 256
input size at inference time (width = height)

0.63

0.66

0.69

0.72

To
p-

1
ac

cu
ra

cy
 o

n
Im

ag
eN

et ResNet-18 trained on 225x225 images

192 x 192 224 x 224 256 x 256
Input size at inference time (width = height)

0.63

0.66

0.69

0.72

To
p-

1
ac

cu
ra

cy
 o

n
Im

ag
eN

et ResNet-18 trained on 256x256 images

Figure 3: Sensitivity to input size of ResNet-18 trained using three different input sizes.

Figure 3 depicts the input-size sensitivity of the resulting models at inference time. It is evident
that the model trained on 256 × 256 images exhibits the same behavior as the model trained on
224 × 224 ones discussed in the previous Section (Figure 1). It favors the same input sizes, and
exhibits sharp drops in accuracy at the same unfavorable input sizes. Interestingly, the models trained
using 193×193 and 225×225 images do not exhibit sharp drops in accuracy. Their accuracy remains
relatively steady within the same interval, with significant jumps between the intervals. These jumps
correspond to an increase in the size of the final feature maps, e.g. from 7 × 7 to 8 × 8 when the
input size changes from 224× 224 to 225× 225 (Figure 2).

We aim to understand why the first two models do not exhibit periodic drops in performance, unlike
the third and the original pretrained model. For this purpose, we examine the mean 3× 3 kernel of
each layer as suggested by Alsallakh et al. (2021a). Figure 4a illustrates how these mean kernels
are computed. Figure 4b depicts the mean kernels of the original model, pretrained on 224 × 224
images.d Figure 4c depicts the mean kernels of the model trained on 225× 225 images. It is evident
that all mean kernels exhibit high symmetry about their center when trained on 225 × 225 images.
In contrast, the mean kernels of downsampling layers or adjacent layers exhibit a strong asymmetry
when trained on 224 × 224 images. This asymmetry is due to overexposure to zero padding at the
left and top sides, caused by unconsumed padding as demonstrated by Alsallakh et al. (2021b).

Our analysis confirms the fundamental role of pooling arithmetic in the ability of CNNs to overfit
input size. The input size used during training dictates the overfitting behavior. We next introduce
an adjustment to CNNs that mitigates this behavior.

(a) Aggregating
layer weights

(b) ResNet-18 trained
on 224x224 images

(c) ResNet-18 trained
on 225x225 images

(d) ResNet-18 with SBPool
trained on 224x224 images

mean kxk kernel

Figure 4: The impact of unconsumed padding on the learned weights in ResNet-18. (a) Computing
the mean kernel in a layer as a means to examine potential spatial skewness. We show the mean
3 × 3 kernels of (b) the baseline model, pretrained on 224 × 224 images. (c) a model trained on
225× 225 images, and (d) a model trained on 224× 224 images with our mitigation (SBPool).

4

Published as a conference paper at ICLR 2023

3 SPATIALLY-BALANCED POOLING (SBPOOL)

We propose an adjustment to downsampling layers in CNNs that aims to prevent them from overfit-
ting the input size during training. Our adjustment is designed to deprive these layers from cues that
lead to overfitting, whether the downsampling is based on pooling or on strided convolution. Our
key insight is that when an input size incurs unconsumed padding at a standard downsampling layer,
the latter is always located at the right and bottom sides of the layer’s input (Fig 5a). In contrast, the
padding at the left and top sides is always consumed. This happens over and over again as the CNN
processes various training samples of the same size. This leads to overexposure to padding at the
left and top sides, giving the CNN an artificial cue about that input size.

To deprive the CNN from the above-mentioned cue, we modify downsampling layers so that poten-
tially unconsumed padding can occur at any side of the input with equal probability during training
(Figure 5b). With this modification, unconsumed padding is evened out on average at different sides
as the CNN processes various training samples. As a result, unconsumed padding does not incur
spatial bias in the learned filters (Figure 4d). We call this modification SBPool.

(a) Standard Pooling (b) Spatially-balanced Pooling (SBPool)

Randomly select from the above variants during trainingUnconsumed padding

Figure 5: (a) Standard downsampling: Unconsumed padding is always at the right and bottom sides
of the input. (b) Our proposed downsampling: Randomly choose between four sampling grids, to
warrant equal likelihood of unconsumed padding at each side.

SBPool is straightforward to implement as a wrapper of standard downsampling layers. The wrapper
first computes unconsumed padding (uh, uw) as follows: 3

uh =
(
h+ ptop + pbottom − dh · (kh − 1)− 1

)
mod sh

uw =
(
w + pleft + pright − dw · (kw − 1)− 1

)
mod sw

(1)

where (h,w) are the spatial dimensions of the layer’s input, (ptop, pleft, pbottom, pright) is the
padding intended to be applied to that input, (kh, kw) is the kernel size, and (dh, dw) is the kernel
dilation, and (sh, sw) are the stride factors. The padding applied is then modified to randomize at
which side the unconsumed padding (uh, uw) is effectively incurred:

ptop ← ptop − randInt
(
[0, uh]

)
pleft ← pleft − randInt

(
[0, uw]

) (2)

where randInt() is a function that returns an integer within the given range uniformly at random.

The above modification to the padding applied allows the convolutional kernel to randomly assume
any of the starting positions and corresponding sampling grids illustrated in Figure 5b. Appendix A
provides an algorithmic outline of the described modification. Note that when parallel branches
perform downsampling as in skip connections, we ensure the sampling grids they assume are aligned
(refer to Appendix E for illustration).

At inference time, we assign each downsampling layer a fixed sampling grid to ensure determin-
istic evaluation results. We select different grids for these layers to minimize the distortion of the
receptive field as we discuss in Section 4.

We demonstrate how SBPool mitigates size overfitting in two exemplary tasks that involve different
CNN architectures and datasets. Appendix D provides additional examples on other architectures.

3The equation is adapted from the documentation of MaxPool2d in PyTorch

5

http://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html

Published as a conference paper at ICLR 2023

3.1 IMAGE CLASSIFICATION

We retrain the ImageNet classification model described in Section 2 with SBPool using the same
hyperparameters. Both the baseline model and the new model are trained on 224× 224 images, and
their corresponding feature maps are hence of equal sizes. Accordingly, both models use the same
compute power (FLOPS) during training. 4

Figure 1 depicts the top-1 accuracy of both models as a function of the input dimension. For each
input size, we resize the images in the validation set as described in Section 2.1. Table 1 lists the
accuracy for selected sizes. It is evident that the spatially-balanced model does not suffer from sharp
drops in accuracy, unlike the baseline model. With sizes favorable for the baseline model, marked
with (*), both models have comparable performance. However, at unfavorable sizes the spatially-
balanced model significantly outperforms the baseline model.

Table 1: Top-1 accuracy of ResNet-18 on ImageNet for different input sizes at the inference phase.
Input size 224× 224∗ 225× 255 256× 256∗ 257× 257 288× 288∗ 289× 289

Baseline 69.76 66.53 70.63 68.74 70.83 68.53

CNN with SBPool 69.64 70.10 70.81 70.73 71.54 71.21

Figure 4d depicts the mean kernels of the spatially-balanced model. It is evident that SBPool miti-
gates the asymmetry observed in the baseline model (Figure 4b). This improves the shift robustness
of the model, as we demonstrate in Appendix C. The results generalize to other model families such
as MobileNet and VGGNet as we demonstrate in Appendix D.

3.2 SEMANTIC SEGMENTATION

Dilated residual networks (Yu et al., 2017) serve as a simple architecture for semantic image seg-
mentation. We select a model pretrained by the authors 5 on the Cityscapes dataset (Cordts et al.,
2016). The model contains three downsampling layers (|D| = 3). Its weights are initialized using
an equivalent image classification model trained on ImageNet. Subsequently, the model is trained on
896 × 896 image patches randomly sampled from the Cityscapes training set. In the testing phase,
the model is applied to the entire image, whose size is 2048× 1024.

To obtain a spatially-balanced segmentation model, we first retrain the classification model used for
initialization under SBPool, and then retrain the segmentation model. Figure 6 depicts the perfor-
mance of both the baseline model and the spatially-balanced model as functions of input size. For
each size, we crop the test set images along with the corresponding ground truth images into cen-
tered squares of that size and compute the mean Average Precision (mAP) of both models on those
images.

It is evident in Figure 6 that the baseline model exhibits periodic size overfitting at an interval of
2|D| = 8. This behavior is mitigated in the spatially-balanced model whose performance increases
steadily with input size, exhibiting minor fluctuation. Moreover, the latter model outperforms the
baseline by a visible margin. Table 2 lists the mAP of both models for different input sizes, including
the ones used originally in the training phase (896×896) and in the validation phase (2048×1024).
The performance of the baseline model drops significantly with the unfavorable sizes of 201× 201
and 897× 897.

Table 2: Performance (mAP) of segmentation models on CityScapes with different crop sizes.
Input size (centered crop) 200×200 201×201 896×896 897×897 2048×1024

Baseline 41.180 39.380 66.63 66.19 68.00

CNN with SBPool 41.65 42.28 67.65 67.72 68.37

4This does not hold when training on 225×225 images as done by Alsallakh et al. (2021b) since the internal
feature maps will be larger than the ones with 224× 224 input images as illustrated in Figure 2

5The model name is DRN-D-22 and is available at http://go.yf.io/drn-cityscapes-models

6

http://go.yf.io/drn-cityscapes-models

Published as a conference paper at ICLR 2023

192x192 200x200 208x208 216x216 224x224 232x232 240x240 248x248

Input size at inference time (width = height)

0.50

0.48

0.46

0.44

0.42

0.40

m
A

P
 o

n
 C

it
y
sc

a
p

e
s

ce
n
te

re
d
 c

ro
p
s

scale break

sc
a
le

 b
re

a
k

Standard CNN CNN with SBPool

880x880 888x888 896x896 904x904

0.68

0.66

Figure 6: The mean Average Precision (mAP) of two Cityscapes semantic segmentation models of
the same architecture (Yu et al., 2017), as a function of input size. The baseline model is pretrained
by the original authors 5. The spatially-balanced model is retrained under SBPool.

4 DISCUSSION

Size overfitting has been observed in certain language models trained on a fixed input size (Wang
& Chen, 2020). We have demonstrated that, unless mitigated, CNNs are prone to overfitting input
size, which can skew the learned weights.

Why Does Size Overfitting Matter? Even if the input size is identical at training and inference
time, it is worth to mitigate size overfitting. This mitigation improves shift invariance as we show
in Appendix C. Oftentimes, the learned weights are used to initialize other models, trained on other
tasks and datasets. For example, weights pretrained on ImageNet with 224× 224 images are widely
used for this purpose, even when the downstream task uses a different or a variable input size. This
makes the pretrained weights a sub-optimal starting point, as our results demonstrate (Figure 6).

Sources of Inspiration SBPool is inspired by practical solutions to related problems. Notably,
to prevent flat-head syndrome in infants, the head orientation should be varied when in supine po-
sition (Xia et al., 2008). Likewise, spaceships need continuous rolling to avoid overheating of the
side exposed to the Sun, and automobile tires need to be rotated on a regular basis. Wu et al. (2019)
employ a similar idea to avoid information erosion when using 2 × 2 convolutional kernels. Their
solution divides the feature maps of each layer into four groups that correspond to the variations in
Figure 5. The key difference in our work is that SBPool injects variation across different samples
not within the feature maps computed for one sample. Accordingly, it serves a different purpose and
is only needed for downsampling layers during training.

4.1 IS PADDING THE CULPRIT?

Padding is known to impact CNN’s spatial invariance (Kayhan & van Gemert, 2020; Islam et al.,
2020). We examine whether it is the only cue CNNs can use to overfit input size.

What If Other Padding Methods Were Applied? The downsampling layers in the examples
presented so far use zero padding. Other padding methods were shown to alleviate feature map
artifacts incurred by salient lines of zero (Alsallakh et al., 2021b). We analyzed size overfitting
in various ResNet models trained on ImageNet under different padding methods, including Partial
Convolution (Liu et al., 2018). All of these models are trained on 224 × 224 images, which incur
unconsumed padding at every downsampling layer. Figure 7 depicts two examples, showing how the
models overfit the input size. This demonstrates how one-sided unconsumed padding can provide
CNNs with sufficient cues about the input size, regardless of the padding method.

7

Published as a conference paper at ICLR 2023

192 x 192 224 x 224 256 x 256

input size at inference time (width = height)

0.64

0.67

0.70
T
o
p
-1

 a
cc

u
ra

cy
 o

n
 I
m

a
g
e
N

e
t

ResNet-18 with circular convolution

192 x 192 224 x 224 256 x 256

Input size at inference time (width = height)

0.72

0.74

0.76

0.78

T
o
p
-1

 a
cc

u
ra

cy
 o

n
 I
m

a
g
e
N

e
t

ResNet-50 with partial convolution

Figure 7: Sensitivity to input size of two ResNet models trained under different padding methods:
circular and PartialConv (Liu et al., 2018). Both models are trained on 224× 224 images.

What if No Padding Were Applied? Downsampling layers often apply padding to avoid
marginalization of the periphery, especially when their kernels are 3×3 or larger. When no padding
is applied, Eq 1 computes unconsumed parts of the layer’s input that represent information erosion.
Appendix D provides an example with VGGNet which applies no padding during downsampling.
Nevertheless, VGGNet overfits the input size. Furthermore SBPool mitigates this overfitting by ran-
domly selecting at which side the information erosion occurs. This suggests that information erosion
provides CNNs with cues to overfit the input size. To further investigate such cues, we next analyze
how different input sizes impact the receptive field.

4.2 IMPACT ON RECEPTIVE FIELD

Richter et al. (2021) demonstrate how a mismatch between input size and the receptive field impacts
object recognition in CNNs, focusing on object scale. Jang et al. (2022) proposed a data-driven
approach to optimize the receptive field. Here we focus on how pooling arithmetic impacts the
receptive field, making it sensitive to small changes in input size.

Figure 8 depicts the receptive field of a ResNet-50 model under various conditions, following the
visualization method proposed by Alsallakh et al. (2021c). A 225×225 input incurs no unconsumed
padding, leading to a well-centered receptive field in the input space. A 224× 224 input incurs un-
consumed padding at every downsampling layer. This in turn shifts the center of the receptive field
in the baseline model to the top left corner. By applying SBPool, unconsumed padding is balanced
at opposing sides, recovering the alignment between the receptive field and the input. The misalign-
ment in the middle plot of Figure 8 provides a cue which enables CNNs to periodically overfit sizes
that exhibit the same misalignment. Shocher et al. (2020) observed a similar misalignment between
the input and the output in CNNs and proposed a special type of convolutional layers as a mitigation.

225 x 225 input (standard CNN) 224 x 224 input (standard CNN) 224 x 224 input (CNN w. SBPool)

Figure 8: The receptive field of ResNet-50 under various conditions. Without SBPool, a 224× 224
input causes misalignment of the field’s center in the input space, as the middle plot demonstrates.

4.3 POOLING TECHNIQUES IN CNNS

Subsampling, pooling, and strided convolution techniques are ubiquitous in modern CNNs, and have
received a significant amount of research attention. Boureau et al. (2010) explored mixing max and

8

Published as a conference paper at ICLR 2023

192 x 192 224 x 224 256 x 256

Input size at inference time (width = height)

0.64

0.66

0.68
T
o
p

-1
 a

cc
u
ra

cy
 o

n
 I
m

a
g

e
N

e
t ResNet-18 with fractional pooling

192 x 192 224 x 224 256 x 256

Input size at inference time (width = height)

0.67

0.69

0.71

T
o
p

-1
 a

cc
u

ra
cy

 o
n
 I
m

a
g
e
N

e
t ResNet-18 with BlurBool

Figure 9: Sensitivity to input size under different pooling methods, Fractional Pooling (Graham,
2014) and BlurPool (Zhang, 2019). Both models are trained on 224× 224 images.

average pooling, with extensions proposed to include learned weights (Lee et al., 2016), stochasticity
(Yu et al., 2014), or both (Kobayashi, 2019b). These extensions aim to improve on the deficiencies
of max and average pooling, namely detail loss, introduction of artifacts, and overfitting. A family of
related methods involve randomly sampling from pooling regions, and tend to confer a regularizing
effect and to increase shift invariance (Zeiler & Fergus, 2013; Zhai et al., 2017; Kobayashi, 2019a).
At inference time, such stochastic pooling methods typically use some form of averaging over the
probabilities used during training.

Another area of work involves subsampling operators which permit arbitrary input-to-output ratios
(Graham, 2014; Jang et al., 2022; Shocher et al., 2020). Spectral pooling methods (Rippel et al.,
2015; Zhang & Ma, 2020; Zhang, 2021) cast subsampling as a cropping in the frequency domain,
allowing any output size while retaining maximum information. Recently, Riad et al. (2022) ex-
tended spectral pooling to allow learnable strides. Decomposing images into frequency components
can also be seen in wavelet pooling (Williams & Li, 2018) and in LiftPool (Zhao & Snoek, 2021).

A number of pooling techniques have been proposed to improve translation invariance. BlurPool
(Zhang, 2019) reduces the aliasing incurred by strided operations by applying a Gaussian blur. Hos-
sain et al. (2021) uses a similar approach, additionally allowing the standard deviation to be learn-
able to control the strength of blurring. Xu et al. (2021) and Chaman & Dokmanic (2021) enforce
translation equivariance using sampling techniques tailored for that purpose.

Besides max-pooling, average pooling, and strided convolution, we analyze input-size overfitting
under two popular pooling techniques: Fractional Pooling (Graham, 2014) and BlurPool. For this
purpose, we employ these techniques in two ImageNet classification models, trained on 224 × 224
images. The first model is based on VGGNet, where we replace max-pooling layers with fractional
pooling layers having an input-output ratio of 0.5. The second model is a ResNet-18 pretrained
by Zhang (2019). Figure 9 depicts the performance of each model as a function of input size. It
is evident that the both models exhibit periodic size overfitting. Interestingly, the BlurPool model
exhibits a delay in the performance drops, compared with the baseline model in Figure 1. As a future
work, we are interested in understanding potential overfitting behavior of various pooling methods
and how applicable SBPool could be with these methods.

SUMMARY

We demonstrated how pooling arithmetic makes CNNs susceptible to overfitting the input size. The
overfitting behavior is periodic, favoring sizes that induce similar boundary conditions at pooling
layers to the ones encountered during training. We demonstrated how overfitting can skew the
learned weights and impact shift invariance in CNNs. We presented a technique to mitigate overfit-
ting by preventing pooling layers from developing specific arithmetic patterns during training. Our
technique can be incorporated into standard pooling and downsampling layers. Through various
experiments, we demonstrate how this technique improves the robustness of CNNs to translational
shifts and to changes in the input size. This helps make the learned representation more generic for
downstream tasks and can confer significant improvement in their accuracy.

9

Published as a conference paper at ICLR 2023

REFERENCES

Bilal Alsallakh, Narine Kokhlikyan, Vivek Miglani, Shubham Muttepawar, Edward Wang, Sara
Zhang, David Adkins, and Orion Reblitz-Richardson. Debugging the internals of convolutional
networks. In eXplainable AI approaches for debugging and diagnosis - NeurIPS Workshop,
2021a.

Bilal Alsallakh, Narine Kokhlikyan, Vivek Miglani, Jun Yuan, and Orion Reblitz-Richardson. Mind
the pad – cnns can develop blind spots. In International Conference on Learning Representations
(ICLR), 2021b.

Bilal Alsallakh, Vivek Miglani, Narine Kokhlikyan, David Adkins, and Orion Reblitz-Richardson.
Are convolutional networks inherently foveated? In SVRHM 2021 Workshop@ NeurIPS, 2021c.

Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature pooling in visual
recognition. In International conference on machine learning, pp. 111–118, 2010.

Anadi Chaman and Ivan Dokmanic. Truly shift-invariant convolutional neural networks. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3773–3783, 2021.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Be-
nenson, et al. The cityscapes dataset for semantic urban scene understanding. In IEEE conference
on computer vision and pattern recognition, pp. 3213–3223, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255. IEEE, 2009.

Benjamin Graham. Fractional max-pooling. arXiv preprint arXiv:1412.6071, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep con-
volutional networks for visual recognition. IEEE transactions on pattern analysis and machine
intelligence, 37(9):1904–1916, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Md Tahmid Hossain, Shyh Wei Teng, Ferdous Sohel, and Guojun Lu. Anti-aliasing deep im-
age classifiers using novel depth adaptive blurring and activation function. arXiv preprint
arXiv:2110.00899, 2021.

Md Amirul Islam, Sen Jia, and Neil DB Bruce. How much position information do convolutional
neural networks encode? In International Conference on Learning Representations (ICLR), 2020.

Dong-Hwan Jang, Sanghyeok Chu, Joonhyuk Kim, and Bohyung Han. Pooling revisited: Your
receptive field is suboptimal. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 549–558, 2022.

Osman Semih Kayhan and Jan C van Gemert. On translation invariance in CNNs: Convolutional
layers can exploit absolute spatial location. In IEEE conference on Computer Vision and Pattern
Recognition, 2020.

Takumi Kobayashi. Gaussian-based pooling for convolutional neural networks. Advances in Neural
Information Processing Systems, 32, 2019a.

Takumi Kobayashi. Global feature guided local pooling. In IEEE/CVF International Conference on
Computer Vision, pp. 3365–3374, 2019b.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems (NeurIPS), pp.
1097–1105, 2012.

Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. Generalizing pooling functions in convo-
lutional neural networks: Mixed, gated, and tree. In Artificial intelligence and statistics, pp.
464–472. PMLR, 2016.

10

Published as a conference paper at ICLR 2023

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In International conference on
learning representations (ICLR), 2014.

Guilin Liu, Kevin J. Shih, Ting-Chun Wang, Fitsum A. Reda, Karan Sapra, Zhiding Yu, et al. Partial
convolution based padding. In arXiv preprint arXiv:1811.11718, 2018.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In IEEE conference on computer vision and pattern recognition, pp. 3431–3440,
2015.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, et al. PyTorch: An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems (NeurIPS), pp. 8024–8035, 2019.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In IEEE/CVF conference on computer vision and pattern recognition, pp.
10428–10436, 2020.

Rachid Riad, Olivier Teboul, David Grangier, and Neil Zeghidour. Learning strides in convolutional
neural networks. In International conference on learning representations (ICLR), 2022.

Mats L Richter, Wolf Byttner, Ulf Krumnack, Anna Wiedenroth, Ludwig Schallner, and Justin
Shenk. (input) size matters for cnn classifiers. In International Conference on Artificial Neu-
ral Networks, pp. 133–144. Springer, 2021.

Oren Rippel, Jasper Snoek, and Ryan P Adams. Spectral representations for convolutional neural
networks. In Advances in neural information processing systems, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In IEEE conference on computer vision and
pattern recognition, pp. 4510–4520, 2018.

Assaf Shocher, Ben Feinstein, Niv Haim, and Michal Irani. From discrete to continuous convolution
layers. arXiv preprint arXiv:2006.11120, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations (ICLR), 2015.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for
simplicity: The all convolutional net. In International Conference on Learning Representations,
2015.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019.

Yu-An Wang and Yun-Nung Chen. What do position embeddings learn? an empirical study of
pre-trained language model positional encoding. In Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 6840–6849, 2020.

Travis Williams and Robert Li. Wavelet pooling for convolutional neural networks. In International
Conference on Learning Representations, 2018.

Shuang Wu, Guanrui Wang, Pei Tang, Feng Chen, and Luping Shi. Convolution with even-sized
kernels and symmetric padding. Advances in Neural Information Processing Systems, 32, 2019.

James J Xia, Kathleen A Kennedy, John F Teichgraeber, Kenneth Q Wu, James B Baumgartner,
and Jaime Gateno. Nonsurgical treatment of deformational plagiocephaly: a systematic review.
Archives of pediatrics & adolescent medicine, 162(8):719–727, 2008.

11

Published as a conference paper at ICLR 2023

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In IEEE conference on computer vision and pattern recog-
nition, pp. 1492–1500, 2017.

Jin Xu, Hyunjik Kim, Thomas Rainforth, and Yee Teh. Group equivariant subsampling. Advances
in Neural Information Processing Systems, 34:5934–5946, 2021.

Dingjun Yu, Hanli Wang, Peiqiu Chen, and Zhihua Wei. Mixed pooling for convolutional neural
networks. In International conference on rough sets and knowledge technology, pp. 364–375.
Springer, 2014.

Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In IEEE conference
on computer vision and pattern recognition, pp. 472–480, 2017.

Matthew D Zeiler and Rob Fergus. Stochastic pooling for regularization of deep convolutional
neural networks. In International Conference on Learning Representations (ICLR), 2013.

Shuangfei Zhai, Hui Wu, Abhishek Kumar, Yu Cheng, Yongxi Lu, Zhongfei Zhang, and Rogerio
Feris. S3pool: Pooling with stochastic spatial sampling. In IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4970–4978, 2017.

Hao Zhang and Jianwei Ma. Hartley spectral pooling for deep learning. CSIAM Transactions on
Applied Mathematics, 1(3):518–529, 2020. ISSN 2708-0579.

Richard Zhang. Making convolutional networks shift-invariant again. In International conference
on machine learning, pp. 7324–7334. PMLR, 2019.

Zhendong Zhang. Frequency pooling: Shift-equivalent and anti-aliasing downsampling. arXiv
preprint arXiv:2109.11839, 2021.

Jiaojiao Zhao and Cees GM Snoek. LiftPool: Bidirectional convnet pooling. In International
Conference on Learning Representations, 2021.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 mil-
lion image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017.

A SBPOOL ALGORITHM

The following listing demonstrates how SBPool wraps existing downsampling layers to spatially-
balance the downsampling results. Refer to Eq 1 and Eq 2 for explanation of the layer parameters
involved (denoted by L.variable) and of the variables introduced (uh and uw).

Algorithm 1: Spatially-Balanced Pooling
Input: L: The downsampling layer, e.g. maxpooling or strided convolution
Input: X: The layer’s input: a tensor of shape (#samples, #channels, height, width)
Output: Y: Downsampling result
uh ←

(
X.height+ L.ptop + L.pbottom − L.dh · (L.kh − 1)− 1

)
mod L.sh

uw ←
(
X.width+ L.pleft + L.pright − L.dw · (L.kw − 1)− 1

)
mod L.sw

L.ptop ← L.ptop − randInt
(
[0, uh]

)
L.pleft ← L.pleft − randInt

(
[0, uw]

)
if L.ptop < 0 then

X ← X[:, :,−L.ptop :, :] ; L.ptop ← 0 /* balance vertical erosion */

if L.pleft < 0 then
X ← X[:, :, :,−L.pleft :] ; L.pleft ← 0 /* balance horizontal erosion */

Y ← L(X)
Reset L.ptop and L.pleft to their original values

12

Published as a conference paper at ICLR 2023

B SIZE OVERFITTING EXAMPLES

Here we demonstrate size overfitting in various models trained on different datasets and tasks.

B.1 SCENE CLASSIFICATION

We examine two ResNet models trained on Places365 (Zhou et al., 2017) and provided by the dataset
curators at https://github.com/CSAILVision/places365. The images were resized to
224 × 224 during training. The models have five downsampling layers that use odd-sized kernels.
Figure 10 demonstrates how both models exhibit periodic size overfitting at an interval of 32, similar
to the ImageNet example presented in Section 2.

Figure 10: The accuracy of two scene classification models, trained on Places-65, as a function of
input size. Both models are trained on 224×224 images and contain |D| = 5 downsampling layers.
Both models exhibit periodic size overfitting at an interval of 2|D| = 32.

B.2 CITYSCAPES SEMANTIC SEGMENTATION

We select two additional Cityscapes models pretrained by the author of dilated residual networks:
DRN-D-38 and DRN-D-105, available at http://go.yf.io/drn-cityscapes-models.
Both models contain three downsampling layers. Figure 11 demonstrates how both models exhibit
periodic size overfitting at an interval of 23 = 8, similar to the example presented in Section 3.2.

Figure 11: The mAP of two semantic segmentation models on CityScapes, as a function of input
size. Both models are pretrained by Yu et al. (2017) on 896 × 896 patches and contain |D| = 3
downsampling layers. Both models exhibit periodic size overfitting at an interval of 2|D| = 8.

13

https://github.com/CSAILVision/places365
http://go.yf.io/drn-cityscapes-models

Published as a conference paper at ICLR 2023

B.3 IMAGENET CLASSIFICATION

We examine five ImageNet classification models available in PyTorch (Paszke et al., 2019) and
pretrained on 224× 224 images. Each model contains five downsampling layers (|D| = 5) that use
odd-sized kernels. Figures 12 and 13 demonstrates how these models exhibit periodic size overfitting
at an interval of 32. It is noticeable that with MNASNet (Tan et al., 2019), there are intermediate
peaks and drops, e.g., when the input size is 200 × 200, 208 × 208, or 216 × 216. These peaks
correspond to partial agreement between the unconsumed padding patterns between these sizes and
the size used during training (see Figure 2).

Figure 12: The top-1 accuracy of three ImageNet classifiers as a function of input size: Efficient-
Net (Tan & Le, 2019), RegNet (Radosavovic et al., 2020), and ResNeXt (Xie et al., 2017). Each
model contains five downsampling layers and exhibits periodic size overfitting at an interval of 32.

Figure 13: The top-1 accuracy of two ImageNet classification models, MobileNet (Sandler et al.,
2018) and MNASNet (Tan et al., 2019), as a function of input size. The models contain |D| = 5
downsampling layer and hence exhibit periodic size overfitting at an interval of 2|D| = 32. Inter-
mediate peaks are also visible within each interval. These peaks correspond to partial agreement in
unconsumed padding patterns between the respective input size and the one used during training.

14

Published as a conference paper at ICLR 2023

C SIZE OVERFITTING AND SHIFT CONSISTENCY

We compute the shift consistency metric proposed by (Zhang, 2019) for the models discussed in
Section 3 with a range of input sizes. Figure 14 shows the consistency both of the standard ResNet-
18 and of the model trained on ImageNet under SBPool as functions of input size. It is evident that
SBPool improves the consistency for input sizes that do not match the preferred ones.

Figure 14: The shift consistency of ResNet-18 on ImageNet classification as a function of input size,
with and without SBPool.

To compute the consistency in case of semantic segmentation, we generalize the metric proposed
by (Zhang, 2019) beyond image classification. For this purpose, we use the segmentation result of
the full input size at inference time as a reference, and compute how consistent these results are
with the ones computed for random crops of a specific size. Figure 14 shows the consistency of the
standard DRN model on CityScapes, compared with the model trained under SBPool as functions
of the crop size. It is evident that SBPool improves the consistency for various input sizes by a
significant margin.

Figure 15: The shift consistency of the DRN-D-22 segmentation model computed on CityScapes
with and without SBPool, as a function of input size.

15

Published as a conference paper at ICLR 2023

D SBPOOL EXAMPLES

We demonstrate SBPool on two additional models, besides the ones in Section 3.

D.1 MOBILENET-V2

We retrained the MobileNet-V2 (Sandler et al., 2018) model available in PyTorch for ImageNet
classification under SBPool, using the same training recipe. Figure 16 plots the size sensitivity
of both the retrained model and the one provided by PyTorch. As expected, the retrained model
improves the generalization to varying input size.

Figure 16: The top-1 accuracy of MobileNet-V2 on ImageNet classification as a function of input
size, with and without SBPool.

D.2 RESNET-50

We retrained the ResNet-50 (He et al., 2016) model available in PyTorch for ImageNet classifica-
tion under SBPool, using the same training recipe. Figure 16 plots the size sensitivity of both the
retrained model and the one provided by PyTorch. As expected, the curve corresponding to the
retrained model exhibits no sharp drops in performance and less oscillation, unlike the pretrained
model. Moreover, the mean 3× 3 kernels of the retrained model show high symmetry, while certain
mean kernels in the pretrained model are highly asymmetric.

Figure 17: The top-1 accuracy of ResNet-50 on ImageNet classification as a function of input size,
with and without SBPool.

16

Published as a conference paper at ICLR 2023

D.3 VGGNET

VGGNet models for ImageNet classification contain five maxpooling layers. These layers use 2× 2
kernels and apply no padding, unlike ResNet models. Accordingly, an input of size 224 × 224 is
evenly processed at each of these layers. Moreover, An input of size 223 × 223 leads to uneven
erosion at each pooling layer: 1-pixel lines at the bottom and right sides are ignored by the layer.

We trained two VGG-11 models on ImageNet with 223× 223 as input size, once with SBPool and
once without SBPool. Figure 18-left shows the sensitivity of both models to input size at inference
time. As expected, without SBPool the CNN overfits the input size: It shows significant drops when
the size is 224 × 224 or 256 × 256, as both sizes prevent erosion, unlike the size for training. In
contrast, with SBPool the CNN does not overfit the input size, instead showing a steady improvement
in the top-1 accuracy as the input size increases, with minimal oscillation.

Figure 18-right compares the sensitivity of the SBPool model with the pretrained model available in
PyTorch, which is trained on 224× 224 images. While the latter model does not show sharp drops,
it does prefer the size used during training, showing a significant jump in accuracy at this size as
well as at 256× 256. Like the training size, the latter size prevents erosion at pooling layers.

Figure 18: The top-1 accuracy of three VGG-11 models on ImageNet classification as a function of
input size. The left plot compares two of these models trained on 223×223 images with and without
SBPool. The right plot compares the SBPool model with the baseline model available in PyTorch.

E SBPOOL WITH PARALLEL BRANCHES

Figure 19: A diagram of ResNet-18 showing the main branch as well as skip connections. Down-
sampling layers are highlighted in orange. The diamonds represent downsampling operations that
take place in skip connections, parallel to their counterparts in the main branch. We ensure that these
operations use the same sampling grids SBPool assigns to their counterparts in the main branch. (Di-
agram adapted from He et al. (2016)).

17

	Introduction
	How Do CNNs Overfit Input Size?
	Varying the input size
	Analyzing sensitivity to input size
	Explaining periodic size overfitting
	Validating the role of pooling arithmetic

	Spatially-Balanced Pooling (SBPool)
	Image Classification
	Semantic Segmentation

	Discussion
	Is Padding the Culprit?
	Impact on Receptive Field
	Pooling Techniques in CNNs

	SBPool Algorithm
	Size Overfitting Examples
	Scene Classification
	CityScapes Semantic Segmentation
	ImageNet Classification

	Size Overfitting and Shift Consistency
	SBPool Examples
	MobileNet-V2
	ResNet-50
	VGGNet

	SBPool with Parallel Branches

