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Abstract

In studies of transferable learning, scaling laws are obtained for various important
foundation models to predict their properties and performance at larger scales.
Taking language-vision learning as example, we show here how scaling law deriva-
tion can also be used for model and dataset comparison, allowing to decide which
procedure is to be preferred for pre-training. Full scaling laws based on dense
measurements across a wide span of model and samples seen scales are derived
for two important language-vision learning procedures, CLIP and MaMMUT, that
use either contrastive only or contrastive and captioning text generative loss. For
the first time, we use derived scaling laws to compare both models and three
open datasets, DataComp-1.4B, Re-LAION-1.4B and DFN-1.4B, while ensuring
sufficient prediction accuracy on held out points. From comparison, we obtain
evidence for (i) MaMMUT’s stronger improvement with scale and better sample
efficiency than standard CLIP (ii) DFN-1.4B outperforming other open datasets.
To strengthen validity of the comparison, we show scaling laws for various down-
stream tasks, classification, retrieval, and segmentation, observing consistently the
same scaling trends for models and datasets across tasks. We show that comparison
can also be performed when deriving scaling laws with a constant learning rate
schedule, reducing compute cost. Accurate derivation of scaling laws provides thus
means to perform model and dataset comparison on aligned common compute axis
across large scale span, avoiding misleading conclusions based on measurements
from few isolated single reference scales only. This paves road for guided collective
improvement of open foundation models and training datasets, as scaling law based
comparisons from various studies executed in common frame can be combined to
identify overall better procedures. We release all the pre-trained models with their
intermediate checkpoints, including openMaMMUT-L/14, which achieves 80.3%
zero-shot ImageNet-1k accuracy, trained on 12.8B samples from DataComp-1.4B1.

1 Introduction

Foundation models [1] pre-trained on generic, diverse large datasets enabled massive improvements
in transfer learning, showing strong and efficient adaptability across a wide range of downstream
tasks not shown during pre-training. Thanks to learning procedures leading to foundation models,

1Code for reproducing experiments in the paper and raw experiments data can be found in the repository
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transferable learning can be studied across various important domains, including language [2, 3, 4],
vision [5], language-audio [6], and language-vision [7].

Progress in improving learning procedures leading to stronger foundation models crucially depends
on the ability to perform systematic and consistent learning procedure comparison. Usually, following
the training, various foundation models are compared via performance shown on a wide range of
standardized reference downstream tasks. Often, this comparison is done on only one or few selected
reference model and data scales, without carefully aligning the compute put into pre-training. Further,
important parts of learning procedure like training dataset often remain closed. This makes it hard or
impossible to discern whether the observed model differences are due to algorithmic, dataset or due
to differences in pre-training compute, or a combination of them, leaving also unclear whether the
comparison holds for other scales than the few selected ones.

In our work, we make a step towards resolving these issues by using scaling law derivation to enable
systematic training procedure, model, and dataset comparison. Foundation models exhibit scaling
laws [8, 9, 10, 11] that allow to determine dependence of model properties and performance on total
pre-training compute from measurements on smaller scales, enabling predictions across a wide scale
span instead of only one or few selected points. Here, we show how using open datasets for scaling
law derivation can enable model and dataset comparison that takes into account model behavior
across a wide range of pre-training compute budgets and across different downstream tasks, while
offering full control over variations in the whole training pipeline, and being fully reproducible.

We choose language-vision learning as an important setting for model and dataset comparison using
scaling law derivation. Contrastive language-image pre-training (CLIP) [7] is a well-established
learning procedure resulting in models that show impressive robustness and transfer capability, and are
used routinely as pre-trained components in many setups such as vision-language instruction tuning
models (LLaVa [12], InternVL [13], SigLIP [14]) and text to image generation models [15]. Since
the first release of CLIP, many extensions have been proposed such as CoCa [16], MaMMUT [17],
and SigLIP [18, 14]. These works claim more performant language-vision models than standard
CLIP. However, as hinted above, it is still unclear which of the training procedures are better for
what reasons, and whether claims of improving on the standard CLIP procedure hold across scales.
Here, we conduct a large-scale study of the scaling laws of two important procedures, namely CLIP
and MaMMUT, pre-trained on open reference datasets, DataComp-1.4B [19], DFN-1.4B [20] and
Re-LAION-1.4B [21], which we are able to compare via full scaling law derivation for the first time.

Our study reveals that while CLIP has advantage on smaller compute scales, MaMMUT architecture
shows advantage as we increase compute, as illustrated by cross-over of the scaling curves in Fig.
1, 2,3 (Sec. 3.1). Importantly, we find that the comparison via scaling laws delivers result that is
consistent and robust across the pre-training datasets, learning schedules and the downstream tasks.

Our Contributions. 1) We conduct first large-scale study of CLIP [7, 10] and MaMMUT [17]
with dense measurements to ensure better prediction to unseen scales and valid model and dataset
comparison. Measurements cover model sizes from S/32 to H/14, samples seen from 1.28M to 3B,
training on DataComp-1.4B [19], Re-LAION-1.4B [21] and DFN-1.4B [20] datasets and evaluating
downstream performance on tasks covering zero-shot classification, retrieval, and segmentation. 2)
Based on derived scaling laws, we perform model and dataset comparison. We show validity of this
comparison by revealing consistent trends in favor of MaMMUT versus CLIP architecture across
different downstream tasks and pretraining datasets, as well as distinct scaling law types (compute-
optimal and samples seen based scaling laws). We also show consistent trends favoring DFN-1.4B
over other datasets. Our study is thus the first to provide a fully reproducible systematic comparison
of important open foundation models openCLIP and openMaMMUT and important reference open
datasets Re-LAION-1.4B, DataComp-1.4B and DFN-1.4B. 3) We perform the study using both
cosine and constant learning rate schedules, and observe the same consistent trends, revealing that the
scaling laws based comparison can be also performed with suboptimal constant learning rate schedule
resulting in 98% less compute cost. 4). We provide a detailed procedure to fit scaling laws tailored for
model and dataset comparison, sharing our findings on best practices of scaling law derivation which
include uncertainty quantification and measuring held-out points on the compute or samples-seen
axis. 5) We make our study fully reproducible and release all the intermediate checkpoints from
scaling law derivation experiments. For the first time, we provide an open-source implementation of
MaMMUT, openMaMMUT, and release openMaMMUT-L/14 trained on 12.8B image-text samples
from an open dataset DataComp-1.4B, achieving 80.3% zero-shot ImageNet-1k accuracy.
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2 Methods & experimental setup

Our experiments entail model pre-training, evaluation and scaling law derivation, which we describe
in the following.

2.1 Pre-training setup

Architecture details. The MaMMUT model is integrated into the openCLIP code base [22] to
take advantage of the existing implementation of the CLIP contrastive loss and CoCa captioning
loss. Key additions to implement MaMMUT were: (1) using a double forward pass for the text
component to perform both text encoding (without masking) and decoding (with causal masking); (2)
cross-attention between image and text tokens. For an N-layer text decoder, cross-attention layers are
inserted every 2 text decoder layers [17], a total of [N2 ] cross-attention layers.

Training dataset & objective. We pre-trained CLIP and MaMMUT models on DataComp-1.4B [19],
Re-LAION-1.4B [21] and DFN-1.4B [20] datasets. Re-LAION-1.4B was obtained by downloading
the Re-LAION-2B-en-research subset of Re-LAION [21] which contained ≈ 30% dead links,
resulting in a total of 1.4B image-caption pairs. DFN-1.4B was obtained by downloading DFN-2B
dataset [20], which also resulted in discovering ≈ 30% link rot, again providing 1.4B image-text
pairs in total. CLIP models are trained with contrastive InfoNCE [23] loss (L = Lcontrastive), while
MaMMUT models are trained with contrastive and captioning losses (L = Lcontrastive + λLcap), we
used λ = 1 in our experiments.

Model & samples seen scales. For both CLIP and MaMMUT architectures, we consider
ViT-S, ViT-M, ViT-B, ViT-L, and ViT-H as vision encoders. For each vision encoder size,
we also vary patch size, and consider patch sizes of 32x32, 16x16, and 14x14, leading to
|M | = 15 model configurations. We scale text encoders accordingly following previous lit-
erature [10]. For samples seen scales D, we consider a wide range of measurements D =
{1.28M, 3.07M, 6.4M, 12.8M, 30.7M, 64M, 128M, 307M, 640M, 1.28B, 3.07B}, a total of |D| =
11 configurations. See App. Tab. 16 for full details about models and number of samples we used in
our experiments. To rule out effects of training trial-to-trial variance on measurements and scaling
law derivation, we estimate variance of downstream performance across training repetitions in the
control experiment (App. Tab. 7).

Learning rate schedule. In our experiments, we consider both cosine and constant learning rate
schedulers. For cosine learning rate schedule experiments, we performed a single run for each
model-samples seen pair, while for constant learning rate schedule, we only need to train once for
each model size.

Optimization. We perform a hyper-parameter sweep for batch size, learning rate and warmup for
each training run to avoid suboptimal solutions. We have observed that it is important, especially
in small sample seen scales, as large batch sizes usually used in CLIP training will result in small
number of optimization steps, making optimization suboptimal. For training, we used AdamW [24]
as an optimizer with a weight decay of 0.2. To avoid unstable training and loss spikes with larger
models (e.g., ViT-L, ViT-H) we followed [10, 25] and used β1 = 0.9, β2 = 0.95, gradient clip norm
of 1, warmup and mixed precision with bfloat16. See more details in App. Tab. 15 and 14.

2.2 Downstream evaluation

Zero-shot classification. We evaluate the top-1 zero-shot accuracy on 35 classification tasks from the
DataComp evaluation suite [19]. It includes ImageNet-1k [26], ImageNet robustness to distribution
shift datasets [27, 28, 29, 30, 31], and additional 29 classification tasks covering multiple domains.
We follow the evaluation protocol of [10], i.e. using the same prompts, class names, and code
base [32]. The full list of datasets we used in evaluation with description is included in Appendix F.

Zero-shot retrieval. We evaluate models on MS-COCO[33] image and text retrieval Recall@5
metrics, following [10].

Segmentation. We fine-tune for semantic segmentation on ADE20K [34], following [35], using 31
epochs and a 1500-step warmup [36], with a consistent 224× 224 input and 14× 14 patch size.
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2.3 Scaling law derivation and fitting procedure

We vary both model architecture size (number of parameters of both text and vision towers), number
of samples seen and patch size. In general, the relationship between compute and performance follows
a power law: L = aCb, where C is compute in FLOPs [10, 37], with the set of points {C,L(C)}
located on the Pareto frontier. Since we use error rate on ImageNet-1k zero-shot classification, we
follow [37, 38] and take into account the saturation (Bc) that occurs at the small compute scales
due to the nature of classification tasks - the probability of predicting a class even at zero-compute
is determined by the frequency of this class in the test set. On the other hand, tasks like zero-shot
image classification cannot be solved with 100% accuracy due to task- and learning method-intrinsic
performance ceiling [38, 37]. Accordingly, we require that our scaling law functional form satisfies:

L(C) > 0 (strictly positive), lim
C→∞

L(C) = E (irreducible error),
dL
dC

< 0 (monotonic decrease).

Given above criteria, we obtain the following functional form for the error that satisfies all three
(subscript C specifies compute dependency):

L(C) = Ac · (C +Bc)
−αc + Ec, αc > 0 (1)

For each combination of compute scale C and model architecture, we take a point with the minimal
error rate. In previous works [39], points with minimal loss were found by binning FLOP values
into 1500 FLOP logarithmically spaced intervals. We use the same approach to find points with
minimal error. Therefore, we obtain a mapping from each combination of number of parameters N
and samples seen D to the compute C (in GFLOPs). Using measurements {(Ci, Yi)} where Ci is
compute budget (GFLOPs) and Yi is error performance, we fit the curve only on points with compute
budget below a threshold {(Ci, Yi), Ci < Cthreshold}. To quantify the quality of our fit, we use mean
squared error on the remaining (held-out) points: MSE = 1

n

∑
i:Ci≥Cthreshold

(L(Ci)− Yi)
2.

2.4 Confidence intervals estimation

We estimate 95% confidence intervals for the model parameters by propagating the uncertainty from
the estimated parameters. We compute the Jacobian of the model, J , with respect to the parameters
at the extrapolated points. We then estimate the variance of our predictions as σ2 = J⊤ Cov(θ̂) J .
Confidence intervals are then given by ŷ ± tα/2, n−p · σ, where tα/2, n−p is the critical value from
the Student’s t-distribution at α = 0.05.

2.5 Data efficiency and optimal dataset size estimation

To quantify the data efficiency of CLIP and MaMMUT, we fit a scaling law analogous to Equation 1:

L(D) = AD · (D +BD)−αD + ED (2)

Here, L(D) denotes the expected error rate as a function of the number of samples seen D. For
each unique data budget D, we extract the corresponding minimal error points {D,L(D)} using the
Skyline Operator algorithm [40], which selects non-dominated configurations based on error rate.

To estimate the dataset size that is optimal for a given compute budget, we follow the approach of [9]
and fit a power-law relationship of the form: Dopt = D0 · Ca, where Dopt minimizes L(C,D) for
a given compute budget C. The optimal dataset sizes are obtained by identifying (C,D) pairs that
yield minimal error rate under fixed compute constraints.

3 Results

3.1 Scaling laws for model and dataset comparison

We fit function that has a form of Eq. 1 on the obtained experimental data using methods described
in Section 2.3. To avoid the confound of data repetition [41] we limit the data used for our scaling
law fits by selecting only models that were trained on up to 3B. In Tab. 5a estimated parameters
for both models (CLIP and MaMMUT) as well as for both downstream tasks (IN1k classification
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Model Candidate Samples Seen Candidate GFLOPs IN1k acc1 Predicted (95% CI)
ViT-L-14 12.8B 2.14e+12 0.796 (0.788, 0.804)
ViT-L-14 15.5B 2.59e+12 0.800 (0.791, 0.808)
mammut-ViT-L-14 10.6B 2.14e+12 0.816 (0.811, 0.821)
mammut-ViT-L-14 12.8B 2.59e+12 0.820 (0.815, 0.826)

Table 1: Estimation of IN1k performance for CLIP and MaMMUT on unseen compute scales using
our scaling laws fits. Additionally, for each compute scale, we provide possible models and samples
seen (assuming unique samples) sizes.

and MS-COCO retrieval) can be found. MaMMUT consistently exhibits better scaling behaviour
compared to CLIP. This is reflected in smaller error rates at equivalent compute budget at larger scales
after crossing a compute threshold that is consistently found to be between 1010 and 1011 GFLOPS
across various datasets and tasks (Fig. 1, 2,3). Note that on smaller scales in the lower performance
range, CLIP consistently outperforms MaMMUT, which then consistently takes over CLIP at larger
compute scales in the higher performance range. This indicates better efficiency and generalization
as we increase compute. This trend holds across:

• Pre-training datasets: DataComp-1.4B (Fig. 1), Re-LAION-1.4B (Fig. 2) and DFN-1.4B
(Fig. 3).

• Downstream tasks: ImageNet-1k zero-shot image classification (see Fig. 1 (a), Fig. 2 (a))
and MS-COCO image retrieval (Fig. 1 (b), Fig. 2 (b)), ADE20K semantic segmentation
(Fig. 6).

• Learning rate scheduler: cosine (Fig. 1) and constant (Fig. 5).

We validate our fits by fitting the laws only up to certain compute budgets Cthreshold and then extrapo-
lating to larger ones. We use these extrapolated points to compute MSE, which allows us to check on
quality of the obtained fits, observing that adding more points to the fit reduces MSE on held-out
points and also reduces uncertainty of predictions. The measured performance falls well within the
prediction confidence interval (App. Tab. 12). Detailed versions of scaling laws plots for CLIP and
MaMMUT can be found in Appendix B, more details on validating fit quality are in Appendix C. As
further evidence for the validity of derived scaling laws, we observe same consistent scalability trends
across datasets and on further important downstream tasks, for instance on DataComp eval suite (Fig.
14), ImageNet robustness (Fig. 15), or on segmentation after fine-tuning (Fig. 6), see Sec. F.

In Tab. 1 we provide predictions on DataComp-1.4B for both MaMMUT and CLIP for unseen
compute budgets 2.14e+12 GFLOPs (corresponds to CLIP ViT-L-14 trained on 12.8B image-text
pairs) and 2.59e+12 GFLOPs (corresponds to MaMMUT ViT-L-14 trained on 12.8B samples). We
see that our predictions favor MaMMUT over CLIP. As a prediction test on larger scales further away,
for CLIP ViT-L-14 trained on 12.8B samples of DataComp-1.4B our prediction for ImageNet-1k
0-shot accuracy (79.6%) is close to performance of CLIP ViT-L-14 trained on 12.8B samples reported
in the original DataComp work [19] - 79.2%. Note that the measured performance IN1K zero-shot
79.2% in the DataComp original work [19] was done with heavy samples repetitions (12.8B on
DataComp-1.4B is about 9x), while our prediction is done for unique or low repetition scenario,
which also might explain tendency to a higher performance in the predictions than observed in
experiments on 12.8B samples seen scale (Tab. 1).

As evident from Fig. 9 and 10, DFN-1.4B consistently provides stronger scalability compared
to DataComp and Re-LAION, for both CLIP and MaMMUT architectures and for both zero-shot
ImageNet-1k classification and MS-COCO retrieval. Despite lower compute used for dataset compar-
ison and higher uncertainty for the trends resulting from fewer measurements for DFN, measured
trends are clear and consistent, allowing thus to draw conclusions favoring DFN-1.4B over other
datasets in the comparison.

3.2 Data efficiency and compute-optimal dataset size

Fig. 4 illustrates that MaMMUT exhibits superior data efficiency relative to CLIP. In Fig. 4 (a) we
see that MaMMUT achieves better performance on ImageNet-1k zero-shot image classification as
the number of training samples increases. In Fig. 4 (b) MaMMUT requires fewer training samples to
achieve compute optimal performance on ImageNet-1k zero-shot classification. This indicates that
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(a) ImageNet-1k 0-shot classification
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(b) MS-COCO image R@5

Figure 1: Scaling on DataComp-1.4B. Comparison of CLIP and MaMMUT via scaling laws on
DataComp-1.4B. Error rate on downstream tasks is plotted against compute. MaMMUT outperforms
CLIP in terms of scalability, with scaling law fit lines crossing close to 1011 GFLOPS.
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(a) ImageNet-1k 0-shot classification
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Figure 2: Scaling on Re-LAION-1.4B. Comparison of CLIP and MaMMUT via scaling laws on
Re-LAION-1.4B. Error rate on downstream tasks is plotted against compute. MaMMUT outperforms
CLIP in terms of scalability, showing similar trends as in DataComp-1.4B.
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Figure 3: Scaling on DFN-1.4B. Comparison of CLIP and MaMMUT via scaling laws on DFN-1.4B.
Error rate on downstream tasks is plotted against compute. MaMMUT outperforms CLIP in terms
of scalability, indicated by crossing scaling law fit lines, where MaMMUT takes over CLIP in
performance from larger compute close to 1011 GFLOPS on, again showing similar trend as observed
on DataComp and Re-LAION.
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Figure 4: Comparison of data efficiency and optimal dataset size for CLIP and MaMMUT via scaling
laws on DataComp-1.4B. MaMMUT is more data efficient and requires smaller dataset size to be
compute optimal.

MaMMUT makes more effective use of training data than CLIP. Therefore, these trends suggest that
MaMMUT generalizes better and scales more favorably with additional data. Additionally, we derive
scaling laws with respect to number of training samples on two other datasets - Re-LAION-1.4B
and DFN-1.4B. In Fig. 11 we show that MaMMUT shows consistently superior data efficiency
across different training datasets compared to CLIP. We also provide estimations for optimal
number of training samples for unseen compute scales (see Tab. 2) for CLIP and MaMMUT trained
on DataComp-1.4B. We use the predicted compute-optimal number of samples to estimate IN1k
classification error rate using obtained power fit following Eq. 2 (see Fig. 4). We see that MaMMUT
is a more scalable model which agrees with estimation obtained from fitting Eq. 1 on the experimental
data (see Fig. 1 and Tab. 11).

GFLOPs
Predicted

Dopt(C) (95% CI)
Model

Candidate #Params
Predicted IN1k

0-shot acc (95% CI)
2.14e+12 2.30e+10 (2.75e+10, 1.91e+10) ViT-SO150M-14-smaller-text 279M 0.794 (0.785, 0.803)
2.59e+12 2.64e+10 (3.19e+10, 2.20e+10) ViT-SO150M-14-smaller-text 295M 0.795 (0.786, 0.804)
2.14e+12 1.23e+10 (1.39e+10, 1.09e+10) mammut-ViT-L-14 522M 0.798 (0.794, 0.803)
2.59e+12 1.42e+10 (1.61e+10, 1.25e+10) mammut-ViT-L-14 548M 0.799 (0.795, 0.804)

Table 2: Predicted compute optimal samples seen and accuracy for each compute budget and model
configuration, with parameter sizes annotated in millions (M).

3.3 Scaling law derivation using constant learning rate scheduler

We follow [42] and show a scaling law derivation based on training with constant learning rate, thus
saving 98% of compute compared to cosine. We omit points from warmup duration in our derivation,
to prevent noise in the low-compute part of the scaling law. In Fig. 5 we visualize our results, showing
the measurements density and in Tab. 6 we tabulate the coefficients. Our results further support the
better scalability of MaMMUT over CLIP, showing consistent trends even when replacing learning
rate scheduler.

3.4 Comparison via scaling law for fine-tuning error on segmentation dense prediction task

For further comparison evidence, we derive a scaling law (Eq. 1) for ADE20K segmentation error
(1−mIoU) after fine-tuning dependent on pre-training compute scale for CLIP and MaMMUT. As
shown in Fig. 6, MaMMUT again exhibits stronger scaling than CLIP (α = 0.208 vs. 0.354), with
an error crossover at approximately 109 GFLOPs. This is far below the crossover at approximately
1011 GFLOPs observed for zero-shot ImageNet classification (Fig. 1a), indicating that captioning
supervision via fine-tuning improves dense prediction already at lower pre-training scales. See more
details in Appendix H.
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Figure 5: Scaling law fits using constant learning rate scheduler. Comparison of CLIP and
MaMMUT via scaling laws on DataComp-1.4B. Error rate on downstream tasks is plotted against
compute. Using constant learning rate scheduler for scaling law derivation reveals the same trend as
with cosine - MaMMUT outperforms CLIP in terms of scalability.
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Figure 6: Scaling law for semantic segmentation. Downstream error rate (1 – mIoU) of openCLIP
and openMaMMUT pre-trained on DataComp-1.4B and fine-tuned on ADE20K. MaMMUT shows
higher performance than CLIP for segmentation at higher scales.

3.5 Scaling up following the comparison: OpenMaMMUT L/14 on 12.8B samples seen scale

We used insights and predictions from our scaling analysis and comparisons to train OpenMaMMUT
L/14 12.8B, a large scale open vision-language foundation model. We chose to train on 12.8B samples
of DataComp-1.4B to have direct comparison to openCLIP trained in previous work [19]. More
info on training hyperparameters can be found in Tab. 13. OpenMaMMUT achieves state of the
art performance on zero-shot classification and retrieval tasks among similar-sized models trained
only on publicly-available data (MetaCLIP, DataComp, OpenVision, Tab. 3). It outperforms with
80.3% IN1k accuracy as predicted openCLIP pre-trained on same DataComp-1.4B budget of 12.8B
(79.2%) and even rivals models with much larger pre-training compute like SigLIP. OpenMaMMUT
represents a highly performant, fully reproducible alternative to other models with openly available
data and training code. Note that on 12.8B samples seen scale the performance suffers from high
amount of repetitions, and therefore is below our prediction of 82% (Tab. 1) that is valid for training
on unique samples. For further 12.8B sample scale models, see App. Sec. B.1

4 Related work & limitations

Recent work has investigated the performance of vision-language models such as CLIP [7], CoCa
[16], MaMMUT [17], Cap [45], SigLIP [14], TULIP[46] or OpenVision[47] at various scales.
These studies analyze different model sizes and highlight either architectural or dataset innovations;
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ImageNet-1k COCO

ViT Res. Seq. Model Dataset #Samples val v2 T→I I→T

L/16 256 256 SigLIP [18] WebLI-10B 40B 80.44 73.76 75.26 88.40
SigLIP 2 [14] WebLI-10B 40B 82.35 76.66 76.84 90.44

L/14 224 256

OpenCLIP [10] LAION-2B 34B 75.24 67.73 70.46 84.30
CLIP [7] WIT-400M 12.8B 75.54 69.84 59.95 79.56
MetaCLIP [43] MetaCLIP-2.5B 12.8B 79.19 72.64 71.36 84.94
EVA-CLIP [44] Merged-2B 4B∗ 79.75∗ 72.92∗ 70.68 85.26
DFN [20] DFN-2B 13B 81.41∗ 74.58∗ 73.19∗ 86.20∗
DataComp [19] DataComp-1.4B 12.8B 79.19 72.06 69.86 84.64
OpenMaMMUT (Ours) DataComp-1.4B 12.8B 80.34 73.78 71.19 85.88

Table 3: Zero-shot classification (accuracy) and retrieval (R@5) results. DFN used ImageNet/MS-
COCO-finetuned model for data filtering; EVA-CLIP was initialized from models pre-trained on
ImageNet. We use bold for best overall results, gray for models involving ImageNet/MS-COCO data
as training data in pipeline, and underlined for best results without ImageNet/MS-COCO involvement.

however, they do not perform a comprehensive scaling law analysis. Furthermore, the datasets used
in these works—such as WIT for OpenAI CLIP and WebLI for SigLIP—are closed, severely limiting
reproducibility and making it impossible to study which of algorithmic or dataset interventions
claimed to have beneficial effect on learning used in those studies indeed lead to better model
performance. In App. Fig. 12, we compare open implementations of CoCa and SigLIP to openCLIP
on DataComp-1.4B, finding no significant difference of SigLIP to standard CLIP in model scalability.

In [48], authors investigate how various language model families compare in terms of their scaling
behavior. While it offers valuable insights into architectural trends, it does not use for comparison a
full scaling law framework in the sense of jointly modeling loss or downstream task performance as a
function of compute and dataset size varied systematically across multiple scales. As accuracy of
predictions derived from such trends was not measured, it makes it unclear whether observed trends
for various language model architectures are to be trusted and whether comparison would remain
valid across various scenarios, which we demonstrate to be the case for scaling law based comparison.

Preparing grounds for this work, [10] derived first reproducible scaling laws for openCLIP using
LAION datasets and performed comparison between open LAION-400M/5B and closed WIT. The
work used however only few samples seen scales, while also going up to scales that are prone to
strongly diminishing performance due to heavy sample repetition (6x on 12.8B and 17x on 34B
sample seen scales). This affects extrapolations of the scaling law and thus the validity of comparisons
based on it. Interestingly, in our work using much denser scaling law derivation without strong
repetitions for higher prediction accuracy, we can confirm the dataset comparison in [10] using Re-
LAION-1.4B, observing same trends for WIT being better on zero-shot classification (App. Fig. 7)
while worse on retrieval (App. Fig. 8), providing further evidence for robustness of scaling law based
comparison. Another data-centric work responsible for composing open DataComp-1.4B dataset
[19] used measurements on few selected scales to compare datasets and decide for benefit of various
dataset interventions. No scaling laws were derived to back up the comparisons, leaving unclear
whether the observed trends will propagate across larger scales than taken for the comparisons.

Several works explored the effects of data constraints on scaling laws. Notably, studies investigating
the scaling law behavior under dataset repetitions for language models [38, 41] and for CLIP[49]
reported that high repetition factors can lead to heavily diminished performance compared to the
Pareto front of scaling with unique data samples. Our experiments carefully limit the repetition factor
to less than 3×, minimizing such confounding effects, assuming unique samples or only little sample
repetition for comparisons to be valid on Pareto front with strong performance scaling.

Building on these foundations, our work provides a unified and empirically grounded scaling law
analysis of vision-language models trained on open datasets. We explicitly model performance as
a function of data and compute [8, 9], and compare multiple architectures under fully controlled,
consistent and reproducible settings. Unlike prior work, our approach enables rigorous comparison
of both data and compute efficiency, ensuring the consistency of the comparison across scales and
training conditions.

Limitations. While our work provides a comprehensive analysis for language-vision models such as
CLIP and MaMMUT trained on large-scale open foundation datasets, it also has several limitations:
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1) We mostly use zero-shot setting for model evaluation (for classification and retrieval tasks), using
fine-tuning only for segmentation. Linear probing, fine-tuning [10] or vision instruction-tuning [12]
of the pre-trained vision encoders can provide further insights into validity and consistency of scaling
laws based comparison. 2) While open datasets we use have substantial scale - 1.4B unique samples -
this still limits the ability of derived scaling laws to extrapolate to higher scales, as the effect of sample
repetition has to be considered when conducting measurements above 1.4B. To test comparison
validity and scaling law predictions on larger reference scales like 12.8B, larger scale open datasets
are required. 3) In our study we only looked at standard contrastive loss or contrastive and captioning
loss objectives and did not incorporate further "loss mixtures" such as masking or diffusion-based
losses. We also did not derive scaling laws for specific architectural components such as optimal
number of parameters in text or vision tower, or other important properties of training procedure like
image input resolution and patch size, or context length in general. In its current form, scaling laws
based comparison has high computational cost, prohibiting naive incorporation of many factors that
influence scalability of the training procedure.

5 Discussion & conclusion

In this work, we show how systematic learning procedure comparison can be performed via scaling
law derivation under fully controlled, reproducible training conditions when using open foundation
models and open datasets. We take as example scenario openCLIP [7, 22, 10] and openMaMMUT
based on [17], two important open language-vision models relying either on image-text contrastive
only or contrastive and captioning loss, trained on three important open reference datasets, DataComp-
1.4B [19], Re-LAION-1.4B [21] and DFN-1.4B [20]. We show that deriving scaling laws gives
comparison of model and dataset based on their estimated scalability for wide scale spans and
for various downstream tasks, aligned on same total pre-training compute. Such comparison can
be validated by checking consistency of scaling trends in different scenarios. For instance, open-
MaMMUT scalability is stronger than openCLIP both on zero-shot classification and retrieval, also
showing advantage for a wide scale span on segmentation, and across all three open datasets. Also,
inconsistencies are insightful - for instance, DataComp-1.4B shows stronger scalability for both
openMaMMUT and openCLIP for zero-shot classification while being slightly weaker for retrieval.
Thus, none of these two datasets is the most scalable candidate across all downstream tasks, and
scaling advantage there is task dependent. DFN on the other hand is consistently better than other
datasets across downstream tasks and for both openMaMMUT and openCLIP.

Comparison via scaling laws offers better protection against misleading conclusions derived from
comparison of only few selected points, especially when done on small scales only. On smaller
scales, openCLIP outperforms stronger scalable openMaMMUT that takes over on larger scales.
Remarkably, we observe the compute scale threshold where openMaMMUT takes over openCLIP
to be consistently settled between 1010 and 1011 GFLOPS across datasets, zero-shot downstream
tasks and learning schedules. This gives further evidence for the robustness of scaling law based
comparison. To properly estimate such crossings, it is crucial to perform dense measurements on
smaller scales and use fitting routines that allow for accurate extrapolation to larger scales. Efficient
derivation of accurate scaling laws [42, 11] to determine factors affecting scalability of the learning
procedure is thus an important topic for future work.

In our study, we used open datasets with 1.4B samples. While this is sufficient to demonstrate
usefulness of scaling law based comparison, more accurate predictions for training at larger scales
on unique samples require larger datasets. Those are also required to train larger scale models with
predicted strong capabilities, as too many repetitions on smaller datasets might lead to diminished
performance [41, 49], which we see in openMaMMUT L-14 trained on 12.8B samples, staying
with zero-shot IN1k 80.3% below the predicted 82% (Tab. 1). Deriving scaling law correction for
diminishing performance due to data repetitions as well as increasing scale of open datasets are
important directions for future work.

While we show that robust and reproducible comparison via scaling law derivation is possible, it
relies crucially on the whole pipeline to be fully open - including dataset composition, training
itself, and downstream evaluation. We hope that our work will encourage the creation of more open
artefacts, especially open datasets as those are still scarce [50, 19, 20, 21], to enable collaborative and
reproducible progress towards stronger scalable open foundation models guided by independently
verifiable and systematic comparison.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims in the abstract are backed up by the experimental results described in
the main paper results Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: see Section 4
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There are no theoretical results in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Paper works with publicly available open datasets, will provide open-source
code and data obtained from experiments to reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Paper works with publicly available open datasets, will provide open-source
code and data obtained from experiments to reproduce the results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Paper contains all details necessary to understand the results, works with
publicly available open data and will provide open-source code enabling researchers to
reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Accuracy of scaling law prediction is estimated via confidence interval as
described in in Section 2.4 and reported in Tab. 1 and Tab. 2

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Paper provides information about compute spent for experiments, open-source
code and data that will be released will contain information about exact configuration for
performed trainings
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics and believe that the
research conducted in the paper conforms to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There are no societal impacts of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The resources used in the paper are properly credited and the license and terms
of use are explicitly mentioned and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All assets are properly documented in the paper and will be described in the
opne-source repo or at the corresponding HF location.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used for conducting this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix: Scaling Laws for Comparison of Open Foundation
Language-Vision Models and Datasets

A Estimated parameters for scaling law fits

To complement main results for scaling law based comparison of CLIP and MaMMUT (Sec. 3.1,
Fig. 1, 2), we provide exact numbers of scaling law fits for both openCLIP and openMaMMUT
measurements on zero shot IN1K classification and MS-COCO retrieval downstream tasks (Tab. 5a).
Estimated values of exponents in power laws alone do not tell which models are more scalable, as
we use here the functional form with additive terms for both irreducible error and non-zero random
model performance (Eq. 1). Apart from plot visualization attesting Mammut stronger scalability than
CLIP (Fig. 1, 2), scalability can be also compared via computing derivatives of the obtained fit in
selected compute points. Derivatives that have larger absolute values stand for larger slope (bigger
rate of decrease) and thus indicate stronger scalability. In Tab. 5b we show derivatives computed for
scaling law fits, obtaining larger derivatives for openMaMMUT than for openCLIP, confirming again
stronger scalability for MaMMUT over CLIP.

B More details on scaling law derivation experiments

Compute budget and energy consumption for the experiments. In Tab. 4, we provide overview
over the GPU hours and energy spent for scaling law derivation experiments. We provide separate
calculation for different learning rate schedule types (cosine, constant learning rate and constant
learning rate + cooldown), for different datasets (Re-LAION-1.4B and DataComp-1.4B) and for
different GPU types (A100 and H100). Large fraction of resources was spent for reference cosine
schedule based scaling law derivation on DataComp-1.4B. We see that despite higher density of
possible measurements, const based schedules use substantially less compute.

Detailed versions of scaling law plots. In the more detailed versions of scaling law plots (Fig. 16
and 17) we see the separate scaling curves for each model size (cooler colors indicate smaller models).
The bigger models require larger sample seen scale to unfold their performance advantage, with
the performance lagging behind smaller scale models on same smaller compute scale, where larger
models suffer from sample seen scale bottleneck. On the other hand, for the higher compute and
samples seen scales, smaller models tend to saturate, indicating a bottleneck in model number of
parameters.

LR Scheduler GPU Dataset MWh GPU Hours

NVIDIA A100
cosine NVIDIA-A100 DataComp-1.4B 2.59e+05 1.03e+06
const-cooldown NVIDIA-A100 DataComp-1.4B 1.43e+05 5.72e+05
const NVIDIA-A100 DataComp-1.4B 9.30e+04 3.72e+05
cosine NVIDIA-A100 Re-LAION-1.4B 3.91e+04 1.56e+05
const-cooldown NVIDIA-A100 Re-LAION-1.4B 1.70e+04 6.79e+04
const NVIDIA-A100 Re-LAION-1.4B 4.61e+03 1.84e+04

A100 subtotal: 5.56e+05 2.22e+06
NVIDIA H100
cosine NVIDIA-H100 DataComp-1.4B 2.09e+04 2.98e+04
cosine NVIDIA-H100 Re-LAION-1.4B 1.06e+04 1.52e+04

H100 subtotal: 3.15e+04 4.50e+04
Total: 5.87e+05 2.27e+06

Table 4: Total GPU compute and energy consumption for scaling law derivation experiments.
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(a) CLIP on WIT, Re-LAION, DataComp
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(b) MaMMUT on Re-LAION, DataComp

Figure 7: Scaling laws for IN1k 0-shot performance of openCLIP (left) and openMaMMUT (right),
comparing training on DataComp-1.4B and Re-LAION-1.4B. For CLIP we have 3 additional points
for OpenAI CLIP [7] models trained on WIT-400M dataset for reference.

107 108 109 1010 1011 1012 1013

Compute C [GFLOPs]

100

3 × 10 1

4 × 10 1

6 × 10 1

M
SC

OC
O 

Im
ag

e 
Re

tri
va

l R
@

5 
[E

rro
r R

at
e]

CLIP: 41.22 * (x + exp(18.03)) 0.219 + 0.21
relaion2b-en
CLIP: 56.57 * (x + exp(18.43)) 0.233 + 0.22
datacomp_1b
CLIP: 42.77 * (x + exp(6.71)) 0.225 + 0.32
CLIP-WIT

(a) CLIP on WIT, Re-LAION, DataComp
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Figure 8: Scaling laws for MS-COCO image retrieval performance (1- Recall@5) of openCLIP (left)
and openMaMMUT (right), comparing training on DataComp-1.4B and Re-LAION-1.4B. For CLIP
models we have 3 additional points for OpenAI CLIP [7] trained on WIT-400M dataset for reference.

107 108 109 1010 1011

Compute C [GFLOPs]

100

3 × 10 1

4 × 10 1

6 × 10 1

Im
ag

eN
et

1k
 0

-s
ho

t [
Er

ro
r R

at
e]

CLIP: 234.17 * (x + exp(18.72)) 0.304 + 0.21
datacomp_1b
CLIP: 60.19 * (x + exp(18.67)) 0.231 + 0.19
relaion2b-en
CLIP: 1451.87 * (x + exp(18.90)) 0.399 + 0.23
dfn_2b

(a) CLIP on Re-LAION, DataComp, DFN
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Figure 9: Scaling laws for IN1k 0-shot performance of openCLIP (left) and openMaMMUT (right),
comparing training on Re-LAION-1.4B, DataComp-1.4B and DFN-1.4B. Training on DFN-1.4B
results in superior performance across scales consistently for both architectures.
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Model ImageNet-1k MS-COCO Retrieval
Ac Bc αc Ec Ac Bc αc Ec

openCLIP 57.862 18.391 -0.227 0.111 53.913 18.413 -0.230 0.216
openMaMMUT 79.970 19.111 -0.233 0.076 119.751 19.122 -0.263 0.212

(a) Fitted scaling law parameters (Ac, Bc, αc, Ec) for error rate on 0-shot ImageNet-1k classification and
MS-COCO retrieval tasks, rounded to three decimal places for models trained on DataComp-1.4B.

C0 GFLOPs IN-1k Err. Rate |dL(C0)/dC| COCO R@5 Err. Rate |dL(C0)/dC|
CLIP

5.00e+10 9.85e-13 8.44e-13
1.00e+11 4.21e-13 3.60e-13
5.00e+11 5.86e-14 4.95e-14

Average: IN-1k: 4.882e-13, COCO: 4.177e-13
MaMMUT

5.00e+10 1.17e-12 9.65e-13
1.00e+11 4.92e-13 4.03e-13
5.00e+11 6.54e-14 5.28e-14

Average: IN-1k: 5.758e-13, COCO: 4.702e-13

(b) Numerical values of derivatives of fitted functions with respect to compute, in points 5 ·1010, 1 ·1011, 5 ·1011
GFLOPs for both ImageNet-1k error rate and COCO retrieval error rate (1-R@5). MaMMUT consistently
exhibits higher values of |dL(C0)/dC| which corresponds to higher decrease rate and stronger scalability.

Table 5: Estimated parameters for main scaling law fits for 0-shot ImageNet-1k classification and
MS-COCO retrieval, used for openCLIP and openMaMMUT comparison in Fig. 1

Model ImageNet-1k MS-COCO Retrieval
Ac Bc αc Ec Ac Bc αc Ec

openCLIP 14.769 16.725 -0.168 0.121 6.686 16.209 -0.123 0.089
openMaMMUT 1850.286 20.521 -0.379 0.198 634.190 20.256 -0.335 0.249

Table 6: Fitted scaling law parameters (Ac, Bc, αc, Ec) for error rate on 0-shot ImageNet-1k clas-
sification and MS-COCO retrieval tasks, rounded to three decimal places for models trained on
DataComp-1.4B with constant learning rate scheduler.
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(a) CLIP on Re-LAION, DataComp, DFN
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Figure 10: Scaling laws for MS-COCO image retrieval performance (1- Recall@5) of openCLIP
(left) and openMaMMUT (right), comparing training on Re-LAION-1.4B, DataComp-1.4B and
DFN-1.4B. Training on DFN-1.4B results again in superior performance across scales consistently
for both architectures.

Data efficiency on Re-LAION and DFN. As we see from Fig. 11, MaMMUT exhibits consistently
more superior scaling with respect on training data size on both Re-LAION-1.4B and DFN-1.4B. This
supports the conclusion that MaMMUT is more data efficient across multiple training datasets.

Training trial-to-trial variance. To perform trial-to-trial variance sanity check for model pre-
training, ensuring that trial-to-trial variance of same runs is substantially smaller that variance due
to scaling or hyperparameter tuning, we show downstream task performance on zero-shot IN1K as
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Figure 11: Comparison of data efficiency for CLIP and MaMMUT via scaling laws for IN1k 0-shot
classification error on Re-LAION-1.4B (a) and DFN-1.4B (b). MaMMUT is consistently more data
efficient on both datasets, which is also in accord with observations from DataComp-1.4B.

observed for 3 training runs of the same configuration for reference scales B-32 and B-16 on 640M
samples, using same hyperparameters that correspond to minimum loss obtained in tuning, residing
on Pareto front. As the results in Tab. 7 suggest, variance is negligibly small compared to difference
due to changing the compute scale. This allows us to conclude that measurements we use for scaling
laws derivation can be distorted only insignificantly by trial-to-trial training variance, and scaling
trends we observe are valid and shaped dominantly by training compute.

Trial/Training 1 2 3 µ± σ

B-32 640M 0.58522 0.57866 0.58014 0.58134 ± 0.0034407
B-16 640M 0.66926 0.6668 0.6631 0.666387 ± 0.00310073
L-14 640M 0.72368 0.7203 0.72398 0.722653 ± 0.00204356

Table 7: Trial-to-trial variance control experiment. IN1k zero-shot top-1 on DataComp-1.4B, 640M
samples seen. Mean µ and standard deviation σ computed for each reference scale over 3 different
training runs. Hyperparameters for each reference scale training run are fixed and correspond to
hyperparameters tuned to obtain minimal loss via multiple sweeps for each given reference scale.
Trial to trial variance is negligible small compared to performance difference across the scales and is
decreasing with increasing performance level.

B.1 Further models on 12.8B sample scale

We trained models of various scales B/32, B/16 on 12.8B sample scale on DataComp and DFN
datasets, complementing results for L/14 from Sec. In Tab. 8 we show that predictions for 12.8B scale
are consistently overestimating observed performance (for both B/32 and L/14 taken as examples).
As already mentioned in Sec. 3.5, this is expected as predictions are done for unique samples seen,
while observed performance comes from training with repetitions. We show further IN1-k 0-shot
performance numbers for DataComp and DFN on 12.8B scale for openMaMMUT B/32 and B/16 in
Tab. 9, in addition to openMaMMUT L/14 12.8B reported in Sec. 3.5. As predicted by scaling laws
based comparison, DFN trained models consistently outperform DataComp on 12.8B scale.

B.2 Effect of the number of points used for the scaling law fits

For scaling law derivation on DataComp-1.4B (Fig. 1), we used different number of points for
MaMMUT (1010 points) and CLIP (672 points). Since MaMMUT architecture was never trained
before on open data like DataComp, we had to perform more rigorous hyper-parameter search than
for CLIP, hence we ended up with a larger set of measurements. To understand whether the number
of measurements that we have obtained affects our conclusions we conduct additional experiment to
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Type model samples gflops acc1, w. rpt. acc1 predicted, unique samples (CI 95%)
CLIP B/32 12.8B 1.89e+11 0.6864 0.699 (0.693, 0.706)

MaMMUT B/32 12.8B 3.50e+11 0.69468 0.710 (0.702, 0.718)
CLIP L/14 12.8B 2.14e+12 0.792 0.796 (0.788, 0.804)

MaMMUT L/14 12.8B 2.59e+12 0.8034 0.820 (0.815, 0.826)
Table 8: Predictions for compute budget corresponding to 12.8B samples seen scales, ViT B/32 and
L/14 model scales derived from scaling law measured on DataComp-1.4B. Shown predictions for
IN1K 0-shot classification accuracy, assuming compute-optimal training and unique or low repetitions
samples, compared to measured performance on 12.8B samples from DataComp-1.4B, which results
in about 9x repetition factor. As it is known that repetitions may result in diminished performance, the
measured performance is expectedly lower than predictions for unique samples. Discrepancy between
predicted and measured performance can be also due to training with given scale combinations not
residing on compute-optimal Pareto frontier.

Dataset Model Samples IN1K 0-shot Acc
B/32 12.8B 0.6947

DataComp B/16 12.8B 0.7546
L/14 12.8B 0.8034

DFN B/32 12.8B 0.7213
B/16 12.8B 0.7773

Table 9: ImageNet-1K zero-shot classification accuracy for openMaMMUT models trained on 12.8B
samples from DataComp-1.4B and DFN-1.4B datasets. Following predictions from scaling laws,
DFN trained models consistently outperform DataComp on larger 12.8B scale.

double check whether there is any difference in the obtained scaling law if working with same number
of points for MaMMUT as for CLIP on DataComp-1.4B. We perform bootstrapping, sampling
randomly 672 points from 1010 available points for MaMMUT, doing 10 trials, fitting scaling law
for each trial and averaging the obtained scaling law coefficients. We observe that the obtained fit
coefficients have no significant difference from scaling law obtained with 1000 points 10. Thus, the

Model Ac Bc αc Ec

CLIP 57.862083 18.391321 -0.226604 0.111169
MaMMUT (full points) 125.356572 19.289384 -0.255670 0.101112
MaMMUT (same points num. as CLIP) 125.267163 19.301461 -0.255934 0.108208

Table 10: Comparison of different models with their corresponding parameters.

comparison on reduced points shows similar trends. Measurements are balanced for Re-LAION (750
vs 703 points), as well as for DFN (737 vs 732 points).

C Evaluating scaling law fit quality

To validate our scaling law fits, we use a threshold Cthreshold to up which we take the data for the fit.
We compute RMSE for the held-out points to get a measure of how good each fit is. We compare two
Cthreshold values (see Tab. 11 and Fig. 20 for DataComp-1.4B dataset). We see that both RMSE and
uncertainty (the width of the confidence intervals) decreases as we take more the more pointsfor the
fit.

We also compare different functional forms that can be used to fit the data: model with double
saturation (L(C) = Ac · (C +Bc)

−αc + Ec) and without a term for irreducible error Ec:

L(C) = Ac · (C +Bc)
−αc (3)

We choose first Cthreshold = 2.5·1011 GFLOPs and the second Cthreshold = 5·1011 GFLOPs. As we see
from Tab. 11 and Tab. 12 for both values of Cthreshold double saturation form (Eq. 1) has consistently
lower RMSE than the function without irreducible error. RMSE on held out points provides thus a
way to select among various scaling law fits the candidate that provides better prediction accuracy for
unseen scales, which in our case is the fit obtained via double saturation functional form (Eq. 1).
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We see that the same trend of reducing confidence intervals and thus reducing uncertainty of the
predictions when taking more points for the scaling law fit holds also for other tasks like MS-
COCO image retrieval and other pre-training dataset Re-LAION-1.4B (see Fig. 20 and Fig. 13
for comparison between ImageNet-1k classification and MS-COCO retrieval and Figs. 18, 19 for
Re-LAION-1.4B).

When comparing predictions with actually measured downstream task performance, we see that
accuracy for the held-out points is high (Tab. 11). For instance, we measure for 3B samples seen scale
on held-out points for openMaMMUT ViT L-14 zero-shot IN1K 0.784, with prediction 0.777 and 95%
confidence interval (0.771, 0.783), and for openMaMMUT ViT H-14 0.795, with prediction 0.801
and 95% CI of (0.793, 0.809). Similar accuracy is observed for openCLIP, with actual measurements
falling within predicted confidence intervals. The derived scaling laws provide thus solid ground
for comparison on unseen scales that have low amount of repetitions (less than 3x in case of 3B
samples seen scale when training on DataComp-1.4B or Re-LAION-1.4).

As already discussed in Sec. 3.5, the prediction for performance of MaMMUT L-14 on the larger
12.8B samples seen scale (Tab. 1, zero-shot IN1K 0.820, 95% CI (0.815, 0.826)) is therefore
only made for low repetition scenario, and to validate it, dataset size larger than currently used
1.4B samples (which gives around 9x repetitions for 12.8B samples seen scale) is required. The
measured 0.803 for openMaMMUT L-14 on 12.8B (Tab. 3) is thus expectedly below the prediction,
as performance is diminished due to high amount of repetitions, in line with observations by previous
works [41, 49].

Model Samples Seen GFLOPs
IN1k

0-shot acc
Predicted IN1k

0-shot acc (95% CI)
Predicted (more points) IN1k

0-shot acc (95% CI)
CLIP

ViT-L-16 3.07e+9 4.07e+11 0.761 0.747 (0.738, 0.755) –
ViT-L-14 3.07e+9 5.18e+11 0.766 0.753 (0.744, 0.762) 0.759 (0.751, 0.766)
ViT-H-14 3.07e+9 1.14e+12 0.784 0.773 (0.761, 0.784) 0.779 (0.770, 0.789)

RMSE: 1.26e-02 RMSE (more points): 5.90e-03
MaMMUT

mammut-ViT-L-14 1.28e+9 2.59e+11 0.749 0.743 (0.737, 0.748) –
mammut-ViT-L-14 3.07e+9 6.22e+11 0.784 0.773 (0.765, 0.781) 0.777 (0.771, 0.783)
mammut-ViT-H-14 3.07e+9 1.43e+12 0.798 0.797 (0.787, 0.807) 0.801 (0.793, 0.809)
RMSE: 7.57e-03 RMSE (more points): 7.57e-03

Table 11: Predicting held-out points on compute-optimal Pareto front based on scaling law derivation
for the functional form with double saturation (Eq. 1). To check prediction accuracy when extrapo-
lating beyond points taken for the fit, we predict starting from different compute threshold values
of CCLIP

threshold = 4.07 · 1011, CMaMMUT
threshold = 2.59 · 1011. Cthreshold points themselves are predicted by

taking smaller Ccutoff = 2.5 · 1011. The last column contains updated predictions made after taking
additional data points up to Cthreshold, showing predictions that extrapolate 2.4 and 5.5 compute factor
beyond the fit for MaMMUT, and 1.3 and 2.8 for CLIP. Both confidence interval and RMSE decrease
as we take more points. RMSE is consistently lower than RMSE measured for functional form
without irreducible error (Tab. 12).

Model Samples Seen GFLOPs
IN1k

0-shot acc
Predicted IN1k

0-shot acc (95% CI)
Predicted (more points) IN1k

0-shot acc (95% CI)
CLIP

ViT-L-16 3.07e+9 4.07e+11 0.761 0.769 (0.764, 0.773) –
ViT-L-14 3.07e+9 5.18e+11 0.766 0.778 (0.774, 0.783) 0.777 (0.773, 0.782)
ViT-H-14 3.07e+9 1.14e+12 0.784 0.806 (0.802, 0.811) 0.805 (0.801, 0.809)

RMSE: 1.55e-02 RMSE (more points): 1.72e-02
MaMMUT

mammut-ViT-L-14 1.28e+9 2.59e+11 0.749 0.757 (0.754, 0.760) –
mammut-ViT-L-14 3.07e+9 6.22e+11 0.784 0.795 (0.792, 0.798) 0.794 (0.791, 0.796)
mammut-ViT-H-14 3.07e+9 1.43e+12 0.794 0.825 (0.822, 0.828) 0.824 (0.822, 0.827)
RMSE: 1.98e-02 RMSE (more points): 2.26e-02

Table 12: Predicting held-out points on compute-optimal Pareto front based on scaling law derivation
for the functional form without irreducible error (Eq. 3). Comparing prediction quality to the
functional form with double saturation (Tab. 11), using same values for Ccutoff and Cthreshold. The last
column contains updated predictions made after taking additional data points up to Cthreshold. Both
confidence interval and RMSE decrease as we take more points. RMSE is consistently higher than
RMSE measured for functional form with double saturation that includes irreducible error (Tab. 11).
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(a) CLIP vs SiGLIP on DataComp-1.4B
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CLIP: 54.68 * (x + exp(18.21)) 0.227 + 0.14
COCA: 87.11 * (x + exp(19.44)) 0.236 + 0.11
MAMMUT: 218.02 * (x + exp(19.41)) 0.285 + 0.14

(b) MaMMUT vs CoCa vs CLIP on DataComp-
1.4B

Figure 12: Scaling laws for ImageNet-1k 0-shot classification, comparing SigLIP (left) and CoCa
(right) with standard CLIP and MaMMUT using open DataComp-1.4B dataset. SigLIP shows no
benefit over standard CLIP, contrary to claims in previous work. CoCa is predicted to be less scalable
than MaMMUT, while crossing CLIP is possible, although it is not clear due to high uncertainty for
CoCa estimates on larger scales, as measurements on smaller scales for CoCa are not dense enough.
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CLIP: 78.47 * (x + exp(18.51)) 0.252 + 0.24
MAMMUT: 485.66 * (x + exp(19.39)) 0.336 + 0.28

(a) Scaling law fit for
MS-COCO image retrieval error rate (1-Recall@5)
for DataComp-1.4B
(Cthreshold = 2.5 · 1011 GFLOPs)
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CLIP: 55.20 * (x + exp(18.42)) 0.232 + 0.22
MAMMUT: 228.63 * (x + exp(19.26)) 0.297 + 0.25

(b) Scaling law fit for
MS-COCO image retrievat error rate (1-Recall@5)
for DataComp-1.4B using more points
(Cthreshold = 5 · 1011 GFLOPs)

Figure 13: Comparison of the fit quality for MS-COCO image retrieval error rate for openMaMMUT
and openCLIP. Adding more points in (b) reduces the uncertainty of the fit, indicated by the width of
bands around each curve.

D Datasets comparison

Scaling laws can be also be used as a tool for dataset comparison. Here, we compare performance
of models trained on two reference datasets (DataComp-1.4B and Re-LAION-1.4B) for both model
architectures – CLIP and MaMMUT, for two downstream tasks – ImageNet-1k 0-shot classification
and MS-COCO retrieval. For CLIP, we additionally plot OpenAI CLIP models’ performance that were
trained on the WIT-400M dataset. As we see from Fig. 7, for both CLIP and MaMMUT, training on
DataComp-1.4B provides superior scalability for zero-shot ImageNet-1k classification, compared
to training on Re-LAION-1.4B. At the same time, training either on Re-LAION-1.4B or DataComp-
1.4B leads to similar scalability and performance on MS-COCO retrieval, with Re-LAION-1.4B
being for retrieval slightly more beneficial (Fig. 8).

Using much denser measurements for scaling law derivation, we can also confirm findings from
previous work [10], which showed that the closed dataset WIT-400M[7] has better scaling trend on
zero-shot classification, but worse scaling trend on zero-shot retrieval when compared to LAION-2B.
We observe the same for Re-LAION-1.4B, which is a safety update of LAION-2B used in [10],
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otherwise being same dataset with less samples due to link rot [21]. This provides further evidence
for robustness of scaling law based comparison, showing consistent trends despite major difference
in scaling law derivation. Previous work [10] used few samples seen scales of 3B, 12.8B and 34B,
which results in high repetition given that only 2B unique samples are contained in LAION-2B [50],
while our work used denser lower samples seen scales up to 3B, doing derivation with unique samples
or low repetition only. Despite these differences, derived scaling laws agree in the dataset comparison
for each downstream task, predicting same scaling trends in favor of WIT-400M on classification
and in favor of Re-LAION-1.4B on retrieval. DataComp-1.4B can be seen in this comparison as
an improved version of Re-LAION-1.4B, with stronger scalability on classification (Fig. 7) that
matches WIT-400M, while obtaining performance for retrieval (Fig. 8) that matches Re-LAION-1.4B,
outperforming WIT-400M.

E Scaling behavior of other architectures

We investigate additional model architectures: SigLIP [18] (CLIP with the sigmoid loss instead of
softmax), CoCa [16] and Cap [45] (pure captioner). We train these models on DataComp-1.4B in
order to compare with openCLIP and openMaMMUT. Fig. 12 shows the fitted lines for these models.
We see that CLIP and SigLIP have very similar scaling behavior on ImageNet-1k classification (Fig.
12 (a)) while openMaMMUT consistently overtakes CoCa on the same compute scale Fig. 12 (b).
Notably, our analysis shows that SigLIP has similar or even worse scalability than CLIP which
contradicts recent claims of SigLIP being a better choice for a vision encoder [18, 14] due to its
architectural advantages. Thus, when properly controlling for same training data in our experiments,
no benefits for SigLIP can be derived from the obtained scaling law trends. We also observe that
text decoder-only MaMMUT overtakes encoder-decoder CoCa on the same compute scale,
indicating that simpler and more parameter efficient architecture of MaMMUT might be preferable.

Moreover, we see (Fig. 21) that MaMMUT has superior scaling compared to Cap, showing that
combination of contrastive and captioning losses is advantageous. We see Cap also underperform-
ing standard CLIP, hinting that Cap as captioner only based architecture is not a good candidate for
strong scalability in 0-shot regimes, making another case for contrastive losses being important part
of scalable architectures for 0-shot classification. It is further important to note that Cap can use only
log-likelihood based evaluation for zero-shot classification task, as opposed to CLIP and MaMMUT
that in addition can use embedding similarity based evaluation thanks to their contrastive loss. As
evident from Fig. 21, embedding similarity based evaluation used in openCLIP and openMaMMUT
has strong advantage over log-likelihood based one. It is in addition also much cheaper in execution.
Cap has thus architectural disadvantage in not being able to use similarity based evaluation due to
missing contrastive loss, which leads to inferior performance in 0-shot regime.

For both comparisons, we see uncertainty getting high when extrapolating to larger scales, which
makes it for instance hard to predict whether CoCa might still cross CLIP or not. To reduce
uncertainty, it is thus important to both conduct dense measurements at smaller scales and not to cut
off measurements at scales too small to be used for proper extrapolation.

Hyperparameter Value
Model Architecture mammut-ViT-L-14
Samples Seen 12.8B
Warmup Steps 6000
Global Batch Size 180,224
Learning Rate 2.5× 10−3

GPU Hours 3.53× 104

Number of NVIDIA A100 GPUs 1024

Table 13: Training hyperparameters for openMaMMUT-L-14.
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Model Samples Seen Warmup Global Batch Size Learning Rate
mammut-ViT-S-32 1.28e+06 1000 512 1.00e-03
mammut-ViT-S-32 1.28e+06 1500 512 5.00e-04
mammut-ViT-S-16 1.28e+06 1000 512 5.00e-04
mammut-ViT-S-32 3.07e+06 4000 512 5.00e-04
mammut-ViT-S-16 3.07e+06 4000 512 1.00e-03
mammut-ViT-S-32 6.40e+06 4000 1024 1.00e-03
mammut-ViT-S-32 1.28e+07 4000 2048 2.00e-03
mammut-ViT-S-16 1.28e+07 3000 2048 2.00e-03
mammut-ViT-S-32 3.07e+07 4000 4096 2.00e-03
mammut-ViT-S-16 3.07e+07 3000 4096 2.00e-03
mammut-ViT-S-32 6.40e+07 4000 4096 2.00e-03
mammut-ViT-S-16 6.40e+07 4000 4096 1.50e-03
mammut-ViT-S-32 1.28e+08 4000 8192 2.00e-03
mammut-ViT-S-14 1.28e+08 4000 8192 2.00e-03
mammut-ViT-M-16 1.28e+08 4000 8192 2.00e-03
mammut-ViT-S-14 3.07e+08 4000 16384 2.00e-03
mammut-ViT-M-16 3.07e+08 4000 16384 2.00e-03
mammut-ViT-S-14 6.40e+08 4000 16384 1.50e-03
mammut-ViT-B-16 3.07e+08 4000 16384 2.00e-03
mammut-ViT-B-32 1.28e+09 4000 16384 2.00e-03
mammut-ViT-B-16 6.40e+08 4000 32768 2.00e-03
mammut-ViT-B-14 1.28e+09 4000 90624 2.00e-03
mammut-ViT-L-16 6.40e+08 6000 45056 2.00e-03
mammut-ViT-L-14 6.40e+08 6000 45056 2.00e-03
mammut-ViT-L-14 1.28e+09 4000 90624 2.00e-03
mammut-ViT-L-16 3.07e+09 4000 91136 2.00e-03
mammut-ViT-L-14 3.07e+09 4000 91136 2.00e-03

Table 14: Hyperparameters for MaMMUT models trained on DataComp-1.4B that are located on the
Pareto frontier

F Results on additional benchmarks

We also fit scaling laws on the data for other downstream tasks. In the Fig. 14 we show the scaling
behavior on DataComp eval suite, which is constituted by averaging over 35 classification tasks from
DataComp (see Tab.15 from [19]). Additionally, we provide scaling law fits for ImageNet-V2 and full
ImageNet robustness set 0-shot classification performance for both openMaMMUT and openCLIP
(Fig. 15). For all of these tasks we see the same trend - openMaMMUT is stronger scalable than
openCLIP and has higher performance given the same compute at larger compute scales. This is also
valid for the important robustness metrics that reflects out-of-distribution generalization (Fig. 15)
- openMaMMUT shows stronger scalable robustness and outperforms openCLIP in robustness at
larger compute scales.

G Additional training details

In Tab. 13 we provide hyperparameters that were used for training openMaMMUT L/14 at larger
12.8B scale. Additionally, in the Tab. 15 and 14 we provide training hyperparameters for all
models and sample seen scales that were used for scaling law fits (i.e. models that are located
on the Pareto frontier) for openMaMMUT and openCLIP respectively. In Tab. 16, we provide
overview of hyperparameters used for the openCLIP and openMammut models that reside close
to compute-optimal Pareto frontier. In Tab. 18, we show for selection of various model, sample
seen scales and pre-training datasets hyperparameter combinations used for training for openCLIP
and openMaMMUT. Tab. 17 shows hyperparameter ranges used for scaling law measurements for
various architecture types. Finally, Tab. 19 contains samples of IN1K 0-shot accuracy numbers for the
selection of model, sample seen scales and pre-training datasets for openCLIP and openMaMMUT.
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Model Samples Seen Warmup Global Batch Size Learning Rate
ViT-S-32 1.28e+06 1500 512 5.00e-04
ViT-S-16 1.28e+06 1500 512 5.00e-04
ViT-S-16 1.28e+06 1500 512 2.00e-03
ViT-S-32 3.07e+06 1500 1024 5.00e-04
ViT-S-32 6.40e+06 4000 1024 1.00e-03
ViT-S-32 1.28e+07 4000 2048 1.00e-03
ViT-M-32 1.28e+07 3000 2048 1.00e-03
ViT-S-32 3.07e+07 4000 4096 2.00e-03
ViT-S-32 6.40e+07 4000 4096 2.00e-03
ViT-M-32 6.40e+07 10000 4096 1.00e-03
ViT-S-32 1.28e+08 6000 8192 2.00e-03
ViT-S-16 1.28e+08 6000 8192 2.00e-03
ViT-S-32 3.07e+08 8000 16384 2.00e-03
ViT-S-32 6.40e+08 4000 16384 2.00e-03
ViT-S-14 3.07e+08 4000 16384 2.00e-03
ViT-M-32 6.40e+08 6000 32800 2.00e-03
ViT-B-32 1.28e+09 15000 16384 1.00e-03
ViT-L-32 6.40e+08 4000 45056 2.00e-03
ViT-B-16-text-plus 6.40e+08 6000 32768 2.00e-03
ViT-L-32 1.28e+09 4000 90624 4.00e-03
ViT-L-16 6.40e+08 4000 45056 2.00e-03
ViT-L-32 3.07e+09 4000 91136 4.00e-03
ViT-L-14 1.28e+09 4000 90624 4.00e-03
ViT-L-16 3.07e+09 4000 91136 4.00e-03
ViT-L-14 3.07e+09 4000 91136 4.00e-03

Table 15: Hyperparameters for CLIP models trained on DataComp-1.4B that are located on the Pareto
frontier.
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CLIP: 18.19 * (x + exp(17.27)) 0.179 + 0.14
MAMMUT: 19.10 * (x + exp(18.04)) 0.169 + 0.07

Figure 14: Scaling law on DataComp evaluation suite (average over 35 tasks, 0-shot classification),
openCLIP vs. openMaMMUT comparison on DataComp-1.4B
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(a) CLIP vs. MaMMUT, ImageNet V2
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CLIP: 13.47 * (x + exp(18.94)) 0.138 + 0.00
MAMMUT: 31.69 * (x + exp(20.14)) 0.172 + 0.00

(b) CLIP vs. MaMMUT, ImageNet Robustness

Figure 15: Scaling laws for ImageNet-v2 (left) and ImageNet robustness set (right, averaged perfor-
mance across 5 datasets ImageNet-v2[27], ImageNet-R[28], ImageNet-Sketch[30], ObjectNet[31],
and ImageNet-A[29]), 0-shot classification for openCLIP and openMaMMUT comparison on
DataComp-1.4B
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Figure 16: Detailed version of the scaling law fit for ImageNet 0-shot classification error rate
for DataComp-1.4B for openCLIP. Cooler colors indicate smaller models. Bigger models are
bottlenecked by samples seen scale (require larger samples seen than the smaller ones) and smaller
models saturate with increased data and compute scale (over-training regime). Pareto front is
composed by taking for each compute budget the points corresponding to models reaching minimal
error rate for the given compute. Fit is performed through points on Pareto front.
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Figure 17: Detailed version of the scaling law fit for ImageNet 0-shot classification error rate
for DataComp-1.4B for OpenMaMMUT. Cooler colors indicate smaller models. Bigger models
are bottlenecked by samples seen scale (require larger samples seen than the smaller ones) and
smaller models saturate with increased data and compute scale (overtraining regime). Pareto front is
composed by taking for each compute budget the points corresponding to models reaching minimal
error rate for the given compute. Fit is performed through points on Pareto front.
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(a) Scaling law fit for
ImageNet 0-shot classification error rate
for Re-LAION-1.4B
(Cthreshold = 2.5 · 1011 GFLOPs)
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MAMMUT: 24.65 * (x + exp(19.15)) 0.167 + 0.00

(b) Scaling law fit for
ImageNet 0-shot classification error rate
for Re-LAION-1.4B using more points
(Cthreshold = 5 · 1011 GFLOPs)

Figure 18: Comparison of the fit quality for ImageNet-1k 0-shot classification error rate for openMaM-
MUT and openCLIP trained on Re-LAION-1.4B. Adding more points in (b) reduces the uncertainty
of the fit compared to (a), indicated by the width of bands around each curve.
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Name Width Emb Depth Params (M) GFLOPs
ViT-S-32 384/384 384 12/12 63.09 5.51
mammut-ViT-S-32 384/384 384 12/12 85.62 13.91
ViT-S-16 384/384 384 12/12 62.26 11.75
mammut-ViT-S-16 384/384 384 12/12 84.79 20.72
ViT-S-14 384/384 384 12/12 62.21 14.3
mammut-ViT-S-14 384/384 384 12/12 84.74 23.5
ViT-M-32 512/512 512 12/12 103.12 9.74
mammut-ViT-M-32 512/512 512 12/12 134.73 22.1
ViT-M-16 512/512 512 12/12 102.02 20.84
mammut-ViT-M-16 512/512 512 12/12 133.63 34.2
ViT-M-14 512/512 512 12/12 101.95 25.37
mammut-ViT-M-14 512/512 512 12/12 133.57 39.14
ViT-B-32 768/512 512 12/12 151.28 14.54
mammut-ViT-B-32 768/512 512 12/12 183.02 26.91
ViT-B-16 768/512 512 12/12 149.62 39.51
ViT-B-16-text-plus 768/768 768 12/12 210.04 46.78
mammut-ViT-B-16 768/512 512 12/12 290.52 79.7
ViT-B-14 768/512 512 12/12 149.53 49.7
mammut-ViT-B-14 768/512 512 12/12 181.27 63.54
ViT-L-32 1024/768 768 24/12 429.95 43.59
mammut-ViT-L-32 1024/768 768 24/12 510.63 74.28
ViT-L-16 1024/768 768 24/12 427.74 132.37
mammut-ViT-L-16 1024/768 768 24/12 508.42 165.37
ViT-L-14 1024/768 768 24/12 427.62 168.61
mammut-ViT-L-14 1024/768 768 24/12 508.29 202.56
ViT-H-32 1280/1024 1024 32/24 989.02 109.81
mammut-ViT-H-32 1280/1024 1024 32/24 1191.06 192.97
ViT-H-16 1280/1024 1024 32/24 986.26 294.78
mammut-ViT-H-16 1280/1024 1024 32/24 1188.3 385.72
ViT-H-14 1280/1024 1024 32/24 986.11 370.28
mammut-ViT-H-14 1280/1024 1024 32/24 1188.14 464.39

Table 16: Hyper-parameters of architectures we consider. Width refers to encoder width, Emb refers
to embedding size, Depth refers to number of layers, Params refer to the number of parameters in
millions, and GFLOPs refer to total GFLOPs per forward pass. Entries in the form of A / B denote
image and text parameters respectively. There are more parameters in MaMMUT models because of
the additional cross-attention layers.

H More details on fine-tuning for segmentation and scaling laws

Following prior work on how to benchmark vision foundation models for semantic segmentation [35],
we evaluate CLIP and MaMMUT on semantic segmentation by fine-tuning them end-to-end using a
linear decoder on ADE20K [34]. Regardless of the patch size used during pre-training, we interpolate
the patch size of all models to 14× 14, to ensure a fair comparison. We use an image input size of
224×224 and thus interpolate the positional embedding to 16×16. Hyperparameters used for training
are consistent with [35], except the use of a linear learning rate warmup of 1500 steps, an epoch-
based schedule of 31 epochs, and a batch size of 16 without gradient accumulation, following [36].
We fine-tune pre-trained models up to and including ViT-L and 3B samples seen, with different
pre-training hyperparameters. We evaluate using a sliding window approach, again following [35].

Fig. 22 and Fig. 23 show the fitted scaling laws for CLIP and MaMMUT, respectively. Tab. 20 shows
the corresponding estimated scaling law fit parameters.
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(a) Scaling law fit for
MS-COCO image retrieval error rate (1-Recall@5)
for Re-LAION-1.4B
(Cthreshold = 2.5 · 1011 GFLOPs)
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CLIP: 47.63 * (x + exp(18.07)) 0.227 + 0.22
MAMMUT: 153.55 * (x + exp(19.17)) 0.275 + 0.22

(b) Scaling law fit for
MS-COCO image retrieval error rate (1-Recall@5)
for Re-LAION-1.4B
(Cthreshold = 5 · 1011 GFLOPs)

Figure 19: Comparison of the fit quality for MS-COCO image retrieval error rate for openMaMMUT
and openCLIP trained on Re-LAION-1.4B. Adding more points in (b) reduces the uncertainty of the
fit compared to (a), indicated by the width of bands around each curve.
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(a) Scaling law fit for
ImageNet 0-shot classification error rate for
DataComp-1.4B
(Cthreshold = 2.5 · 1011 GFLOPs)
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(b) Scaling law fit for
ImageNet 0-shot classification error rate
for DataComp-1.4B using more points (Cthreshold =
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Figure 20: Comparison of the fit quality for ImageNet-1k 0-shot classification error rate for openMaM-
MUT and openCLIP trained on DataComp-1.4B. Adding more points in (b) reduces the uncertainty
of the fit compared to (a), indicated by the width of bands around each curve.

Table 17: Hyperparameters for different model architectures used for scaling law measurement
experiments.

Model architecture Learning Rate Global Batch Size Warmup Steps
min max min max min max

Cap 1e-04 3e-03 512 90,624 1,000 20,000
CLIP 1e-04 1e-02 512 181,248 1,000 15,000
CoCa 1e-04 2e-03 512 45,056 1,500 10,000
MaMMUT 1e-05 1e-02 256 181,632 50 20,000
SigLIP 5e-05 2e-03 64 45,056 500 10,000
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Table 18: Hyperparameters used for training to obtain scaling law measurements for openCLIP and
openMaMMUT, shown for selection of different combinations of model, samples seen scales and
pretraining datasets. NaN indicates that training for the particular combination was not performed.

Dataset Model Size Samples Seen Learning Rate Warmup Batch size
clip mammut clip mammut clip mammut

DFN-1.4B ViT-B-16 307M 2.00e-03 1.50e-03 4.00e+03 4.00e+03 1.64e+04 1.64e+04
DFN-1.4B ViT-B-16 640M 2.00e-03 2.00e-03 4.00e+03 6.00e+03 4.51e+04 3.28e+04
DFN-1.4B ViT-B-16 1B 1.00e-03 1.50e-03 6.00e+03 6.00e+03 1.64e+04 3.28e+04
DFN-1.4B ViT-B-16 3B NaN 2.00e-03 NaN 6.00e+03 NaN 9.01e+04
DFN-1.4B ViT-B-32 307M 1.50e-03 2.00e-03 4.00e+03 4.00e+03 1.64e+04 1.64e+04
DFN-1.4B ViT-B-32 640M 1.00e-03 2.00e-03 6.00e+03 6.00e+03 1.64e+04 3.28e+04
DFN-1.4B ViT-B-32 1B 2.00e-03 2.00e-03 6.00e+03 6.00e+03 9.01e+04 6.55e+04
DFN-1.4B ViT-B-32 3B 2.00e-03 2.00e-03 1.00e+04 1.00e+04 6.55e+04 6.55e+04
DFN-1.4B ViT-H-14 307M 1.50e-03 1.50e-03 4.00e+03 4.00e+03 3.28e+04 1.64e+04
DFN-1.4B ViT-H-14 640M 2.00e-03 2.00e-03 4.00e+03 4.00e+03 4.51e+04 4.51e+04
DFN-1.4B ViT-L-14 307M 2.00e-03 2.00e-03 4.00e+03 4.00e+03 3.28e+04 1.64e+04
DFN-1.4B ViT-L-14 640M 2.00e-03 2.00e-03 6.00e+03 6.00e+03 3.28e+04 4.51e+04
DFN-1.4B ViT-L-14 1B 4.00e-03 2.00e-03 4.00e+03 4.00e+03 9.01e+04 9.01e+04
DataComp-1.4B ViT-B-16 307M 2.00e-03 2.00e-03 4.00e+03 4.00e+03 1.64e+04 1.64e+04
DataComp-1.4B ViT-B-16 640M 2.00e-03 2.00e-03 6.00e+03 4.00e+03 3.28e+04 3.28e+04
DataComp-1.4B ViT-B-16 1B 1.00e-03 1.00e-03 4.00e+03 4.00e+03 1.64e+04 1.64e+04
DataComp-1.4B ViT-B-16 3B 2.00e-03 2.00e-03 4.00e+03 4.00e+03 4.53e+04 9.06e+04
DataComp-1.4B ViT-B-32 307M 2.00e-03 2.00e-03 4.00e+03 4.00e+03 1.64e+04 1.64e+04
DataComp-1.4B ViT-B-32 640M NaN 1.50e-03 NaN 4.00e+03 NaN 1.64e+04
DataComp-1.4B ViT-B-32 1B 1.00e-03 2.00e-03 1.50e+04 4.00e+03 1.64e+04 1.64e+04
DataComp-1.4B ViT-B-32 3B 3.00e-03 2.00e-03 4.00e+03 4.00e+03 9.06e+04 4.53e+04
DataComp-1.4B ViT-H-14 307M 2.00e-03 1.50e-03 6.00e+03 6.00e+03 1.63e+04 1.63e+04
DataComp-1.4B ViT-H-14 640M 2.00e-03 2.00e-03 4.00e+03 6.00e+03 4.51e+04 3.20e+04
DataComp-1.4B ViT-H-14 1B 2.00e-03 2.00e-03 6.00e+03 6.00e+03 9.01e+04 9.02e+04
DataComp-1.4B ViT-H-14 3B 1.50e-03 1.50e-03 4.00e+03 6.00e+03 9.02e+04 9.02e+04
DataComp-1.4B ViT-L-14 307M 1.50e-03 1.50e-03 3.00e+03 4.00e+03 3.28e+04 1.64e+04
DataComp-1.4B ViT-L-14 640M 2.00e-03 2.00e-03 4.00e+03 6.00e+03 4.51e+04 4.51e+04
DataComp-1.4B ViT-L-14 1B 4.00e-03 2.00e-03 4.00e+03 4.00e+03 9.06e+04 9.06e+04
DataComp-1.4B ViT-L-14 3B 4.00e-03 2.00e-03 4.00e+03 4.00e+03 9.11e+04 9.11e+04
Re-LAION-1.4B ViT-B-16 307M 1.50e-03 1.50e-03 4.00e+03 4.00e+03 1.64e+04 1.64e+04
Re-LAION-1.4B ViT-B-16 640M 2.00e-03 2.00e-03 6.00e+03 4.00e+03 4.51e+04 4.51e+04
Re-LAION-1.4B ViT-B-16 1B 2.00e-03 2.00e-03 6.00e+03 6.00e+03 6.55e+04 6.55e+04
Re-LAION-1.4B ViT-B-16 3B 2.00e-03 2.00e-03 1.00e+04 6.00e+03 6.55e+04 9.01e+04
Re-LAION-1.4B ViT-B-32 307M 2.00e-03 2.00e-03 4.00e+03 4.00e+03 1.64e+04 1.64e+04
Re-LAION-1.4B ViT-B-32 640M 2.00e-03 2.00e-03 4.00e+03 6.00e+03 3.28e+04 3.28e+04
Re-LAION-1.4B ViT-B-32 1B 2.00e-03 1.50e-03 6.00e+03 6.00e+03 6.55e+04 3.28e+04
Re-LAION-1.4B ViT-B-32 3B 2.00e-03 2.00e-03 6.00e+03 6.00e+03 9.01e+04 9.01e+04
Re-LAION-1.4B ViT-H-14 307M 2.00e-03 1.50e-03 4.00e+03 4.00e+03 3.28e+04 3.28e+04
Re-LAION-1.4B ViT-H-14 640M 2.00e-03 1.50e-03 4.00e+03 4.00e+03 4.51e+04 4.51e+04
Re-LAION-1.4B ViT-H-14 1B 2.00e-03 1.50e-03 6.00e+03 6.00e+03 9.01e+04 9.01e+04
Re-LAION-1.4B ViT-H-14 3B NaN 4.00e-03 NaN 6.00e+03 NaN 1.80e+05
Re-LAION-1.4B ViT-L-14 307M 2.00e-03 2.00e-03 3.00e+03 3.00e+03 3.28e+04 3.28e+04
Re-LAION-1.4B ViT-L-14 640M 2.00e-03 2.00e-03 4.00e+03 4.00e+03 4.51e+04 4.51e+04
Re-LAION-1.4B ViT-L-14 1B 4.00e-03 2.00e-03 6.00e+03 4.00e+03 9.01e+04 9.01e+04
Re-LAION-1.4B ViT-L-14 3B 2.00e-03 2.00e-03 4.00e+03 4.00e+03 9.01e+04 9.01e+04
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Table 19: IN-1K 0-shot accuracy for selection of different scale combinations and pretraining datasets
for openCLIP and openMaMMUT. NaN indicates that training for the particular combination was
not performed.

Dataset Model Size Total Samples Seen clip mammut

DFN-1.4B ViT-B-16 307M 0.6274 0.6516
DFN-1.4B ViT-B-16 640M 0.6779 0.6991
DFN-1.4B ViT-B-16 1B 0.7059 0.7268
DFN-1.4B ViT-B-16 3B NaN 0.7541
DFN-1.4B ViT-B-32 307M 0.5524 0.5682
DFN-1.4B ViT-B-32 640M 0.6104 0.6218
DFN-1.4B ViT-B-32 1B 0.6402 0.6599
DFN-1.4B ViT-B-32 3B 0.6943 0.6947
DFN-1.4B ViT-H-14 307M 0.6955 0.7190
DFN-1.4B ViT-H-14 640M 0.7477 0.7666
DFN-1.4B ViT-L-14 307M 0.6777 0.7021
DFN-1.4B ViT-L-14 640M 0.7258 0.7470
DFN-1.4B ViT-L-14 1B 0.7609 0.7777
DataComp-1.4B ViT-B-16 307M 0.5777 0.6148
DataComp-1.4B ViT-B-16 640M 0.6405 0.6693
DataComp-1.4B ViT-B-16 1B 0.6679 0.6908
DataComp-1.4B ViT-B-16 3B 0.7133 0.7267
DataComp-1.4B ViT-B-32 307M 0.5028 0.5257
DataComp-1.4B ViT-B-32 640M NaN 0.5852
DataComp-1.4B ViT-B-32 1B 0.6076 0.6209
DataComp-1.4B ViT-B-32 3B 0.6529 0.6613
DataComp-1.4B ViT-H-14 307M 0.6483 0.6912
DataComp-1.4B ViT-H-14 640M 0.7178 0.7410
DataComp-1.4B ViT-H-14 1B 0.7517 0.7682
DataComp-1.4B ViT-H-14 3B 0.7840 0.7986
DataComp-1.4B ViT-L-14 307M 0.6323 0.6685
DataComp-1.4B ViT-L-14 640M 0.6987 0.7240
DataComp-1.4B ViT-L-14 1B 0.7317 0.7488
DataComp-1.4B ViT-L-14 3B 0.7656 0.7845
Re-LAION-1.4B ViT-B-16 307M 0.5104 0.5434
Re-LAION-1.4B ViT-B-16 640M 0.5810 0.6094
Re-LAION-1.4B ViT-B-16 1B 0.6257 0.6439
Re-LAION-1.4B ViT-B-16 3B 0.6677 0.6830
Re-LAION-1.4B ViT-B-32 307M 0.4401 0.4574
Re-LAION-1.4B ViT-B-32 640M 0.5122 0.5181
Re-LAION-1.4B ViT-B-32 1B 0.5601 0.5634
Re-LAION-1.4B ViT-B-32 3B 0.6065 0.6075
Re-LAION-1.4B ViT-H-14 307M 0.5898 0.6214
Re-LAION-1.4B ViT-H-14 640M 0.6575 0.6843
Re-LAION-1.4B ViT-H-14 1B 0.7029 0.7258
Re-LAION-1.4B ViT-H-14 3B NaN 0.7615
Re-LAION-1.4B ViT-L-14 307M 0.5662 0.6020
Re-LAION-1.4B ViT-L-14 640M 0.6365 0.6652
Re-LAION-1.4B ViT-L-14 1B 0.6818 0.7061
Re-LAION-1.4B ViT-L-14 3B 0.7206 0.7369
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CAP: 16.23 * (x + exp(20.12)) 0.139 + 0.00
CLIP: 57.86 * (x + exp(18.39)) 0.227 + 0.11
MAMMUT: 125.36 * (x + exp(19.29)) 0.256 + 0.10

Figure 21: Scaling law fit for ImageNet-1k 0-shot classification, comparing MaMMUT, CLIP and
Cap (captioning only). Cap can be only evaluated via log-likelihood, which is more expensive
as similarity based evaluation used by CLIP and MaMMUT, as Cap misses contrastive loss in its
architecture, which makes it disadvantageous for 0-shot setting.
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Figure 22: Downstream semantic segmentation performance of CLIP pre-trained on DataComp-1.4B
and fine-tuned on ADE20K. Error rate (1 – mIoU).

Ac Bc αc Ec

CLIP 18.407549 17.577295 -0.209187 0.468456
MaMMUT 352.152176 18.759619 -0.356718 0.497617

Table 20: Fitted scaling law parameters (Ac, Bc, αc, Ec) for segmentation error rate.

38



108 109 1010 1011 1012

Compute C [GFLOPs]

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

AD
E2

0K
 S

em
an

tic
 S

eg
m

en
ta

tio
n 

[E
rro

r R
at

e] mammut_ViT-S-14
mammut_ViT-S-16
mammut_ViT-S-32
mammut_ViT-M-16
mammut_ViT-M-32
mammut_ViT-B-14
mammut_ViT-B-16
mammut_ViT-B-32
mammut_ViT-L-14
mammut_ViT-L-16
mammut_ViT-L-32
MAMMUT: 331.17 * (x + exp(18.73)) 0.354 + 0.50

Figure 23: Downstream semantic segmentation performance of MaMMUT pre-trained on DataComp-
1.4B and fine-tuned on ADE20K. Error rate (1 – mIoU).
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