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Abstract

Recently, global convergence has been achieved for non-robust MDPs with an
iteration complexity of O( 1ϵ ) for finding an ϵ-optimal policy, for which PL condi-
tion derived from performance difference lemma has played a key role. This work
extends performance difference lemma to s-rectangular robust MDPs from which
PL condition can be derived. We further, present a simplified proof for the policy
gradient convergence for non-robust case, which together with robust performance
difference lemma, can lead to global convergence of robust policy gradient.

1 Introduction

In sequential decision-making problems, Markov decision processes (MDPs) provide an analytical
framework for learning a policy that performs best in a fixed environment. However, given that
optimal policies can be highly sensitive to the parameter values [16], the robust MDP setting
alternatively seeks strategies that are robust to uncertain environments [19, 6]. It quantifies the level
of uncertainty through a set determining the possible range of model perturbations. Then, a robust
policy is optimal if it reaches maximal performance under the worst model parameters over the
uncertainty set. Developing algorithms that efficiently solve robust MDPs is of great interest, as these
can yield better generalization guarantees [32].

Without some structural assumptions on the uncertainty set, solving robust MDPs can be NP-hard
[30]. Therefore, to preserve tractability, we often assume that the uncertainty set is convex and
s-rectangular, i.e., it can be expressed as a Cartesian product over states [19, 6, 30, 4, 13, 27]. In that
case, standard solvers for MDPs carry over to robust MDPs. Further simplification may consider
(s, a)-rectangular uncertainty sets, i.e., independent uncertainty over each state-action pair, but this
can lead to more conservative strategies. In fact, maintaining the problem tractable while relaxing the
uncertainty set structure may be of interest when seeking less wary robust solutions [5, 15].

Policy gradient (PG) methods have been proven workhorse in reinforcement learning (RL) that is
being in many variants [24, 22, 11, 9]. Recently, global convergence of PG methods have been
established [1, 31, 17], crucially exploiting the PL condition [10] type property of non-robust MDPs.
This PL condition is derived from performance difference lemma [8] that expresses the difference of
values function w.r.t. any two policies with difference in polices, occupation measure of one policy,
and Q-value of other policy. This techniques achieves a global convergence with state-of-the-art
iteration complexity of O(SAϵ−1) [31]. Unfortunately, these techniques can’t be directly applied
to robust policy gradient due to following main reasons: a) The robust MDPs can be non-smooth
as compared to non-robust MDPs. b) Many structural properties doesn’t carry over to robust MDPs
from non-robust MDPs. In addition, the proof techniques are overly complicated. Nonetheless, there
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have been recent developments of robust policy gradient methods [28, 12, 26], that enjoys global
convergence properties. Precisely, [26] established global convergence of robust policy gradient
methods for general uncertainty set, utilizing techniques from game theory. However, the approach
has a much more expensive iteration complexity of O(S4A2ϵ−4). Further, [28], demonstrates a much
faster global convergence with iteration complexity of O(SAϵ−3) using the smoothing techniques
and establishing performance difference lemma for sa-rectangular robust MDPs. However, the
analysis is tailor-made for sa-rectangular R-contamination uncertainty set, which crucially relies on
the simplicity of the regularizer term arising from robustness [27]. Hence, this technique can’t be
applied for more general uncertainty sets.

In this work, we make following contributions:

• We extend the performance difference lemma to s-rectangular robust MDPs, leading to PL
type condition.

• We provide a simplified and intuitive proof for global convergence rate for non-robust MDPs.
This together with PL type condition and smoothness (robust MDPs may be smooth for
some special type of uncertainty sets) yields global convergence rate for robust MDPs with
similar rate as non-robust MDPs.

Related Work

Table 1: Iteration Complexity for Global Convergence of Policy Gradient Methods
Robust MDPs Complexity Remark

Non-Robust O(SAϵ−1) [31]
(s, a) rectangular R-Contamination O(SAϵ−3) [28]
L-Smooth s-rectangular O(SLϵ−1) Ours
General O(S4A2ϵ−4) [26]

Non-Robust MDPs. Policy gradient is derived in [24] for non-robust MDPs which is widely used in
practice with many variants [22, 11, 23]. Recently, there have been global convergences guarantees
results [1, 3] with an iteration complexity O(1/ϵ) for finding ϵ-optimal policy [31].

(s, a)-rectangular R-Contamination Robust MDPs. The paper [28] derives policy gradient for
R-rectangular robust MDPs complexity O(S2A log( 1ϵ )) similar to non-robust MDPs. Further, it
establishes global convergence policy gradient with an iteration complexity O(1/ϵ3) for finding
ϵ-optimal policy assuming oracle policy gradient.

General (s, a)-rectangular Robust MDPs The paper [14] establishes global convergence for robust
mirror policy decent for (s, a)-rectangular robust MDPs in general with an iteration complexity
O(1/ϵ) and O(log(1/ϵ)) for finding ϵ-optimal policy, with two increasing-stepsize schemes. How-
ever, it assumes the oracle access to policy gradient.

General Robust MDPs The paper [26] establishes global convergence for Double-Loop Robust
Policy Gradient for general robust MDPs with an iteration complexity O(1/ϵ4) for finding ϵ-optimal
policy, assuming the oracle access to policy gradient. Solving the policy gradient upto ϵ toler-
ance via value methods that takes (s, a)-rectangular and s-rectangular case with complexity of
O(S4A log(1/ϵ)) and O(S4A3 log(1/ϵ)) respectively using convex optimizations tools. Our tech-
niques are completely different than this work.

2 Preliminaries

Notation: We denote the cardinal of an arbitrary finite set Z by |Z|. Given two real functions a,b :
Z → R, their inner product is ⟨a,b⟩Z :=

∑
z∈Z a(z)b(z), which induces the L2-norm ∥a∥2 :=√

⟨a,a⟩Z . More generally, for any p ∈ [1,∞], the Lp-norm of a is ∥a∥p := (
∑

z∈Z |a(z)|p)
1
p .

Its conjugate norm satisfies ∥a∥q = max∥b∥≤1⟨a,b⟩, where q is the conjugate value of p, that is ,
1
q = 1− 1

p . The probability simplex over Z is denoted by ∆Z := {a : Z → R+ |
∑

z∈Z a(z) = 1}
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and 0 (resp. 1) is the vector of all zeros (resp. all ones) with appropriate dimensions. Finally, IZ
designates the identity matrix in RZ ×Z .

2.1 Markov Decision Processes

A Markov decision process (MDP) is a tuple (S,A, γ, µ, P,R) such that S and A are finite state and
action spaces respectively, γ ∈ [0, 1) is a discount factor and µ ∈ ∆S the initial state distribution.
Denoting X := S ×A, the couple (P,R) corresponds to the MDP model with P : X → ∆S being
a transition kernel and R : X → R a reward function. A policy π : S → ∆A maps each state
to a probability distribution over A, and we denote by Π the set of such functions. For any policy
π ∈ Π, Rπ ∈ RS is the expected immediate reward defined as Rπ(s) := ⟨πs, R(s, ·)⟩A, ∀s ∈ S,
where πs is a shorthand for π(·|s). We similarly define the stochastic matrix induced by π as
Pπ(s′|s) := ⟨πs, P (s′|s, ·)⟩A, ∀s, s′ ∈ S . Our goal is to maximize the discounted return over the
set of policies Π:

ρπ(P,R) := E
[ ∞∑

n=0

γnR(st, at) | π, P, s0 ∼ µ
]
. (1)

The above return can be rewritten as [20]

ρπ(P,R) = ⟨µ, vπ(P,R)⟩ = ⟨R, dπP,µ⟩,

where vπ(P,R) is value function defined as

vπ(P,R)(s) := E
[ ∞∑

n=0

γnR(sn, an) | π, P, s0 = s
]

and dπP,k ∈ RS is occupation measure defined as

dπP,k := kT (I − γPπ)−1, ∀k ∈ RS .

Remark 1. Generally we take k ∈ ∆S , we extend this definition for later use in the robust MDPs.

We can obtain the optimal policy π∗
(P,R), which is a maximizer of (1), via a policy gradient method.

The policy gradient is given by [25]

∇ρπ(P,R) =
∑
s,a

dπP,µ(s)Q
π
(P,R)(s, a)∇π(a|s),

where the Q-value is defined as

Qπ
(P,R)(s, a) :=R(s, a) + γ

∑
s′,a

P (s′|s, a)vπ(P,R)(s
′).

The value function vπ(P,R) can be computed via value iteration. Given a policy π ∈ Π, the evaluation
Bellman operator is given by

Tπ
(P,R)v = Rπ + γPπv, ∀v ∈ RS ,

which is a contraction whose unique fixed point is vπ(P,R).

2.2 Robust Markov Decision Processes

Generally, the system’s dynamics may be unknown or partially known. Thus, if the agent does
not account for model uncertainties during training, its performance can significantly drop after
deployment while testing [16]. The robust MDP framework addresses this issue by assuming that
(P, r) ∈ U where U is an compact uncertainty set, and by aiming to maximize return under the
worst-case model. As standard in the robust RL literature, we assume U to be compact and convex,
so that a worst-case model exists and can be computed in polynomial time [29].

The robust performance of a policy π ∈ Π is defined as

ρπU := min
(P,R)∈U

ρπ(P,R),
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and the robust optimal return
ρ∗U := max

π∈Π
ρπU

is attained at π∗
U ∈ argmaxπ∈Π ρπU [18, 7, 30]. Let (Pπ

U , R
π
U ) be worst values associated with policy

π, defined as
(Pπ

U , R
π
U ) :∈ arg inf

(P,R)∈U
ρπ(P,R).

The robust value function, robust Q-value and robust occupation measure, can be defined as

vπU = vπ(Pπ
U ,Rπ

U ), Qπ
U = Qπ

(Pπ
U ,Rπ

U ), and dπU = dπ(Pπ
U ,Rπ

U ),

for all policy π [12].

However, solving robust MDPs with general convex uncertainty sets is known to be strongly NP-hard,
and optimal policies can be stochastic as well as history-dependent [29]. Moreover, no meaningful
robust Bellman operators exist for general uncertainty sets that can give rise to value iteration methods.

2.2.1 Robust Gradient Method

To optimize the robust return, we can rely on the projected gradient ascent rule:

πk+1 :=projΠ(πk + η∇πρ
πk

U ), (2)

where η is the learning rate and projΠ denotes the orthogonal projection on Π. The gradient ∇πρ
πk

U
of the robust return may not exist due to non-differentiability. However, sub-differential can be
defined as

∂πρ
π
U := ∇πρ

π
(P,R)

∣∣∣
(P,R)=(Pπ

U ,Rπ
U )

. (3)

Given the oracle access to sub-gradient ∂ρπU , the projected gradient ascent

πk+1 :=projΠ(πk + η∂πρ
πk

U ), (4)

converges to an ϵ-optimal policy π∗
U , with iteration complexity O(S4A2ϵ−4), under similar conditions

to the non-robust setting [26]. Unfortunately, this approach is generally not applicable since the
computation of the gradient of the robust policy ∇ρπU is generally intractable; and the latter is due to
the NP Hardness of robust MDPs for general convex uncertainty sets.

2.2.2 Rectangular Uncertainty set

To overcome intractability, the uncertainty set has to be both convex and s-rectangular which allows
the optimal policies to be stationary, even though stochastic [30]. Uncertainty set Us is called
s-rectangular if it can decomposed over states, that is

Us =
(
×s∈SPs

)
×

(
×s∈SRs

)
.

Further simplification may take sa-rectangular uncertainty sets, namely [6, 19]

Usa =
(
×(s,a)∈XPs,a

)
×

(
×(s,a)∈XRs,a

)
.

sa-rectangular robust MDPs are much more conservative than s-rectangular robust MDPs, and admit
deterministic optimal robust policy [7, 18, 30]. Under this rectangularity assumption, the robust value
function vπU is well defined as

vπU := min
(P,R)∈U

vπ(P,R),

which is unique fixed point of the γ-contractive robust Bellman operator Tπ
U well defined as

Tπ
U v := min

(P,R)∈U
Tπ
(P,R)v, ∀v ∈ RS ,

and it also allows the optimal robust value function v∗U to be well defined as

v∗U := max
π

vπU ,
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which is the unique fixed point of the γ-contractive optimal robust Bellman operator T ∗
U well defined

as
T ∗
Uv := max

π
Tπ
U v, ∀v ∈ RS

[30]. Since it is a contraction map, robust value iteration, vn+1 := T ∗
Uvn, converges to the optimal

robust value function v∗U linearly, making robust value iteration an attractive approach. Once the
robust value function is obtained, the optimal robust policy can be computed as

π∗
U ∈ argmax

π
Tπ
U v

∗
U

[30]. However, the evaluation of each Bellman operator can still be prohibitive for practical use.

3 Main

In this section, we outline the simplified proof techniques used to proof global convergence rate of
non-robust policy gradient that is presented in [26]. This can used to prove global convergence rate
for robust MDPs too.

Assumption 1. We assume the set of policies Π and set of uncertainty set U are convex and compact.

The above assumption is very mild that is satisfied in most of the settings.

The technique has two main parts which when combined with a cohesive bond, yields into the desired
result. We begin with the a first assumption below.

Assumption 2. The function ρπU is lower L-smooth function, that is

ρπ
′

U ≥ ρπU + ⟨∇ρπU , π
′ − π⟩ − L

2
∥π′ − π∥2, ∀π′, π ∈ Π. (5)

The assumption doesn’t hold for general uncertainty set, however we believe it holds for many useful
uncertainty sets. Observe that we do not require the function ρπU to be convex.

We consider the learning rule
πk+1 = πk + η∇ρπk

U .

Let T (resp. G) be the next step gradient step operator (resp. the effective gradient step operator)
defined as

T (π) := projΠ(π +
1

L
∇ρπU ), (6)

G(π) := L(T (π)− π) (7)

Lemma below states that the assumption 2 ensures the a minimum fixed improvement on the gradient
ascent given the right step size. Further, the improvement is lower bounded by the norm of the
’effective gradient’ times some constant.

Lemma 1. [Sufficient Increase Lemma] Gradient ascent ensures the monotone improvement in the
robust return. Precisely,

ρ
πk+1

U − ρπk

U ≥ 1

2L
∥G(πk)∥2 =

L

2
∥πk+1 − πk∥2, ∀k.

Proof. Proved in the appendix. It just uses convexity of the projection set Π, differentiability and
smoothness of the objective function.

Note that the above lemma is enough to ensure iterates {ρπk

U } converge to some some value ρ̂, as the
iterates forms monotonically increasing sequence. However, it doesn’t imply the ρ̂ is global maxima
or local maxima for that matter. This just implies, the iterates ρπk

U keeps on increasing until the
gradient G(πk) doesn’t diminish to zero.

Hence, for the global optimality, we need second part, to ensure that the norm of the gradient vanishes
only when the sub-optimality vanishes. In order to do so, we first extend performance difference
lemma to s-rectangular case, as stated below.
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Lemma 2 (Robust Performance Difference). For s-rectangular uncertainty set U , and for any
policies π1, π2 ∈ Π, the difference in robust value is bounded as

ρπ2

U − ρπ1

U ≤
∑

(s,a)∈X

dπ2

P
π1
U

(s)
(
π2(a|s)− π1(a|s)

)
Qπ1

U (s, a).

Proof. Let two arbitrary policies π1, π2 ∈ Π. Denote by (P1, r1) := (Pπ1

U , rπ1

U ), (P2, r2) :=
(Pπ2

U , rπ2

U ) their respective worst kernels ( the worst values exist, because U is assumed to be
compact). We now proceed similarly as in [14, 1]. Since vπ2

(P2,r2)
is the unique fixed point of the

robust Bellman operator, it holds that

vπ2

(P2,r2)
= min

(P,r)∈U
Tπ2

(P,r)v
π2

U ≤ Tπ2

(P1,r1)
vπ2

U .

On the other hand, by definition of (P1, r1), we have vπ1

U = Tπ1

(P1,r1)
vπ1

U . Therefore,

vπ2

U − vπ1

U ≤ Tπ2

(P1,r1)
vπ2

U − Tπ1

(P1,r1)
vπ1

U

= rπ2
1 + γPπ2

1 vπ2

U − rπ1
1 − γPπ1

1 vπ1

U
= rπ2

1 − rπ1
1 + γ (Pπ2

1 vπ2

U − Pπ1
1 vπ1

U )︸ ︷︷ ︸
(1)

.

Using the identity a2b2 − a1b1 = a2(b2 − b1) + (a2 − a1)b1 on expression (1), it results that:

vπ2

U − vπ1

U ≤rπ2
1 − rπ1

1 + γPπ2
1

(
vπ2

U − vπ1

U
)
+γ

(
Pπ2
1 − Pπ1

1

)
vπ1

U

=rπ2−π1
1 + γ

(
Pπ2−π1
1

)
vπ1

U + γPπ2
1

(
vπ2

U − vπ1

U
)

=(π2 − π1)[r1 + γP1v
π1

U ] + γPπ2
1

(
vπ2

U − vπ1

U
)

This implies,

vπ2

U (s)− vπ1

U (s) ≤
∑
s′,a′

dπ2

P
π1
U ,s

(s′)[Rπ1

U (s′, a′) + γ
∑
s”

Pπ1

U (s”|s′, a′)vπ1

U (s”)](π2(a
′|s′)− π1(a

′|s′))

=⇒ ρπ2

U − ρπ1

U ≤
∑
s,a

dπ2

P
π1
U

(s)[Rπ1

U (s, a) + γ
∑
s′

Pπ1

U (s′|s, a)vπ1

U (s′)][π2(a|s)− π1(a|s)].

The performance difference lemma bounds the the difference in the robust return of two policies by
using only robust Q-value of one policy. This can be used to bound the sub-optimality of a policy
with in terms of robust Q-value of the policy which in turn can be related to its policy gradient. This
notion is formalized next.

The next step consists in bounding the sub-optimality of any policy according to the gradient, as we
do next. Leveraging Lemma 2, the domination lemma below upper bounds the performance gap by
variational gradients.

Lemma 3 (PL condition / Gradient Domination lemma). For any policy π ∈ Π, its sub-optimality
is bounded by its policy gradient as

ρ∗U − ρπU ≤ CPL max
π′∈Π

⟨π′ − π,∇ρπU ⟩,

where CPL := max(π,s)∈Π×S
d
π∗
U

Pπ
U
(s)

dπ
U (s) .
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Proof. From performance difference lemma, we have

ρ∗U − ρπU ≤
∑
s

d
π∗
U

Pπ
U
(s)

∑
a

(
π∗
U (a|s)− π(a|s)

)
Qπ

U (s, a) (8)

≤
∑
s

d
π∗
U

Pπ
U
(s)max

π′
s

∑
a

(
π′
s(a)− π(a|s)

)
Qπ

U (s, a)︸ ︷︷ ︸
≥0

(9)

= max
π′

∑
s

d
π∗
U

Pπ
U
(s)

dπU (s)
dπU (s)

∑
a

(
π′(a|s)− π(a|s)

)
Qπ

U (s, a)︸ ︷︷ ︸
≥0

(10)

≤
(
max

s

d
π∗
U

Pπ
U
(s)

dπU (s)

)
max
π′

∑
s

dπU (s)
∑
a

(
π′(a|s)− π(a|s)

)
Qπ

U (s, a) (11)

=
(
max

s

d
π∗
U

Pπ
U
(s)

dπU (s)

)
max
π′

〈
π′ − π,∇ρπU

〉
. (12)

(13)

Note that the constant CPL is bounded constant for µ ≻ 0, same as non-robust counterpart [1].
The distributional mismatch constant CPL, we obtain here is very similar to the one prevailing in
non-robust MDPs, where it is also known as the Polyak-Łojasiewicz constant [1]. However, our
mismatch constant is calculated w.r.t. the worst transition kernel whereas in the non-robust case, it
corresponds to the nominal.

For the sake of intuition, assume the domain Π is a unit ball around π, then right hand sides becomes
CPL∥∂ρπU∥. This intuitively shows why the above assumption is called PL condition.

Now, we have both the parts: One that lower bounds the gradient and the other that upper bounds it.
However, they are not exactly in very compatible forms, hence we require the result below that acts a
cohesive bond between the two.
Lemma 4. (Cohesive Bond) For all π ∈ Π, we have

max
π′∈Π

⟨∇ρ
πk+1

U , π′ − πk+1⟩ ≤ 2∥G(πk)∥diam(Π),

where diam(Π) := maxπ,π′∈Π∥π − π′∥ is the diameter of Π.

Proof. Proved in the appendix, however it is also a consequence of the second projection theorem
[2][Thm. 9.8].

Now equating the effective gradient in Lemma 3 and Lemma 1 using the Lemma 4 as intermediary,
we get the sub-optimality recursion below.

Theorem 1. Take η = 1
L as a learning rate. Then, the scaled sub-optimality ak =

ρ∗
U−ρ

πk
U

8LC2
PLdiam(Π)2

follows the recursion
a2k+1 + ak+1 − ak ≤ 0.

Proof. From the PL condition proved in Lemma 3, we have

ρ∗U − ρ
πk+1

U ≤ CPL max
π′

⟨π′ − πk+1,∇ρ
πk+1

U ⟩ (14)

≤ 2∥G(πk)∥diam(Π), (from Lemma 4) (15)

≤ CPL · 2
√
2L(ρ

πk+1
π − ρπk

U ) · diam(Π), (from Lemma 1) (16)

Squaring both sides and adding subtracting ρ∗ in RHS, we get(
ρ∗U − ρ

πk+1

U

)2

≤ 8C2
PLLdiam(Π)2

(
(ρ∗U − ρπk

U ) + (ρ∗U − ρπk+1
π )

)
7



Setting ak :=
ρ∗
U−ρ

πk
U

8LC2
PLdiam(Π)2

, the sequence (ak)k∈N satisfies the recursion a2k+1 ≤ ak − ak+1.

The sub-optimality recursion derived in the theorem above, illustrates how the sub-optimality at
time k + 1 depends at the sub-optimality at time k. Moreover, the sub-optimality recursion has the
quadratic form and ak ≥ 0, hence its solution is given as

ak+1 ≤
√

1

4
+ ak − 1

2
.

As a sanity check, we observe that
√

1
4 + a − 1

2 ≤ a for all a ≥ 0, implying that (ak)k∈N is

monotonically decreasing. Further, 0 is the only non-negative fixed point of the
√

1
4 + a− 1

2 = a

implying that (ak)k∈N monotonically decreases to 0.

Now, we investigate the convergence rate for ak. Observe that if a0, ak ≫ 1, then ak+1 ≈ √
ak

and ak ≈ (a0)
1

2k . That is, the convergence rate is super-exponential! Yet, in most cases,
8LC2

PLdiam(Π)2 ≫ 1 and ρ∗U − ρπ0

U = 8LC2
PLdiam(Π)2a0 = O(1) is bounded so we are more

interested in the case where a0 ≪ 1. In fact, in an MDP with a reward smaller than 1, we do have
ρπU = O(1).

In this regime, the sub-optimality recursion ak+1 − ak ≤ −a2k+1 suggests the ordinary differential
equation da

dk ≤ −a2 whose solution is a(k) ≤ 1
k+ 1

a(0)

≤ 1
k . This intuitively indicates an O( 1ϵ )

iteration complexity for achieving an ϵ-optimal solution, which we state below formally.
Corollary 1 (Global optimality). For all iterations k ≥ 1, it holds that:

ρ∗U − ρπk

U ≤ max

(
8LC2

PLdiam(Π)2

k
, 2−

k
2

)
(ρ∗U − ρπ0

U ).

Proof. The sub-optimality recursion yields the desired result which follows directly from [31].

The diameter of the policy class Π, can be upper bounded as

diam(Π)2 = max
π,π

∑
s

∥π′
s − πs∥22 ≤ max

π′,π

∑
s

∥π′
s − πs∥21 ≤ 4S.

4 Non-Differentiable Case

This section is devoted to studying the convergence without the differentiability, as in many case,
differentiability assumption 2 may not satisfy. Non-differentiability restricts us from using ’suffi-
cient increase lemma’. This lemma was crucially used in the section above that guarantees some
improvement proportional to the ’effective gradient’.

We our study below indicates that it is possible to use ’PL-condition’ to ensure improvement while
gradient ascent, however it accounts for slower convergence rate of O(ϵ−2) compared to O(ϵ−1) in
differentiable case.

We consider the learning rule
πk+1 = πk + ηk∂ρ

πk

U ,

where ∂ ∈ {∂ρπ
(P,R)

∂π | (P,R) ∈ argmin(P,R)∈U ρπ(P,R)}. We easily get the non-differential version
of PL condition, as stated in the result below.
Lemma 5 (PL condition). For any policy π ∈ Π, it holds that

ρ∗U − ρπU ≤ CPL min
∂

max
π′∈Π

⟨π′ − π, ∂ρπU ⟩,

where CPL := max(π,s)∈Π×S
d
π∗
U

Pπ
U
(s)

dπ
U (s) .

The above condition, immediately implies that the robust return has no saddle points, that is, global
maxima is the only point where sub-differential is zero.
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Theorem 2. (No Saddle Points) The robust MDPs have no saddle points, that is, zero sub-gradient
implies global optima. In other words,

∂ρπU = 0 =⇒ ρπU = ρ∗U .

Proof. From the above PL condition, we have

ρ∗U − ρπU ≤ CPL min
∂

max
π′∈Π

⟨π′ − π, ∂ρπU ⟩.

If we have ∂ρπU = 0, that implies ρ∗U − ρπU ≤ 0, which in turn, implies ρ∗U = ρπU .

In the next subsection, we show how the above PL condition can be used for convergence in one-
dimensional case. Extending this proof technique to a full fledged multi-dimensional case, remains
for the future work.
Lemma 6 (PL condition with Cohesive bond). For any policy π ∈ Π, it holds that

ρ∗U − ρ
πk+1

U ≤ CPL min
∂

max
π′∈Π

⟨π′ − πk+1, ∂ρ
πk+1

U ⟩ ≤ CPL
1

ηk
∥πk+1 − πk∥diam(Π).

4.1 Illustrative case of Single Dimension

This section is devoted for showcasing the potential of this technique in one-dimensional case, without
projection. That is, we consider the update rule:

xk+1 = xk + ηt∂f(xk).

For x ∈ X ⊂ R, f : X → R and with domain set X being convex and compact, lets assume
equivalent PL condition as

f(x∗)− f(x) ≤ cmin
∂

max
x′

⟨x′ − x, ∂f(x)⟩ ≤ cmin
∂

diam(X)|∂f(x)|.

Now, WLOG lets assume ∂f(x0) ≥ 0. Further, note that robust return ρπU is Lipschitz (proved in
appendix). So, we also assume the function f(x) is Lipschitz with Lipschitz constant L.
Proposition 1. Assuming min∂ ∂f(xi) > 0 for all 0 ≤ i ≤ k, then either min∂ ∂f(xk+1) > 0 or
f(xk) ≤ ηk .

Proof. If min∂ ∂f(xk+1) ≤ 0 and we already have min∂ ∂f(xk) > 0, this implies the existence of
a local minima between xk and xk+1. But result above have proved that there is no-saddle point.
Hence, a global optima f(x∗) = maxx∈X f(x) must have been achieved between xk and xk+1.
Further, since the function f is Lipschitz, and |xk+1 − x∗| ≤ |xk+1 − xk| ≤ ηk This implies
f∗ − f(xk+1) ≤ Lηk.

Now, assume min∂ ∂f(xi) > 0 for all 0 ≤ i ≤ k + 1, and from standard calculus [21], we have

f(xk+1)− f(xk) =

∫ xk+1

xk

∂f(x)dx ≤ (xk+1 − xk) min
x∈[xk,xk+1]

min
∂

|∂f(x)|,

≥(xk+1 − xk) min
x∈[xk,xk+1]

f(x∗)− f(x)

c · diam(X)
, (from PL condition),

≥(xk+1 − xk)
f(x∗)− f(xk+1)

c · diam(X)
, (f is increasing in [x0, xk+1]),

≥ηk
f(x∗)− f(xk+1)

c · diam(X)
, (learning rule),

As proved in appendix, the above recursion implies

f(x∗)− f(xk+1) ≤ c · diam(X)
f(x∗)− f(x0)∑k

l=0 ηl
.

Choosing the learning rate ηk = 1√
k+1

, implies the O(ϵ−2) convergence. Extending this proof
technique for general multi-dimension case, is our work in progress.
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5 Discussion

We established global convergence for s-rectangular robust MDPs with iteration complexity of
O(SAϵ−1), which is much faster than existing complexity of of O(S4A2ϵ−4) [26], given the robust
return is differentible w.r.t. policy. Moreover, our proof trivially yields a simpler and more intuitive
proof non-robust MDPs by taking single environment uncertainty set. Further, we tried to alleviate
the differentiablity condition on the robust return, yielding iteration complexity of O(SAϵ−2), by
using PL condition for sufficient increase lemma. We showed this can be done for one-dimension,
which is motivating, and extending this to a general case, is our work in progress.
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A Robust MDPs: Helper results

Proposition 2. The robust return ρπU is Lipschitz in policy with some Lipschitz constant L .

Proof. We know that ρπ(P,R) is Lipschitz in π [1], and let its Lipschitz constant be L(P,R). Let
L = max(P,R)∈U L(P,R) be maximum of all Lipschitz constant. Compactness of U ensures L exist
and it is finite. WLOG assume ρπ1

U ≥ ρπ2

U , then

ρπ1

U − ρπ2

U = min
(P,R)

ρπ1

(P,R) − min
(P,R)

ρπ2

(P,R),

= min
(P,R)

ρπ1

(P,R) − ρπ2

(P
π2
U ,R

π2
U )

,

≤ρπ1

(P
π2
U ,R

π2
U )

− ρπ2

(P
π2
U ,R

π2
U )

,

≤L(P
π2
U ,R

π2
U )∥π1 − π2∥,

≤L∥π1 − π2∥.
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Proposition 3. The recursion

f(xk+1)− f(xk) ≥cηk(f(x
∗)− f(xk+1))

implies f(x∗)− f(xk+1) ≤ f(x∗)−f(x0)

c
∑k

l=0 ηl
.

Proof. Taking ak = f(x∗)− f(xk), the above recursion implies,

ak − ak+1 ≥ cηkak+1

=⇒ ak
ak+1

≥ cηk + 1

=⇒ Πn
k=0

ak
ak+1

≥ Πn
k=0(cηk + 1) ≥ c

n∑
k=0

ηk

=⇒ a0
an+1

≥ c

n∑
k=0

ηk.

=⇒ an+1

a0
≤ 1

c
∑n

k=0 ηk
.

B Optimization: Global Convergence Rate of the Gradient Projection
Method

Let a compact convex C ⊂ Rn and f ∈ C1,1
L (C). We aim to maximize f , i.e., find: f∗ :=

maxx∈C f(x). Applying [2][Lemma 4.22], for all x, y ∈ C, it holds that:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ − L

2
∥y − x∥2. (17)

Let T (resp. G) be the next step gradient step operator (resp. the effective gradient step operator)
defined as

T (x) := projC(x+
1

L
∇f(x)), (18)

G(x) := L(T (x)− x) (19)

By construction of the projection operator, if T (x) ∈ C, then T (x) = x + 1
L∇f(x) so that

L(T (x)− x) = ∇f(x) = G(x).
Proposition 4. For all x, y in a convex set C, it holds that:

⟨∇f(x)−G(x), T (x)− y⟩ ≥ 0.

Proof. By the second projection theorem [2][Thm. 9.8], for any x, y ∈ C, we have

⟨x+
1

L
∇f(x)− T (x), T (x)− y⟩ ≥ 0

⇐⇒ ⟨ 1
L
∇f(x) + x− T (x), T (x)− y⟩ ≥ 0

⇐⇒ 1

L
⟨∇f(x)−G(x), T (x)− y⟩ ≥ 0 [x− T (x) = − 1

L
G(x)]

⇐⇒ 1

L
⟨∇f(x)−G(x), T (x)− y⟩ ≥ 0

⇐⇒ ⟨∇f(x)−G(x), T (x)− y⟩ ≥ 0.

Similarly to the sufficient decrease lemma for constrained problems [2][Lemma 9.11], the above
proposition enables us to establish a sufficient increase lemma for our constrained maximization.
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Lemma (Sufficient Increase Lemma). For all f ∈ C1,1
L (C), it holds that

f(T (x))− f(x) ≥ 1

2L
∥G(x)∥2, ∀x ∈ C.

Proof. Since f ∈ C1,1
L (C), Eq. (17) holds so that

f(T (x)) ≥ f(x) + ⟨∇f(x), T (x)− x⟩ − L

2
∥T (x)− x∥2

= f(x) + ⟨∇f(x), T (x)− x⟩ − 1

2L
∥G(x)∥2. [By Eq. (19)] (20)

Set x = y and apply Prop. 4. This yields ⟨∇f(x), T (x) − x⟩ ≥ ⟨G(x), T (x) − x⟩, which we
incorporate into Eq. (20) to obtain:

f(T (x)) ≥ f(x) + ⟨G(x), T (x)− x⟩ − 1

2L
∥G(x)∥2

= f(x) + ⟨G(x),
1

L
G(x)⟩ − 1

2L
∥G(x)∥2 [By Eq. (19)]

= f(x) +
1

2L
∥G(x)∥2.

This ends the proof.

The above result does not require f to be concave. In the unconstrained case, we have G = ∇f in the
above result. The intuition behind the above increase is: At a given point the function behaves like a
linear function where the change in gradient is slow due to L-smoothness. The above result ensures,
the iterates {xk} increases the function value by atleast 1

2L∥G(xk)∥2, but this only guarantee local
convergence.

We establish the following result which is also a consequence of the second projection theorem
[2][Thm. 9.8].
Lemma 7. For all x ∈ C, we have

max
y∈C

⟨∇f(T (x)), y − T (x)⟩ ≤ 2∥G(x)∥diam(C),

where diam(C) := maxx,y∈C∥x− y∥ is the diameter of C.

Proof. For all x, y ∈ C, we have:

⟨∇f(T (x)), y − T (x)⟩ = ⟨∇f(T (x))−∇f(x) +∇f(x), y − T (x)⟩ [Subtract & add ∇f(x)]

= ⟨∇f(T (x))−∇f(x), y − T (x)⟩+ ⟨∇f(x), y − T (x)⟩ [Linearity of scalar product]
≤ ∥∇f(T (x))−∇f(x)∥∥y − T (x)∥+ ⟨∇f(x), y − T (x)⟩ [Cauchy-Schwartz inequality]

≤ L∥T (x)− x∥∥y − T (x)∥+ ⟨∇f(x), y − T (x)⟩ [f ∈ C1,1
L (C)]

= ∥G(x)∥∥y − T (x)∥+ ⟨∇f(x), y − T (x)⟩ [By definition of G - Eq. (19)]
≤ ∥G(x)∥∥y − T (x)∥+ ⟨∇G(x), y − T (x)⟩ [Prop. 4]
≤ 2∥G(x)∥∥y − T (x)∥ [Cauchy-Schwartz inequality]
≤ 2∥G(x)∥diam(C). [By construction, T (x) ∈ C]

Since the resulting bound is for arbitrary y ∈ C, we can set the maximum over y ∈ C to conclude
that

max
y∈C

⟨∇f(T (x)), y − T (x)⟩ ≤ 2∥G(x)∥diam(C).
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