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Abstract

Federated Learning (FL) provides a privacy-001
preserving framework for fine-tuning002
Pre-trained Language Models (PLMs) on003
decentralized data. To reduce the computa-004
tional and communication costs arising from005
the massive parameters of PLMs, parameter-006
efficient fine-tuning (PEFT) techniques have007
been widely adopted. However, integrating008
PEFT into FL remains challenging, especially009
under non-IID settings, where significant per-010
formance degradation is commonly observed.011
In this work, we identify the root cause of this012
degradation as a fundamental incompatibility013
between PEFT methods and the aggregation014
mechanism in FL. Specifically, conventional015
averaging fails to effectively preserve the016
personalized knowledge encoded in each017
client’s PEFT updates, resulting in suboptimal018
performance and slower convergence. To019
address this issue, we propose an expert-guided020
aggregation strategy designed to better retain021
client-specific information. We instantiate this022
strategy with FedELoRA, a novel LoRA-based023
framework for FL that requires only a single024
round of communication. FedELoRA treats025
each client’s locally trained LoRA adapter as026
an expert and employs a trainable gating net-027
work to dynamically combine them after local028
training. This enables effective integration of029
heterogeneous client knowledge while sig-030
nificantly reducing communication overhead.031
Extensive experiments across diverse domains032
demonstrate that FedELoRA consistently033
outperforms state-of-the-art baselines under034
both IID and non-IID settings, while using only035
15.4% of the communication cost of the most036
efficient prior method. Our code is available at037
https://anonymous.4open.science/r/FedELoRA-038
30C0.039

1 Introduction040

Pre-trained Large Language Models (PLMs), such041

as GPT-4 (Achiam et al., 2023), have become the042

cornerstone of natural language processing. Adapt- 043

ing these PLMs to specialized downstream tasks 044

typically requires fine-tuning on domain-specific 045

datasets (Hadi et al., 2023; Zhao et al., 2023), 046

which are often siloed across organizations and can- 047

not be shared directly (Voigt and Von dem Bussche, 048

2017). Federated Learning (FL) offers a promising 049

solution by enabling collaborative model training 050

without disclosing raw data (McMahan et al., 2017; 051

Li et al., 2020). Despite its potential, directly fine- 052

tuning PLMs in FL leads to prohibitive commu- 053

nication and computation overhead. To alleviate 054

this issue, parameter-efficient fine-tuning (PEFT) 055

methods have been widely adopted, which intro- 056

duce lightweight adapters to reduce training costs 057

in computation and communication (Ye et al., 2024; 058

Kuang et al., 2024). 059

However, the application of PEFT in FL still suf- 060

fers from notable challenges. Even with advanced 061

techniques such as LoRA (Hu et al., 2022) and 062

4-bit quantization, fine-tuning a 731B-parameter 063

DeepSeek-R1 model across only four clients incurs 064

a communication cost of up to 1160 GB (DeepSeek- 065

AI, 2025). More critically, the performance of 066

PEFT methods degrades substantially in non-IID 067

data distributions (Che et al., 2023; Babakniya 068

et al., 2023; Cho et al., 2024; Zhang et al., 2023), 069

which are prevalent in FL. Although increasing 070

adapter capacity can partially address this issue, 071

it inevitably undermines the core efficiency ben- 072

efits of PEFT, revealing a fundamental trade-off 073

between model performance and communication 074

efficiency in federated scenarios. 075

Recent studies have proposed various enhance- 076

ments to PEFT methods in FL, with a particular 077

focus on LoRA-based approaches. These efforts 078

generally fall into two categories. The first line 079

of work addresses the suboptimal aggregation of 080

LoRA adapters, which can lead to degraded per- 081

formance. For instance, FFA-LoRA (Sun et al., 082

2024) updates only the matrix B during training 083
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to ensure the correctness, while RoLoRA (Chen084

et al., 2024) employs an alternating aggregation085

strategy to improve robustness. The second line086

of work mitigates the effects of data heterogene-087

ity by designing client-specific adapters that better088

align with local data distributions (Kim et al., 2023;089

Babakniya et al., 2023; Guo et al., 2025; Cho et al.,090

2024). While recent efforts have improved model091

performance, they often assume that multi-round092

averaging is an effective aggregation strategy, ne-093

glecting its incompatibility with the goals of PEFT.094

In this work, we point out a fundamental mis-095

match between PEFT and the aggregation mecha-096

nism in FL. While PEFT methods encode person-097

alized knowledge in a small number of trainable098

parameters, standard FL aggregation averages them099

across clients, thereby erasing individual adapta-100

tions. To empirically validate this mismatch, we101

conduct experiments on LoRA (Hu et al., 2022),102

a widely-adopted PEFT method. Our analysis fo-103

cuses on the performance variation of its low-rank104

matrices under averaging. We find that averaging105

the A matrix across clients has minimal impact on106

local performance, suggesting that shared knowl-107

edge is preserved. In contrast, averaging the B108

matrix significantly degrades local performance, in-109

dicating a loss of client-specific information. These110

findings empirically support our hypothesis and111

also align with prior observations that A captures112

generalizable features, while B encodes person-113

alized ones (Tian et al., 2024; Guo et al., 2025).114

Furthermore, we observe that the degradation of115

personalized knowledge necessitates more commu-116

nication rounds to converge, ultimately resulting in117

higher communication overhead.118

To this end, we propose an expert-guided aggre-119

gation strategy that models each client as a domain120

expert and leverages a Mixture of Experts (MoE)121

architecture (Shazeer et al., 2017) to effectively pre-122

serve client-specific knowledge during aggregation.123

We instantiate this strategy with Federated Expert-124

Gated LoRA (FedELoRA), a novel FL framework125

that enables collaborative PLM fine-tuning in a sin-126

gle communication round. FedELoRA redefines127

FL aggregation by treating each client’s locally128

trained B matrix as an independent expert and inte-129

grating them via a lightweight gating network that130

dynamically assigns expert weights based on in-131

put relevance. This forms the Expert-Gated LoRA132

(EGL) network, which enables input-adaptive ex-133

pert selection and enhances generalization across134

diverse domains. Meanwhile, based on empirical135

evidence that A matrices capture generalizable fea- 136

tures, FedELoRA averages them across clients to 137

reduce communication overhead. This design en- 138

hances model performance while reducing commu- 139

nication overhead, offering a principled alternative 140

to conventional averaging in FL. 141

Our contributions are summarized as follows: 142

• We identify the root cause of the performance 143

degradation when combining FL with PEFT 144

methods: a fundamental mismatch between 145

PEFT’s limited parameter updates and FL’s 146

averaging aggregation mechanism. 147

• We propose an expert-guided aggregation 148

mechanism that enables more efficient aggre- 149

gation of client-specific knowledge with only 150

one round of communication. We instantiate 151

this strategy with FedELoRA, a novel LoRA- 152

based framework for FL. 153

• We conduct comprehensive experiments under 154

both IID and Non-IID settings, where FedE- 155

LoRA consistently achieves the best average 156

rank across diverse tasks and heterogeneity 157

levels, demonstrating superior generalization. 158

In addition, FedELoRA reduces communica- 159

tion cost by up to 84.6% compared to the most 160

efficient baseline. 161

2 Background and Motivation 162

2.1 Federated Fine-tuning of PLMs 163

Federated Learning (FL) enables multiple clients to 164

collaboratively fine-tune a PLM without exposing 165

their private data (Hadi et al., 2023; Zhao et al., 166

2023; Zhang et al., 2023). This paradigm is partic- 167

ularly valuable in sensitive domains such as health- 168

care and finance, where data are often siloed across 169

institutions (Ye et al., 2024; Kuang et al., 2024). 170

However, directly fine-tuning PLMs in the FL set- 171

ting imposes prohibitive computational and com- 172

munication costs owing to the models’ massive pa- 173

rameter sizes. To mitigate this, parameter efficient 174

fine-tuning (PEFT) methods have been applied to 175

FL, such as adapter-tuning (Ghiasvand et al., 2024), 176

prompt-tuning (Cui et al., 2024), and LoRA (Hu 177

et al., 2022), which significantly reduce the number 178

of trainable parameters. 179

Among these methods, LoRA stands out for its 180

simplicity and effectiveness (Zhang et al., 2023; 181

Guo et al., 2025; Sun et al., 2024). Specifically, 182

LoRA introduces two low-rank matrices A and B 183
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to approximate the weight update:184

W′ = W +∆W = W +BA (1)185

where W is the frozen pre-trained weight. Accord-186

ingly, each client in FL trains local LoRA updates187

∆Wi = {Ai,Bi}, which are aggregated at the188

server via:189

Ag =
1

N

N∑
i=1

Ai, Bg =
1

N

N∑
i=1

Bi (2)190

The aggregated parameters are then sent back to all191

clients for the next training round until convergence.192

This paradigm, referred to as FedLoRA, serves as193

a representative framework in our study.194

2.2 PEFT Methods’ Practical Dilemma195

While PEFT methods reduce the computational and196

communication costs of federated fine-tuning, they197

often underperform in heterogeneous settings, a198

common scenario in real-world FL. Recent stud-199

ies consistently report a significant performance200

gap between PEFT and full-model fine-tuning un-201

der such conditions (Tian et al., 2024; Guo et al.,202

2025). A straightforward approach is to training203

more parameters locally, which can enhance the204

capacity of adapters and mitigate the performance205

drop. However, this improvement comes at the206

cost of increased communication, undermining the207

core efficiency advantages that motivate the use of208

PEFT. This inherent trade-off between communica-209

tion efficiency and adaptation performance presents210

a practical dilemma in the integration of PEFT and211

FL, and motivates a deeper examination of its root212

causes and potential architectural alternatives.213

2.3 Aggregation Pitfalls in FL214

This dilemma raises a key question: Why do PEFT215

methods underperform in federated settings, par-216

ticularly under non-IID data distributions? We217

hypothesize that this stems from a fundamental218

mismatch between FL’s averaging mechanism and219

the design principles of PEFT.220

To investigate this hypothesis, we take FedLoRA,221

a widely adopted PEFT methods in FL, as a case222

study. Prior works have suggested that the A223

matrix tends to encode generalizable information224

shared across clients, while B captures more client-225

specific knowledge (Tian et al., 2024; Zhu et al.,226

2024). Building on this insight, we design an ex-227

periment where each client independently trains228

its local LoRA adapters (Ai,Bi), while the server229
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Figure 1: Performance comparison of different LoRA
matrix applications across clients. Ag and Bg denote
the global A and B matrices, respectively, while Al and
Bl represent the local A and B matrices.

maintains global LoRA adapters (Ag,Bg) through 230

periodic aggregation, as defined in Eq. 2. We eval- 231

uate the impact of applying local versus global 232

LoRA matrices on each client’s performance. Re- 233

sults in Figure 1 yield the following observation: 234

Observation 1: Across all clients, using local Bi 235

matrices consistently outperforms using the global 236

average Bg, whereas substituting the global Ag 237

with local Ai results in negligible performance 238

differences. 239

These results suggest that averaging Bi fails to 240

retain critical client-specific knowledge, whereas 241

Ag effectively captures shared patterns across 242

clients. In addition, we monitor the performance 243

of the aggregated matrices Ag and Bg across train- 244

ing rounds, evaluating them on each client’s local 245

dataset. The results are provided in Figure 5, from 246

which we derive the following observation: 247

Observation 2: The global averaged models ex- 248

hibit significant performance fluctuations within 249

local client data, leading to slower convergence 250

and requiring more communication rounds. 251

In summary, our observations highlight a fun- 252

damental mismatch: PEFT methods are designed 253

to retain client-specific knowledge within a small 254

set of parameters, whereas the standard averag- 255

ing aggregation in FL tends to dilute this person- 256

alized information. This incompatibility not only 257

degrades performance but also increases the num- 258

ber of communication rounds required for conver- 259
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gence. To this end, we argue that a new aggregation260

paradigm is needed to integrate the efficiency ben-261

efits of PEFT within the FL framework.262

3 Methodology263

Building on the empirical findings in Section 2.3,264

we identify two core objectives for designing a265

PEFT-compatible aggregation strategy: (1) enhanc-266

ing the global model’s ability to retain domain-267

specific knowledge after aggregation, and (2) re-268

ducing the number of communication rounds to269

minimize overall cost.270

We instantiate these principles in a novel frame-271

work named FedELoRA, which replaces the con-272

ventional averaging mechanism with an expert-273

guided aggregation strategy that preserves client-274

specific knowledge through a single round of com-275

munication. At the core of FedELoRA lies the276

Expert-Gated LoRA (EGL) network, which inte-277

grates all local adapters as expert components and278

dynamically selects relevant knowledge at infer-279

ence via a lightweight gating function. We first280

introduce the EGL network architecture, followed281

by the three-stage workflow of FedELoRA.282

3.1 Expert-Gated LoRA Network283

Motivated by our observations in Section 2.3,284

which show that local Bi matrices are critical to285

domain-specific performance, EGL freezes all Bi286

after local training to prevent knowledge degrada-287

tion. In parallel, EGL averages the Ai matrices to288

obtain a shared projection Aegl, thereby reducing289

communication cost.290

Furthermore, inspired by the Mixture-of-Experts291

(MoE) framework (Shazeer et al., 2017), a292

lightweight gating function parameterized by a two-293

layer MLP Wg assigns weights to each expert dur-294

ing inference. This allows the EGL network to295

dynamically compose expert knowledge based on296

the input, enhancing generalization across domains.297

The overall adaptation can be formulated as:298

∆Wegl =

N∑
i=1

ωi ·BiAegl, (3)299

where ωi = softmax(W⊤
g x) reflect the relevance300

of each expert to the input sample x, Aegl =301
1
N

∑N
i=1Ai and N is the number of clients.302

3.2 Workflow of FedELoRA303

As illustrated in Figure 2, FedELoRA operates304

in three stages: local fine-tuning, server adapta-305

Trainable Frozen Communicate
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LoRA Modules
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Figure 2: Overview of the FedELoRA architecture and
workflow. (1) local fine-tuning phase: each client trains
its own LoRA adapters and uploads them to the server.
(2) server adaptation phase: the server uses a trainable
gating mechanism to integrate uploaded adapters, con-
structing an EGL network via fine-tuning on auxiliary
data. (3) local inference phase: each client uses the
trained gate function to dynamically combine expert
adapters Bi, enabling flexible adaptation to inputs.

tion, and local inference. This design decouples 306

client-specific specialization from server-side gen- 307

eralization, enabling a communication-efficient and 308

expert-adaptive federated fine-tuning framework. 309

Local Fine-tuning. Each client i initializes from 310

a pre-trained language model and fine-tunes it on 311

its local dataset using the LoRA framework (Hu 312

et al., 2022) until convergence. The resulting LoRA 313

adapters, denoted as ∆Wi = {Ai,Bi}, are then 314

uploaded to the server. 315

Server Adaptation. Upon receiving LoRA 316

adapters from all clients, the server initializes the 317

EGL network as described in Section 3.1. To pre- 318

serve client-specific knowledge, all Bi matrices 319

are kept frozen. Instead, the server fine-tunes the 320

aggregated matrix Aegl and the gating function f 321

using a small auxiliary dataset Daux, which can 322

be collected from abundant public resources (Li 323

et al., 2021; Wang et al., 2022). This allows the 324

EGL network to learn adaptive expert selection and 325

improve generalization without multiple communi- 326

cation rounds. Once trained, the EGL network is 327

distributed to all clients. 328

4



Local Inference. During inference, each client329

leverages the received EGL network to perform330

predictions. Specifically, FedELoRA dynamically331

integrates the outputs of all expert matrices Bi as:332

y = W0x+
N∑
i=1

ωi ·BiAeglx, (4)333

where W0 is the frozen weight of the pre-trained334

model, x is the input, and ωi denotes the gating335

weight for expert i. This formulation enables dy-336

namic inference conditioned on input x, ensuring337

that the most relevant expert knowledge is utilized338

for each prediction.339

4 Evaluation340

In this section, we detail the principal experiments.341

We begin with an overview of the experimental342

setup and implementation details. We then share343

our findings and offer a succinct interpretation.344

4.1 Experimental Setup345

Dataset and Benchmarks. To comprehensively346

evaluate the effectiveness of FedELoRA under347

varying data distribution scenarios, we adopt a348

diverse set of datasets and benchmarks. For the349

IID setting, we employ the Databricks-Dolly-15k350

dataset (Conover et al., 2023) where all clients351

are assumed to share an identical data distribution.352

Evaluation is conducted on multiple benchmarks,353

each targeting distinct capabilities: BBH (Suzgun354

et al., 2022) for general knowledge and reason-355

ing, DROP (Dua et al., 2019) for reading compre-356

hension and numerical reasoning, and HumanEval357

(Chen et al., 2021) for code generation and func-358

tional correctness.359

For the Non-IID setting, we construct four360

domain-specific tasks to reflect practical hetero-361

geneous data distributions, where each client is spe-362

cialized in a distinct domain. The details are as fol-363

lows: (1) Medical Domain: Models are fine-tuned364

on the Medical Meadow Flashcards dataset (Han365

et al., 2023), and evaluated on relevant MMLU sub-366

tasks (Hendrycks et al., 2020), including anatomy,367

college biology, college medicine, and medical ge-368

netics. (2) Mathematical Domain: Fine-tuning369

is conducted using the MathInstruct dataset (Yue370

et al., 2023), with evaluation on MMLU sub-tasks371

related to high school mathematics and statistics.372

(3) Financial Domain: The Financial Sentiment373

Analysis dataset (FinGPT, 2024) is used for train-374

ing, and performance is evaluated on the FPB375

benchmark (Malo et al., 2014). (4) Coding Domain: 376

Models are trained on the CodeAlpaca dataset 377

(Chaudhary, 2023), and evaluated using the Hu- 378

manEval benchmark (Chen et al., 2021) for func- 379

tional correctness in code generation. 380

FL Configuration. We conduct main experi- 381

ments in a 4-client cross-silo FL setting. A more 382

comprehensive analysis of the impact of the num- 383

ber of clients is presented in Section 4.4. For the 384

IID scenario, 2,000 samples are randomly drawn 385

from the Databricks-Dolly-15k dataset (Conover 386

et al., 2023) and evenly split among the four clients. 387

For the Non-IID scenario, we consider two hetero- 388

geneity levels: (i) mid heterogeneity, where each 389

client’s 5,000-sample dataset is a mixture of the 390

four domains (medical, financial, mathematical, 391

coding) in proportions (0.7, 0.1, 0.1, 0.1); (ii) high 392

heterogeneity, where each client holds 5,000 sam- 393

ples exclusively from one domain. 394

Comparison Baselines. We compare FedELoRA 395

with five baselines, described as follows: (i) 396

LoRA(Hu et al., 2022): Each client independently 397

fine-tunes the LoRA adapter on its local data with- 398

out communication. (ii) FedLoRA: Each client 399

transmits both the A and B matrices to the server 400

for global aggregation. (iii) FFA-LoRA(Sun et al., 401

2024): Each client freezes A matrix, trains only 402

the B matrix, and sends it to the server for global 403

aggregation. (iv) FedSA(Guo et al., 2025): Clients 404

transmit only A matrices to the server for global 405

aggregation, while locally train B matrices. (v) 406

RoLoRA(Chen et al., 2024): The clients alternate 407

between updating the A matrices with frozen B 408

matrices and vice versa across rounds. 409

Implementation Details. We adopt the pre- 410

trained LLaMa-2-7B model1 with 8-bit quantiza- 411

tion as the backbone. Local training on each client 412

is performed for 3 epochs using the AdamW op- 413

timizer (Loshchilov, 2017), with a batch size of 414

16 and 20 total communication rounds. A cosine 415

learning rate schedule is applied, following Ye et al. 416

(2024), starting at 5e-5 and decaying to 1e-6. For 417

domain-specific datasets, we set the maximum se- 418

quence length to 512 and use LoRA with rank 32 419

and scaling factor α = 64. For general datasets, the 420

sequence length is increased to 1024, with LoRA 421

rank 4 and α = 32. The proportion λ of the auxil- 422

iary dataset Daux is set to 0.1. All experiments are 423

1https://huggingface.co/NousResearch/
Llama-2-7b-hf
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#Hetero Method
Evaluation Benchmarks Cost

Medical Financial Math Code Rank %Params Commu.

Mid

LoRA - Med 46.56 (5) 58.25 (5) 28.81 (3) 13.41 (6) 4.75 0.248 –
LoRA - Fin 45.83 (8) 59.24 (3) 27.57 (5) 14.63 (4) 5.00 0.248 –

LoRA - Math 45.83 (8) 55.20 (7) 29.63 (2) 10.98 (9) 6.50 0.248 –
LoRA - Code 46.20 (7) 54.21 (8) 26.95 (7) 15.24 (3) 6.25 0.248 –

FedLoRA 47.46 (2) 59.82 (1) 27.16 (6) 13.41 (6) 3.75 0.248 10.00
FFA-LoRA 48.01 (1) 53.63 (9) 26.34 (9) 15.85 (1) 5.00 0.124 5.00

FedSA 46.56 (5) 59.32 (2) 26.75 (8) 15.85 (1) 4.00 0.248 5.00
RoLoRA 47.28 (4) 58.00 (6) 27.98 (4) 13.41 (6) 5.00 0.248 5.00

FedELoRA 47.46 (2) 59.24 (3) 31.07 (1) 14.63 (4) 2.50 0.283 0.77

High

LoRA - Med 47.83 (2) 55.25 (6) 28.19 (7) 12.20 (9) 6.00 0.248 –
LoRA - Fin 47.10 (4) 58.82 (3) 29.84 (3) 12.80 (7) 4.25 0.248 –

LoRA - Math 47.46 (3) 50.99 (9) 30.45 (2) 12.80 (7) 5.25 0.248 –
LoRA - Code 46.74 (8) 53.14 (8) 27.57 (8) 15.85 (1) 6.25 0.248 –

FedLoRA 46.92 (7) 60.97 (1) 27.57 (8) 14.02 (5) 5.25 0.248 10.00
FFA-LoRA 47.10 (4) 54.21 (7) 28.81 (6) 15.24 (2) 4.75 0.124 5.00

FedSA 47.10 (4) 60.48 (2) 29.22 (4) 15.24 (2) 3.00 0.248 5.00
RoLoRA 46.74 (8) 58.17 (4) 29.01 (5) 13.41 (6) 5.75 0.248 5.00

FedELoRA 49.28 (1) 58.00 (5) 31.28 (1) 14.63 (4) 2.75 0.283 0.77

Table 1: Comparison with baseline methods in different levels of data heterogeneity. Results show performance
metrics and communication costs (Comm. in GB).

conducted on NVIDIA A100 GPUs.424

4.2 Overall Performance425

As evaluation metrics across different tasks vary426

in scale, we adopt the average rank metric to mea-427

sure the models’ overall performance, which was428

adopted in previous work (Ye et al., 2024). The429

detailed results for the Non-IID and IID scenarios430

are presented in Table 1 and Table 4, respectively.431

The results demonstrate that FedELoRA con-432

sistently achieves the highest average rank across433

various data heterogeneity levels, indicating supe-434

rior generalization performance compared to the435

baseline methods. Furthermore, FedELoRA ex-436

hibits significant performance improvements across437

multiple subtasks. For instance, in the Math task438

under the medium heterogeneity scenario, FedE-439

LoRA achieved a score of 31.07, while the best440

performance from the baseline methods was 27.98.441

Notably, FedELoRA also performs well in the IID442

scenario. We attribute this to the larger adapter443

parameter space in FedELoRA, which enhances its444

ability to capture the knowledge of local models445

and ultimately leads to better performance than the446

comparison methods.447

Additionally, FedELoRA’s communication over-448

head is substantially lower than that of the base-449

Method
Evaluation Benchmarks

Med. Fin. Math Code

FedELoRA 49.28 58.00 31.28 14.63

w/o EGL 48.19 55.61 29.42 12.80
w/o gate 47.83 52.97 29.42 12.80

Table 2: Ablation study for FedELoRA.

line methods across all scenarios. Specifically, it 450

requires only 15.4% of the communication cost 451

of the baseline method with the lowest overhead. 452

This is attributed to FedELoRA’s communication- 453

efficient mechanism, which eliminates the need for 454

multiple communication rounds. This advantage 455

enables FedELoRA to improve model performance 456

by increasing the number of fine-tuning parameters 457

in practical applications. 458

4.3 Ablation Study 459

FedELoRA integrates the EGL network to preserve 460

client-specific expert knowledge and employs a 461

dynamic gating mechanism to select the most rel- 462

evant expert during inference. We conduct abla- 463

tion experiments in highly heterogeneous scenar- 464

ios to explore the effects of these two strategies. 465
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N Method
Evaluation Benchmarks Cost

Medical Financial Math Code Rank %Params Commu.

2

FedLoRA 47.64 (2) 60.97 (1) 28.60 (3) 15.24 (2) 2.00 0.248 5.00
FFA-LoRA 46.74 (4) 58.25 (4) 26.13 (4) 14.02 (4) 4.00 0.124 2.50

FedSA 46.92 (3) 60.81 (2) 29.42 (2) 15.85 (1) 2.00 0.248 2.50
RoLoRA 45.65 (5) 57.43 (5) 25.51 (5) 13.41 (5) 5.00 0.248 2.50

FedELoRA 48.73 (1) 58.50 (3) 30.45 (1) 15.24 (2) 1.75 0.314 0.25

4

FedLoRA 46.92 (4) 60.97 (1) 27.57 (5) 14.02 (4) 3.50 0.248 10.00
FFA-LoRA 47.10 (2) 54.21 (5) 28.81 (4) 15.24 (1) 3.00 0.124 5.00

FedSA 47.10 (2) 60.48 (2) 29.22 (2) 15.24 (1) 1.75 0.248 5.00
RoLoRA 46.74 (5) 58.17 (3) 29.01 (3) 13.41 (5) 4.00 0.248 5.00

FedELoRA 49.28 (1) 58.00 (4) 31.28 (1) 14.63 (3) 2.25 0.283 0.77

8

FedLoRA 47.10 (2) 61.14 (1) 27.78 (3) 13.41 (3) 2.25 0.248 20.00
FFA-LoRA 46.74 (4) 54.79 (3) 27.16 (4) 12.20 (4) 3.75 0.124 10.00

FedSA OOM OOM OOM OOM OOM 0.248 10.00
RoLoRA 47.10 (2) 58.09 (2) 29.22 (2) 14.02 (2) 2.00 0.248 10.00

FedELoRA 48.73 (1) 54.04 (4) 30.66 (1) 15.85 (1) 1.75 0.268 2.56

Table 3: Comparison with baseline methods in different number of clients N . Results show performance metrics
and communication costs (Comm. in GB).

Specifically, we consider two variants of FedE-466

LoRA: (i) without Expert-Gated LoRA (w/o EGL),467

which removes the EGL architecture, reverting468

FedELoRA to FedLoRA with a single communica-469

tion round; (ii) without the gating mechanism (w/o470

Gate), which assigns uniform weights to experts in-471

stead of leveraging the gate function. As shown in472

Table 2, both ablated variants perform significantly473

worse than FedELoRA across all tasks. These re-474

sults highlight the essential roles of both the EGL475

architecture and the adaptive gating mechanism in476

ensuring the effectiveness of FedELoRA.477

4.4 Hyper-parameter Analysis478

This section investigates several factors that may479

affect the performance of FedELoRA, including480

one method-dependent factor: the proportion λ481

of the auxiliary dataset Daux, and two method-482

independent factors: the number of clients N and483

the rank r of the LoRA adapters.484

The proportion λ of Daux. To assess the impact485

of the auxiliary dataset Daux on FedELoRA, we486

configure varying proportions λ of Daux, where487

when λ = 0, the gating function is the mean func-488

tion. As shown in Figure 3, On different tasks,489

the overall performance of FedELoRA increases490

with the increase of λ, which is in line with our491

expectations, because more auxiliary datasets can492
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Figure 3: The performance of FedELoRA across differ-
ent task w.r.t the proportion λ of Daux.

help FedELoRA learn how to schedule experts. In 493

addition, with only 0.1 ratio of auxiliary datasets, 494

FedELoRA can achieve a significant performance 495

improvement, proving its practicality. 496

The number of clients N . As discussed in Sec- 497

tion 2.1, unlike traditional FL, the fine-tuning 498

of PLMs typically involves a limited number of 499

clients. Therefore, we configure N to vary be- 500

tween 2 and 8 in order to evaluate the performance 501

of FedELoRA across different client settings. As 502

shown in Table 3, despite not achieving optimal 503

performance on some tasks, FedELoRA consis- 504

tently outperforms the comparison method in terms 505

of its overall generalization performance (Rank), 506

demonstrating its robust scalability. 507
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The rank r of LoRA Adapters. We evaluate508

the performance of FedELoRA alongside baseline509

methods for varying ranks r of LoRA adapters,510

with the results presented in Table 5. FedELoRA511

consistently outperforms the baseline methods in512

terms of generalization performance across differ-513

ent values of r, while also maintaining significantly514

lower communication overhead. Notably, although515

the number of trainable parameters increases as516

r grows, the communication cost of FedELoRA517

is much lower than that of the baseline methods.518

Therefore, in practical applications, FedELoRA519

can utilize a larger r to improve performance with-520

out incurring substantial communication overhead.521

4.5 Case Study522

To further understand how FedELoRA utilizes ex-523

pert knowledge during inference, we visualize the524

expert weights across four domains, as shown in525

Figure 4. Each bar in the visualization is normal-526

ized to have a total weight of 1, where the length of527

each colored segment indicates the relative contri-528

bution of a specific expert. The results reveal that529

the contribution of different expert matrices varies530

significantly across tasks, with domain-specific ex-531

perts contributing more prominently within their532

respective domains. This trend indicates that FedE-533

LoRA is able to dynamically and effectively lever-534

age relevant expert knowledge during inference,535

thereby enhancing its adaptability and performance536

across heterogeneous tasks.537

5 Related Work538

Recent studies have shown that LoRA can achieve539

performance comparable to full-parameter fine-540

tuning, making it increasingly attractive in feder-541

ated settings (Zhang et al., 2023; Han et al., 2024;542

Bian et al., 2025). Existing approaches in this area543

generally fall into two categories. The first line 544

of work focuses on addressing performance degra- 545

dation caused by directly aggregating LoRA up- 546

dates across clients. For instance, FFA-LoRA (Sun 547

et al., 2024) fixes the randomly initialized matrix A 548

and only fine-tunes matrix B. FLora (Wang et al., 549

2024) introduces a stacked aggregation mechanism 550

that reduces noise during module merging, albeit 551

with increased communication overhead. RoLoRA 552

(Chen et al., 2024) further proposes an alternating 553

optimization scheme to improve the robustness of 554

LoRA adaptation in federated environments. 555

The second category targets challenges arising 556

from data heterogeneity. C2A (Kim et al., 2023) 557

generates client-specific LoRA modules based on 558

local data distributions. Other works tailor LoRA 559

configurations to device capabilities using tech- 560

niques such as zero-padding (Cho et al., 2024) or 561

module duplication (Byun and Lee, 2024). FedSA 562

(Guo et al., 2025) selectively aggregates only ma- 563

trix A to capture global knowledge, while keeping 564

matrix B local to support personalization and re- 565

duce communication costs. 566

Our approach diverges from prior work in both 567

motivation and methodology. Rather than relying 568

on the multi-round averaging paradigm, which is 569

misaligned with the principles of PEFT methods, 570

we propose a novel expert-guided one-shot aggre- 571

gation strategy. This design better captures the 572

goals of both personalization and communication 573

efficiency in federated PEFT settings. 574

6 Conclusion 575

In this work, we identify a key limitation of ap- 576

plying PEFT methods to FL: the multi-round av- 577

eraging aggregation mechanism fails to preserve 578

client-specific knowledge, leading to degraded per- 579

formance and increased communication cost. To 580

this end, we propose a novel aggregation paradigm 581

that replaces the averaging mechanism with expert- 582

guided aggregation, enabling the retention of client- 583

specific knowledge in a single communication 584

round. We instantiate this strategy with FedELoRA, 585

a novel LoRA-based framework for FL. Empirical 586

results demonstrate that FedE-LoRA consistently 587

achieves the best average rank in both IID and non- 588

IID settings while reducing communication over- 589

head. We believe that our findings offers a broader 590

insight into the integration of PEFT and FL. 591
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Limitations592

Despite the promising results of FedELoRA in re-593

ducing communication overhead and enhancing594

model performance, several limitations persist in595

our study. First, our research focuses on integrat-596

ing federated learning with parameter-efficient fine-597

tuning techniques, with FedELoRA serving as the598

primary instantiation of this approach. However,599

other potential methods, such as Prompt Tuning,600

remain unexplored within this framework, limit-601

ing the scope of our investigation into alternative602

paradigms. Second, our method requires the server603

to collect publicly available auxiliary datasets and604

perform fine-tuning. While our experiments, de-605

tailed in Experiment 4 and Appendix, demonstrate606

that this approach does not place stringent demands607

on the quality or size of the auxiliary datasets, it608

does necessitate greater computational resources609

on the server side compared to traditional federated610

learning setups. This increased resource demand611

may hinder the practical applicability of FedE-612

LoRA in resource-constrained real-world scenarios.613

Finally, due to computational constraints associated614

with fine-tuning large-scale models, we were un-615

able to conduct experiments involving hundreds of616

clients in a cross-device setting. Instead, our evalu-617

ation relied on a smaller number of clients within618

a cross-silo configuration, which may not fully re-619

flect the challenges of broader, device-diverse de-620

ployments.621

Ethical Considerations622

In developing FedELoRA to advance efficient fine-623

tuning for federated large models, we have exer-624

cised significant caution in our data practices. All625

datasets utilized in this study are sourced from626

widely recognized and previously published works,627

ensuring they are free of personally identifiable in-628

formation. Moreover, the evaluation benchmarks629

we adopted align with those established in prior630

research, effectively eliminating risks of privacy631

violations or data breaches.632

Acknowledgments633

References634

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama635
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,636
Diogo Almeida, Janko Altenschmidt, Sam Altman,637
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.638
arXiv preprint arXiv:2303.08774.639

Sara Babakniya, Ahmed Elkordy, Yahya Ezzeldin, 640
Qingfeng Liu, Kee-Bong Song, MOSTAFA EL- 641
Khamy, and Salman Avestimehr. 2023. SLoRA: Fed- 642
erated parameter efficient fine-tuning of language 643
models. In International Workshop on Federated 644
Learning in the Age of Foundation Models in Con- 645
junction with NeurIPS 2023. 646

Jieming Bian, Yuanzhe Peng, Lei Wang, Yin Huang, and 647
Jie Xu. 2025. A survey on parameter-efficient fine- 648
tuning for foundation models in federated learning. 649
arXiv preprint arXiv:2504.21099. 650

Yuji Byun and Jaeho Lee. 2024. Towards federated 651
low-rank adaptation of language models with rank 652
heterogeneity. arXiv preprint arXiv:2406.17477. 653

Sahil Chaudhary. 2023. Code alpaca: An instruction- 654
following llama model for code generation. https: 655
//github.com/sahil280114/codealpaca. 656

Tianshi Che, Ji Liu, Yang Zhou, Jiaxiang Ren, Jiwen 657
Zhou, Victor S. Sheng, Huaiyu Dai, and Dejing Dou. 658
2023. Federated learning of large language models 659
with parameter-efficient prompt tuning and adaptive 660
optimization. In EMNLP, pages 7871–7888. Associ- 661
ation for Computational Linguistics. 662

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 663
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 664
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 665
Greg Brockman, et al. 2021. Evaluating large 666
language models trained on code. arXiv preprint 667
arXiv:2107.03374. 668

Shuangyi Chen, Yue Ju, Hardik Dalal, Zhongwen Zhu, 669
and Ashish Khisti. 2024. Robust federated finetuning 670
of foundation models via alternating minimization of 671
lora. arXiv preprint arXiv:2409.02346. 672

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and 673
Gauri Joshi. 2024. Heterogeneous lora for feder- 674
ated fine-tuning of on-device foundation models. In 675
EMNLP, pages 12903–12913. Association for Com- 676
putational Linguistics. 677

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, 678
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell, 679
Matei Zaharia, and Reynold Xin. 2023. Free dolly: 680
Introducing the world’s first truly open instruction- 681
tuned llm. Accessed: 2023-06-30. 682

Tianyu Cui, Hongxia Li, Jingya Wang, and Ye Shi. 683
2024. Harmonizing generalization and personaliza- 684
tion in federated prompt learning. In ICML. OpenRe- 685
view.net. 686

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea- 687
soning capability in llms via reinforcement learning. 688
Preprint, arXiv:2501.12948. 689

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel 690
Stanovsky, Sameer Singh, and Matt Gardner. 2019. 691
Drop: A reading comprehension benchmark re- 692
quiring discrete reasoning over paragraphs. arXiv 693
preprint arXiv:1903.00161. 694

9

https://openreview.net/forum?id=06quMTmtRV
https://openreview.net/forum?id=06quMTmtRV
https://openreview.net/forum?id=06quMTmtRV
https://openreview.net/forum?id=06quMTmtRV
https://openreview.net/forum?id=06quMTmtRV
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948


FinGPT. 2023. fingpt-sentiment-cls.695

FinGPT. 2024. fingpt-sentiment-train.696

Sajjad Ghiasvand, Yifan Yang, Zhiyu Xue, Mahnoosh697
Alizadeh, Zheng Zhang, and Ramtin Pedarsani. 2024.698
Communication-efficient and tensorized federated699
fine-tuning of large language models. arXiv preprint700
arXiv:2410.13097.701

Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan,702
Feifei Wang, and Liangqiong Qu. 2025. Selective ag-703
gregation for low-rank adaptation in federated learn-704
ing. In The Thirteenth International Conference on705
Learning Representations.706

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah,707
Muhammad Irfan, Anas Zafar, Muhammad Bilal708
Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili,709
et al. 2023. A survey on large language models:710
Applications, challenges, limitations, and practical711
usage. Authorea Preprints, 3.712

Tianyu Han, Lisa C Adams, Jens-Michalis Papaioan-713
nou, Paul Grundmann, Tom Oberhauser, Alexander714
Löser, Daniel Truhn, and Keno K Bressem. 2023.715
Medalpaca–an open-source collection of medical716
conversational ai models and training data. arXiv717
preprint arXiv:2304.08247.718

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and719
Sai Qian Zhang. 2024. Parameter-efficient fine-720
tuning for large models: A comprehensive survey.721
arXiv preprint arXiv:2403.14608.722

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,723
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.724
2020. Measuring massive multitask language under-725
standing. arXiv preprint arXiv:2009.03300.726

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan727
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and728
Weizhu Chen. 2022. Lora: Low-rank adaptation of729
large language models. In ICLR. OpenReview.net.730

Iamtarun. 2023. code_instructions_120k_alpaca.731

Yeachan Kim, Junho Kim, Wing-Lam Mok, Jun-Hyung732
Park, and SangKeun Lee. 2023. Client-customized733
adaptation for parameter-efficient federated learning.734
In Findings of the Association for Computational735
Linguistics: ACL 2023, pages 1159–1172.736

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen,737
Dawei Gao, Xuchen Pan, Yuexiang Xie, Yaliang Li,738
Bolin Ding, and Jingren Zhou. 2024. Federatedscope-739
llm: A comprehensive package for fine-tuning large740
language models in federated learning. In Proceed-741
ings of the 30th ACM SIGKDD Conference on Knowl-742
edge Discovery and Data Mining, pages 5260–5271.743

Anran Li, Lan Zhang, Juntao Tan, Yaxuan Qin, Junhao744
Wang, and Xiang-Yang Li. 2021. Sample-level data745
selection for federated learning. In IEEE INFOCOM746
2021-IEEE Conference on Computer Communica-747
tions, pages 1–10. IEEE.748

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Vir- 749
ginia Smith. 2020. Federated learning: Challenges, 750
methods, and future directions. IEEE signal process- 751
ing magazine, 37(3):50–60. 752

I Loshchilov. 2017. Decoupled weight decay regulariza- 753
tion. arXiv preprint arXiv:1711.05101. 754

Pekka Malo, Ankur Sinha, Pekka Korhonen, Jyrki Wal- 755
lenius, and Pyry Takala. 2014. Good debt or bad 756
debt: Detecting semantic orientations in economic 757
texts. Journal of the Association for Information 758
Science and Technology, 65(4):782–796. 759

Brendan McMahan, Eider Moore, Daniel Ramage, 760
Seth Hampson, and Blaise Aguera y Arcas. 2017. 761
Communication-efficient learning of deep networks 762
from decentralized data. In Artificial intelligence and 763
statistics, pages 1273–1282. PMLR. 764

MedAlpaca. 2023. medical_meadow_wikidoc. 765

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, 766
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff 767
Dean. 2017. Outrageously large neural networks: 768
The sparsely-gated mixture-of-experts layer. arXiv 769
preprint arXiv:1701.06538. 770

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. 771
2024. Improving lora in privacy-preserving federated 772
learning. arXiv preprint arXiv:2403.12313. 773

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 774
bastian Gehrmann, Yi Tay, Hyung Won Chung, 775
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny 776
Zhou, et al. 2022. Challenging big-bench tasks and 777
whether chain-of-thought can solve them. arXiv 778
preprint arXiv:2210.09261. 779

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and 780
Chengzhong Xu. 2024. Hydralora: An asymmet- 781
ric lora architecture for efficient fine-tuning. arXiv 782
preprint arXiv:2404.19245. 783

TIGER-Lab. 2024. Math-plus. 784

Paul Voigt and Axel Von dem Bussche. 2017. The eu 785
general data protection regulation (gdpr). A Prac- 786
tical Guide, 1st Ed., Cham: Springer International 787
Publishing, 10(3152676):10–5555. 788

Junhao Wang, Lan Zhang, Anran Li, Xuanke You, and 789
Haoran Cheng. 2022. Efficient participant contribu- 790
tion evaluation for horizontal and vertical federated 791
learning. In 2022 IEEE 38th International Confer- 792
ence on Data Engineering (ICDE), pages 911–923. 793
IEEE. 794

Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, 795
Hongyi Wang, Lingjuan Lyu, and Ang Li. 2024. 796
Flora: Federated fine-tuning large language mod- 797
els with heterogeneous low-rank adaptations. arXiv 798
preprint arXiv:2409.05976. 799

10

https://huggingface.co/datasets/FinGPT/fingpt-sentiment-cls
https://doi.org/10.57967/hf/3856
https://openreview.net/forum?id=iX3uESGdsO
https://openreview.net/forum?id=iX3uESGdsO
https://openreview.net/forum?id=iX3uESGdsO
https://openreview.net/forum?id=iX3uESGdsO
https://openreview.net/forum?id=iX3uESGdsO
https://huggingface.co/datasets/iamtarun/code_instructions_120k_alpaca
https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc
https://huggingface.co/datasets/TIGER-Lab/MATH-plus


Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi800
Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and Siheng801
Chen. 2024. Openfedllm: Training large language802
models on decentralized private data via federated803
learning. In Proceedings of the 30th ACM SIGKDD804
Conference on Knowledge Discovery and Data Min-805
ing, pages 6137–6147.806

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-807
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.808
2023. Mammoth: Building math generalist models809
through hybrid instruction tuning. arXiv preprint810
arXiv:2309.05653.811

Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang,812
Yue Yu, Lizhen Qu, and Zenglin Xu. 2023. Fedpetun-813
ing: When federated learning meets the parameter-814
efficient tuning methods of pre-trained language mod-815
els. In Annual Meeting of the Association of Compu-816
tational Linguistics 2023, pages 9963–9977. Associ-817
ation for Computational Linguistics (ACL).818

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,819
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen820
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A821
survey of large language models. arXiv preprint822
arXiv:2303.18223, 1(2).823

Jiacheng Zhu, Kristjan H. Greenewald, Kimia Nadjahi,824
Haitz Sáez de Ocáriz Borde, Rickard Brüel Gabriels-825
son, Leshem Choshen, Marzyeh Ghassemi, Mikhail826
Yurochkin, and Justin Solomon. 2024. Asymmetry827
in low-rank adapters of foundation models. In ICML.828
OpenReview.net.829

A Appendix 830

A.1 Motivation Experiments 831

Performance variation of global models. We 832

evaluated the performance of the globally aggre- 833

gated model on each client’s local dataset, with the 834

results presented in Figure 5. The figure reveals 835

that the model’s performance exhibits significant 836

variability across different domains, necessitating 837

additional communication rounds to achieve con- 838

vergence. 839
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Figure 5: Performance variation of global models across
datasets from diverse domains.

Performance with local B matrices. Although 840

average aggregation is not an effective mechanism, 841

our experiments also reveal that relying solely on 842
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Method
Evaluation Benchmarks Cost

BBH DROP HumanEval CRASS Rank %Params Commu

LoRA 31.67 (3) 34.08 (1) 14.33 (6) 43.38 (4) 3.50 0.031 –

FedLoRA 31.45 (5) 33.94 (4) 14.63 (3) 44.10 (2) 3.50 0.031 1.25
FFA-LoRA 31.68 (2) 33.89 (5) 15.24 (1) 42.24 (5) 3.25 0.016 0.63

FedSA 31.64 (4) 33.97 (2) 14.63 (3) 44.10 (2) 2.75 0.031 0.63
RoLoRA 31.04 (6) 32.92 (6) 14.63 (3) 39.75 (6) 5.25 0.031 0.63

FedELoRA 32.03 (1) 33.95 (3) 15.24 (1) 45.96 (1) 1.50 0.039 0.11

Table 4: Comparison with baseline methods in IID setting (Comm. in GB).

local B matrices will compromises the general-843

ization of fine-tuned models. Specifically, we ap-844

ply each client’s local B matrix individually and845

evaluate the model performance on the datasets of846

the other three clients. As shown in Figure 6, the847

generalization achieved with local B matrices is848

notably weaker than that of the global Bg matrix.849

Therefore, there is a need for a novel aggregation850

mechanism that effectively integrates diverse ex-851

pert knowledge while minimizing training itera-852

tions.853
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Figure 6: Performance comparison of global and non-
local B matrix applications across clients. Bmed. and
Bfin. denote B matrices trained on medical and finan-
cial dataset clients, respectively.

A.2 Overall Performance Results854

Due to space limitations, we present the perfor-855

mance of FedELoRA and the comparison methods856

under the IID scenario in Table 4.857
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Figure 7: Performance of FedELoRA under different
auxiliary dataset settings.

A.3 The Impact of Ranks 858

We present a performance comparison of FedE- 859

LoRA with baseline methods for LoRA adapters at 860

different ranks r in Table 5. 861

A.4 The Impact of Auxiliary Datasets 862

In this section, we evaluate the generalization abil- 863

ity of our proposed method, FedELoRA, under 864

different auxiliary dataset configurations: 865

• FedELoRA-Base: No distribution shift be- 866

tween the auxiliary dataset and training data. 867

• FedELoRA-InDomainShift: A domain- 868

relevant but distribution-shifted auxiliary 869

dataset is used for adaptation. Specif- 870

ically, in the medical domain, we use 871

medical_meadow_wikidoc(MedAlpaca, 872

2023), a medical QA dataset; in the financial 873

domain, fingpt_sentiment_cls (FinGPT, 874

2023), a sentiment classification dataset; 875

for mathematical reasoning, Math-Plus 876

(TIGER-Lab, 2024); and for code gener- 877

ation, code_instructions_120k_alpaca 878

(Iamtarun, 2023). 879
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r Method
Evaluation Benchmarks Cost

Medical Financial Math Code Rank %Params Commu.

8

FedLoRA 46.92 (4) 57.84 (3) 28.19 (3) 15.24 (2) 3.00 0.062 2.50
FFA-LoRA 46.92 (4) 40.35 (5) 27.98 (4) 14.02 (5) 4.50 0.031 1.25

FedSA 47.28 (2) 58.83 (1) 29.42 (2) 15.85 (1) 1.50 0.062 1.25
RoLoRA 47.28 (2) 50.33 (4) 27.78 (5) 15.24 (2) 3.25 0.062 1.25

FedELoRA 48.19 (1) 57.92 (2) 29.63 (1) 15.24 (2) 1.50 0.074 0.20

16

FedLoRA 46.38 (5) 59.32 (1) 29.22 (3) 13.41 (5) 3.50 0.124 5.00
FFA-LoRA 47.10 (3) 46.53 (5) 27.37 (5) 14.63 (2) 3.75 0.062 2.50

FedSA 46.74 (4) 58.99 (2) 29.42 (2) 14.02 (3) 2.75 0.124 2.50
RoLoRA 47.28 (2) 56.11 (4) 28.60 (4) 15.85 (1) 2.75 0.124 2.50

FedELoRA 48.01 (1) 57.67 (3) 30.04 (1) 14.02 (3) 2.00 0.144 0.39

32

FedLoRA 46.92 (4) 60.97 (1) 27.57 (5) 14.02 (4) 3.50 0.248 10.00
FFA-LoRA 47.10 (2) 54.21 (5) 28.81 (4) 15.24 (1) 3.00 0.124 5.00

FedSA 47.10 (2) 60.48 (2) 29.22 (2) 15.24 (1) 1.75 0.248 5.00
RoLoRA 46.74 (5) 58.17 (3) 29.01 (3) 13.41 (5) 4.00 0.248 5.00

FedELoRA 49.28 (1) 58.00 (4) 31.28 (1) 14.63 (3) 2.25 0.283 0.77

64

FedLoRA 47.28 (2) 62.71 (1) 27.57 (4) 12.80 (5) 3.00 0.495 20.00
FFA-LoRA 47.28 (2) 58.50 (5) 26.75 (5) 13.41 (4) 4.00 0.248 10.00

FedSA 46.92 (4) 60.56 (2) 28.81 (2) 14.63 (1) 2.25 0.495 10.00
RoLoRA 46.56 (5) 59.90 (3) 28.19 (3) 14.63 (1) 3.00 0.495 10.00

FedELoRA 49.09 (1) 59.74 (4) 30.04 (1) 14.63 (1) 1.75 0.563 1.52

Table 5: Performance of FedELoRA and baseline methods with varying LoRA adapter ranks r.

• FedELoRA-OutDomain: A general-880

purpose instruction tuning dataset,881

databricks-dolly-15k (Conover et al.,882

2023), is used, which is not aligned with the883

client domain.884

• FedELoRA-WithoutData: No auxiliary885

dataset is provided, and the aggregated model886

is directly used for inference without further887

fine-tuning.888

Figure 7 presents the performance of FedE-889

LoRA under various auxiliary dataset configura-890

tions across four domains: Medical, Financial,891

Math, and Code. FedELoRA exhibits strong robust-892

ness across various auxiliary data settings. Even893

with domain shifts, performance remains stable894

when the data is topically aligned. In contrast, us-895

ing mismatched or no auxiliary data leads to larger896

drops, especially in domain-sensitive tasks.897
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