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Abstract

Federated Learning (FL) provides a privacy-
preserving framework for fine-tuning
Pre-trained Language Models (PLMs) on
decentralized data. To reduce the computa-
tional and communication costs arising from
the massive parameters of PLMs, parameter-
efficient fine-tuning (PEFT) techniques have
been widely adopted. However, integrating
PEFT into FL remains challenging, especially
under non-IID settings, where significant per-
formance degradation is commonly observed.
In this work, we identify the root cause of this
degradation as a fundamental incompatibility
between PEFT methods and the aggregation
mechanism in FL. Specifically, conventional
averaging fails to effectively preserve the
personalized knowledge encoded in each
client’s PEFT updates, resulting in suboptimal
performance and slower convergence. To
address this issue, we propose an expert-guided
aggregation strategy designed to better retain
client-specific information. We instantiate this
strategy with FedELoRA, a novel LoRA-based
framework for FL that requires only a single
round of communication. FedELoRA treats
each client’s locally trained LoRA adapter as
an expert and employs a trainable gating net-
work to dynamically combine them after local
training. This enables effective integration of
heterogeneous client knowledge while sig-
nificantly reducing communication overhead.
Extensive experiments across diverse domains
demonstrate that FedELoRA consistently
outperforms state-of-the-art baselines under
both IID and non-IID settings, while using only
15.4% of the communication cost of the most
efficient prior method. Our code is available at
https://anonymous.4open.science/r/FedELoRA-
30C0.

1 Introduction

Pre-trained Large Language Models (PLMs), such
as GPT-4 (Achiam et al., 2023), have become the

cornerstone of natural language processing. Adapt-
ing these PLMs to specialized downstream tasks
typically requires fine-tuning on domain-specific
datasets (Hadi et al., 2023; Zhao et al., 2023),
which are often siloed across organizations and can-
not be shared directly (Voigt and Von dem Bussche,
2017). Federated Learning (FL) offers a promising
solution by enabling collaborative model training
without disclosing raw data (McMahan et al., 2017;
Li et al., 2020). Despite its potential, directly fine-
tuning PLMs in FL leads to prohibitive commu-
nication and computation overhead. To alleviate
this issue, parameter-efficient fine-tuning (PEFT)
methods have been widely adopted, which intro-
duce lightweight adapters to reduce training costs
in computation and communication (Ye et al., 2024;
Kuang et al., 2024).

However, the application of PEFT in FL still suf-
fers from notable challenges. Even with advanced
techniques such as LoRA (Hu et al., 2022) and
4-bit quantization, fine-tuning a 731B-parameter
DeepSeek-R1 model across only four clients incurs
a communication cost of up to 1160 GB (DeepSeek-
Al, 2025). More critically, the performance of
PEFT methods degrades substantially in non-IID
data distributions (Che et al., 2023; Babakniya
et al., 2023; Cho et al., 2024; Zhang et al., 2023),
which are prevalent in FL. Although increasing
adapter capacity can partially address this issue,
it inevitably undermines the core efficiency ben-
efits of PEFT, revealing a fundamental trade-off
between model performance and communication
efficiency in federated scenarios.

Recent studies have proposed various enhance-
ments to PEFT methods in FL, with a particular
focus on LoRA-based approaches. These efforts
generally fall into two categories. The first line
of work addresses the suboptimal aggregation of
LoRA adapters, which can lead to degraded per-
formance. For instance, FFA-LoRA (Sun et al.,
2024) updates only the matrix B during training



to ensure the correctness, while RoLoRA (Chen
et al., 2024) employs an alternating aggregation
strategy to improve robustness. The second line
of work mitigates the effects of data heterogene-
ity by designing client-specific adapters that better
align with local data distributions (Kim et al., 2023;
Babakniya et al., 2023; Guo et al., 2025; Cho et al.,
2024). While recent efforts have improved model
performance, they often assume that multi-round
averaging is an effective aggregation strategy, ne-
glecting its incompatibility with the goals of PEFT.

In this work, we point out a fundamental mis-
match between PEFT and the aggregation mecha-
nism in FL.. While PEFT methods encode person-
alized knowledge in a small number of trainable
parameters, standard FL aggregation averages them
across clients, thereby erasing individual adapta-
tions. To empirically validate this mismatch, we
conduct experiments on LoRA (Hu et al., 2022),
a widely-adopted PEFT method. Our analysis fo-
cuses on the performance variation of its low-rank
matrices under averaging. We find that averaging
the A matrix across clients has minimal impact on
local performance, suggesting that shared knowl-
edge is preserved. In contrast, averaging the B
matrix significantly degrades local performance, in-
dicating a loss of client-specific information. These
findings empirically support our hypothesis and
also align with prior observations that A captures
generalizable features, while B encodes person-
alized ones (Tian et al., 2024; Guo et al., 2025).
Furthermore, we observe that the degradation of
personalized knowledge necessitates more commu-
nication rounds to converge, ultimately resulting in
higher communication overhead.

To this end, we propose an expert-guided aggre-
gation strategy that models each client as a domain
expert and leverages a Mixture of Experts (MoE)
architecture (Shazeer et al., 2017) to effectively pre-
serve client-specific knowledge during aggregation.
We instantiate this strategy with Federated Expert-
Gated LoRA (FedELoRA), a novel FL framework
that enables collaborative PLM fine-tuning in a sin-
gle communication round. FedELoRA redefines
FL aggregation by treating each client’s locally
trained B matrix as an independent expert and inte-
grating them via a lightweight gating network that
dynamically assigns expert weights based on in-
put relevance. This forms the Expert-Gated LoRA
(EGL) network, which enables input-adaptive ex-
pert selection and enhances generalization across
diverse domains. Meanwhile, based on empirical

evidence that A matrices capture generalizable fea-
tures, FedELoRA averages them across clients to
reduce communication overhead. This design en-
hances model performance while reducing commu-
nication overhead, offering a principled alternative
to conventional averaging in FL.

Our contributions are summarized as follows:

* We identify the root cause of the performance
degradation when combining FL with PEFT
methods: a fundamental mismatch between
PEFT’s limited parameter updates and FL’s
averaging aggregation mechanism.

* We propose an expert-guided aggregation
mechanism that enables more efficient aggre-
gation of client-specific knowledge with only
one round of communication. We instantiate
this strategy with FedELoRA, a novel LoRA-
based framework for FL.

* We conduct comprehensive experiments under
both IID and Non-IID settings, where FedE-
LoRA consistently achieves the best average
rank across diverse tasks and heterogeneity
levels, demonstrating superior generalization.
In addition, FedELoRA reduces communica-
tion cost by up to 84.6% compared to the most
efficient baseline.

2 Background and Motivation

2.1 Federated Fine-tuning of PLMs

Federated Learning (FL) enables multiple clients to
collaboratively fine-tune a PLM without exposing
their private data (Hadi et al., 2023; Zhao et al.,
2023; Zhang et al., 2023). This paradigm is partic-
ularly valuable in sensitive domains such as health-
care and finance, where data are often siloed across
institutions (Ye et al., 2024; Kuang et al., 2024).
However, directly fine-tuning PLMs in the FL set-
ting imposes prohibitive computational and com-
munication costs owing to the models’ massive pa-
rameter sizes. To mitigate this, parameter efficient
fine-tuning (PEFT) methods have been applied to
FL, such as adapter-tuning (Ghiasvand et al., 2024),
prompt-tuning (Cui et al., 2024), and LoRA (Hu
et al., 2022), which significantly reduce the number
of trainable parameters.

Among these methods, LoRA stands out for its
simplicity and effectiveness (Zhang et al., 2023;
Guo et al., 2025; Sun et al., 2024). Specifically,
LoRA introduces two low-rank matrices A and B



to approximate the weight update:
W =W + AW =W + BA (1)

where W is the frozen pre-trained weight. Accord-
ingly, each client in FL trains local LoRA updates
AW,; = {A;,B;}, which are aggregated at the
server via:

The aggregated parameters are then sent back to all
clients for the next training round until convergence.
This paradigm, referred to as FedLoRA, serves as
a representative framework in our study.

2.2 PEFT Methods’ Practical Dilemma

While PEFT methods reduce the computational and
communication costs of federated fine-tuning, they
often underperform in heterogeneous settings, a
common scenario in real-world FL. Recent stud-
ies consistently report a significant performance
gap between PEFT and full-model fine-tuning un-
der such conditions (Tian et al., 2024; Guo et al.,
2025). A straightforward approach is to training
more parameters locally, which can enhance the
capacity of adapters and mitigate the performance
drop. However, this improvement comes at the
cost of increased communication, undermining the
core efficiency advantages that motivate the use of
PEFT. This inherent trade-off between communica-
tion efficiency and adaptation performance presents
a practical dilemma in the integration of PEFT and
FL, and motivates a deeper examination of its root
causes and potential architectural alternatives.

2.3 Aggregation Pitfalls in FL

This dilemma raises a key question: Why do PEFT
methods underperform in federated settings, par-
ticularly under non-IID data distributions? We
hypothesize that this stems from a fundamental
mismatch between FL’s averaging mechanism and
the design principles of PEFT.

To investigate this hypothesis, we take FedLoRA,
a widely adopted PEFT methods in FL, as a case
study. Prior works have suggested that the A
matrix tends to encode generalizable information
shared across clients, while B captures more client-
specific knowledge (Tian et al., 2024; Zhu et al.,
2024). Building on this insight, we design an ex-
periment where each client independently trains
its local LoRA adapters (A;, B;), while the server
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Figure 1: Performance comparison of different LoORA
matrix applications across clients. A, and B, denote
the global A and B matrices, respectively, while A; and
B; represent the local A and B matrices.

maintains global LoRA adapters (A4, B,) through
periodic aggregation, as defined in Eq. 2. We eval-
uate the impact of applying local versus global
LoRA matrices on each client’s performance. Re-
sults in Figure 1 yield the following observation:

Observation 1:  Across all clients, using local B;
matrices consistently outperforms using the global
average By, whereas substituting the global A,
with local A; results in negligible performance
differences.

These results suggest that averaging B; fails to
retain critical client-specific knowledge, whereas
A, effectively captures shared patterns across
clients. In addition, we monitor the performance
of the aggregated matrices A, and B across train-
ing rounds, evaluating them on each client’s local
dataset. The results are provided in Figure 5, from
which we derive the following observation:

Observation 2:  The global averaged models ex-
hibit significant performance fluctuations within
local client data, leading to slower convergence
and requiring more communication rounds.

In summary, our observations highlight a fun-
damental mismatch: PEFT methods are designed
to retain client-specific knowledge within a small
set of parameters, whereas the standard averag-
ing aggregation in FL tends to dilute this person-
alized information. This incompatibility not only
degrades performance but also increases the num-
ber of communication rounds required for conver-



gence. To this end, we argue that a new aggregation
paradigm is needed to integrate the efficiency ben-
efits of PEFT within the FL. framework.

3 Methodology

Building on the empirical findings in Section 2.3,
we identify two core objectives for designing a
PEFT-compatible aggregation strategy: (1) enhanc-
ing the global model’s ability to retain domain-
specific knowledge after aggregation, and (2) re-
ducing the number of communication rounds to
minimize overall cost.

We instantiate these principles in a novel frame-
work named FedELoRA, which replaces the con-
ventional averaging mechanism with an expert-
guided aggregation strategy that preserves client-
specific knowledge through a single round of com-
munication. At the core of FedELoRA lies the
Expert-Gated LoRA (EGL) network, which inte-
grates all local adapters as expert components and
dynamically selects relevant knowledge at infer-
ence via a lightweight gating function. We first
introduce the EGL network architecture, followed
by the three-stage workflow of FedELoRA.

3.1 Expert-Gated LoRA Network

Motivated by our observations in Section 2.3,
which show that local B; matrices are critical to
domain-specific performance, EGL freezes all B;
after local training to prevent knowledge degrada-
tion. In parallel, EGL averages the A; matrices to
obtain a shared projection A, thereby reducing
communication cost.

Furthermore, inspired by the Mixture-of-Experts
(MoE) framework (Shazeer et al., 2017), a
lightweight gating function parameterized by a two-
layer MLP W, assigns weights to each expert dur-
ing inference. This allows the EGL network to
dynamically compose expert knowledge based on
the input, enhancing generalization across domains.
The overall adaptation can be formulated as:

N
AVvegl = Zwi : BiAegla €))
i=1
where w; = softmax(I/Vs;r x) reflect the relevance
of each expert to the input sample z, A,y =
% Zf\il A, and N is the number of clients.

3.2 Workflow of FedELoRA

As illustrated in Figure 2, FedELoRA operates
in three stages: local fine-tuning, server adapta-
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Figure 2: Overview of the FedELoRA architecture and
workflow. (1) local fine-tuning phase: each client trains
its own LoRA adapters and uploads them to the server.
(2) server adaptation phase: the server uses a trainable
gating mechanism to integrate uploaded adapters, con-
structing an EGL network via fine-tuning on auxiliary
data. (3) local inference phase: each client uses the
trained gate function to dynamically combine expert
adapters B;, enabling flexible adaptation to inputs.

tion, and local inference. This design decouples
client-specific specialization from server-side gen-
eralization, enabling a communication-efficient and
expert-adaptive federated fine-tuning framework.

Local Fine-tuning. Each client ¢ initializes from
a pre-trained language model and fine-tunes it on
its local dataset using the LoRA framework (Hu
et al., 2022) until convergence. The resulting LoORA
adapters, denoted as AW; = {A;, B;}, are then
uploaded to the server.

Server Adaptation. Upon receiving LoRA
adapters from all clients, the server initializes the
EGL network as described in Section 3.1. To pre-
serve client-specific knowledge, all B; matrices
are kept frozen. Instead, the server fine-tunes the
aggregated matrix A, and the gating function f
using a small auxiliary dataset D,,,,, which can
be collected from abundant public resources (Li
et al., 2021; Wang et al., 2022). This allows the
EGL network to learn adaptive expert selection and
improve generalization without multiple communi-
cation rounds. Once trained, the EGL network is
distributed to all clients.



Local Inference. During inference, each client
leverages the received EGL network to perform
predictions. Specifically, FedELoRA dynamically
integrates the outputs of all expert matrices B; as:

N
y=Wor+» wi BiAguw, “
=1

where W) is the frozen weight of the pre-trained
model, z is the input, and w; denotes the gating
weight for expert ¢. This formulation enables dy-
namic inference conditioned on input z, ensuring
that the most relevant expert knowledge is utilized
for each prediction.

4 Evaluation

In this section, we detail the principal experiments.
We begin with an overview of the experimental
setup and implementation details. We then share
our findings and offer a succinct interpretation.

4.1 Experimental Setup

Dataset and Benchmarks. To comprehensively
evaluate the effectiveness of FedELoRA under
varying data distribution scenarios, we adopt a
diverse set of datasets and benchmarks. For the
IID setting, we employ the Databricks-Dolly-15k
dataset (Conover et al., 2023) where all clients
are assumed to share an identical data distribution.
Evaluation is conducted on multiple benchmarks,
each targeting distinct capabilities: BBH (Suzgun
et al., 2022) for general knowledge and reason-
ing, DROP (Dua et al., 2019) for reading compre-
hension and numerical reasoning, and HumanEval
(Chen et al., 2021) for code generation and func-
tional correctness.

For the Non-IID setting, we construct four
domain-specific tasks to reflect practical hetero-
geneous data distributions, where each client is spe-
cialized in a distinct domain. The details are as fol-
lows: (1) Medical Domain: Models are fine-tuned
on the Medical Meadow Flashcards dataset (Han
etal., 2023), and evaluated on relevant MMLU sub-
tasks (Hendrycks et al., 2020), including anatomy,
college biology, college medicine, and medical ge-
netics. (2) Mathematical Domain: Fine-tuning
is conducted using the MathlInstruct dataset (Yue
et al., 2023), with evaluation on MMLU sub-tasks
related to high school mathematics and statistics.
(3) Financial Domain: The Financial Sentiment
Analysis dataset (FinGPT, 2024) is used for train-
ing, and performance is evaluated on the FPB

benchmark (Malo et al., 2014). (4) Coding Domain:
Models are trained on the CodeAlpaca dataset
(Chaudhary, 2023), and evaluated using the Hu-
manEval benchmark (Chen et al., 2021) for func-
tional correctness in code generation.

FL Configuration. We conduct main experi-
ments in a 4-client cross-silo FL setting. A more
comprehensive analysis of the impact of the num-
ber of clients is presented in Section 4.4. For the
IID scenario, 2,000 samples are randomly drawn
from the Databricks-Dolly-15k dataset (Conover
et al., 2023) and evenly split among the four clients.
For the Non-IID scenario, we consider two hetero-
geneity levels: (i) mid heterogeneity, where each
client’s 5,000-sample dataset is a mixture of the
four domains (medical, financial, mathematical,
coding) in proportions (0.7, 0.1, 0.1, 0.1); (ii) high
heterogeneity, where each client holds 5,000 sam-
ples exclusively from one domain.

Comparison Baselines. We compare FedELoRA
with five baselines, described as follows: (i)
LoRA(Hu et al., 2022): Each client independently
fine-tunes the LoRA adapter on its local data with-
out communication. (ii) FedLoRA: Each client
transmits both the A and B matrices to the server
for global aggregation. (iii) FFA-LoRA(Sun et al.,
2024): Each client freezes A matrix, trains only
the B matrix, and sends it to the server for global
aggregation. (iv) FedSA(Guo et al., 2025): Clients
transmit only A matrices to the server for global
aggregation, while locally train B matrices. (v)
RoLoRA(Chen et al., 2024): The clients alternate
between updating the A matrices with frozen B
matrices and vice versa across rounds.

Implementation Details. We adopt the pre-
trained LLaMa-2-7B model' with 8-bit quantiza-
tion as the backbone. Local training on each client
is performed for 3 epochs using the AdamW op-
timizer (Loshchilov, 2017), with a batch size of
16 and 20 total communication rounds. A cosine
learning rate schedule is applied, following Ye et al.
(2024), starting at 5e-5 and decaying to 1e-6. For
domain-specific datasets, we set the maximum se-
quence length to 512 and use LoRA with rank 32
and scaling factor av = 64. For general datasets, the
sequence length is increased to 1024, with LoRA
rank 4 and o = 32. The proportion A of the auxil-
iary dataset D,y is set to 0.1. All experiments are

1https: //huggingface.co/NousResearch/
Llama-2-7b-hf
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#Hetero | Method | Evaluation Benchmarks | Cost
‘ ‘ Medical Financial Math Code Rank ‘ 9Params Commu.

LoRA -Med | 46.56 (5) 58.25(5) 28.81(3) 13.41(6) 4.75 0.248 -

LoRA -Fin | 45.83(8) 59.24((3) 27.57(5) 14.63(4) 5.00 0.248 -

LoRA - Math | 45.83 (8) 55.20(7) 29.63(2) 10.98(9) 6.50 0.248 -

LoRA - Code | 46.20 (7) 54.21(8) 2695(7) 1524 (3) 6.25 0.248 -
Mid FedLoRA 47.46 (2) 59.82 (1) 27.16(6) 13.41(6) 3.75 0.248 10.00
FFA-LoRA | 48.01 (1) 53.63(9) 26.34(9) 15.85(1) 5.00 0.124 5.00
FedSA 46.56 (5) 59.32(2) 26.75(8) 15.85(1) 4.00 0.248 5.00
RoLoRA 47.28 (4) 58.00(6) 2798 (4) 13.41(6) 5.00 0.248 5.00
FedELoRA ‘ 47.46 (2) 59.24(3) 31.07(1) 14.63@4) 2.50 ‘ 0.283 0.77

LoRA -Med | 47.83 (2) 55.25(6) 28.19(7) 12.20(9) 6.00 0.248 -

LoRA -Fin | 47.10(4) 58.82(3) 29.84(3) 12.80(7) 4.25 0.248 -

LoRA - Math | 47.46 (3) 50.99(9) 30.45((2) 12.80(7) 5.25 0.248 -

LoRA - Code | 46.74 (8) 53.14(8) 27.57(8) 15.85(1) 6.25 0.248 -
High FedLoRA 46.92 (7) 60.97 (1) 27.57(8) 14.02(5) 5.25 0.248 10.00
FFA-LoRA | 47.10 (4) 54.21(7) 28.81(6) 1524 (2) 4.75 0.124 5.00
FedSA 47.10(4) 6048 (2) 29.22(4) 1524(@22) 3.00 0.248 5.00
RoLoRA 46.74 (8) 58.17(4) 29.01(5) 1341(6) 5.75 0.248 5.00
FedELoRA ‘ 49.28 (1) 58.00(5) 31.28(1) 14.634) 2.75 ‘ 0.283 0.77

Table 1: Comparison with baseline methods in different levels of data heterogeneity. Results show performance

metrics and communication costs (Comm. in GB).

conducted on NVIDIA A100 GPUs.

4.2 Overall Performance

As evaluation metrics across different tasks vary
in scale, we adopt the average rank metric to mea-
sure the models’ overall performance, which was
adopted in previous work (Ye et al., 2024). The
detailed results for the Non-IID and IID scenarios
are presented in Table 1 and Table 4, respectively.

The results demonstrate that FedELoRA con-
sistently achieves the highest average rank across
various data heterogeneity levels, indicating supe-
rior generalization performance compared to the
baseline methods. Furthermore, FedELoRA ex-
hibits significant performance improvements across
multiple subtasks. For instance, in the Math task
under the medium heterogeneity scenario, FedE-
LoRA achieved a score of 31.07, while the best
performance from the baseline methods was 27.98.
Notably, FedELoRA also performs well in the IID
scenario. We attribute this to the larger adapter
parameter space in FedELoRA, which enhances its
ability to capture the knowledge of local models
and ultimately leads to better performance than the
comparison methods.

Additionally, FedELoRA’s communication over-
head is substantially lower than that of the base-

‘ Evaluation Benchmarks

Method
‘ Med. Fin. Math Code
FedELoRA ‘ 49.28 58.00 31.28 14.63
w/o EGL 48.19 55.61 29.42 12.80
w/o gate 47.83 5297 2942 12.80

Table 2: Ablation study for FedELoRA.

line methods across all scenarios. Specifically, it
requires only 15.4% of the communication cost
of the baseline method with the lowest overhead.
This is attributed to FedELoRA’s communication-
efficient mechanism, which eliminates the need for
multiple communication rounds. This advantage
enables FedELoRA to improve model performance
by increasing the number of fine-tuning parameters
in practical applications.

4.3 Ablation Study

FedELoRA integrates the EGL network to preserve
client-specific expert knowledge and employs a
dynamic gating mechanism to select the most rel-
evant expert during inference. We conduct abla-
tion experiments in highly heterogeneous scenar-
ios to explore the effects of these two strategies.



N ‘ Method ‘ Evaluation Benchmarks ‘ Cost
‘ ‘ Medical Financial Math Code Rank ‘ J%Params Commu.

FedLoRA | 47.64 (2) 60.97 (1) 28.60(3) 15.24((2) 2.00 0.248 5.00
FFA-LoRA | 46.74 (4) 5825(4) 26.13(4) 14.024) 4.00 0.124 2.50
2 FedSA 46.92 (3) 60.81(2) 29.42(2) 15.85(1) 2.00 0.248 2.50
RoLoRA | 45.65(5) 57.43(5) 25.51(5) 1341(5) 5.00 0.248 2.50
FedELoRA ‘ 48.73 (1) 58.50(3) 3045(1) 15242) 1.75 0.314 0.25
FedLoRA | 46.92(4) 60.97 (1) 27.57(5) 14.02@4) 3.50 0.248 10.00
FFA-LoRA | 47.10 2) 54.21(5) 28.81(4) 15.24(1) 3.00 0.124 5.00
4 FedSA 47.10(2) 6048 (2) 29.22(2) 15.24(1) 1.75 0.248 5.00
RoLoRA | 46.74(5) 58.17(3) 29.01 (3) 13.41(5) 4.00 0.248 5.00
FedELoRA ‘ 49.28 (1) 58.00(4) 31.28(1) 14.63(3) 2.25 0.283 0.77
FedLoRA | 47.10(2) 61.14(1) 27.78(3) 1341(3) 2.25 0.248 20.00
FFA-LoRA | 46.74 (4) 5479 (3) 27.16 (4) 12.20(4) 3.75 0.124 10.00
8 FedSA OOM OOM OOM OOM OoOOM 0.248 10.00
RoLoRA | 47.10(2) 58.09(2) 29.22(2) 14.02(2) 2.00 0.248 10.00
FedELoRA ‘ 48.73 (1) 54.04 (4) 30.66 (1) 15.85(1) 1.75 0.268 2.56

Table 3: Comparison with baseline methods in different number of clients N. Results show performance metrics

and communication costs (Comm. in GB).

Specifically, we consider two variants of FedE-
LoRA: (i) without Expert-Gated LoRA (w/o EGL),
which removes the EGL architecture, reverting
FedELoRA to FedLoRA with a single communica-
tion round; (ii) without the gating mechanism (w/o
Gate), which assigns uniform weights to experts in-
stead of leveraging the gate function. As shown in
Table 2, both ablated variants perform significantly
worse than FedELoRA across all tasks. These re-
sults highlight the essential roles of both the EGL
architecture and the adaptive gating mechanism in
ensuring the effectiveness of FedELoRA.

4.4 Hyper-parameter Analysis

This section investigates several factors that may
affect the performance of FedELoRA, including
one method-dependent factor: the proportion A
of the auxiliary dataset Dy, and two method-
independent factors: the number of clients N and
the rank r of the LoRA adapters.

The proportion A of Dy,x. To assess the impact
of the auxiliary dataset D,,,, on FedELoRA, we
configure varying proportions A of Dy, Where
when A = 0, the gating function is the mean func-
tion. As shown in Figure 3, On different tasks,
the overall performance of FedELoRA increases
with the increase of A\, which is in line with our
expectations, because more auxiliary datasets can
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Figure 3: The performance of FedELoRA across differ-
ent task w.r.t the proportion A of Dyy.

help FedELoRA learn how to schedule experts. In
addition, with only 0.1 ratio of auxiliary datasets,
FedELoRA can achieve a significant performance
improvement, proving its practicality.

The number of clients N. As discussed in Sec-
tion 2.1, unlike traditional FL, the fine-tuning
of PLMs typically involves a limited number of
clients. Therefore, we configure NV to vary be-
tween 2 and 8 in order to evaluate the performance
of FedELoRA across different client settings. As
shown in Table 3, despite not achieving optimal
performance on some tasks, FedELoRA consis-
tently outperforms the comparison method in terms
of its overall generalization performance (Rank),
demonstrating its robust scalability.
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Figure 4: Expert weight distributions across tasks. Each
bar shows the normalized contributions of four experts
to a specific domain.

The rank r of LoRA Adapters. We evaluate
the performance of FedELoRA alongside baseline
methods for varying ranks r of LoRA adapters,
with the results presented in Table 5. FedELoRA
consistently outperforms the baseline methods in
terms of generalization performance across differ-
ent values of r, while also maintaining significantly
lower communication overhead. Notably, although
the number of trainable parameters increases as
r grows, the communication cost of FedELoRA
is much lower than that of the baseline methods.
Therefore, in practical applications, FedELoRA
can utilize a larger r to improve performance with-
out incurring substantial communication overhead.

4.5 Case Study

To further understand how FedELoRA utilizes ex-
pert knowledge during inference, we visualize the
expert weights across four domains, as shown in
Figure 4. Each bar in the visualization is normal-
ized to have a total weight of 1, where the length of
each colored segment indicates the relative contri-
bution of a specific expert. The results reveal that
the contribution of different expert matrices varies
significantly across tasks, with domain-specific ex-
perts contributing more prominently within their
respective domains. This trend indicates that FedE-
LoRA is able to dynamically and effectively lever-
age relevant expert knowledge during inference,
thereby enhancing its adaptability and performance
across heterogeneous tasks.

5 Related Work

Recent studies have shown that LoRA can achieve
performance comparable to full-parameter fine-
tuning, making it increasingly attractive in feder-
ated settings (Zhang et al., 2023; Han et al., 2024;
Bian et al., 2025). Existing approaches in this area

generally fall into two categories. The first line
of work focuses on addressing performance degra-
dation caused by directly aggregating LoRA up-
dates across clients. For instance, FFA-LoRA (Sun
et al., 2024) fixes the randomly initialized matrix A
and only fine-tunes matrix B. FLora (Wang et al.,
2024) introduces a stacked aggregation mechanism
that reduces noise during module merging, albeit
with increased communication overhead. RoLoRA
(Chen et al., 2024) further proposes an alternating
optimization scheme to improve the robustness of
LoRA adaptation in federated environments.

The second category targets challenges arising
from data heterogeneity. C2A (Kim et al., 2023)
generates client-specific LoORA modules based on
local data distributions. Other works tailor LoORA
configurations to device capabilities using tech-
niques such as zero-padding (Cho et al., 2024) or
module duplication (Byun and Lee, 2024). FedSA
(Guo et al., 2025) selectively aggregates only ma-
trix A to capture global knowledge, while keeping
matrix B local to support personalization and re-
duce communication costs.

Our approach diverges from prior work in both
motivation and methodology. Rather than relying
on the multi-round averaging paradigm, which is
misaligned with the principles of PEFT methods,
we propose a novel expert-guided one-shot aggre-
gation strategy. This design better captures the
goals of both personalization and communication
efficiency in federated PEFT settings.

6 Conclusion

In this work, we identify a key limitation of ap-
plying PEFT methods to FL: the multi-round av-
eraging aggregation mechanism fails to preserve
client-specific knowledge, leading to degraded per-
formance and increased communication cost. To
this end, we propose a novel aggregation paradigm
that replaces the averaging mechanism with expert-
guided aggregation, enabling the retention of client-
specific knowledge in a single communication
round. We instantiate this strategy with FedELoRA,
a novel LoRA-based framework for FL. Empirical
results demonstrate that FedE-LoRA consistently
achieves the best average rank in both IID and non-
IID settings while reducing communication over-
head. We believe that our findings offers a broader
insight into the integration of PEFT and FL.



Limitations

Despite the promising results of FedELoRA in re-
ducing communication overhead and enhancing
model performance, several limitations persist in
our study. First, our research focuses on integrat-
ing federated learning with parameter-efficient fine-
tuning techniques, with FedELoRA serving as the
primary instantiation of this approach. However,
other potential methods, such as Prompt Tuning,
remain unexplored within this framework, limit-
ing the scope of our investigation into alternative
paradigms. Second, our method requires the server
to collect publicly available auxiliary datasets and
perform fine-tuning. While our experiments, de-
tailed in Experiment 4 and Appendix, demonstrate
that this approach does not place stringent demands
on the quality or size of the auxiliary datasets, it
does necessitate greater computational resources
on the server side compared to traditional federated
learning setups. This increased resource demand
may hinder the practical applicability of FedE-
LoRA in resource-constrained real-world scenarios.
Finally, due to computational constraints associated
with fine-tuning large-scale models, we were un-
able to conduct experiments involving hundreds of
clients in a cross-device setting. Instead, our evalu-
ation relied on a smaller number of clients within
a cross-silo configuration, which may not fully re-
flect the challenges of broader, device-diverse de-
ployments.

Ethical Considerations

In developing FedELoRA to advance efficient fine-
tuning for federated large models, we have exer-
cised significant caution in our data practices. All
datasets utilized in this study are sourced from
widely recognized and previously published works,
ensuring they are free of personally identifiable in-
formation. Moreover, the evaluation benchmarks
we adopted align with those established in prior
research, effectively eliminating risks of privacy
violations or data breaches.
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A Appendix

A.1 Motivation Experiments

Performance variation of global models. We
evaluated the performance of the globally aggre-
gated model on each client’s local dataset, with the
results presented in Figure 5. The figure reveals
that the model’s performance exhibits significant
variability across different domains, necessitating
additional communication rounds to achieve con-
vergence.
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Figure 5: Performance variation of global models across
datasets from diverse domains.

Performance with local B matrices. Although
average aggregation is not an effective mechanism,
our experiments also reveal that relying solely on



M | Evaluation Benchmarks | Cost
ethod
| BBH  DROP HumanEval CRASS Rank | %Params Commu
LoRA | 31.67(3) 34.08(1) 1433(6) 4338(4) 350 | 0.031 -
FedLoRA | 31.45(5) 3394(4) 14.63(3) 44.10(2) 3.50 0.031 1.25
FFA-LoRA | 31.68 (2) 33.89(5) 15.24(1) 4224(5) 325 | 0016 0.63
FedSA | 31.64(4) 33.97(22) 14.63(3) 44.10(2) 275 | 0.031 0.63
RoLoRA | 31.04(6) 3292(6) 14.63(3) 39.75(6) 5.25 0.031 0.63
FedELORA | 32.03 (1) 33.95(3) 1524(1) 4596(1) 150 | 0.039 0.11
Table 4: Comparison with baseline methods in IID setting (Comm. in GB).
local B matrices will compromises the general- 2
.. . 60 B m [ Base
ization of fine-tuned models. Specifically, we ap- e e 82 BB InDomainShift
ply each client’s local B matrix individually and 50/ $2 =5 % = EEm OutDomain
evaluate the model performance on the datasets of EEE \ithoutData
the other three clients. As shown in Figure 6, the 40 © N o
generalization achieved with local B matrices is 30 AR
notably weaker than that of the global B, matrix.
Therefore, there is a need for a novel aggregation 20
mechanism that effectively integrates diverse ex-  q1g
pert knowledge while minimizing training itera- L , : I
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Figure 6: Performance comparison of global and non-
local B matrix applications across clients. B,,.q. and
B¢y, denote B matrices trained on medical and finan-
cial dataset clients, respectively.

A.2 Overall Performance Results

Due to space limitations, we present the perfor-
mance of FedELoRA and the comparison methods
under the IID scenario in Table 4.
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Figure 7: Performance of FedELoRA under different
auxiliary dataset settings.

A.3 The Impact of Ranks

We present a performance comparison of FedE-
LoRA with baseline methods for LoRA adapters at
different ranks r in Table 5.

A.4 The Impact of Auxiliary Datasets

In this section, we evaluate the generalization abil-
ity of our proposed method, FedELoRA, under
different auxiliary dataset configurations:

* FedELoRA-Base: No distribution shift be-
tween the auxiliary dataset and training data.

FedELoRA-InDomainShift: A domain-
relevant but distribution-shifted auxiliary
dataset is used for adaptation.  Specif-
ically, in the medical domain, we use
medical_meadow_wikidoc(MedAlpaca,
2023), a medical QA dataset; in the financial
domain, fingpt_sentiment_cls (FinGPT,
2023), a sentiment classification dataset;
for mathematical reasoning, Math-Plus
(TIGER-Lab, 2024); and for code gener-
ation, code_instructions_120k_alpaca
(Tamtarun, 2023).



, ‘ Method ‘ Evaluation Benchmarks Cost
‘ ‘ Medical Financial Math Code Rank ‘ P%Params Commu.
FedLoRA | 4692 (4) 57.84(3) 28.19(3) 1524 (2) 3.00 0.062 2.50
FFA-LoRA | 4692 (4) 40.35(5) 2798@4) 14.02(5) 4.50 0.031 1.25
8 FedSA 4728 (2) 58.83(1) 2942(2) 1585(1) 1.50 0.062 1.25
RoLoRA | 47.28 (2) 50.33(4) 27.78(5) 15.24(22) 3.25 0.062 1.25
FedELoRA ‘ 48.19 (1) 57.92(2) 29.63(1) 15.24(22) 1.50 0.074 0.20

FedLoRA | 4638 (5) 59.32(1) 2922(3) 1341(5) 3.50 | 0.124 5.00
FFA-LoRA | 47.10 3) 46.53(5) 27.37(5) 14.63(2) 3.75 | 0.062 2.50
16 | FedSA | 46.74(4) 58.99(2) 29.42(2) 14.02(3) 275 | 0.124 2.50
RoLoRA | 47.28 (2) 56.11(4) 28.60(4) 15.85(1) 2.75 | 0.124 2.50

FedELoRA | 48.01 (1) 57.67 (3) 30.04 (1) 14.02(3) 2.00‘ 0.144 0.39

FedLoRA | 46.92(4) 6097 (1) 27.57(5) 14.02(4) 3.50 0.248 10.00
FFA-LoRA | 47.10(2) 54.21(5) 28.81(4) 15.24(1) 3.00 0.124 5.00
32 FedSA 47.10(2) 60.48(2) 29.22(2) 15.24(1) 1.75 0.248 5.00
RoLoRA | 46.74(5) 58.17(3) 29.01(3) 13.41(5) 4.00 0.248 5.00

FedELoRA | 49.28 (1) 58.00 (4) 31.28(1) 14.63 (3) @‘ 0.283 0.77

FedLoRA | 47.28 (2) 62.71(1) 27.57(4) 12.80(5) 3.00 0.495 20.00
FFA-LoRA | 47.28 (2) 58.50(5) 26.75(5) 13.41(4) 4.00 0.248 10.00
64 FedSA 46.92 (4) 60.56 (2) 28.81(2) 14.63(1) 2.25 0.495 10.00
RoLoRA | 46.56(5) 59.90(3) 28.19(3) 14.63(1) 3.00 0.495 10.00

FedELoRA | 49.09 (1) 59.74 (4) 30.04(1) 14.63(1) 175 | 0.563 1.52

Table 5: Performance of FedELoRA and baseline methods with varying LoRA adapter ranks 7.

* FedELoRA-OutDomain: A general-
purpose  instruction  tuning  dataset,
databricks-dolly-15k (Conover et al.,
2023), is used, which is not aligned with the
client domain.

* FedELoRA-WithoutData: No auxiliary
dataset is provided, and the aggregated model
is directly used for inference without further
fine-tuning.

Figure 7 presents the performance of FedE-
LoRA under various auxiliary dataset configura-
tions across four domains: Medical, Financial,
Math, and Code. FedELoRA exhibits strong robust-
ness across various auxiliary data settings. Even
with domain shifts, performance remains stable
when the data is topically aligned. In contrast, us-
ing mismatched or no auxiliary data leads to larger
drops, especially in domain-sensitive tasks.
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