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Abstract
Large Language Models (LLMs) have shown
impressive abilities in various tasks. How-
ever, fundamentally improving them depends
on high-quality datasets or computationally ex-
pensive fine-tuning. On the contrary, humans
can easily improve themselves by self-thinking
and memory, without external resources. In
this paper, we propose a framework, MoT, to
let the LLM self-improve through Memory-of-
Thought, without annotated datasets and pa-
rameter updates. Specifically, MoT is divided
into two stages: 1. before the test stage, the
LLM pre-thinks on the unlabeled dataset and
saves the high-confidence thoughts as external
memory; 2. During the test stage, given a test
question, the LLM recalls relevant memory to
help itself reason and answer it. Experimen-
tal results show that MoT can help ChatGPT
significantly improve its abilities in arithmetic
reasoning, commonsense reasoning, factual rea-
soning, and natural language inference. Further
analyses show that each component contributes
critically to the improvements and MoT can
lead to consistent improvements across various
CoT methods and LLMs.

1 Introduction
Large Language Models (LLMs) have demon-
strated surprising abilities on a wide range of Natu-
ral Language Processing (NLP) tasks (Chen et al.,
2023; Zhang et al., 2022a; Chowdhery et al., 2022;
Tay et al., 2022; OpenAI, 2023; Hoffmann et al.,
2022; Touvron et al., 2023; Mialon et al., 2023;
Zhao et al., 2023; Qiu et al., 2020). Notably, new
abilities emerge in LLMs as they are scaled to
hundreds of billions of parameters, like in-context
few-shot learning (Chen et al., 2023; Dong et al.,
2022), simple digit operation and factual knowl-
edge query (Wei et al., 2022b). Especially, the gen-
eral reasoning ability of the LLM has impressed
the NLP community and relevant techniques have
achieved a series of new state-of-the-art (Wei et al.,
2022c; Kojima et al., 2022; Lampinen et al., 2022;
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Figure 1: The comparison between fine-tuning and MoT:
while fine-tuning LLM with labeled datasets is costly
and needs powerful computational resources, MoT can
make the LLM self-improve via pre-thinking and recall-
ing, without parameter updates and annotated datasets.

Wang et al., 2022b; Huang and Chang, 2022).
Specifically, Wei et al. (2022c) and Kojima et al.
(2022) propose few-shot CoT and zero-shot CoT,
which elicit LLM’s reasoning by few-shot demon-
strations and simple yet effective “Let’s think step
by step” prompting, respectively. Based on them,
Wang et al. (2022b); Press et al. (2022); Zhou et al.
(2022); Wang et al. (2023); Weng et al. (2022)
further propose self-consistency, self-ask, least-to-
most, plan-and-solve, etc., to achieve more compli-
cated reasoning in various specialized scenarios.

Despite the impressive abilities of the LLM pre-
trained on the large corpus, fundamentally improv-
ing the LLM’s performance beyond few-shot /
zero-shot baselines highly depends on either high-
quality annotated datasets or costly fine-tuning of
LLMs. In general, these methods can be divided
into three categories: 1. Annotated Datasets +
Fine-tuning: Wei et al. (2022a) and Sanh et al.
(2022) propose FLAN and T0 respectively to en-
hance the LLM’s zero-shot ability by tens of cu-
rated NLP benchmark datasets. Based on FLAN,
Chung et al. (2022) scale up its training in terms
of model size and the number of tasks, and demon-
strate that the added CoT examples with rationales
improve the LLM’s reasoning abilities. Instruct-
GPT (Ouyang et al., 2022) improves the GPT-
3’s instruction-following ability by fine-tuning on
many diverse crowd-sourced instruction-answer



pairs. 2. Retrieving Annotated Data: Liu et al.
(2022), Su et al. (2022a) and Agrawal et al. (2022)
use SentenceBERT (Reimers and Gurevych, 2019)
or BM25 (Robertson and Zaragoza, 2009) to re-
trieve relevant examples from the annotated dataset,
to improve LLM’s in-context learning. Rubin et al.
(2022) and Shi et al. (2022a) leverage annotated
datasets to train retrievers by the LM-feedback to
retrieve helpful demonstrations for the test example.
3. Fine-tuning with LLM-generated data: Zelik-
man et al. (2022) let the LM generate rationales
for annotated dataset and train itself to enhance
the reasoning ability. Magister et al. (2022),Ho
et al. (2022) and Fu et al. (2023a) use the reason-
ing paths generated by large LM to improve the
small LM’s reasoning capability. More recently,
Huang et al. (2022) demonstrate the effectiveness
of self-training on PaLM (Chowdhery et al., 2022).

As annotating high-quality data, especially ratio-
nales in CoT data, is expensive, fine-tuning LLM re-
quires extremely powerful computational resources
and results in high computational costs. Methods
above that rely on fine-tuning also face two chal-
lenges: 1. Since the most powerful LLMs, e.g.,
GPT-4 (OpenAI, 2023) and PaLM (Chowdhery
et al., 2022; Anil et al., 2023), are only publicly
available through the inference API, it is not feasi-
ble for most of the research community to improve
them by these methods. 2. Fine-tuning LLM for
specific capability enhancement is costly and not
environmentally friendly. As the LLM has massive
parameters, fine-tuning them will lead to substan-
tial costs of model storage and deployment. Further
studies show that fine-tuning the LLM with special-
ized data may significantly decrease its general
abilities (Fu et al., 2023b).

While considerable efforts were dedicated to col-
lecting high-quality annotated datasets and fine-
tuning the LLM, which is costly and may de-
crease its general ability, on the contrary, humans
can improve their own reasoning abilities through
the metacognition process (Dunlosky and Met-
calfe, 2008) and the memory mechanisms (Tulving,
2002), and preserve their general abilities. For ex-
ample, memory helps humans improve themselves
in terms of decision-making, reasoning, judgment,
etc (Tulving, 2002). Inspired by this, we propose
MoT, shown in Figure 1, a pre-think-then-recall
framework to let the LLM self-improve through
Memory-of-Thoughts, without supervised data and
parameter updates. In the pre-thinking stage, the
LLM thinks on the unlabeled dataset and saves the

thoughts as external memory. In the test stage, the
LLM recalls relevant memory to help reason and
answer the given test question. Since we focus on
the overall framework and aim to demonstrate its
generality and extensibility, we use simple com-
ponents to instantiate these two stages. Specifi-
cally, we use the simple Few-Shot-CoT (Wei et al.,
2022c) with multiple-path decoding strategy (Wang
et al., 2022b) in the pre-thinking stage and propose
answer-entropy to filter out uncertain thoughts. For
memory recall, we propose LLM-retrieval, which
lets the LLM itself retrieve relevant memory to
help answer the test question. Compared with typi-
cal semantic retrievers like SBERT (Reimers and
Gurevych, 2019), LLM-retrieval can better capture
the deep connection of complicated logic and rea-
soning than semantic embeddings.

We summarize our contribution as follows:

• To the best of our knowledge, the proposed
framework is the first to let LLM improve its
own reasoning abilities based on the memory
mechanism, without parameter updates and
annotated datasets.

• We conduct comprehensive experiments on
extensive datasets and the results show that
MoT can help ChatGPT improve its abilities
in arithmetic reasoning, commonsense reason-
ing, factual reasoning and natural language
inference without parameter updates and an-
notated datasets. Further analyses show that
each component contributes critically to the
improvements and MoT can lead to consistent
improvements across various CoT methods
and LLMs.

• We release the code and generated CoT rea-
soning paths to facilitate future research1. In
this paper, we instantiate the proposed frame-
work with simple components and demon-
strate its effectiveness. We hope that MoT can
inspire researchers of the important design
choices about making the LLM self-improve
with memory mechanisms and pave the way
for further improvements.

2 Background: Chain of Thought
The large language model has shown impressive
reasoning abilities on various tasks. Chain-of-
Thoughts (CoT) prompting (Wei et al., 2022c; Ko-
jima et al., 2022) is the most prevailing way to

1https://github.com/LeeSureman/MoT

https://github.com/LeeSureman/MoT


Q: Roger has 5 tennis balls. He 
buys 2 more cans of

tennis balls. Each can has 3 
tennis balls. How many

tennis balls does he have now?

LLM Input

Q: The diagonals of a rhombus are 18 cm and 
22 cm. Find its area? (A) 277 (B) 266 (C) 198 
(D) 288 (E) 212

A: The area of a rhombus is equal to half the 
product of its diagonals. So the area would be 
(18 * 22)/2 = 198 cm². The answer is C.

Q: Maddie has 24 apples, if she give 12 to 
mike, how many does she have left? (A) 12 (B) 
14 (C) 16 (D) 18 (E) 5

have now?

LLM Output

A: If Maddie gives 12 apples to Mike, then she 
has 24 - 12 = 12 apples left. The answer is A.

……

Figure 2: The illustration of Few-Shot-CoT.

let the LLM reason, i.e., generate a series of in-
termediate reasoning steps that lead to the final
answer. As shown in Figure 2, Few-Shot-CoT (Wei
et al., 2022c; Lampinen et al., 2022) provides
a few demonstrations with rationales, i.e., ques-
tion/rationale/answer pairs, and prompts the LLM
to generate the rationale that leads to the final an-
swer. Zero-Shot-CoT (Kojima et al., 2022) adds
the prompt, “Let’s think step by step”, after the test
question and elicits the LLM’s reasoning. Specifi-
cally, the Few-Shot-CoT gets the answer as:

s = LLM(d1, d2, · · · , qtest) (1)

a = Parse-Answer(s), (2)

where di = [xi, ri, ai] is the i th demonstration and
consists of the input, rationale and answer. Few-
Shot-CoT first decodes s from the LLM given the
few-shot CoT demonstrations, and parses s to get
the final answer. Since the demonstration is typ-
ically in the format: “[input] [rationale] The an-
swer is [answer]”, the answer can be easily parsed
from s by the trigger “The answer is” (Wei et al.,
2022c). Similarly, Zero-Shot-CoT uses answer trig-
gers, e.g., “Therefore, the answer is”, to extract the
final answer from the zero-shot reasoning path gen-
erated by LLM (Kojima et al., 2022).

3 Method
We show the overview of our framework in Fig-
ure 3. In this paper, we mainly focus on making
LLM self-improve in the typical few-shot CoT sce-
nario, where we are given a frozen large language
model and an unlabeled dataset with a few CoT
demonstrations (Wei et al., 2022c; Huang et al.,
2022). We further demonstrate MoT’s effectiveness
in zero-shot scenarios in section 4.3. Our frame-
work is divided into two stages: 1. Pre-Think
Before the test stage, the LLM thinks over the un-
labeled dataset and keeps the high-confidence rea-
soning paths as memory. 2. Recall In the test stage,

given a test question, we propose LLM-retrieval to
let the LLM retrieve relevant memory to help itself
reason and answer it. Our method does not depend
on high-quality labeled datasets and costly fine-
tuning of LLM, and it is feasible when the LLM
is frozen or only available through the inference
API. Since we let the LLM think over the unlabeled
dataset, save the self-generated thoughts as external
memory and retrieve relevant memory for itself to
help reasoning, we consider our method as making
the LLM self-improve with Memory-of-Thought.
We introduce these two stages below.

3.1 Pre-Thinking

3.1.1 Let LLM Think before Test Stage

In this stage, we let the LLM think over the
unlabeled dataset and save the resultant ques-
tion/rationale/answer pairs as external memory.
Since we focus on the overall framework and
aim to demonstrate its generality and extensi-
bility, we instantiate the “thinking” mechanism
here as the simple Few-Shot-CoT (Wei et al.,
2022c) with multiple-path decoding strategy (Wang
et al., 2022b) in this paper. Specifically, for
each example x from the unlabeled dataset X ,
we let the LLM sample n reasoning paths and
answers with temperature T > 0, denoted as
[r1, r2 · · · , rn] and [a1, a2 · · · , an]. Then we use
majority-voting to select the most consistent an-
swer, ã = argmaxai

∑n
j=1 1(ai = aj), and keep

the reasoning path, which leads to ã, as memory.
Since we only consider the thought that leads to the
most consistent answer, the retained thoughts can
be more accurate (Wang et al., 2022b) and better
help the test stage. For simplicity and to save mem-
ory size, we randomly select one reasoning path of
the final answer for each unlabeled example and
see saving multiple thoughts for one question as
future work.

3.1.2 High-Confidence Thought Filtering

Since the most consistent answer does not necessar-
ily lead to the correct answer and incorrect demon-
strations can cause inferior performance (Yoo et al.,
2022; Lyu et al., 2022), we further propose to filter
the thoughts by uncertainty. Inspired by Liu et al.
(2020); Xin et al. (2020), we propose the answer-
entropy u(·) to filter out high-uncertainty thoughts:



Memory of 
Thoughts

Generated
COTs

Unlabeled
Dataset

Think

Uncertainty 
Filtering

Memory
Candidates

Helpful
Memory

Retrieve
Test Question: Which one is against common sense?
A. He uses a brick as a bookmark
B. He uses a piece of paper as a bookmark

Question: Which one is against common sense?  

A. books are made of feathers B. books are made of paper

Answer: Books are typically made of paper or other materials for 

writing and printing. The answer is A.

Question: Which one is against common sense? 

A. A house is made of bricks. B. A house is made of paper.

Answer: A house made of paper would likely not be structurally 

sound or safe for habitation. Bricks are a commonly used material for 

building houses, while paper is not. The answer is B.

……

The brick is too heavy and large, making it inconvenient 
as a bookmark, while a piece of paper is a common and 
practical option for a bookmark. The answer is A.

Think

----------------------- ---------------------------------------------------------------Pre-Think Recall and Inference

Semantic Filtering

Figure 3: The overview of MoT.
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Figure 4: The relation between accuracy and the filter-
out ratio, after multiple-paths decoding on the DROP
dataset. Under the same filter-out ratio, filtering by
answer entropy leads to slightly higher F1-score than
filtering by Max-P proposed by Huang et al. (2022).

A∗ = unique({ai}ni=1) (3)

p(a∗i ) =
∑n

j=1
1(a∗i = aj)/n (4)

u(a∗i ) = −
∑|A∗|

i=1
p(a∗i ) log p(a

∗
i ) (5)

where A∗ = {a∗1, a∗2 · · · } is the set of an-
swers. u(·) indicates the answer uncertainty, and
the higher u(·) is, the more uncertain the LLM
is. We filter out thoughts whose uncertainty is
higher than τ and τ is a pre-defined threshold. In
the exploratory experiment (Figure 4), we find the
thought with lower uncertainty is more likely to be
correct: the stricter the filtering is, the more accu-
rate the remaining thoughts are. Hence the answer-
entropy can filter out noisy thoughts and lead to
more accurate thoughts for recalling. Compared
with the filtering in Huang et al. (2022), which uses
the number of consistent paths (max probability,
abbreviated as Max-P) as metric, answer-entropy
leads to slightly higher accuracy, under the same
filter-out ratio.

After filtering, we obtain the pool of memory-
of-thoughts, M = {mi}|M |

i=1, where mi is the con-
catenation of corresponding input, reasoning path
and answer (see Figure 3). M consists of the high-
quality thoughts of LLM on various questions and

thus contains crucial and valuable information for
the LLM to answer the test question. For the coher-
ence in the subsequent content, we will refer to mi

as “memory” or “thought”.

3.2 Recalling

In the test stage, the relevant memory is retrieved
from the memory pool M , to help the LLM answer
the given test question, qtest. Although semantic
embedders, e.g., SBERT (Reimers and Gurevych,
2019) are capable of retrieving semantically rele-
vant examples for ICL (Liu et al., 2022), for rea-
soning tasks, it is challenging for them to fully
capture the deep logical connections between qtest
and helpful memory, as a single vector can not
directly reflect the intricate logic and reasoning
path. Since the LLM, e.g., ChatGPT, has shown
impressively powerful and general natural language
understanding capability and a certain level of self-
awareness (Kadavath et al., 2022), we propose
LLM-retrieval to let the LLM retrieve helpful mem-
ory for itself.

As the LLM has a limitation of the max length,
it is infeasible to let the LLM directly select among
the entire memory pool. Inspired by human’s mem-
ory recall process, where we usually first uncon-
sciously filter the relevant memories and then con-
sciously evaluate them (Schacter and Addis, 2007;
Franklin et al., 2005), we divide LLM-retrieval into
two stages: 1. filter out semantically irrelevant
memory and get memory candidates; 2. let the
LLM choose from memory candidates.

Since the diversity of demonstrations has been
shown important for LLMs(Ye et al., 2023; Levy
et al., 2022; Li and Qiu, 2023), we follow Li et al.
(2022) to conduct memory retrieval with diversity-



based clustering, i.e., we partition the entire mem-
ory pool into l clusters, {M (1),M (2) · · · ,M (l)},
and retrieve one memory from each cluster sep-
arately. Specifically, for each cluster M (i), we
first use an off-the-shelf semantic embedder, e.g.,
SBERT (Reimers and Gurevych, 2019), to filter out
semantically irrelevant memory and get memory
candidates as follows:

M (i)
c = top-km∈M(i)(sim(qtest,m)), (6)

where sim(·, ·) is the cosine similarity of semantic
embeddings. M (i)

c are the i-th cluster’s candidates
and contain k memories.

Then we further let the LLM select the most
helpful memory from each cluster as follows:

m(i) = LLM(qtest,M
(i)
c , Pretrieval), (7)

where Pretrieval is the prompt for the LLM
to retrieve helpful memory. We concatenate
the test question qtest, memory candidates M

(i)
c

and Pretrieval by a specialized template. The
resulting input for LLM is like: “References:
[M (i)

c,1,M
(i)
c,2 · · · ,M

(i)
c,k] Target Question: [qtest]

which one reference would be the most helpful for
you to answer the target question?”.

In this manner, we can utilize the LLM’s pow-
erful natural language understanding ability to se-
lect the most helpful memory of M

(i)
c for itself.

Since these retrieved memories are from diverse
memory clusters, they can be not only helpful for
qtest but also comprehensive, thus facilitating the
LLM to answer the test question. Meanwhile, the
semantical-filtering can filter out semantically irrel-
evant memories in advance, thus significantly helps
save the number of LLM calls.

In exploratory experiments, we find that provid-
ing only memory candidates’ questions for LLM-
retrieval almost does not affect the retrieval result.
Hence, for each M

(i)
c , we only provide its question

for the LLM to select, which can significantly save
the inference cost of the LLM. To make LLM better
understand the goal of retrieving helpful memory
and make its output easy-parsing with a pre-defined
format, we append extra instructions like “You must
end in the format like "The most helpful question
is question [idx].” to the input. We show the com-
plete input of LLM-retrieval in Appendix A.

3.3 Inference
Given a test question qtest, the LLM can think and
then output the answer based on the retrieved mem-
ory, m(1),m(2) · · ·m(k). Specifically, we let the
LLM reason in the manner of Few-Shot-CoT:

s = LLM(m(1),m(2), · · · ,m(k), qtest) (8)

a = Parse-Answer(s) (9)

In this paper, we focus on the overall framework
and instantiate it with simple components, i.e., Few-
Shot-CoT, simple uncertainty filtering and LLM-
retrieval. We further analyze the orthogonality of
MoT and different CoT methods in section 4.3. We
leave exploring more implementations, e.g., letting
the LLM itself filter out uncertain thoughts (Weng
et al., 2022; Long, 2023), as the future work.

4 Experiment
4.1 Experimental Settings
Dataset We conduct experiments on ten datasets,
across four task families: Arithmetic reason-
ing: AQuA (Ling et al., 2017) and DROP (Dua
et al., 2019); Natural Language Inference: Ad-
versarial NLI subsets (Nie et al., 2020), including
ANLI-A1, ANLI-A2 and ANLI-A3, which cover
varying difficulty levels; Commonsense Reason-
ing: OBQA (Mihaylov et al., 2018) and ComV
(Commonsense Validation) (Wang et al., 2019);
Factual Reasoning: BoolQ (Clark et al., 2019),
FactCK (Fact Checker) and WikiQA (Srivastava
et al., 2022). We list dataset overview, statistics,
split and evaluation metrics in Appendix B.
Method Comparison Since we focus on whether
MoT can help the LLM self-improve, we compare
MoT with baselines on the same LLM, ChatGPT
(GPT-3.5-Turbo-0301), including zero-shot/few-
shot CoT and zero-shot/few-shot direct prompting.
To analyze the effect of rationales and thinking in
MoT, we additionally compare MoT with its two
variants: 1) MoT (no rationale), which removes
rationales in the retrieved memory and thus lets the
LLM directly output the answer, which can be seen
as the few-shot direct version of MoT; 2) MoT (no
thinking), which keeps rationales in the retrieved
memory but forces the LLM to directly answer the
question without CoT. Specifically, we add “The
answer is” as the LLM’s output prefix to prompt
the LLM directly output the answer. Through these
two variants, we can analyze the effect of rationales
and the thinking in MoT, respectively. Additionally,
we conduct experiments of MoT under annotated
datasets, MoT (with gold), to see its potential im-
provement space, where we use the gold labels to
filter out incorrect memory. Thus, MoT will not be
degraded by the incorrect answer.

Implementation Details We use the public Ope-
nAI language model of “gpt-3.5-turbo-0301” un-



Method Arithmetic Reasoning ANLI CS Reasoning Factual Reasoning AVG
AQuA DROP -A1 -A2 -A3 OBQA ComV BoolQ FactCK WikiQA

Zero-Shot 27.7 24.7 54.4 48.0 51.7 79.4 90.5 63.4 75.6 52.6 56.8
Few-Shot 28.9 46.3 55.0 48.5 51.1 82.0 90.8 64.4 77.0 32.5 57.6
MoT (no rationale) 27.0 59.4 56.2 50.3 52.6 84.2 91.0 70.1 82.1 53.9 62.7
MoT (no thinking) 24.4 59.4 55.6 50.2 52.6 81.3 90.5 71.6 82.2 64.3 63.1

Zero-Shot-CoT 51.7 62.2 61.9 51.6 48.5 69.2 87.1 53.0 66.0 49.9 60.1
Few-Shot-CoT 49.7 57.6 59.7 48.1 52.3 80.0 94.5 67.7 80.6 65.2 65.5
MoT 54.1 65.7 64.6 52.8 55.2 82.3 95.5 71.5 82.2 68.0 69.2

MoT (with gold) 56.5 71.0 65.7 55.6 55.4 82.8 94.6 74.2 86.6 70.6 71.3

Table 1: Performance comparison on ChatGPT (GPT-3.5-Turbo-0301).

less otherwise specified and the experiments on
“text-davinci-002/003” (Appendix C) show consis-
tent trends. For recalling, we use SBERT (“all-
mpnet-base-v2”) (Reimers and Gurevych, 2019)
for semantic filtering. And we set the number of
clusters l (also the demonstration quantity) and the
number of each cluster’s memory candidates k as
4 and 10, respectively. We further analyze the num-
ber of demonstrations in Appendix D. In the test
stage, for the stability of results, we use greedy
decoding to generate the output, unless otherwise
specified. We list the full implementation details
and few-shot demonstrations in Appendix E.

4.2 Main Results

We show the results in Table 1. We see that
MoT significantly outperforms baselines on most
datasets, which shows MoT’s best comprehensive
reasoning capability on a series of NLP tasks.
Specifically, MoT exceeds Few-Shot-CoT and
Zero-Shot-CoT by 3.7 and 9.1 points respectively,
and this directly demonstrates that MoT can make
the LLM improve itself by memory-of-thoughts,
without annotated dataset and parameter updates.
Notably, Zero-Shot-CoT shows impressive perfor-
mance on ChatGPT and outperforms Few-Shot-
CoT on several datasets, e.g., AQuA, DROP, ANLI-
1 and ANLI-2, which indicates the potential un-
necessity of irrelevant CoT demonstration for the
LLM with powerful zero-shot reasoning ability.
Meanwhile, MoT surpasses Zero-Shot-CoT con-
sistently on all datasets and this indicates the help-
fulness of retrieved memory.

As for MoT’s two variants, they also show bet-
ter overall performance than Zero-Shot and Few-
Shot. Meanwhile, despite directly outputting the
answer, they outperform Zero-Shot-CoT and Few-
Shot-CoT on several datasets, e.g., OBQA, BoolQ
and FactCK. This is analogous to a common phe-
nomenon in human beings: when recalling relevant

Method OBQA BoolQ WikiQA

Decoding Paths=8

Zero-Shot-CoTT=0.7 80.4 55.9 59.2
Zero-Shot-CoTT=1 82.4 54.1 59.2
Zero-Shot-CoTT=1.2 81.0 49.1 59.4
Few-Shot-CoTT=0.7 82.0 69.2 69.6
Few-Shot-CoTT=1 83.6 68.2 70.8
Few-Shot-CoTT=1.2 82.2 70.2 70.8
MoTT=0.7 85.0 73.2 73.2
MoTT=1 84.4 73.5 72.1
MoTT=1.2 85.0 72.8 72.1

Decoding Paths=16

Zero-Shot-CoTT=0.7 81.6 58.0 63.8
Zero-Shot-CoTT=1 83.2 55.8 65.7
Zero-Shot-CoTT=1.2 83.4 53.8 64.3
Few-Shot-CoTT=0.7 83.2 69.6 71.5
Few-Shot-CoTT=1 83.6 69.2 71.7
Few-Shot-CoTT=1.2 83.6 69.7 70.9
MoTT=0.7 84.4 73.7 73.7
MoTT=1 85.0 72.7 74.2
MoTT=1.2 84.8 73.3 74.1

Table 2: Performance comparison under self-
consistency strategy across various hyper-parameters.

memory, we can perform well by intuition, without
conscious reasoning (Dijksterhuis and Nordgren,
2006; Todd et al., 1999). Additionally, although
MoT (no thinking) is provided with the rationales
while MoT (no rationale) is not, they show gen-
erally similar performance, which indicates that
explicit reasoning is necessary for the LLM to fully
leverage the retrieved memory. In short, both rel-
evant memory and explicit reasoning are essential
for MoT to consistently achieve improvements on
extensive datasets.

Additionally, MoT (with gold) shows better per-
formance than MoT, which indicates the potential
improvements when MoT applies more advanced
CoT methods (Wang et al., 2023; Zhou et al., 2022;
Zheng et al., 2023; Long, 2023) and verification
methods (Weng et al., 2022; Manakul et al., 2023).



DROP ANLI-A3 BoolQ WikiQA

Few-Shot-COT 57.6 52.3 67.7 65.2

MiniLM 63.0 53.7 70.2 67.0
Instructor-base 64.2 53.2 70.2 66.9

Random 57.5 52.8 69.7 66.3
+ MPNet 64.7 53.3 70.4 67.1
+ LLM-Retrieval 65.7 55.2 71.5 68.0

Table 3: The comparison of retrieval methods.

4.3 Analyses
Multiple-Decoding Performance In this sec-
tion, we evaluate MoT under self-consistency strat-
egy (Wang et al., 2022b) which decodes multiple
times and uses majority-voting to get the final an-
swer. We compare MoT with baselines across vary-
ing sampling times and temperatures on OBQA,
BoolQ and WikiQA, and the results are shown in
Table 2. We see that MoT consistently outperforms
Zero-Shot-CoT and Few-Shot-CoT across differ-
ent decoding temperatures and sampling times,
which indicates the generality and stability of MoT.
We notice that the improvements slightly diminish
when using more sampling times. This is similar
to the phenomenon in human beings: the more
carefully we think about a question, the less our
previous preparation matters.

The Effect of LLM-retrieval To evaluate the
effect of LLM-retrieval for MoT, we conduct ex-
periments with varying retrieval methods on DROP,
ANLI-A3, BoolQ and WikiQA, shown in Table 3.
Besides the SBERT (“all-mpnet-base-v2”, abbre-
viated as MPNet) (Reimers and Gurevych, 2019)
used in MoT, we further compare two other se-
mantic embedders, SBERT (“all-MiniLM-L6-v2”,
abbreviated as MiniLM) (Reimers and Gurevych,
2019) and Instructor-base (Su et al., 2022b) which
is trained by 330 diverse tasks and supports various
scenarios. We observe that using only MPNet for
memory retrieval also brings significant improve-
ments over Few-Shot-CoT, which shows MoT’s
usability under the limited LLM-API budget. Af-
ter using the LLM to retrieve memory, the perfor-
mance gets further improvements, which directly
demonstrates the effectiveness of LLM-retrieval.
Additionally, we see that LLM-retrieval outper-
forms all compared semantic embedders, which
shows that the LLM can better capture the compli-
cated reasoning logic than semantic embeddings.

The Effect of Filtering To evaluate the effect of
memory filtering in MoT, we plot the performance
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Figure 5: The effect of filtering. The far left and far
right of the x-axis correspond to no filtering, and the
strictest filtering, i.e., only the memory that all paths
lead to the same answer can be retained.

curve over different filtering thresholds on DROP,
ANLI-A3, OBQA and WikiQA. Specifically, we
tune the filtering threshold of answer-entropy uni-
formly and observe the corresponding performance.
The results are shown in Figure 5. We find that the
MoT without filtering significantly degrades and
slightly underperforms Few-shot-COT on some
datasets, e.g., OBQA and FactCK, which indi-
cates that the incorrect memory can deteriorate the
LLM’s reasoning and thus our filtering strategy is
necessary. Meanwhile, most filtering thresholds
consistently lead to improvements over baselines,
which demonstrates that the improvements of MoT
exhibit insensitivity to the hyper-parameter of fil-
tering thresholds in general.
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Figure 6: Limited Memory-Size Performance.

Limited Memory-Size Performance In real-
world scenarios, the number of unlabeled examples
or the size of available external memory space may
be limited, and these can both lead to the limited
memory-size. In this section, we evaluate MoT
under different memory sizes. Specifically, we con-
duct experiments on the randomly sampled subsets
with different proportions and plot the correspond-
ing performance curve in Figure 6. We observe
that MoT can consistently lead to performance im-
provements. Even under 10 percent of the original
memory pool, MoT can still outperform Zero-Shot-
CoT and Few-Shot-CoT. These show the usability
of MoT when unlabeled examples or available ex-



DROP ANLI-A1 ANLI-A3 OBQA

Few-Shot-COT 57.6 59.7 52.3 80.0
+MoT 65.7 65.6 55.2 82.3

Zero-Shot-COT 62.2 61.9 48.5 69.2
+MoT 66.6 65.9 54.0 81.5

Plan-and-Solve 60.5 62.6 52.1 71.4
+MoT 67.6 66.3 56.9 85.6

Table 4: Comparison of various CoT methods.

ternal memory space are limited.

Transferability across Different COT Methods
In this section, we evaluate the performance of
MoT on two additional COT methods: Zero-
Shot-COT (Kojima et al., 2022) and Plan-and-
Solve (Wang et al., 2023). Compared with Zero-
Shot-COT which uses “Let’s think step by step” to
elicit LLM’s reasoning, Plan-and-Solve uses a spe-
cialized prompt to let the LLM first devise a plan
to divide the entire task into sub-tasks and then
solve them based on the plan, and thus it can ac-
complish more complicated reasoning (Wang et al.,
2023). For these two CoT methods, we use them
to generate the pool of memory-of-thoughts at pre-
thinking stage, respectively. At the test stage, we
retrieve thoughts from the corresponding memory
pool, concatenate them with the test question, and
then use the corresponding prompt, e.g., “Let’s
think step by step” for Zero-Shot-COT, to elicit the
LLM’s reasoning. Results on DROP, ANLI-A1,
ANLI-A3 and OBQA are shown in Table 4. We ob-
serve that MoT leads to consistent improvements,
which shows its stability and generality across vari-
ous CoT methods. Moreover, since these two CoT
methods do not rely on manual CoT demonstra-
tions, these results also demonstrate the effective-
ness of MoT when the manual CoT demonstration
is not available. Meanwhile, when using the more
advanced CoT method, Plan-and-Solve, MoT’s per-
formance gets further improvements, which shows
its potential in the future where the more powerful
CoT method is proposed.

5 Related Work

Model Augmentation by LLM-generated Data
In this section, we introduce previous methods that
use the data generated by LLMs for model augmen-
tation. Ye et al. (2022a); Gao et al. (2022); Ye et al.
(2022b) propose ZeroGen, ProGen and ZeroGen+

to use the LLM to generate the dataset to enhance
small models, e.g., LSTM. Fu et al. (2023a); Mag-

ister et al. (2022); Ho et al. (2022) leverage LLM
to generate reasoning paths and teach small LMs
to reason. Wang et al. (2022c) and Honovich et al.
(2022) leverage the LLM to generate instruction
data and improve the instruction-following capa-
bility of the LLM. Schick et al. (2023) propose
ToolFormer, which learns how to use various tools
by self-generated data. Zelikman et al. (2022) and
Huang et al. (2022) leverage the LLM to gener-
ate reasoning paths and improve itself using la-
beled and unlabeled datasets, respectively. Dif-
ferent from these methods that depend on expen-
sive fine-tuning, MoT can make the LLM self-
improve with memory-of-thoughts and does not
depend on parameter updates and is compatible
with API-accessing LLM. Recently, Zhang et al.
(2022b); Shao et al. (2023) automatically generate
COT demonstrations by the LLM itself. Li et al.
(2022) leverage the LLM to generate the knowl-
edge base and improve its ability of open-domain
QA. These methods can be seen as the specialized
case of MoT, with task-level memory selection or
task-specialized memory building.

Demonstration Retrieval for LLM In this sec-
tion, we introduce previous demonstration retrieval
methods for ICL, which mainly retrieve relevant
input/output pairs, from an annotated dataset, for
the LM to predict the test example. Liu et al.
(2022) propose to leverage a dense semantic em-
bedder to retrieve relevant examples to improve
ICL. Agrawal et al. (2022) leverage BM25 to re-
trieve examples for machine translation’s ICL. Das
et al. (2021) and Hu et al. (2022) design specialized
target similarities to train demonstration retrievers
on ICL of knowledge-based question answering
and dialogue state tracking respectively. Rubin
et al. (2022); Shi et al. (2022b) use the LM’s feed-
back to train the demonstration retriever for se-
mantic parsing. Lyu et al. (2022) retrieve relevant
examples with random labels and propose heuristic
methods to reduce the negative effect of false la-
bels. Recently, Li et al. (2023) propose UDR, a uni-
fied demonstration retriever for various NLP tasks,
which is trained by the unified LM-feedback on
about 40 annotated datasets. While most of these
methods depend on high-quality annotated datasets
and only explore in-context learning without ra-
tionales, MoT can make the LLM self-improve
without annotated datasets and parameter updates,
and to the best of our knowledge, we are the first to
explore demonstration retrieval in the challenging



and complicated reasoning scenarios and demon-
strate MoT’s effectiveness.

6 Conclusion
In this paper, we propose MoT, a framework that
let the LLM self-improve via Memory-of-Thought,
without annotated datasets and parameter updates.
Experimental results show that MoT can help Chat-
GPT significantly improve its abilities in arithmetic
reasoning, commonsense reasoning, factual reason-
ing and natural language inference. Further analy-
ses show that each component contributes critically
to the improvements and MoT can lead to consis-
tent improvements across various CoT methods
and LLMs.

Limitations
MoT mainly has the following limitations:

• Although we propose the answer-entropy to
filter out uncertain thoughts, the remaining
thoughts can still contain certain mistakes. We
will explore more methods of false thought
filtering (Lin et al., 2023) in the future.

• In this paper, we employ a simple strategy to
utilize the relevant memory, i.e., concatenate it
with the test input qtest and thus help the LLM
answer qtest. We will explore more strategies
to utilize the retrieved memory, e.g., retrieving
the memory to verify the current reasoning
path for qtest.

• On the one hand, in this paper, we make the
first step to let the LLM self-improve based
on the memory mechanism. The conducted
experiments are still in a safe setting, i.e., a
specific unlabeled dataset, and the LLM can-
not access the internet and control external
tools. Hence we think our method and ex-
periment are still safe enough, which will not
cause serious impact and unrecoverable conse-
quences on society. On the other hand, large
language models have shown various kinds
of bias (Bender et al., 2021). Since we let
the LLM generate thoughts/memory to help
itself, the LLM might suffer from the gener-
ated biased content. We see LLM debias as
an important future research topic.
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A The Example of LLM-Retrieval

We show the LLM-retrieval example in Table 6.

B Dataset Details

Overview We conduct experiments on ten
datasets, including four task families:

• Arithmetic reasoning: AQuA (Ling et al.,
2017): A multi-choice dataset of arithmetic
questions covering various topics and diffi-
culty levels, and DROP (Dua et al., 2019):
A reading comprehension dataset that needs
discrete reasoning;

• Natural Language Inference: Adversarial
NLI subsets (Nie et al., 2020), including
ANLI-A1, ANLI-A2 and ANLI-A3, which
cover varying difficulty levels respectively;

• Commonsense Reasoning: OBQA
(OpenBookQA) (Mihaylov et al., 2018):
Commonsense-related questions which
require the facts and their applications to
novel situations, and ComV (Commonsense
Validation) (Wang et al., 2019): A dataset that
requires for identifying the sentence that does
not make sense from two sentences of similar
wording;

• Factual Reasoning: BoolQ (Clark et al.,
2019), FactCK (Fact Checker) (Srivastava
et al., 2022): A dataset that tests the ability
to evaluate the authenticity of factual claims
covering Wikipedia, COVID-19 and Politics.
WikiQA (Srivastava et al., 2022): question
answering fron randomly-sampled Wikidata
fact triples.

Split, Evaluation Metric and Statistics For
AQuA, DROP, ANLI-A1, ANLI-A2, ANLI-A3,
ComV and OBQA, we use their official test set
for evaluation. For BoolQ, we follow Wang et al.
(2022a) to use the validation set for evaluation,
since its test set is not publicly available. For
FactCK and WikiQA, we manually split them into
a train/test split, and use the questions of the train-
ing set as unlabeled dataset, since there is not split
version of them released. Limited by the budget,
for the DROP dataset, we only use the half of its
unlabeled dataset (the questions of training set)
for the LLM to pre-think. For the classification
or multi-choice datasets, we use the accuracy as
evaluation metric. For the abstractive QA dataset

including DROP and WikiQA, we use the F1-score
as evaluation metric. For DROP, since its one test
example has multiple annoated answer, we follow
its original paper (Dua et al., 2019) to take a max
over all annotated answers. Limited by budget, for
those evaluation datasets that are larger than 1000,
we randomly sample a subset of 1000 examples
for evaluation. We list the overall dataset satistiscs,
the size of memory after filtering and evaluation
metrics in Table 7.

1 2 3 4
k

20

30

40

50

60

F1

MoT
Few-shot-COT

(a) DROP

1 2 3 4
k

47
48
49
50
51
52
53
54
55

Ac
c

MoT
Few-shot-COT

(b) ANLI-A3

1 2 3 4
k

78
79
80
81
82
83
84

Ac
c

MoT
Few-shot-COT

(c) OBQA

1 2 3 4
k

77
78
79
80
81
82

Ac
c

MoT
Few-shot-COT

(d) FactCK

Figure 7: The impact of demonstration quantity.

C Performance on Different LLMs

We conduct experiments on Text-Davinci-002 and
Text-Davinci-003 (Chen et al., 2023; Ouyang et al.,
2022) to evaluate MoT’s generality across different
LLMs. We show the results in Table 5. We observe
that MoT consistently outperforms baselines on
these two LLMs, which shows the effectiveness of
MoT does not rely on one specific LLM and it can
bring further improvements in the future where the
more strong LLM is proposed.

D The Impact of Demonstration Quantity

We compare MoT and Few-Shot-CoT under vary-
ing numbers of demonstrations and the results
are shown in Figure 7. We see that MoT consis-
tently outperforms Few-Shot-CoT across varying
amounts of demonstrations, which shows the stabil-
ity of MoT. Additionally, the results show that the
demonstrations in retrieved memory are more help-
ful and informative than manual demonstrations in
Few-Shot-CoT: specifically, with 1 or 2 demonstra-
tions, MoT can outperform Few-Shot-CoT with 4
demonstrations on OBQA and DROP.



Method ANLI-A3 OBQA BoolQ FactCK

Text-Davinci-002

Zero-Shot-CoT 34.2 47.2 40.8 52.2
Few-Shot-CoT 46.9 75.4 58.8 83.6
MoT 49.1 80.0 63.9 86.2

Text-Davinci-003

Zero-Shot-CoT 46.9 64.2 62.8 47.2
Few-Shot-CoT 45.3 81.6 67.7 84.0
MoT 49.3 84.6 71.0 87.0

Table 5: Performance comparison on various LLMs.

E Implementation Details

We use the public OpenAI language model of “gpt-
3.5-turbo-0301” unless otherwise specified and
the experiments (Appendix C) on “text-davinci-
002/003” show consistent improvements. Due to
the limitation of LLM-API budget, we heuristically
set the hyper-parameters in the pre-thinking stage,
including the generation temperature T , the num-
ber of decoded reasoning paths n. For the filtering
threshold τ and the number of memory clusters l,
we conduct exploratory experiments on OBQA and
find that τ = {0.2, 0.3, 0.4} and l = {3, 4, 5} lead
to similar performance. Thus we set τ = 0.3 and
l = 4, respectively. For pre-thinking, we use the
temperature T = 1.2 to encourage more diverse
reasoning paths, and use n = 16 reasoning path
sampling times, unless otherwise specified. For
memory recall, we use SBERT (“all-mpnet-base-
v2”) (Reimers and Gurevych, 2019) for semantic
filtering. Limited by the LLM’s max input length,
we fix the the number of each cluster’s memory can-
didates as 10 for each dataset. In the test stage, for
the stability of results, we use greedy decoding to
generate the output, unless otherwise specified. For
simplicity, we separately run MoT on each dataset
and regard cross-dataset memory recall as future
work. Baselines’ points are from our implementa-
tion, and share the same templates, answer parsing
and evaluation as MoT.

For AQuA, OpenBookQA, BoolQ, DROP,
ANLI-A1, ANLI-A2 and ANLI-A3, We use the
same few-shot CoT examples as those in Wei et al.
(2022c), Zhou et al. (2022), Wang et al. (2022b)
and Wang et al. (2022a), respectively. For the left
datasets that have no publicly released manual CoT
demonstrations, we randomly select questions from
the training set and use ChatGPT to generate rea-
soning paths and get their few-shot CoT examples.
We list the used Few-Shot-CoT examples in Ta-

ble 8, 9, 10, 12, 11, 13, 14 and 15.

F Ethics Statement

In this paper we make the first step to let the LLM
self-improve based on the memory mechanism.
The conducted experiments are still in a safe set-
ting, i.e., a specific unlabeled dataset, and the LLM
cannot access the internet and control external tools.
Hence we think our method and experiment are still
safe enough, which will not cause serious impact
and unrecoverable consequences on society.



LLM Input

I will provide you with a target question and 10 reference questions. I need you to choose a reference question
from "Reference Questions", whose question, train of thought or answer would be most helpful for you to answer
the target question. Please note that the following reference QA pairs are presented in a random order without
any prioritization.

Target Question:
Machine A puts out a yo-yo every 6 minutes. Machine B puts out a yo-yo every 9 minutes. After how many
minutes will they have produced 10 yo-yos? Answer Choices: (A) 24 minutes (B) 32 minutes (C) 36 minutes
(D) 64 minutes (E) 72 minutes

Reference Questions:
1.
Q: Two machines, Y and Z, work at constant rates producing identical items. Machine Y produces 5 items in the
same time Machine Z produces 2 items. If machine Y takes 9 minutes to produce a batch of items, how many
minutes does it take for machine Z to produce the same number of items? Answer Choices: (A) 6 (B) 9 (C) 9 1/2
(D) 22.5 (E) 13 1/2
2.
Q: Two machines, Y and Z, work at constant rates producing identical items. Machine Y produces 30 items in
the same time Machine Z produces 38 items. If machine Y takes 19 minutes to produce a batch of items, how
many minutes does it take for machine Z to produce the same number of items? Answer Choices: (A) 6 (B) 9
(C) 9 1/2 (D) 15 (E) 13 1/2
3.
Q: Two machines, Y and Z, work at constant rates producing identical items. Machine Y produces 30 items in
the same time Machine Z produces 24 items. If machine Y takes 36 minutes to produce a batch of items, how
many minutes does it take for machine Z to produce the same number of items? Answer Choices: (A) 60 (B) 90
(C) 9 1/2 (D) 45 (E) 13 1/2
4.
Q: Working alone at its constant rate, machine A produces x boxes in 10 minutes and working alone at its
constant rate, machine B produces 2x boxes in 5 minutes. How many minutes does it take machines A and
B, working simultaneously at their respective constant rates, to produce 10x boxes? Answer Choices: (A) 13
minutes (B) 14 minutes (C) 15 minutes (D) 16 minutes (E) 20 minutes
5.
Q: Two machines, Y and Z, work at constant rates producing identical items. Machine Y produces 23 items in
the same time Machine Z produces 21 items. If machine Y takes 21 minutes to produce a batch of items, how
many minutes does it take for machine Z to produce the same number of items? Answer Choices: (A) 6 (B) 9
(C) 9 1/2 (D) 12 (E) 23
6.
Q: Machines X and Y produce bottles at their respective constant rates. Machine X produces k bottles in 6
hours and machine Y produces k bottles in 12 hours. How many hours does it take machines X and Y , working
simultaneously , to produce 12k bottles? Answer Choices: (A) 8 (B) 12 (C) 15 (D) 48 (E) 24
7.
Q: Machines X and Y produce bottles at their respective constant rates. Machine X produces k bottles in 6
hours and machine Y produces k bottles in 3 hours. How many hours does it take machines X and Y , working
simultaneously , to produce 12k bottles? Answer Choices: (A) 4 (B) 8 (C) 12 (D) 18 (E) 4
8.
Q: Machines X and Y produce bottles at their respective constant rates. Machine X produces k bottles in 4
hours and machine Y produces k bottles in 5 hours. How many hours does it take machines X and Y , working
simultaneously , to produce 10k bottles? Answer Choices: (A) 8 2/3 (B) 12 5/3 (C) 15 (D) 18 (E) 22 2/9
9.
Q: Working alone at its constant rate, machine A produces x boxes in 10 minutes and working alone at its
constant rate, machine B produces 2x boxes in 5 minutes. How many minutes does it take machines A and B,
working simultaneously at their respective constant rates, to produce 6x boxes? Answer Choices: (A) 3 minutes
(B) 4 minutes (C) 5 minutes (D) 6 minutes (E) 12 minutes
10.
Q: Machine A can make 350 widgets in 1 hour, and machine B can make 250 widgets in 1 hour. If both machines
work together, how much time will it take them to make a total of 900 widgets? Answer Choices: (A) 1 hour and
20 minutes (B) 1 hour and 24 minutes (C) 1 hour and 30 minutes (D) 1 hour and 36 minutes (E) 1 hour and 40
minutes

Which one of the above reference questions is the most helpful question for you to answer the target question?
You must choose exactly one reference question to you answer the target question. Your response must end in
this format: "The most helpful question is question [index].". For example, if question 5 is your answer, you
must end in "The most helpful question is question 5."

LLM output

The most helpful question is question 10.

Table 6: The example of LLM-Retrieval.



Task Family Task Task Format Unlabeled Questions Test Questions Memory Size Metric

Arithmetic Reasoning AQuA Multi Choice 97467 254 19334 Accuracy
DROP Abstractive QA 42777 1000 17066 F1

NLI
ANLI-A1 Classification 16946 1000 9721 Accuracy
ANLI-A2 Classification 45460 1000 25444 Accuracy
ANLI-A3 Classification 100459 1000 53402 Accuracy

Commonsense
Reasoning

ComV Multi Choice 10000 1000 9003 Accuracy
OBQA Multi Choice 4957 1000 3559 Accuracy

Factual
Reasoning

BoolQ Classification 9427 1000 6422 Accuracy
FactCK Classification 6654 500 4782 Accuracy
WikiQA Abstractive QA 19442 1000 9041 F1

Table 7: The statistics of used datasets and their evaluation metrics.

Q: John found that the average of 15 numbers is 40. If 10 is added to each number then the mean of the numbers
is? Answer Choices: (A) 50 (B) 45 (C) 65 (D) 78 (E) 64
A: If 10 is added to each number, then the mean of the numbers also increases by 10. So the new mean would be
50. The answer is (A).

Q: If a / b = 3/4 and 8a + 5b = 22,then find the value of a. Answer Choices: (A) 1/2 (B) 3/2 (C) 5/2 (D) 4/2 (E)
7/2
A: If a / b = 3/4, then b = 4a / 3. So 8a + 5(4a / 3) = 22. This simplifies to 8a + 20a / 3 = 22, which means 44a / 3
= 22. So a is equal to 3/2. The answer is (B).

Q: A person is traveling at 20 km/hr and reached his destiny in 2.5 hr then find the distance? Answer Choices:
(A) 53 km (B) 55 km (C) 52 km (D) 60 km (E) 50 km
A: The distance that the person traveled would have been 20 km/hr * 2.5 hrs = 50 km. The answer is (E).

Q: How many keystrokes are needed to type the numbers from 1 to 500? Answer Choices: (A) 1156 (B) 1392
(C) 1480 (D) 1562 (E) 1788
A: There are 9 one-digit numbers from 1 to 9. There are 90 two-digit numbers from 10 to 99. There are 401
three-digit numbers from 100 to 500. 9 + 90(2) + 401(3) = 1392. The answer is (B).

Table 8: Few-shot CoT prompts for AQuA, from Wang et al. (2022b).



Q: The Seahawks played the San Francisco 49ers. In the first quarter, the Hawks RB Julius Jones got a 27-yard
TD run, along with DT Craig Terrill returning a fumble 9 yards for a touchdown. In the third quarter, the 49ers
almost rallied as RB H. J. Torres made a 12-yard TD pass to Lucas Nelly, along with Mare kicking a 32-yard
field goal. In the final quarter, Julius Jones got another 11-yard TD. How many yards do the shortest touchdown
run and the longest touchdown pass combine for?
A: All the touchdown runs are: a 27-yard touchdown run, a 9-yard touchdown run, a 11-yard touchdown run.
The smallest number among 27, 9, 11 is 9. So the shortest touchdown run was 9 yards. All the touchdown passes
are: a 12-yard touchdown pass. So the longest touchdown pass was 12 yards. So the shortest touchdown run and
the longest touchdown pass combine for 9 + 12 = 21 yards. So the answer is 21 yards.

Q: In the county, the population was spread out with 23.50% under the age of 18, 8.70% from 18 to 24, 29.70%
from 25 to 44, 24.70% from 45 to 64, and 13.30% who were 65 years of age or older. How many more percent
are under the age of 18 compared to the 18 to 24 group?
A: According to the passage, 23.5% are under the age of 18, and 8.7% are from ages 18 to 24. 23.5% - 8.7% =
14.8%. So the answer is 14.8.

Q: Since the 1970s, U.S. governments have negotiated managed-trade agreements, such as the North American
Free Trade Agreement in the 1990s, the Dominican Republic-Central America Free Trade Agreement in 2006,
and a number of bilateral agreements. In Europe, six countries formed the European Coal and Steel Community
in 1951 which became the European Economic Community in 1958. Two core objectives of the EEC were the
development of a common market, subsequently renamed the single market, and establishing a customs union
between its member states. How many years did the European Coal and Steel Community exist?
A: According to the passage, the European Coal and Steel Community was established in 1951 and became the
EEC in 1958. 1958 - 1951 = 7. So the answer is 7.

Q: The Vikings flew to Bank of America Stadium to face the Carolina Panthers. After a scoreless first quarter,
Carolina got on the board with quarterback Matt Moore finding fullback Brad Hoover on a 1-yard TD pass. After
yet another scoreless quarter, Carolina sealed the game as Matt Moore completed a 42-yard touchdown pass to
wide receiver Steve Smith. How many scoreless quarters were there?
A: The first and third quarters were the scoreless quarters. So there are 2 scoreless quarters. So the answer is 2.

Table 9: Few-shot CoT examples for DROP, from Zhou et al. (2022).



Premise:
"Conceptually cream skimming has two basic dimensions - product and geography."
Based on this premise, can we conclude the hypothesis "Product and geography are what make cream skimming
work." is true?
OPTIONS:
- yes
- no
- it is not possible to tell
A: Based on "cream skimming has two basic dimensions" we can’t infer that these two dimensions are what
make cream skimming work. The answer is it is not possible to tell.

Premise:
"One of our member will carry out your instructions minutely."
Based on this premise, can we conclude the hypothesis "A member of my team will execute your orders with
immense precision." is true?
OPTIONS:
- yes
- no
- it is not possible to tell
A: "one of" means the same as "a member of", "carry out" means the same as "execute", and "minutely" means
the same as "immense precision". The answer is yes.

Premise:
"Fun for adults and children."
Based on this premise, can we conclude the hypothesis "Fun for only children." is true?
OPTIONS:
- yes
- no
- it is not possible to tell
A: "adults and children" contradicts "only children". The answer is no.

Premise:
"He turned and smiled at Vrenna."
Based on this premise, can we conclude the hypothesis "He smiled at Vrenna who was walking slowly behind
him with her mother." is true?
OPTIONS:
- yes
- no
- it is not possible to tell
A: the premise does not say anything about "Vrenna was walking". The answer is it is not possible to tell.

Table 10: Few-shot CoT prompts for NLI tasks, three subsets of ANLI from Wang et al. (2022a).

Q: Poison causes harm to which of the following? (A) a Tree (B) a robot (C) a house (D) a car
A: Poison will harm living things, only a tree is a living thing. The answer is (A).

Q: As you look deeper into a Marbel you can see (A) the future (B) minut defects (C) colors (D) the other side
A: Marbel is not transparent, so you can not see the other side. Marbel does not necessarily have multiple colors.
You will see minut defects. The answer is (B).

Q: When food is reduced in the stomach (A) the mind needs time to digest (B) take a second to digest what I
said (C) nutrients are being deconstructed (D) reader’s digest is a body of works
A: The food is being deconstructed in the stomach during digestion. The answer is (C).

Q: The sun is responsible for (A) puppies learning new tricks (B) children growing up and getting old (C) flowers
wilting in a vase (D) plants sprouting, blooming and wilting
A: The sun can affect the growing of living things, like plants. The answer is (D).

Table 11: Few-shot CoT examples for OBQA, from Wang et al. (2022a).



Q: Which one of the following statements is against common sense? (A) Roses buds eat caterpillars (B) The
caterpillar eats the rose bud
A: Statement (A) is against common sense as it goes against the natural food chain and the known behavior of
roses. Roses are plants and cannot eat or consume other organisms, including caterpillars. The answer is A.

Q: Which one of the following statements is against common sense? (A) He threw his house into the trash bin
(B) He threw his food waste into the trash
A: It is not physically possible to throw a house into a trash bin. Statement (A) goes against the laws of physics
and is therefore illogical. The answer is A.

Q: Which one of the following statements is against common sense? (A) Because his car was damaged, he
received RMB 1000 from electricity company (B) Because his car was damaged, he received RMB 1000 from
insurance company
A: It does not make logical sense for an electricity company to compensate someone for car damage. It is more
reasonable for an insurance company to provide compensation for car damage. The answer is A.

Q: Which one of the following statements is against common sense? (A) Because his car was damaged, he
received RMB 1000 from electricity company (B) Because his car was damaged, he received RMB 1000 from
insurance company
A: It does not make logical sense for an electricity company to compensate someone for car damage. It is more
reasonable for an insurance company to provide compensation for car damage. The answer is A.

Table 12: Few-shot CoT examples for ComV.

Q: does system of a down have 2 singers?
A: System of a Down currently consists of Serj Tankian, Daron Malakian, Shavo Odadjian and John Dolmayan.
Serj and Daron do vocals, so the band does have two singers. The answer is yes.

Q: do iran and afghanistan speak the same language?
A: Iran and Afghanistan both speak the Indo-European language Persian. The answer is yes.

Q: is a cello and a bass the same thing?
A: The cello is played sitting down with the instrument between the knees, whereas the double bass is played
standing or sitting on a stool. The answer is no.
Q: can you use oyster card at epsom station?
A: Epsom railway station serves the town of Epsom in Surrey and is not in the London Oyster card zone. The
answer is no.

Table 13: Few-shot CoT examples for BoolQ, from Wang et al. (2022a).

Q: On June 2017, the following claim was made: David Lloyd George lost every bid to become prime minister.
Was this claim true or false?
A: David Lloyd George served as the Prime Minister of the United Kingdom from 1916 to 1922. He also served
as the Chancellor of the Exchequer and the Minister of Munitions before becoming Prime Minister. Therefore,
the claim that he lost every bid to become Prime Minister is false. The answer is false.

Q: On June 2017, the following claim was made: In 1966, George Harrison got married for the first time. Was
this claim true or false?
A: George Harrison married his first wife, model Pattie Boyd, on January 21, 1966. The answer is true.

Q: On June 2017, the following claim was made: Woodrow Wilson did not live during World War I. Was this
claim true or false?
A: Woodrow Wilson was the President of the United States during World War I, serving from 1913 to 1921. The
answer is false.

Q: On April 17 2008, the following claim was made: Hillary Clinton has taken over $800,000 from lobbyists.
Was this claim true or false?
A: According to OpenSecrets.org, a nonpartisan research group that tracks money in politics, Hillary Clinton
received over $800,000 in campaign contributions from lobbyists during her 2008 presidential campaign. The
answer is true.

Table 14: Few-shot CoT examples for Fact Checker.



Q: On June 2017, the following claim was made: David Lloyd George lost every bid to become prime minister.
Was this claim true or false?
A: David Lloyd George served as the Prime Minister of the United Kingdom from 1916 to 1922. He also served
as the Chancellor of the Exchequer and the Minister of Munitions before becoming Prime Minister. Therefore,
the claim that he lost every bid to become Prime Minister is false. The answer is false.

Q: The native language of Aaron Swartz is?
A: Aaron Swartz was born in Chicago, Illinois, United States. Therefore, his native language is most likely
English, as it is the primary language spoken in the United States. The answer is English.

Q: The religion of Prajadhipok is?
A: Prajadhipok was a Buddhist, as Buddhism is the predominant religion in Thailand, where he was the last
absolute monarch before the country became a constitutional monarchy. The answer is Buddhism.

Q: The country of Valletta is?
A: Valletta is the capital city of Malta, which is a small island nation located in the Mediterranean Sea. The
answer is Malta.

Q: The sport played by Garry Kasparov is?
A: Garry Kasparov is a former world chess champion, therefore the sport played by him is chess. The answer is
chess.

Table 15: Few-shot CoT examples for WikiQA.


