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Abstract

Thanks to the advanced improvement of large001
pre-trained language models, prompt-based002
fine-tuning is shown to be effective on a variety003
of downstream tasks. Though many prompt-004
ing methods have been investigated, it remains005
unknown which type of prompts are the most006
effective among three types of prompts (i.e.,007
human-designed prompts, schema prompts008
and null prompts). In this work, we empiri-009
cally compare the three types of prompts under010
both few-shot and fully-supervised settings.011
Our experimental results show that schema012
prompts are the most effective in general. Be-013
sides, the performance gaps tend to diminish014
when the scale of training data grows large.015

1 Introduction016

Prompt-based fine-tuning has gained increasing at-017

tention on NLP (Shin et al., 2020; Schick et al.,018

2020; Schick and Schütze, 2021b; Paolini et al.,019

2021; Gao et al., 2021). The main idea is to lever-020

age knowledge in pre-trained language models for021

downstream tasks, by reformulating a specific task022

into the form of language modeling tasks, with023

the aid of prompts. Among various recent meth-024

ods on prompt-based NLP, there has been three025

major forms of prompts, which we call NL tem-026

plate prompts, schema prompts and null prompts,027

respectively. NL template prompts (Petroni et al.,028

2019; Jiang et al., 2020; Gao et al., 2021) were029

the earliest proposed and the dominant method.030

As illustrated in Table 1, they use a natural lan-031

guage sentence to augment a given input, where032

the added prompt contains a mask token that indi-033

cates the output class. In contrast, schema prompts034

(Lee et al., 2021; Paolini et al., 2021) replace a nat-035

ural language sentence with a structured schema,036

which makes the prompt more succinct and code-037

like. Null prompts (Logan IV et al., 2021) are the038

most succinct version, directly adding a masked039

token to the end of the input.040

<Input>
“The movie fails to live up to the sum of its parts. ”
Template Prompt:
[CLS] <Input> It was [MASK] [SEP].
Schema Prompt:
[CLS] <Input> Sentiment: [MASK] [SEP].
Null Prompt (Logan IV et al., 2021):
[CLS] <Input> [MASK] [SEP].

Table 1: An example of different types of prompts,
from SST-2 dataset.

While different types of prompts have been com- 041

pared for specific tasks (Gao et al., 2021; Logan IV 042

et al., 2021), there has been little work systemati- 043

cally comparing their effects over a large variety 044

of tasks and training settings (i.e., few shot). We 045

aim to fill the gap by empirically addressing the 046

following three research questions: 047

First, which type of prompt is generally the most 048

effective? Intuitively, natural language prompts bet- 049

ter connect large pre-training and task fine-tuning 050

by having the same language style in both phases. 051

However, it can increase the difficulty of represen- 052

tation by introducing overly long sequence exten- 053

sions. In contrast, schema and null prompts are 054

more succinct, but less close to natural language 055

pre-training. 056

Second, are task-specific information useful to 057

include in prompts. Compared with NL templates 058

and schemas, null prompts are the most succinct, 059

and are task-agnostic in not including any task 060

hints in the augmented sequence. While having 061

been shown effective for several NLI-style classi- 062

fication tasks under few-shot settings (Logan IV 063

et al., 2021), it remains a question whether they are 064

competitive in more general settings. 065

Third, what is the effect of automatically search- 066

ing for prompt template and masked label words? 067

There has been a line of work automatically find- 068

ing prompts, which results in seemingly unnatural 069

augmented sequences (Shin et al., 2020; Gao et al., 070

2021). In addition, the words to use for filling the 071
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masked output slots are also flexible. We want to072

learn whether these automatic selections have sig-073

nificant benefit compared with human definitions.074

Results show that among the three types of075

prompts, schema prompts are the most effective076

in general. However, the gap between the three077

types of prompts tends to diminish when the scale078

of training data grows sufficiently large. Finally,079

both automatic templates and automatic tokens080

give better results compared with more understand-081

able human prompts. Our code will be released at082

https://github.com/anonymous.083

2 Experimental Setup084

2.1 Basic Settings085

We mainly experiment on sentence classification086

tasks, which have been extensively investigated in087

previous work (Schick and Schütze, 2021a; Gao088

et al., 2021). We also include two structure predic-089

tion tasks (i.e., NER and relation classification) for090

generalization beyond sentence classification. For091

sentence classification, we follow Gao et al. (2021)092

to adopt RoBERTa-large (Liu et al., 2019) and093

conduct experiments on eight sentence classifica-094

tion datasets For structure prediction, we use the095

method and setting of Cui et al. (2021), which096

formulized NER as a text generation task. We097

experiment with CoNLL03 Dataset for NER and098

TACRED Dataset for relation classification. We099

adopt the same hyperparameters used in previous100

work.101

To get a comprehensive view, we experiment102

with both few-shot and rich-resource settings. We103

also report standard deviation in the few-shot exper-104

iments. More details about experimental settings105

can be found in Appendix A.1.106

2.2 Prompt107

We experiment with template prompts, schema108

prompts and null prompts (Logan IV et al., 2021).109

Following Schick and Schütze (2021a), a prompt110

method generally contains a pattern that maps in-111

puts to prompt-style outputs and a verbalizer that112

maps labels to vocabulary tokens. In this paper,113

the term “prompt” normally refers to the pattern,114

while the term “label word” refers to the verbalizer.115

Some prompt examples are shown in Tables 2 and116

3.117

Dataset <Pattern>
Template Schema

SST-2 It was Sentiment:
SST-5 It was Sentiment:
MR It was Sentiment:
CR It was Sentiment:

MPQA It was Opinion:
Subj This is Opinion:

TREC – Question type:
CoLA This is Grammatical:

Table 2: Examples of template-based and schema-
based prompts of various sentence classification
tasks. The prototype prompt is formulized as
“[CLS]<Input> <Pattern> [MASK] [SEP]. ”, ex-
cept that the template prompt of TREC is “[CLS]
[MASK]: <Input> [SEP]. ” which does not require
any patterns.

CoNLL03
Templae:
<Input>. [span] is a person entity.
Schema:
<Input>. [span]: person entity.

TACRED
Template:
<Input>. The relation between [span1] and [span2]
is no_relation.
Schema:
<Input>. [ [span1] | [span2] ] relation: no_relation.

Table 3: Example prompts for structure prediction
tasks, where [span] refers to a text span in the input
sentence (i.e., <Input>) and the italic parts (e.g, person
and no_relation) are the entity or relation types. For
more details, please refer to Cui et al. (2021).

2.3 Prompt Types 118

Tables 2 and 3 give examples for different prompt 119

patterns. 120

Template Prompt We define template prompts 121

are fluent sentences that contains task-specific hints. 122

Our template-based prompts for sentence classifica- 123

tion and structure prediction are respectively from 124

Gao et al. (2021) and Cui et al. (2021). 125

Schema Prompt We define schema-based 126

prompts as syntactically-incorrect but task-related 127

prompts. We design schema-based prompts that 128

are unnatural to human speaking and writing, 129

using our intuition about the specific tasks. We 130

do not further tune any of these prompts in 131

our experiments. Although this may introduce 132

subjective bias to our experiments, we argue that 133

another different set of schema-based prompts 134

would not make significant difference when 135

comparing with template-based prompts. 136

Null Prompt Logan IV et al. (2021) proposed to 137

use null prompts in few-shot prompt fine-tuning: 138
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SST-2 SST-5 MR CR MPQA Subj TREC CoLA # Wins
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)

Fe
w

-s
ho

t

Fine-tuning 81.4 (3.8) 43.9 (2.0) 76.9 (5.9) 75.8 (3.2) 72.0 (3.8) 90.8 (1.8) 88.8 (2.1) 33.9 (14.3) 1
Template Prompt 92.6 (0.6) 47.2 (1.3) 87.1 (1.9) 90.7 (0.9) 84.5 (2.3) 91.3 (1.2) 85.8 (2.4) 9.2 (6.7) 0

w/ auto label word 92.4 (1.0) 43.6 (1.4) 86.3 (2.4) 90.2 (1.1) 85.8 (1.7) 91.2 (1.1) 88.7 (3.3) 13.9 (14.3) 0
w/ special token 91.5 (1.3) 45.5 (1.3) 84.7 (1.5) 86.5 (4.7) 73.5 (6.6) 90.4 (2.4) 84.6 (2.9) 11.2 (7.9) 0

Schema Prompt 93.2 (0.1) 50.2 (0.7) 87.3 (1.0) 91.6 (0.6) 85.2 (1.5) 91.4 (0.5) 87.8 (2.2) 9.6 (3.0) 1
w/ auto label word 93.6 (0.6) 47.9 (1.1) 87.5 (1.6) 91.7 (0.7) 86.0 (0.5) 91.9 (0.9) 89.2 (2.1) 15.0 (2.5) 5
w/ special token 92.0 (1.3) 48.8 (3.5) 86.4 (2.1) 87.0 (3.7) 68.5 (3.3) 90.4 (0.9) 90.6 (1.4) 14.6 (5.2) 1

Null Prompt 92.7 (0.6) 49.0 (1.1) 86.4 (1.3) 89.9 (0.5) 80.6 (1.6) 89.8 (1.3) 86.7 (3.2) 9.7 (6.4) 0

Fu
ll-

si
ze

Fine-tuning 95.0 58.7 90.8 89.4 87.8 97.0 97.4 62.6 1
Template Prompt 95.1 59.0 91.2 91.6 89.8 95.5 96.8 66.3 0

w/ auto label word 95.6 58.8 91.7 91.3 90.8 95.8 97.0 68.0 1
w/ special token 95.6 58.3 91.6 92.7 90.3 96.4 84.8 65.4 1

Schema Prompt 95.2 59.4 91.4 91.8 90.2 95.6 97.2 67.0 1
w/ auto label word 95.1 58.4 91.9 91.9 89.8 96.7 97.6 66.4 1
w/ special token 95.8 57.7 92.4 91.4 90.9 96.4 97.2 67.8 3

Null Prompt 95.7 55.9 90.5 87.5 90.8 96.0 96.4 68.0 1

Table 4: Experiment results on sentence classification. We report standard deviation for few-shot experiments.
The results with null prompt (Logan IV et al., 2021) are produced by our re-implementation. The results with null
prompts should be compared with template- and schema-based prompts without auto label word or special token.

CoNLL03 TACRED
(F1) (F1)

Few Full Few Full
Fine-tuning 34.3 (2.9) 90.8 20.8 (1.1) 64.9
Template 62.1 (5.1) 90.3 27.2 (1.6) 69.77
Schema 70.0 (2.9) 90.7 28.1 (1.6) 69.82

Table 5: Experiment results for named entity recogni-
tion and relation classification.

the pattern is entirely removed, and only the label139

word is utilized.140

2.3.1 Label Word141

For sentence classification, different types of la-142

bel words are investigated, including manually-143

designed ones, automatically searched ones (Gao144

et al., 2021) and special tokens. The former two are145

pretrained words that are already in the vocabulary,146

while special tokens are those label tokens that are147

randomly initialized from scratch, with one token148

(e.g., [T0] and [T1]) for each label. We adopt149

the automatic label word searching method of Gao150

et al. (2021). Though other work has also inves-151

tigated automatic label word generation (Schick152

et al., 2020), we do not include them all because153

the label word searching methodology is not our154

focus.155

3 Analysis156

3.1 Do Prompts Have to Follow Human157

Speaking And Writing?158

The results for sentence classification are shown159

in Table 4. Under the few-shot setting, schema-160

based prompts achieve the best performance on all161

datasets except for CoLA. Taking different types of 162

prompts into comparison, schemas consistently out- 163

perform templates by 0.6 ∼ 2.2 points and outper- 164

form null prompts by 0.5 ∼ 4.6 points (except for 165

CoLA), indicating that schemas are better few-shot 166

learners. Under the full-size setting, although the 167

performance gaps, ranging from 0.1 to 0.7 points, 168

are not as significant as those of the few-shot set- 169

ting, schema-based prompts still gain 5 wins out of 170

8 datasets. 171

Table 5 gives the results of structure prediction 172

tasks. Under the few-shot setting, schemas give the 173

best performance, while prompting methods are 174

generally better than fine-tuning. The improve- 175

ments are much more significant than those of 176

the sentence classification tasks, with absolute im- 177

provements of 35.7 F1 for CoNLL03 and 7.3 F1 178

for TACRED. Under the rich-resource setting, fine- 179

tuning and prompting methods are shown to be 180

competitive with each other. 181

Interestingly, we observe that the standard devia- 182

tions of schema-based prompts are consistently the 183

lowest among all methods, especially for compar- 184

ing with template-based ones. Since standard devia- 185

tion mainly results from the differences among ran- 186

domly sampled train and development sets across 187

5 runs, the low standard deviation suggests that 188

schema-based prompts are more stable than tem- 189

plates when data resources are limited. This 190

also suggests that the performance lower-bound 191

of schema-based prompts is relatively high, regard- 192

less of the quality of randomly sampled datasets. 193

This advantage of schema-based prompts may be 194
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Dataset Labels
Label Words

Manual Automatic
Template & Schema Template Schema

SST-2 positive / negative great / terrible exquisite / disgusting pure / dead

MR positive / negative great / terrible magical / laughable brilliant / blah
Subj subjective / objective subjective / objective obvious / murder Nil / unknown

Table 6: Labels, manually-designed label words and
automatically-searched label words for three datasets.
We use the same set of manually-designed label words
for both template and schema-based prompts. Those
label words that obtain the best performance under the
few-shot setting are framed out .

of great use in real-life scenarios, in which datasets195

often have very limited sizes and much noise.196

As shown in Table 4, prompting methods with197

automatically-searched label words achieve the198

best results on 5 out of 8 datasets under the few-shot199

setting, showing their advantage against human-200

designed label words. In particular, all these 5201

wins are obtained by schema-based prompts. Be-202

cause the automatic label words are generated203

when the language model is not tuned yet, we con-204

clude that pretrained LMs can already make use of205

grammatically-incorrect schemas even before any206

tuning. This implies that schemas might also be207

effective under zero-shot settings, which we leave208

for future investigation.209

3.2 Are Task-Specific Hints Needed?210

Few-shot Setting Though Logan IV et al. (2021)211

argued that null prompts could achieve competi-212

tive results compared with manually designed and213

automatically-generated prompts under the few-214

shot setting, our experiments give different results.215

Taking schema-based and null prompts into com-216

parison1, the former outperforms the latter for217

most few-shot tasks, with the only exception be-218

ing CoLA on which the performance gap is just219

0.1%. Schema-based and null prompts are mainly220

different in that the former is augmented with task-221

specific hints while the latter is not. Taking ques-222

tion classification task (TREC Dataset) as an ex-223

ample, the corresponding schema-based prompt224

is “<Input> Question type: [MASK]. ” while the225

null prompt is “<Input> [MASK]. ”. An absolute226

improvement of 1.1 % is obtained by merely aug-227

menting the prompt with two task-related words228

(i.e., “Question type”). Therefore, we can conclude229

that task-specific hints are still needed for prompt-230

based few-shot learning.231

1For fair comparison, we compare the “Schema Prompt”
row (without automatic label words or special tokens) and the
“Null Prompt” row in Table 4.

SST-2 (Label Words: great / terrible) Acc
Manual:
<Input> It was [MASK]. 92.6 (0.6)
Auto Template:
<Input> It’s [MASK]! 92.7 (0.9)
<Input> That’s [MASK]. 92.6 (0.7)
<Input> Its [MASK]. 92.4 (0.8)
It’s [MASK]. <Input> 92.1 (1.1)
Absolutely [MASK]. <Input> 91.4 (1.4)
Just [MASK]. <Input> 89.9 (1.6)

Table 7: Examples for automatically-searched tem-
plates and their performance on SST-2 dataset.

Rich-resource Setting Under the fully- 232

supervised setting, schemas and null prompts are 233

competitive with each other and either wins for 234

4 out of 8 datasets. The impacts of task-specific 235

hints are overridden by large amounts of training 236

data. Fine-tuning methods give an even more 237

extreme condition: the hints and the label words 238

are both removed, but fine-tuning still shows 239

competitive performance with prompting. This is 240

in line with previous work, which suggested that 241

prompting methods are mostly effective for zero- 242

and few-shot settings. 243

3.3 Automatic Search versus Manual 244

By examining all automatically searched label 245

words, we find that most of them that obtain supe- 246

rior performance tend to be unnatural (e.g., “dead”, 247

“blah” and “Nil” as shown in Table 62), which fur- 248

ther verifies that prompts do not need to strictly 249

follow the way in which humans speak and write. 250

However, the automatic label words are not totally 251

nonsense. For example, “dead” and “terrible” both 252

tend to be negative, and “unknown” and “objec- 253

tive” both mean that something is out of one’s 254

mind. This “loosely-connected synonym” situa- 255

tion results in an assumption that effective label 256

words should be consistent with human intuitions, 257

though they are not strictly required to be natural 258

or grammatically-correct. 259

We take SST-2 as an example to examine the 260

effect of automatically-searched prompt templates. 261

As shown in Table 7, the automatically generated 262

template outperforms the manual one by adding a 263

“!” at the end of the sentence, which suggests that 264

automatic search is the optimal. Existing work that 265

investigated automatic prompt search also pointed 266

out that machine-generated prompts are superior 267

to human-designed ones (Shin et al., 2020; Jiang 268

et al., 2020; Gao et al., 2021). 269

2The full list of label words are shown in Appendix A.2
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Dataset Labels
Label Words

Manual Automatic
Template & Schema Template Schema

SST-2 positive / negative great / terrible exquisite / disgusting pure / dead

SST-5
v.pos. / positive / neutral

/ negative / v.neg.
great / good / okay

/ bad / terrible
excellent / good / hilarious

/ terrible / awful
pure / appropriate / ok

/ low / dead

MR positive / negative great / terrible magical / laughable brilliant / blah
CR positive / negative great / terrible astounding / worse winning / boring

MPQA positive / negative great / terrible awesome / awful Good / FALSE
Subj subjective / objective subjective / objective obvious / murder Nil / unknown

TREC
description / entity / abbreviation

/ human / location / number
Description / Entity / Expression

/ Human / Location / Number
Discussion / Scene / Response

/ Fact / Results / Problem
Background / Static / Communication

/ Criminal / Location / Numbers
CoLA grammatical / not_grammatical correct / incorrect fiction / now c / N

Table 8: Labels, manually-designed label words and automatically-searched label words for each dataset. We use
the same set of manually-designed label words for both template and schema-based prompts. Those label words
that obtain the best performance under the few-shot setting are framed out .

CoLA (Warstadt et al., 2018). Similar to previous381

work, we adopt a masked language model to predict382

the label word and then adopt a verbalizer to map383

the label words to classification labels.384

For structured prediction tasks, we adopt a pre-385

trained BART (Lewis et al., 2020) as Cui et al.386

(2021) did. As for the NER task, all possible text387

spans are enumerated as potential entity spans. The388

prompt sentences are generated by BART and the389

entity label is determined by comparing the sum-390

mations of the log-likelihood of the generation pro-391

cess.392

For the few-shot experiments, we choose K =393

16, where K refers to the number of examples per394

class for the training and development sets. We395

conduct few-shot experiments across 5 runs, using396

different randomly sampled train and development397

sets. We randomly sample 2,000 examples as the398

test set for sentence classification and use the full399

test set for structure prediction.400

A.2 Automatically Searched Label Words401

The full list of automatically searched label words402

are shown in Table 8.403
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