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Abstract

Inverse problems describe the task of recovering some underlying signal given
some observables. Typically, the observables are related via some non-linear
forward model applied to the underlying signal. Inverting the non-linear forward
model can be computationally expensive, as it involves calculating the adjoint
when computing a descent direction. Rather than inverting the non-linear model,
we instead train a surrogate forward model and leverage modern auto-grad libraries
to solve for SSPs within a classical optimization framework. Current methods
to train surrogate models are done in a black box supervised machine learning
fashion and don’t take advantage of any existing knowledge of the forward model.
In this article, we propose a simple regularization method to enforce constraints on
the gradients of the surrogate model in addition to the output to improve overall
accuracy. We demonstrate the efficacy on an ocean acoustic tomography (OAT)
example that aims to recover ocean sound speed profile (SSP) variations from
acoustic observations (e.g. eigenray arrival times) within simulation of ocean
dynamics in the Gulf of Mexico.

1 Introduction

Inverse problems arise in many scientific applications where the goal is to reconstruct some unknown
signal, image or volume of interest from indirect observations. The forward process, or the mapping
from the data to observations, is typically well known usually through modeling the physical process.
However, inverting the model is often ill-posed or even non-invertible. More formally, let us consider
the task of recovering some signal & from observations y that are related by some potentially
non-linear forward model F' via

y=F(z)+n, )
where 17 encapsulates noise or other perturbations. Our forward model F' represents a computational
model of the underlying physics of the measurement process. Classical solutions involve modeling the
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forward process with extremely high accuracy and then attempting to invert a stabilized or linearized
variant, which often requires heavy domain knowledge.

Another approach to handle the ill-posed nature of the inversion task is to cast the problem as an
optimization task and incorporate regularization. A regularizer is a measure of how well the proposed
solution fits some known, and often hand-crafted, prior. This term makes the inversion well-posed by
biasing towards certain solutions. Often times, the task is too large of dimension to invert directly. In
other cases, the selected regularizer does not allow for a closed form solution. In these instances, the
solution is solved for an in iterative fashion.

For many physics based inverse problems, computing a forward pass often involves solving a set of
partial differential equations (PDEs) and can be far too computationally expensive to employ iterative
solvers that can require hundreds if not thousands of iterations until convergence. Furthermore,
calculating the gradient of such a forward model becomes even more daunting of a task. An
increasingly popular approach to bypass this issue takes advantage of machine learning. Given a
paired dataset of example data & and observations vy, a surrogate forward model in the form of a
deep neural network is trained to map @ to y through supervised learning. Once trained, the surrogate
model can be used in place of the physics based forward model in standard optimization schemes.
By leveraging existing auto-grad libraries [17]], the gradient with respect to the input can easily be
calculated, making iterative solvers feasible for recovering a solution & given some observations y.

While as the surrogate forward model offers promise for solving inverse problems, it is trained in
a black box fashion and does not incorporate any knowledge of the physical forward model. It
provides no guarantees that the gradients produced by such a model will be useful for recovering
the minima of some optimization function. Sobolev Training [3] offers an interesting approach by
training not only on the output of the surrogate model, but the Jacobian as well. However, calculating
and storing ground truth Jacobians of the physics model for even moderate dimensions quickly grows
infeasible. Instead, we propose a simple and efficient Jacobian regularization technique when training
the surrogate model that does not require any additional calculation and/or storage of the ground
truth. Training in such a fashion will both increase the accuracy of the surrogate model as well as
provide more stability when using it for inversion. We will demonstrate the efficacy of our proposed
regularization on an ocean acoustic example.

2 Background

2.1 Direct Inversion

The task of directly inverting some potentially non-linear forward model F' is often non-trivial or
mathematically impossible. Instead, a more stable alternative is to iteratively solve for & given some
observations y. This is done by formulating the reconstruction as solving a least squares problem.
This would take the form of

1
& =min g |F(z) -yl + R(x), ®

where R is some regularizer chosen to stabilize the inversion process. For many problems of interest,
F is ill-posed. The regularizer R plays the role of biasing Equation 2|to more favorable solutions.
Common examples of regularization include ¢, ¢1, and TV. Each regularizer encourages certain
properties on the estimated signal & (e.g. smoothness, sparsity, piece-wise constant, etc.) and is often
chosen based on the context of the task. This can be solved for iteratively via

@ =&" —Jp(@") T (F(@") —y) - VR(2), 3)

where 7 is a tuned step size and J, F(:isk) is the Jacobian of F evaluated at &".

2.2 Neural Adjoint

Iterative solutions such as Equation (3 often rely on computing the gradient with respect to some
loss. The adjoint of F arises in the gradient calculation and can be computationally expensive to
solve for or apply, especially for non-linear F'. In some instances, this can involve solving an entirely
different set of partial-differential equations.



The neural adjoint method [18]] was proposed to tackle inverse problems with more computationally
intensive forward models. Instead of training a parameterized model Gy to learn an inverse mapping,
it is trained to emulate the forward model [2, 6] and eventually serves the role of a surrogate forward
model. This done in a supervised learning fashion, often with a simple mean-squared error loss. Not
only does this provide a cheaper/quicker alternative to the physics based forward model, if trained
with existing auto-grad libraries such as Pytorch [[17], this also allows for efficient computation of
the gradient with respect to the input, bypassing the need to explicitly solve for the adjoint when
calculating the gradient.

Once trained, the parameters are fixed and the model Gy is substituted for F' in Equation (Z) or
other similar optimization frameworks. The auto-grad libraries are then used to efficiently compute a
gradient with respect to the input &, making it possible to iteratively solve for the best estimate & that
fits some observations y. Existing works primarily focused on lower dimensional examples where
the test set heavily overlapped with the training set and thus a simple "boundary-loss" regularizer was
sufficient to produce accurate results.

This approach is an iterative method, and thus is slower than alternative methods that aim to directly
learn the inverse [[16} 8} 21151113} 20]. However, unlike learned inversion methods that yield a single
estimate and are prone to overfitting to the training set, neural adjoint allows for the incorporation
of various regularizers such as /1, ¢5, etc, to guide the optimization towards specific solutions. In
addition, one can also restrict the optimization to some pre-determined basis that better represents the
data while reducing the dimensionality. This method, although heavily inspired by existing solutions
for inverse problems, does not currently take advantage of the forward model. It is also heavily
dependent on learning the forward model accurately and thus susceptible to overfitting to the training
set and not generalizing well should the test set distribution differ.

2.3 Ocean Acoustic Tomography

Although the methods described in our paper should be generalizable to any forward model, we
demonstrate on an ocean acoustic tomography problem. Knowledge of the sound speed variations
is essential for accurate predictions of sound propagation in the ocean and the various acoustic
remote sensing applications that rely on these predictions [9} 11, 4]. Most commonly, ocean sound
speed is estimated using empirical formulae based on the local values of standard oceanographic
parameters (such as ocean’s temperature, salinity and density)[9} [11]; thus ocean sound variability in
a given ocean volume can be estimated provided a sufficiently dense spatial and temporal sampling of
these oceanographic parameters is available throughout the whole volume of interest. An alternative
approach that alleviates this dense sampling requirement is to directly leverage the fundamental
relationship between acoustic observations (e.g. arrival times measurements) and the actual volumetric
spatio-temporal variability of the ocean sound speed profiles (SSPs). Ocean acoustic tomography
(OAT), as introduced by Munk and Wunsch in 1979 [14], refers to the process of using the changes
in the acoustic measurements collected between multiple pairs of sources and receivers as inputs
of an inverse problem aimed at reconstructing SSPs variations (with respect to a known reference
environment) within the ocean volume for 3D applications (or more commonly, selected ocean
slices for 2D applications) sampled by the propagating acoustic waves between these sensor pairs.
One challenge to this “inverse problem"-based approach for estimating SSPs is that the relationship
between acoustic observations (typically arrival time measurements) and actual SSPs is fundamentally
nonlinear. However, fractional SSPs fluctuations are typically small compared to the baseline SSP
values (typically < 1%). Classical OAT methods simplify this approach by linearizing the relationship
between the estimated SSPs perturbations and the measured variations in arrival times of stable rays
propagating between the source and receivers pairs (those rays being identified by standard ray-tracing
methods using the baseline reference environment). This provides a simpler and numerically tractable
solution for the OAT inverse problem [14,[1}[15[19].

3 Method

3.1 Learning the Forward Model

NA aims to learn an accurate surrogate forward model to replace existing physics simulators. More
formally, assume that we are given a forward model F' : ¢ — 7 (e.g. Bellhop Ray Tracing or some
PDE solver) that maps our SSP ¢ € R, where m denotes the size of the discretization of the ocean,



to some arrival time observations 7 € R™ where n denotes the total number of arrivals . We then
train a neural net Gy to approximate this same mapping. The model is trained using the mean squared
error loss on a dataset of paired example (¢;, T;)
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In addition to architecture hyperparameters, we also test two regularization methods for constraining
the network. The first is spectral normalization [[12] that constrains the spectral norm of individual
layers. The second is Jacobian regularization in a similar manner to [7]. Both regularization methods
are designed to encourage a more robust and stable learning of the forward model as well as a smoother
gradient. The best method amongst no regularization, spectral norm only, Jacobian regularization,
and both, are selected based on the performance on a validation set.

3.2 Enforcing Higher Order Constraints

Although the NA model is trained to emulate the physics forward model, no physics-based constraints
are placed during the learning process; it is entirely data-driven. An open area of exploration will be
focused on enforcing higher order gradient accuracy. Training on both the output and corresponding
Jacobian is known as Sobolev training [3]. However, applying this to such a large-dimensional
learning problem presents its own challenges. While as auto-grad allows us to cheaply compute the
gradients with respect to a single scalar output, using this to compute a full Jacobian scales linearly
with the dimension of the output. Furthermore, evaluating and storing the ground truth Jacobian at a
wide, diverse sampling of data-points will have large memory requirements. It can be an inefficient
use of resources, especially when the outputs only depend on a subset of the inputs leading to a
majority of the Jacobian being either zero or very close to zero. In the case of OAT, this is intuitively
because an arrival time observation only interacts with a fairly small subset of the ocean.

As an alternative, we can use a linear Taylor series approximation. Let us denote G as the trained
emulator (parameters dropped for clarity) and F' as the physics forward model. Then, a taylor series
expansion around point ¢ would give

F(z)~ F(e) + Jr(c)(z - ¢), ®)

where Jp (c¢) denotes the Jacobian of F' at point ¢ and second order terms are omitted. If we rearrange
this and substitute our emulator G for the function F in the Jacobian calculation, we get that

Ja(e)(z—c¢) = F(z) — F(c). (6)

Note that the left hand side is a simple Jacobian-vector product, a quantity trivial for auto-grad to
compute in a single pass. The right hand side is a difference between the output of the physics
forward model evaluated at two locations, i.e. the observations that we already currently store and
use. Thus we can construct an approximate Jacobian enforcing loss using Equation (6) by selecting
two points ¢, z that are close to each other (to avoid violating the assumptions of the expansion) and
evaluating a MSE on the difference between the two sides of the equation.

Before training, we can compute a neighborhood graph of viable pairs of points ¢ and apply the above
mentioned Jacobian loss at random during training. Our hope is that by training in such a fashion
we encourage faster convergence (since the Jacobian will also have information) as well as more
generalizability to unseen or underrepresented regions. Furthermore, certain studies [[7] have shown
that reguarlizing the Jacobian leads to more stability with respect to input perturbations. Although
designed to be robust to adversarial attacks, the encouraged properties should also lead to more robust
predictions during the inference phase of the neural adjoint method. The above loss is a minor tweak
on the existing regularization technique already used, so should not lead to additional computational
costs when training the surrogate model.

3.3 Performing Inference

In order to perform inference on a set of arrival times 7, we solve the following optimization problem
that incorporates our trained network

¢ = argmin||Gp(c) — 7| + R(e). @)



We solve this iteratively by fixing the weights of the network and computing the gradient with respect
to its input ¢. Note that this same optimization problem can be set up with the original forward model
F, but computing a gradient is often non-trivial and computationally expensive. By training a forward
model approximation, we can leverage existing auto-grad libraries [[17] to efficiently compute the
gradient.

This can be solved with a variety of optimization algorithms to converge on some locally optimal
c. Since we are substituting the forward model with an approximation, we can account for any
inaccuracies by introducing a tolerance level. Once the observation loss drops below a pre-determined
level, the optimization terminates early. Additionally, this optimization framework can be used to
explicitly incorporate some prior knowledge by restricting our estimates to be in the span of some
basis ®. In this case, the optimization is performed in a much lower dimensional subspace of the
coefficients by replacing Equation (7) with

¢ = ®(arg min |Go(Pa) — 7). (8)

Note that we incorporated a regularizer R(-) as an additional cost term. The regularizer encourages
certain properties (e.g. smaller values) and helps guide the optimization towards particular SSPs. In
our experiments, we test /-2 regularization as well as a co-variance (as determined by the an SVD
decomposition of the training set) weighted regularization.

Finally, it should be noted that the iterative nature of this method requires that we initialize our guess
with some estimate. When optimizing from scratch, a reasonable candidate would be the average
SSP from the training set. Alternatively, we can leverage the estimated SSPs from other OAT inverse
methods by first initializing with that estimate and then refining it with the NA procedure. We note
that there is an increase in computation time compared to directly learning the inverse due to the
iterative nature of the algorithm, but the NA method offers certain trade offs outlined above that might
be more beneficial in practice than the single estimate provided by learned direct inverse methods.

4 Preliminary Results

For demonstrating the results of our proposed regularization, we will focus on range dependent SSPs.
Collecting experimental SSPs for the range dependent case is cost prohibitive, especially at the scale
required for machine learning. Instead, we turn to a high fidelity simulation of the Gulf of Mexico
[[LO]. The physics were simulated using Navier-Stokes over the course of a month at a variety of
depth resolutions as shown in Figure[T}

We focus on 2D vertical slices within the 3D domain of the data available. For a fixed slice, the
amount of data is restricted by the time resolution of the simulation. The acoustic properties are
heavily dependent on the bathymetry, making it difficult to train models agnostic to these conditions.
To address this, we propose to focus only on the upper half of the ocean and only rely on the direct
and top-bounce acoustic paths. We will deploy 20 equally distributed vertical arrays of sources and an
equivalent vertical array of receivers Skm away. Bellhop (ray-tracing based) simulations are currently
being run to collect arrival time information. A majority of the fluctuation occurs closer to the surface,
making it the region of interest for recovery.

Some preliminary work has evaluated the ground truth SSP variation over the volume as seen in
Figure[2] SSPs statistics are reduced over the entire spatial domain (minus depth) for any location
deeper than 200m as well as time (all 30 days). These calculations are repeated across different
depth resolutions, with more layers leading to more accurate physics simulation. Although the lower
number of layers (30L, 70L) don’t seem to quite capture the same variation as the higher numbers,
they do confirm the trend that a majority of the variation occurs above 1000m, making it the region
of interest for reconstruction. Note that these results do not use the arrival times from the above
geometry yet and are purely for investigating properties of the SSP alone.
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Figure 1: (a) Bathymetry in the northern Gulf of Mexico showing the modelled domain where
CROCO is run at a 0.5 km horizontal resolution. (b-e) are the distribution of the 30, 70, 140, and
200 vertical sigma levels respectively along a east-west transect at 28°N across the nested domain.
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Figure 2: (top) The mean, standard deviation (STD) and probability density function of the STD
calculated across the domain and time of sound speed profiles for the different depth resolution
simulations calculated over all domains deeper than 200 m. (bottom) Same as top, but for the domain
between 87°W and 86°W, where mesocale activity and density gradients are both elevated. Provided

by [10]
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