
Variational Learning is Effective for Large Deep Networks

Yuesong Shen * 1 Nico Daheim * 2 Bai Cong 3 Peter Nickl 4 Gian Maria Marconi 4 Clement Bazan 3

Rio Yokota 3 Iryna Gurevych 2 Daniel Cremers 1 Mohammad Emtiyaz Khan 4 Thomas Möllenhoff 4

Abstract
We give extensive empirical evidence against the
common belief that variational learning is inef-
fective for large neural networks. We show that
an optimizer called Improved Variational Online
Newton (IVON) consistently matches or outper-
forms Adam for training large networks such
as GPT-2 and ResNets from scratch. IVON’s
computational costs are nearly identical to Adam
but its predictive uncertainty is better. We show
several new use cases of IVON where we im-
prove finetuning and model merging in Large
Language Models, accurately predict generaliza-
tion error, and faithfully estimate sensitivity to
data. We find overwhelming evidence that varia-
tional learning is effective. Code is available at
https://github.com/team-approx-bayes/ivon.

1. Introduction
Variational learning can potentially improve many aspects
of deep learning, but there remain doubts about its effective-
ness for large-scale problems. Popular strategies (Graves,
2011; Blundell et al., 2015) do not easily perform well,
even on moderately-sized problems, which has led some
to believe that it is impossible to get both good accuracy
and uncertainty (Trippe & Turner, 2017; Foong et al., 2020;
Coker et al., 2022). Variational methods generally have
higher costs or tricky implementations (Kingma et al., 2015;
Hernández-Lobato & Adams, 2015; Zhang et al., 2018;
Khan et al., 2018; Osawa et al., 2019), and they struggle to
keep up with the ever-increasing scale of deep learning.

Currently, no variational method can accurately train Large
Language Models (LLMs) from scratch at a cost, say, similar

*Equal contribution 1Technical University of Munich & Munich
Center for Machine Learning, Munich, Germany 2UKP Lab, Tech-
nical University of Darmstadt & hessian.AI, Darmstadt, Germany
3Tokyo Institute of Technology, Tokyo, Japan 4RIKEN Center for
AI Project, Tokyo, Japan. Correspondence to: Thomas Möllenhoff
<thomas.moellenhoff@riken.jp>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

to Adam (Kingma & Ba, 2015). This is excluding methods
such as MC-dropout (Gal & Ghahramani, 2016), stochas-
tic weight averaging (SWAG) (Maddox et al., 2019), and
Laplace (MacKay, 1992), which do not directly optimize
the variational objective, even though they have variational
interpretations. Ideally, we want a direct optimization of
the objective to match Adam’s accuracy without increasing
the cost, and also yield good weight-uncertainty to improve
calibration, model averaging, knowledge transfer, etc.

In this paper, we present the Improved Variational Online
Newton (IVON) method, which adapts the method of Lin
et al. (2020) to large scale and obtains state-of-the-art accu-
racy and uncertainty at nearly identical cost as Adam. Fig. 1
shows some examples where, for training GPT-2 (773M
parameters) from scratch, IVON gives 0.4 reduction in vali-
dation perplexity over AdamW and, for ResNet-50 (25.6M
parameters) on ImageNet, it gives around 2% more accurate
predictions that are also better calibrated. For image classi-
fication, we never observe severe overfitting like AdamW
and consistently obtain better or comparable results to SGD.

We introduce practical tricks necessary to achieve good per-
formance and present an Adam-like implementation (Alg. 1)
which uses a simplified Hessian-estimation scheme to both
adapt the learning rate and estimate weight-uncertainty. This
also makes IVON a unique second-order optimizer that con-
sistently performs better than Adam at a similar cost. We
present extensive numerical experiments and new use cases
to demonstrate its effectiveness. We find that,

1. IVON gets better or comparable predictive uncertainty
to alternatives, such as, MC-dropout and SWAG.

2. It works well for finetuning LLMs and reduces the cost
of model-merging.

3. It can be used to faithfully predict generalization which
is useful for diagnostics and early stopping.

4. It is useful to understand sensitivity to data which is
often challenging at large-scale due to ill-conditioning.

Overall, we find overwhelming evidence that variational
learning is not only effective but also useful for large deep
networks, especially LLMs. IVON is easily amenable to
flexible posterior forms (Lin et al., 2019), and we expect it to
help researchers further investigate the benefits of Bayesian
principles to improve deep learning.

1

https://github.com/team-approx-bayes/ivon

Variational Learning is Effective for Large Deep Networks

0 25 50 75 100
Train step (x1,000)

12

18

24

Va
lid

at
io

n
Pe

rp
le

xi
ty

24h
125M

355M

773M

12h

IVON
AdamW

(a) GPT-2 on OpenWebText

0 50 100 150 200 250
Train step (x 1,000)

75

50

25

Va
lid

at
io

n
Er

ro
r

12h

24h

(b) ResNet-50 on ImageNet

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mean predicted probability

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
ro

ba
bi

lit
y

(c) Calibration on ImageNet

Figure 1: First two panels show that IVON closely matches the trajectory of AdamW (Loshchilov & Hutter, 2017) for
training GPT-2 on OpenWebText and ResNet-50 on ImageNet. The computational costs of IVON and AdamW are nearly
identical. Runtime in hours (h) is indicated by the arrows. The third panel shows that the predictions are also better calibrated
as the red curve is closer to diagonal. Comparisons to SGD on ImageNet are in Table 1. Final numbers for IVON vs AdamW
are as follows: 12.6 vs. 13.0 perplexity (lower is better) on GPT-2 (773M), 14.1 vs 14.5 perplexity on GPT-2 (355M), 17.9
vs 18.1 perplexity on GPT-2 (125M), 77.5 vs 75.2 accuracy and 0.022 vs 0.066 ECE (lower is better) on ResNet-50.

2. Challenges of Variational Learning for
Large Deep Networks

Variational learning is challenging for large networks due to
fundamental differences in its objective to those commonly
used in deep learning. Deep learning methods estimate
network weights θ ∈ RP by minimizing empirical risk
¯̀(θ) =

∑N
i=1 `i(θ)/N , which is an average over individual

losses `i(θ) for N examples. In contrast, variational meth-
ods estimate a distribution q(θ) over weights by minimizing

L(q) = λEq(θ)

[
¯̀(θ)

]
+ DKL(q(θ) ‖ p(θ)), (1)

where p(θ) is the prior, DKL(· ‖ ·) the Kullback-Leibler di-
vergence and λ a scaling parameter often set to N , but other
values are useful, for example, to handle model misspeci-
fication. The objective in Eq. 1 coincides with variational
inference when ¯̀(θ) is a proper likelihood. We use the term
variational learning to denote the general case.

Optimization of L(q) is fundamentally different from that
of ¯̀(θ). For instance, the number of parameters of q can
be much larger than the size of θ, making the problem
harder. The number of parameters of q is doubled for a
diagonal-covariance Gaussian q(θ) = N (θ |m,diag(σ)2)
due to the estimation of two vectors of mean m ∈ RP and
standard deviation σ ∈ RP , respectively. The optimization
is further complicated because of the expectation in Eq. 1,
which adds additional noise during the optimization.

Due to these differences, a direct optimization of Eq. 1
remains challenging. The standard approach is to optimize
it by using a standard deep learning method, say, SGD,

m←m− ρ∇̂mL σ ← σ − ρ∇̂σL,

where ρ > 0 is the learning rate. This showed promising
results in early attempts of variational deep learning with

several different stochastic gradient estimators ∇̂ (Graves,
2011; Blundell et al., 2015). Unfortunately, these methods
have been unable to keep up with the growth in scale of
deep learning. The lack of progress has been attributed to
various causes, such as high-variance in stochastic gradi-
ents (Kingma et al., 2015; Wen et al., 2018), issues with
the temperature parameter (Wenzel et al., 2020; Noci et al.,
2021), and lack of a good prior (Fortuin et al., 2022). Multi-
ple theoretical studies have raised doubts whether variational
learning can ever work at all (Trippe & Turner, 2017; Foong
et al., 2020; Coker et al., 2022). Altogether, these have led
to a belief that there exists an inherent trade-off between
accuracy and uncertainty in Bayesian learning.

Progress in variational learning has been made on a differ-
ent front by using natural-gradient methods (Sato, 2001;
Hoffman et al., 2013; Khan & Lin, 2017) which have shown
promising results on ImageNet (Osawa et al., 2019). Their
updates resemble an Adam-like form which makes it easy
to tune them at large scale. Yet, the implementation can
be tricky and the cost can be much higher than Adam. For
example, Osawa et al. (2019) build upon the Variational
Online Newton (VON) method of Khan et al. (2018) where
they replace the Hessian computation by a Gauss-Newton
estimate. They implement the following Adam-like update:

ĥ← 1

|B|
∑
i∈B
∇`i(θ)2, where θ ∼ q,

g← β1g + ∇̂¯̀(θ) + s0m/λ,

h← β2h + (1− β2)ĥ,

m←m− αtg/(h + c),

σ ← 1/
√
λ(h + c).

(2)

Here, a prior p(θ) = N (θ | 0, I/s0) is used. The difficult

2

Variational Learning is Effective for Large Deep Networks

computation is in the first line of Eq. 2 where a Gauss-
Newton estimate over a minibatchB is computed at a sample
from the Gaussian, while the rest is similar to Adam: the
second line is gradient momentum, where s0m/λ is added
due to the prior. The third and fourth line are identical to
the scale and parameter vectors updates, respectively. The
constant c = γ+s0/λ where γ > 0 is a damping parameter.

The computation of the Gauss-Newton estimate is tricky
because it requires per-example squaring, which is not a
standard operation in deep learning and could be difficult
to implement. In Osawa et al. (2019, Fig. 1), this ends up
increasing the cost by a factor of two. The Gauss-Newton
estimate also introduces an additional approximation in the
variational learning, even though it helps to ensure the posi-
tivity of h. Another issue is the use of an additional damping
parameter γ which departs from the Bayesian framework.

Ideally, we want a method that directly optimizes Eq. 1 with-
out additional approximations and also seamlessly fits into
an Adam-like framework without any significant compu-
tational overheads. Methods such as MC-dropout, SWAG,
and Laplace do not solve this problem, and rather circum-
vent it by relying on algorithms that optimize ¯̀, not L. The
goal of this paper is to propose a method that can match the
accuracy of Adam while directly optimizing L.

3. Improved Variational Online Newton
We present the Improved Variational Online Newton (IVON)
method by adapting the method of Lin et al. (2020) and
introducing practical tricks necessary to achieve good per-
formance at large scale. They propose an improved version
of the Bayesian Learning Rule (Khan & Rue, 2021) which
ensures positivity of certain variational parameters, such as,
the Gaussian variance or scale parameter of a Gamma distri-
bution. For the Gaussian case, they propose an Adam-like
update which makes the update in Eq. 2 simpler. Specifi-
cally, they use the following Hessian estimate by using the
reparameterization trick,

ĥ← ∇̂¯̀(θ) · θ −m

σ2
, (3)

which does not require per-example gradient squares, rather
just a single vector multiplication with the minibatch gra-
dient. The above estimate is easy to compute but, unlike
the Gauss-Newton estimate, it is not always positive and
can make h in Eq. 2 negative (Khan et al., 2018, App. D).
Lin et al. (2020) solve this problem by using Riemannian
gradient descent which ensures positivity by adding an extra
term in the update of h,

h← (1− ρ)h + ρĥ + 1
2ρ

2(h− ĥ)2/(h + s0/λ), (4)

where ρ > 0 is a constant. Positivity holds even when ĥ are
negative, as shown in Lin et al. (2020, Theorem 1).

Algorithm 1 Improved Variational Online Newton (IVON).
Hyperparameter setting is described in App. A.

Require: Learning rates {αt}, weight-decay δ > 0.
Require: Momentum parameters β1, β2 ∈ [0, 1).
Require: Hessian init h0 > 0.
Init: m← (NN-weights), h← h0, g← 0, λ← N .
Init: σ ← 1/

√
λ(h + δ).

Optional: αt ← (h0 + δ)αt for all t.
1: for t = 1, 2, . . . do
2: ĝ← ∇̂¯̀(θ), where θ ∼ q
3: ĥ← ĝ · (θ −m)/σ2

4: g← β1g+(1−β1)ĝ

5: h← β2h+(1−β2)ĥ+ 1
2 (1− β2)2(h− ĥ)2/(h + δ)

6: ḡ← g/(1− βt
1)

7: m←m− αt(ḡ + δm)/(h + δ)

8: σ ← 1/
√
λ(h + δ)

9: end for
10: return m,σ

In Alg. 1, we use the two modifications (highlighted in
red) to get an improved version of VON, called IVON. The
updates closely resemble Adam, but there is a sampling step
in line 2 (highlighted in blue) and there is no square-root
over h in line 7. IVON therefore uses a Newton-like update.
The Hessian estimator in Eq. 3 is less costly compared to
other second-order optimizers (Dauphin et al., 2015; Yao
et al., 2021; Liu et al., 2024). It is valid even for losses
that are not twice-differentiable (for example, for ReLU
activations). These aspects make IVON a unique second-
order optimizer with similar costs to Adam.

Below are a few practical tricks needed for good results.

1. Instead of the prior precision s0, we use the weight-
decay regularizer δ as the prior. The scaling parameter
λ is set to N , except for finetuning on small datasets.

2. Unlike Lin et al. (2020, Fig. 1), the update of h does
not use δ. We do not debias h and we update it before
m which has no impact on the performance.

3. The Hessian h is initialized with a constant h0. Lin
et al. (2020) most likely set it to 0 due to the debiasing
step used in their work. We find the initialization to be
useful. Too small values can destabilize the training
while larger values may give poor performance.

4. When training transformers, it can be helpful to clip the
preconditioned gradient in line 7 entrywise to [−ξ, ξ].

5. Optionally, we rescale αt by (h0 + δ) so that the first
steps of the algorithm have step-size close to the initial
αt. When clipping is used, this step is omitted.

3

Variational Learning is Effective for Large Deep Networks

Dataset / Model Method Top-1 Acc. ↑ Top-5 Acc. ↑ NLL ↓ ECE ↓ Brier ↓
AdamW (2%) 75.16±0.14 92.37±0.03 1.018±0.003 0.066±0.002 0.349±0.002

SGD (1%) 76.63±0.45 93.21±0.25 0.917±0.026 0.038±0.009 0.326±0.006

IVON@mean 77.30±0.08 93.58±0.05 0.884±0.002 0.035±0.002 0.316±0.001

ImageNet
ResNet-50
(26M params) IVON 77.46±0.07 93.68±0.04 0.869±0.002 0.022±0.002 0.315±0.001

AdamW (15%) 47.33±0.90 71.54±0.95 6.823±0.235 0.421±0.008 0.913±0.018

SGD (1%) 61.39±0.18 82.30±0.22 1.811±0.010 0.138±0.002 0.536±0.002

IVON@mean 62.41±0.15 83.77±0.18 1.776±0.018 0.150±0.005 0.532±0.002

TinyImageNet
ResNet-18
(11M params) IVON 62.68±0.16 84.12±0.24 1.528±0.010 0.019±0.004 0.491±0.001

AdamW (11%) 50.65±0.0∗ 74.94±0.0∗ 4.487±0.0∗ 0.357±0.0∗ 0.812±0.0∗

SGD (2%) 59.39±0.50 81.34±0.30 2.040±0.040 0.176±0.006 0.577±0.007

IVON@mean 60.85±0.39 83.89±0.14 1.584±0.009 0.053±0.002 0.514±0.003

TinyImageNet
PreResNet-110
(4M params) IVON 61.25±0.48 84.13±0.17 1.550±0.009 0.049±0.002 0.511±0.003

AdamW (11%) 64.12±0.43 86.85±0.51 3.357±0.071 0.278±0.005 0.615±0.008

SGD (1%) 74.46±0.17 92.66±0.06 1.083±0.007 0.113±0.001 0.376±0.001

IVON@mean 74.51±0.24 92.74±0.19 1.284±0.013 0.152±0.003 0.399±0.002

CIFAR-100
ResNet-18
(11M params) IVON 75.14±0.34 93.30±0.19 0.912±0.009 0.021±0.003 0.344±0.003

AdamW (10%) 65.88±0.84 88.34±0.56 2.893±0.088 0.258±0.006 0.578±0.014

SGD (2%) 74.19±0.11 92.41±0.14 1.204±0.012 0.137±0.002 0.393±0.004

IVON@mean 75.23±0.23 93.45±0.16 1.149±0.010 0.136±0.002 0.380±0.003

CIFAR-100
PreResNet-110
(4M params) IVON 75.81±0.18 93.93±0.19 0.884±0.007 0.030±0.003 0.336±0.001

Table 1: IVON improves both accuracy and uncertainty over SGD and AdamW. Improvements in accuracy by IVON are
shown in red. The performance of AdamW is not good on the smaller datasets likely due to overfitting when training for 200
epochs. IVON does not have this issue. Additional results are in the appendix in Tables 9 to 11 and Table 13.

Momentum β1, learning rate αt and weight-decay δ can
be set in the same fashion as for standard optimizers, as
well as minibatch size and clipping radius ξ. β2 typically
needs to be closer to one as in Adam, for instance, values
of β2 = 0.99995 work well. h0 is typically around 0.01
to 1, and setting λ is also easy, as discussed above. This
makes obtaining good results with IVON often very easy. A
detailed guide for hyperparameter setting is in App. A.

IVON can be easily modified to accommodate multi-GPU
training. Each GPU device can use different Monte-Carlo
(MC) samples, which reduces the variance (Kingma et al.,
2015). Moreover, multiple MC samples per device can
also be used. These modifications can be realized by simply
replacing the calculations of ĝ and ĥ in line 2 and 3 of Alg. 1
by the following averages over J devices and a total of S
MC samples drawn on each device:

ĝ =

∑
j,s ∇̂¯̀(θ

(s)
j)

J · S
, ĥ =

∑
j,s ∇̂¯̀(θ

(s)
j)(θ

(s)
j −m)

J · S · σ2
.

Here, we use a different θ(s)
j ∼ q on each device j and

for each MC sample s. Both sums can be implemented as
running averages for better memory-efficiency.

We implement IVON as a drop-in replacement for Adam in
PyTorch, where only two lines need to be added (marked
red below) to draw multiple MC samples:

for inputs, targets in dataloader:
for _ in range(num_mc_samples):
with optimizer.sampled_params(train=True):
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_fn(outputs, targets)
loss.backward()

optimizer.step()

The first red line is often not needed because a single sample
can already give reasonable results.

4. IVON is Effective for Large Deep Networks
We show that IVON effectively trains large deep networks
from scratch (Sec. 4.1) and enables many downstream ap-
plications, such as predictive uncertainty (Sec. 4.2), fine-
tuning and model merging (Sec. 4.3), as well as predict-
ing generalization and finding influential training exam-
ples (Sec. 4.4). We perform ablation studies on computa-
tional efficiency (App. B.1), the choice of Hessian estima-
tor (App. B.2) and initialization (App. B.3). In the following,
we refer by IVON@mean to the prediction using m as the
weights, whereas IVON denotes a model average with 64
samples drawn from the posterior learned by IVON.

4.1. Better Scalability and Generalization

Here, we show how IVON scalably trains large models
from scratch. First, we train LLMs with up to 773M pa-
rameters from scratch on ca. 50B tokens. Then, we show

4

Variational Learning is Effective for Large Deep Networks

0 25 50 75 100
Train step (x1,000)

2.4

2.8

3.2

Tr
ai

n
lo

ss

IVON
AdamW

(a) Training loss on OpenWebText

0 5 10 15 20
Train step (x1,000)

3.0

4.0

Tr
ai

n
lo

ss

IVON (float32)
IVON (bf16)

(b) Low precision training

1 2 4 8 16 32 64
MC Samples

14.470

14.485

14.500

Va
lid

at
io

n
Pe

rp
le

xi
ty

Predictive Posterior
Mean

(c) Predictive posterior

Figure 2: Panel (a) shows that, when training GPT-2, IVON not only improves upon AdamW in terms of validation perplexity
but also converges to matching or even better training loss than AdamW. Panel b shows that IVON provides stable training
when using low-precision (bf16) floating point numbers. Panel (c) shows that averaging predictions over IVON’s posterior
further improves the validation perplexity on GPT-2, when a sufficient number of samples is used (> 8).

improved accuracy and uncertainty for various image classi-
fication models, for example, ResNets with 26M parameters
at ImageNet-scale. Additional results on smaller recurrent
neural networks with 2M parameters are in App. D.1.

4.1.1. PRETRAINING LANGUAGE MODELS

Pretraining transformer language models (Vaswani et al.,
2017) with variational learning has been challenging and no
large-scale result exists so far. We show that IVON can train
large language models at scale. We train models following
the GPT-2 architecture (Radford et al., 2019) for 49.2 billion
tokens in total on the OpenWebText corpus (Gokaslan & Co-
hen, 2019). We use the same hyperparameters for AdamW
as prior work (Liu et al., 2024). For IVON, we set them by
grid search on a smaller model. We pretrain from scratch
three models with parameter sizes of 125M, 355M (“GPT-
2-medium”), and 773M (“GPT-2-large”), respectively. We
use gradient clipping to stabilize the training. Details are
in App. C.1.

As shown in Fig. 1(a), for the three models, the validation
perplexities are reduced from 18.1 to 17.9, from 14.5 to
14.1 and from 13.0 to 12.6, respectively. Fig. 2(a) further
shows the same trend for training loss. Fig. 2(b) shows
stable training with bf16 precision, and Fig. 2(c) shows that
sampling multiple models from IVON’s posterior further
improves performance when a sufficient number of samples
is used. Overall, we see effectiveness for training large
Transformers from scratch on large datasets.

4.1.2. IMAGE CLASSIFICATION

We compare IVON to AdamW and SGD (with momentum)
for image classification on various models and benchmarks.
Table 1 shows that IVON improves upon both AdamW
and the stronger SGD baseline in terms of both accuracy

and uncertainty, here measured by negative log-likelihood
(NLL), expected calibration error (ECE), and Brier score.
We also find that IVON does not overfit on smaller tasks,
unlike AdamW which tends to overfit on TinyImageNet and
CIFAR-100. This holds on various datasets and models
trained for 200 epochs. We show two of them here. First,
we show ResNet-50 with around 25.6M parameters (He
et al., 2016a) on ImageNet-1k which has around 1.2M im-
ages with 1000 classes. Second, we show ResNet-18 with
11M parameters and PreResNet-110 with 4M parameters on
both TinyImageNet and CIFAR-100. We list further details
on the experiments in App. C.2 along with more results
using DenseNet-121 and ResNet-20 on other datasets, such
as CIFAR-10. There too, we find improvements in both
accuracy and uncertainty.

We hypothesize that these improvements are partly due to
flat-minima seeking properties of variational learning. Meth-
ods aimed to find flat minima, such as sharpness-aware min-
imization (SAM) (Foret et al., 2021), have recently gained
in popularity to boost test-accuracy. Möllenhoff & Khan
(2023) have shown that SAM optimizes a relaxation of the
expected loss in Eq. 1. Our results here indicate that similar
improvements can be obtained by directly optimizing the
variational objective and without using any relaxations.

4.2. Posterior Averaging for Predictive Uncertainty

Variational learning naturally allows for improved predic-
tive uncertainties, because we can average predictions of
several θ sampled from the posterior. Unlike other Bayesian
Deep Learning (BDL) methods, no postprocessing or model
architecture changes are required for this. In the following,
we compare IVON to AdamW, SGD, Bayes-by-Backprop
(BBB), linearized last-layer Laplace (referred to as Laplace),
MC Dropout (referred to as MC-D), SWAG, VOGN and
deep ensembles (Lakshminarayanan et al., 2017). We con-

5

Variational Learning is Effective for Large Deep Networks

SGD

BBB

MC-D

SWAG

IVON

(a) CIFAR-10 on SVHN

SGD

BBB

MC-D

SWAG

IVON

(b) CIFAR-10 on Flowers102

2.5 0.0 2.5 5.0 7.5
2

1

0

1

2

(c) IVON in-between uncertainty

Figure 3: In panel (a) and (b), we see that IVON’s histogram of predictive entropy has a high peak similar to SGD for
in-domain data (red, CIFAR-10) but at the same time is spread out widely similar to the other Bayesian deep learning
methods for out-of-domain data (gray). The colors are shaded proportional to the height of the peak, that is, darker red and
gray indicates a higher peak. In panel (c), we see that IVON can handle in-between uncertainty well, which has been shown
to be challenging for variational methods by Foong et al. (2019).

Acc. (%) ↑ NLL ↓ ECE ↓ Brier ↓
AdamW 90.04±0.27 0.589±0.018 0.074±0.002 0.170±0.004
SGD 91.86±0.14 0.288±0.015 0.040±0.004 0.126±0.004
BBB 91.09±0.16 0.289±0.005 0.053±0.001 0.139±0.002
Laplace 91.52±0.37 0.284±0.008 0.033±0.002 0.129±0.004
MC-D 91.85±0.17 0.242±0.004 0.008±0.002 0.120±0.002
SWAG 92.45±0.23 0.230±0.002 0.024±0.002 0.112±0.002
VOGN 92.37±0.23 0.226±0.005 0.008±0.001 0.111±0.003
IVON 92.71±0.07 0.219±0.002 0.008±0.001 0.108±0.001

Deep Ens. 93.57±0.16 0.198±0.003 0.014±0.001 0.096±0.001
Multi-IVON 94.37±0.13 0.179±0.002 0.029±0.001 0.087±0.001

Table 2: IVON’s predictive uncertainty is better than other
baselines for in-domain examples. Multi-IVON is a mixture-
of-Gaussian ensemble which further improves the perfor-
mance and is competitive with a deep ensemble.

sider both in-domain and out-of-domain (OOD) settings. We
report common metrics from existing benchmarks (Liang
et al., 2018; Snoek et al., 2019). Further details on the
experimental setup are in App. C.3.

4.2.1. IN-DOMAIN COMPARISONS

To evaluate in-domain uncertainty, we train and evaluate
ResNet-20 models (He et al., 2016a) on the smaller CIFAR-
10 dataset. We choose smaller datasets because it is difficult
to apply BBB on larger problems. Results are reported in
Table 2. Overall, all BDL baselines, except for BBB which
is known to underperform, have significantly better perfor-
mance than SGD and AdamW. Among all non-ensemble
approaches, IVON stands out in both accuracy and uncer-
tainty metrics.

Deep ensembles made up of five models from different SGD
runs clearly improve over the non-ensemble methods. We

FPR@95% ↓ Det. Err. ↓ AUROC ↑ AUPR-In ↑ AUPR-Out ↑
SVHN, see Fig. 3(a)

SGD 20.7±1.6 18.8±0.9 86.7±1.0 81.8±1.4 91.8±0.7
BBB 24.5±0.7 17.8±0.3 87.0±0.3 83.4±0.4 91.3±0.4
Laplace 19.8±1.7 18.8±1.0 86.9±1.1 81.9±1.5 92.0±0.8
MC-D 20.7±1.3 17.0±0.6 88.0±0.8 84.6±0.9 92.1±0.7
SWAG 19.8±2.2 16.6±1.0 88.9±1.1 85.3±1.2 93.0±0.9
VOGN 17.2±1.0 16.5±0.4 89.3±0.6 85.3±0.6 93.5±0.5
IVON 17.4±0.8 16.6±0.5 89.2±0.4 85.2±0.6 93.4±0.4

Flowers102, see Fig. 3(b)

SGD 22.1±0.5 20.7±0.4 86.3±0.3 92.1±0.2 75.4±0.4
BBB 22.2±0.8 19.5±0.7 88.2±0.7 93.1±0.5 79.8±0.9
Laplace 20.5±1.1 20.1±0.6 86.9±0.7 92.4±0.4 76.4±1.3
MC-D 20.3±0.8 19.6±1.1 87.8±0.9 93.0±0.7 78.4±1.1
SWAG 19.5±0.8 18.1±0.5 89.3±0.6 93.9±0.4 81.0±0.9
VOGN 18.1±0.8 18.3±0.3 89.0±0.4 93.8±0.3 80.3±0.7
IVON 17.8±0.5 18.1±0.5 89.0±0.5 93.8±0.3 80.2±0.8

Table 3: IVON gives good results for OOD detection using
a ResNet-20 mode trained on CIFAR-10. The model is
evaluated on SVHN and Flowers102.

compare them to a similar version of IVON with a mixture-
of-Gaussian posterior, constructed from five independently-
trained IVON models. This is referred to as Multi-IVON
in Table 2, where we find it to outperform deep ensembles.
These results altogether confirm the quality of uncertainty
estimates obtained with IVON.

4.2.2. OUT-OF-DOMAIN (OOD) COMPARISONS

Next, we consider the OOD case by reusing the CIFAR-
10 models on data from a different domain. While we
would expect the model to be certain for correct in-domain
predictions, it should be less so for out-of-domain examples.
This would allow for distinguishing the CIFAR-10 data

6

Variational Learning is Effective for Large Deep Networks

1 8 64 512
Test MC Samples

91.0%

92.0%

93.0%
Ac

cu
ra

cy

mean

1 8 64 512
Test MC Samples

0.2

0.25

0.3

NL
L

1 2 4 8 16 32
Train MC Samples

92.0%

92.5%

93.0%

Ac
cu

ra
cy

1 2 4 8 16 32
Train MC Samples

0.2

0.25

0.3
NL

L

Figure 4: Using more MC samples during inference (top
row) or training (bottom row) can improve both accuracy
and NLL, here plotted for ResNet-20 on CIFAR-10.

from OOD samples, for which we use the street view house
number (SVHN) (Netzer et al., 2011) and the 102 Flowers
dataset (Nilsback & Zisserman, 2008, Flowers102).

Table 3 shows that IVON is consistently better at distin-
guishing OOD examples from SVHN and Flowers102 from
in-domain CIFAR-10 data. These results are further illus-
trated by the predictive entropy plots in Figs. 3(a) and 3(b).
In these plots, for in-domain data (shown in red), IVON’s
histogram has a similarly high peak as SGD, but for out-
of-domain data (shown in gray) it is much more spread out
than SGD. While the other Bayesian deep learning method’s
histograms are also spread out for OOD data, they struggle
to achieve a high peak for in-domain data. Overall, IVON’s
histogram has the most clear separation between in-domain
data and out-of-domain data. As illustrated in Fig. 3(c),
IVON’s predictive posterior also gives good in-between un-
certainty which has been challenging for other variational
methods (Foong et al., 2019). We show further distribution
shift experiments in App. D.2.

4.2.3. MC SAMPLES FOR AVERAGING

We find consistent improvements when using more MC sam-
ples both during training and inference, but eventually im-
provements saturate and deliver diminishing returns. Fig. 4
(top row) shows that, for ResNet-20 on CIFAR-10, multiple
test samples for prediction improves over the prediction
using only the mean, especially in terms of NLL. Simi-
larly, using multiple samples during training improves both
accuracy and uncertainty (bottom row in Fig. 4).

MNLI QNLI QQP RTE SST2 MRPC CoLA STS-B

DeBERTAv3 (440M params)

AdamW 91.3 95.7 93.1 91.0 96.5 91.0 74.8 92.4
IVON@mean 91.6 95.7 93.0 91.7 96.9 91.9 75.1 92.6
AdamW† 91.8 96.0 93.0 92.7 96.9 92.2 75.3 93.0

RoBERTa (125M params)

AdamW 87.7 92.8 90.9 80.9 94.8 85.8 63.6 90.6
IVON@mean 87.8 92.6 90.8 80.6 95.0 87.3 63.3 90.8

Table 4: (Top) IVON generally gives better results compared
to AdamW for finetuning on DeBERTAv3large. Better num-
bers are reported by He et al. (2023) (indicated by AdamW†)
but we are not able to reproduce them. (Bottom) Similar re-
sults for RoBERTabase where performances are comparable
but IVON is marginally better on average.

4.2.4. NEURIPS 2021 COMPETITION

An earlier version of IVON won first place in both tracks of
the NeurIPS 2021 competition on approximate inference in
Bayesian deep learning (Wilson et al., 2022). The methods
were evaluated by their difference in predictions to those of
a ’ground-truth’ posterior computed on hundreds of TPUs.
The winning solution used Multi-IVON (same as Table 2).
We summarize the results of the challenge and the differ-
ences of the earlier version to Alg. 1 in App. D.3.

4.3. Finetuning and Model Merging

We now demonstrate the usefulness of IVON for finetuning
and model-merging. Intuitively, the learned variance σ2

(used to adapt the learning rate) should improve finetuning
by favoring directions that are flatter. It should also be
useful to improve Fisher/Hessian-based model merging, for
instance, those discussed by Daheim et al. (2024).

4.3.1. FINETUNING PRETRAINED LANGUAGE MODELS

We compare performance on finetuning of a large masked-
language model DeBERTAv3 (He et al., 2023) using
AdamW and IVON on GLUE (Wang et al., 2018). Sim-
ilarly to previous work (Devlin et al., 2019), we do not
include the WNLI dataset. DeBERTAv3 has 440M parame-
ters and we finetune the full model using a publicly available
checkpoint that was initially trained with AdamW. The re-
sults are shown in the top rows of Table 4 where we see that
IVON generally improves upon AdamW; all tasks are for
classification except STS-B which is a regression tasks. For
comparison, we also include results from He et al. (2023)
(indicated by AdamW†) which show higher scores but we
are unable to reproduce them. Bottom row shows similar re-
sults for RoBERTa (Liu et al., 2019), where IVON performs
more comparably to AdamW but still gives marginally better
results on average. Experimental details are in App. C.4.

7

Variational Learning is Effective for Large Deep Networks

IMDB Yelp RT SST2 Amazon Avg. Overhead

SG 93.5 97.0 89.7 92.8 96.6 93.9 100%
IVON 93.6 96.9 89.8 92.8 96.7 94.0 0%

Table 5: IVON reduces the cost of Hessian-based model-
merging while giving comparable results to an existing
method which requires an extra post-training run through the
full data to compute the square-gradients (SG). For IVON,
we simply use h obtained during training which has zero
overhead (indicated in last column with 0%).

4.3.2. MERGING MASKED-LANGUAGE MODELS

We repeat the experiments by Daheim et al. (2024) to merge
finetuned RoBERTa models on IMDB, Amazon, Yelp, Rot-
tenTomatoes, and SST2. Given pretrained weights θ0, they
use the following method to merge T finetuned models θt,

θmerged = θ0 +

T∑
t=1

h0 + ht

h0 +
∑T

t′=1 ht′
(θt − θ0),

where ht is the diagonal of the Hessian at the t’th model.
For IVON, we use the vector h as the Hessian estimate. We
compare it to the squared gradient (SG) estimator: ht =∑

i[∇ˆ̀
i(θt)]

2. The loss ˆ̀
i here is the same as `i but uses

labels sampled from the model. The estimator is related to
Laplace’s method (Daheim et al., 2024) and requires an extra
post-training run over the full dataset. For both methods,
we set h0 using the SG method because IVON is not used
during pretraining. We use same settings as App. C.4.

Table 5 shows that both estimates perform similarly, despite
IVON not needing an extra pass through the dataset (indi-
cated by 0% overhead in the last column). We expect the
results to get even better when the model is pretrained with
IVON, because then h0 is also estimated during pretraining.

4.4. Estimating Generalization and Sensitivity to Data

We demonstrate the usefulness of IVON to faithfully predict
generalization performance and also understand sensitivity
to training data. The former is useful for training diagnostics
and early stopping, while the latter is useful for model under-
standing and data cleaning. To do so, we simply plug-in the
variance estimate σ2 obtained during IVON’s training into
the influence measures derived by Nickl et al. (2023). We
find this simple method to give good results compared to ex-
isting influence function methods (Koh & Liang, 2017) that
are known to be fragile for large deep networks (Basu et al.,
2021) but also are not designed to work during training.

4.4.1. PREDICTING GENERALIZATION PERFORMANCE

We use IVON to estimate the Leave-One-Out (LOO) Cross-
Validation loss as a measure of generalization performance.
Given a θ during training, Nickl et al. (2023) use its predic-
tion error ei and prediction variance vi on the i’th example

0 20 40 60 80 100
Epochs

4

3

2

1

NL
L

Test loss
LOO loss

(a) IVON

0 20 40 60 80 100
Epochs

4

3

2

1

NL
L

(b) AdamW

Figure 5: Panel (a) shows that, for ImageNet, IVON’s LOO
estimate (solid line with square markers) accurately follows
the loss trajectory on an unseen test set (dashed line). Panel
(b) shows that same for AdamW which is not as good.

to estimate the deviation θ\i obtained by removing the same
i’th example. This is then used to estimate the LOO loss,

LOO(θ) =

N∑
i=1

`(f
\i
i) ≈

N∑
i=1

`(fi + viei),

where fi and f\ii are predictions by using θ and θ\i, respec-
tively, for the i’th example and we denote `(fi) = `i(θ).
IVON’s variance σ2 is expected to improve the predictive
variance vi (see App. C.5) and this experiment demonstrates
the effectiveness of the variance estimate compared to the
Squared-Gradient (SG) estimate used in Adam.

Fig. 5 shows the results on ImageNet (setup similar to the
one shown in Table 1). We see that IVON’s LOO estimate
closely follows the (true) loss on an unseen test set. The
LOO objective is evaluated using sensitivities calculated
from IVON during training. Similar estimates obtained with
AdamW do not work as well, for instance, they converge
close to 0 which reflects the training loss more than the
test loss. Details of the method used for AdamW are given
in App. C.5. Each plot shows LOO at regular intervals
indicated with the markers. Additional results for many
other architectures on CIFAR-10 are given in App. D.4.

4.4.2. SENSITIVITY TO TRAINING DATA

We present qualitative results to estimate sensitivity of the
model to its training data. Similarly to Nickl et al. (2023),
we define the sensitivity measure to be the absolute value
of viei. Higher values suggest higher sensitivities. Because
the sensitivity estimates are obtained by multiplying ei and
vi, we expect low sensitivity images to be those predicted
correctly with high confidence, that is, they should be typical
images. In contrast, high sensitivity images are the ones
with high prediction error and/or high variance, which in
general would be atypical ones (mislabeled or ambiguous).

Fig. 6 illustrates low- and high-sensitivity images for the
“great white shark” class on ImageNet (details in App. C.5).

8

Variational Learning is Effective for Large Deep Networks

Epoch 5 Epoch 50 Epoch 100
Lowest Highest Lowest Highest Lowest Highest

Distribution of Sensitivities Distribution of Sensitivities Distribution of Sensitivities

Epoch 50 Epoch 100
Lowest Highest Lowest Highest

Distribution of Sensitivities Distribution of Sensitivities

Figure 6: We use IVON to estimate sensitivity of ResNet-50 to examples in the ImageNet dataset, and visualize high and low
sensitivity images for the “great white shark” class at two epochs of 50 and 100 respectively. Low-sensitivity examples are
mostly typical shark images, while high-sensitivity ones are unusual images, possibly containing mislabeled or ambiguous
examples. For instance, one picture shows more prominently the face of a woman than the shark. The high-sensitivity
examples also continue to evolve when going from 50 to 100 epochs (the distribution of sensitivities flattens), perhaps
indicating that the model tends to learn them a bit later in the training.

We show two epochs (50 and 100, respectively). Already at
50 epochs, low-sensitivity examples show the regular shark
pattern, but high-sensitivity examples keep appearing as
the training progresses (the distribution of sensitivities flat-
tens). At epoch 100, we see some clear examples containing
atypical images, for instance, a picture of a woman’s face
featured more prominently than the shark.

5. Discussion and Limitations
We show the effectiveness of variational learning for training
large networks. Especially our results on GPT-2 and other
LLMs are first of their kind and clearly demonstrate the
potential that variational learning holds. We also discussed
many new use cases where we consistently find benefits by
switching to a variational approach. We expect our results
to be useful for future work on showing the effectiveness of
Bayesian learning in general.

Although we borrow practical tricks from deep learning, not
all of them are equally useful for IVON, for example, we
find that IVON does not go well with batch normalization
layers (Ioffe & Szegedy, 2015). Future research should ex-

plore this limitation and investigate the reasons behind the
effectiveness of some practical tricks. Using MC samples
in variational learning increases the computation cost and
we believe it is difficult to fix this problem. For this, deter-
ministic versions of the variational objective can be useful,
for example, those discussed by Möllenhoff & Khan (2023)
but this is a potential direction for future research.

IVON can be easily modified to learn flexible posterior
forms (Lin et al., 2019). Our Multi-IVON method in this
paper uses a simple mixture distribution, but we expect
further improvements by using other types of mixtures and
also by learning the mixing distribution. We expect this
aspect of IVON to help researchers further investigate the
benefits of Bayesian principles to improve deep learning.

Acknowledgements
This work is supported by JST CREST Grant Number JP-
MJCR2112. This research work has been funded by the Ger-
man Federal Ministry of Education and Research and the
Hessian Ministry of Higher Education, Research, Science
and the Arts within their joint support of the National Re-

9

Variational Learning is Effective for Large Deep Networks

search Center for Applied Cybersecurity ATHENE. Y. Shen
and D. Cremers are supported by the Munich Center for
Machine Learning (MCML) and the ERC Advanced Grant
SIMULACRON. Some of the experiments were carried out
with the TSUBAME3.0 supercomputer at the Tokyo Insti-
tute of Technology.

We thank Happy Buzaaba for first experiments on finetuning
transformers with IVON and Keigo Nishida, Falko Helm
and Hovhannes Tamoyan for feedback on a draft of this
paper. Finally, we thank the organizers of the NeurIPS 2021
Competition on Approximate Inference in Bayesian Deep
Learning.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Basu, S., Pope, P., and Feizi, S. Influence functions in

deep learning are fragile. In International Conference on
Learning Representations (ICLR), 2021.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural networks. In Interna-
tional Conference on Machine Learning (ICML), 2015.

Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., and Spe-
cia, L. SemEval-2017 task 1: Semantic textual similarity
multilingual and crosslingual focused evaluation. In In-
ternational Workshop on Semantic Evaluation (SemEval-
2017), 2017.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using RNN encoder-decoder for
statistical machine translation. In Conference on Empiri-
cal Methods in Natural Language Processing, 2014.

Coker, B., Bruinsma, W. P., Burt, D. R., Pan, W., and Doshi-
Velez, F. Wide mean-field Bayesian neural networks
ignore the data. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2022.

Daheim, N., Möllenhoff, T., Ponti, E. M., Gurevych, I., and
Khan, M. E. Model merging by uncertainty-based gradi-
ent matching. In International Conference on Learning
Representations (ICLR), 2024.

Dauphin, Y., De Vries, H., and Bengio, Y. Equilibrated adap-
tive learning rates for non-convex optimization. Advances
in Neural Information Processing Systems (NeurIPS),
2015.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R.,
Bauer, M., and Hennig, P. Laplace redux – effortless
Bayesian deep learning. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2021.

Delaunoy, A. and Louppe, G. SAE: Sequential anchored
ensembles. arXiv:2201.00649, 2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. ImageNet: A large-scale hierarchical image database.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long
and Short Papers), 2019.

Dolan, W. B. and Brockett, C. Automatically construct-
ing a corpus of sentential paraphrases. In International
Workshop on Paraphrasing (IWP2005), 2005.

Foong, A., Burt, D., Li, Y., and Turner, R. On the ex-
pressiveness of approximate inference in Bayesian neural
networks. Advances in Neural Information Processing
Systems, 33, 2020.

Foong, A. Y., Li, Y., Hernández-Lobato, J. M., and Turner,
R. E. ’In-Between’ uncertainty in Bayesian neural net-
works. ICML Workshop on Uncertainty and Robustness
in Deep Learning, 2019.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. In International Conference on Learning
Representations (ICLR), 2021.

Fortuin, V., Garriga-Alonso, A., Wenzel, F., Rätsch, G.,
Turner, R., van der Wilk, M., and Aitchison, L. Bayesian
neural network priors revisited. In International Confer-
ence on Learning Representations (ICLR), 2022.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In International Conference on Machine Learning
(ICML), 2016.

Gokaslan, A. and Cohen, V. OpenWebText corpus,
2019. URL http://Skylion007.github.io/
OpenWebTextCorpus.

Graves, A. Practical variational inference for neural net-
works. In Advances in Neural Information Processing
Systems (NeurIPS), 2011.

10

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Variational Learning is Effective for Large Deep Networks

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European Conference on
Computer Vision (ECCV), 2016b.

He, P., Gao, J., and Chen, W. DeBERTav3: Improving de-
BERTa using ELECTRA-style pre-training with gradient-
disentangled embedding sharing. In International Con-
ference on Learning Representations (ICLR), 2023.

Hendrycks, D. and Dietterich, T. G. Benchmarking neural
network robustness to common corruptions and perturba-
tions. In International Conference on Learning Represen-
tations (ICLR), 2019.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(GELUs). arXiv preprint arXiv:1606.08415, 2016.

Hernández-Lobato, J. M. and Adams, R. Probabilistic back-
propagation for scalable learning of Bayesian neural net-
works. In International Conference on Machine Learning
(ICML), 2015.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
Stochastic variational inference. J. Mach. Learn. Res.
(JMLR), 14(5), 2013.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de las Casas, D., Hendricks, L. A.,
Welbl, J., Clark, A., Hennigan, T., Noland, E., Millican,
K., van den Driessche, G., Damoc, B., Guy, A., Osindero,
S., Simonyan, K., Elsen, E., Vinyals, O., Rae, J. W.,
and Sifre, L. An empirical analysis of compute-optimal
large language model training. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International Conference on Machine Learning, 2015.

Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson,
A. G. What are Bayesian neural network posteriors really
like? In International Conference on Machine Learning
(ICML), 2021.

Khan, M. E. and Lin, W. Conjugate-computation varia-
tional inference: Converting variational inference in non-
conjugate models to inferences in conjugate models. In
International Conference on Artificial Intelligence and
Statistics (AISTATS), 2017.

Khan, M. E. and Rue, H. The Bayesian learning rule.
arXiv:2107.04562, 2021.

Khan, M. E., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y.,
and Srivastava, A. Fast and scalable Bayesian deep learn-
ing by weight-perturbation in Adam. In International
Conference on Machine Learning (ICML), 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015. arXiv:1412.6980.

Kingma, D. P., Salimans, T., and Welling, M. Varia-
tional dropout and the local reparameterization trick.
In Advances in Neural Information Processing Systems
(NeurIPS), 2015.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International Conference
on Machine Learning (ICML), 2017.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, University of Toronto,
2009.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2017.

Le, Y. and Yang, X. S. Tiny ImageNet visual recognition
challenge. Technical report, Stanford University, 2015.

Levesque, H., Davis, E., and Morgenstern, L. The winograd
schema challenge. In International Conference on the
Principles of Knowledge Representation and Reasoning,
2012.

Liang, S., Li, Y., and Srikant, R. Enhancing the reliability
of out-of-distribution image detection in neural networks.
In ICLR, 2018.

Lin, W., Khan, M. E., and Schmidt, M. Fast and sim-
ple natural-gradient variational inference with mixture
of exponential-family approximations. In International
Conference on Machine Learning (ICML), 2019.

Lin, W., Schmidt, M., and Khan, M. E. Handling the
positive-definite constraint in the Bayesian learning
rule. In International Conference on Machine Learning
(ICML), 2020.

Liu, H., Li, Z., Hall, D., Liang, P., and Ma, T. Sophia: A
scalable stochastic second-order optimizer for language
model pre-training. In International Conference on Learn-
ing Representations (ICLR), 2024.

11

Variational Learning is Effective for Large Deep Networks

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
RoBERTa: A robustly optimized BERT pretraining ap-
proach, 2019.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv:1711.05101, 2017.

MacKay, D. J. C. A practical Bayesian framework for
backpropagation networks. Neural Comput., 4(3):448–
472, 1992.

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and
Wilson, A. G. A simple baseline for Bayesian uncertainty
in deep learning. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

Möllenhoff, T. and Khan, M. E. SAM as an optimal relax-
ation of Bayes. In International Conference on Learning
Representations (ICLR), 2023.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and
Ng, A. Y. Reading digits in natural images with unsu-
pervised feature learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

Nickl, P., Xu, L., Tailor, D., Möllenhoff, T., and Khan,
M. E. The memory perturbation equation: Understand-
ing model’s sensitivity to data. In Advances in Neural
Information Processing Systems (NeurIPS), 2023.

Nilsback, M.-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In Indian Con-
ference on Computer Vision, Graphics and Image Pro-
cessing, 2008.

Noci, L., Roth, K., Bachmann, G., Nowozin, S., and Hof-
mann, T. Disentangling the roles of curation, data-
augmentation and the prior in the cold posterior effect.
In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Osawa, K., Swaroop, S., Jain, A., Eschenhagen, R., Turner,
R. E., Yokota, R., and Khan, M. E. Practical deep learning
with Bayesian principles. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2019.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Sato, M.-A. Online model selection based on the variational
Bayes. Neural computation, 13(7):1649–1681, 2001.

Snoek, J., Ovadia, Y., Fertig, E., Lakshminarayanan, B.,
Nowozin, S., Sculley, D., Dillon, J. V., Ren, J., and Nado,
Z. Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2013.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014.

Trippe, B. and Turner, R. Overpruning in variational
Bayesian neural networks. In Advances in Approximate
Bayesian Inference, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. GLUE: A multi-task benchmark and analysis
platform for natural language understanding. In EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, 2018.

Warstadt, A., Singh, A., and Bowman, S. R. Neu-
ral network acceptability judgments. arXiv preprint
arXiv:1805.12471, 2018.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient Langevin dynamics. In International Conference
on Machine Learning (ICML), 2011.

Wen, Y., Vicol, P., Ba, J., Tran, D., and Grosse, R. B. Flipout:
Efficient pseudo-independent weight perturbations on
mini-batches. In International Conference on Learning
Representations (ICLR), 2018.

Wenzel, F., Roth, K., Veeling, B. S., Swiatkowski, J., Tran,
L., Mandt, S., Snoek, J., Salimans, T., Jenatton, R., and
Nowozin, S. How good is the bayes posterior in deep
neural networks really? In International Conference on
Machine Learning (ICML), 2020.

Williams, A., Nangia, N., and Bowman, S. A broad-
coverage challenge corpus for sentence understanding
through inference. In Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers),
2018.

Wilson, A. G., Izmailov, P., Hoffman, M. D., Gal, Y., Li, Y.,
Pradier, M. F., Vikram, S., Foong, A., Lotfi, S., and Far-
quhar, S. Evaluating approximate inference in Bayesian
deep learning. In Proceedings of the NeurIPS 2021 Com-
petitions and Demonstrations Track, 2022.

12

Variational Learning is Effective for Large Deep Networks

Yao, Z., Gholami, A., Shen, S., Mustafa, M., Keutzer, K.,
and Mahoney, M. W. AdaHessian: an adaptive second or-
der optimizer for machine learning. In AAAI Conference
on Artificial Intelligence (AAAI), 2021.

Zhang, G., Sun, S., Duvenaud, D., and Grosse, R. Noisy
natural gradient as variational inference. In International
Conference on Machine Learning (ICML), 2018.

13

Variational Learning is Effective for Large Deep Networks

A. Practical Guideline for Choosing IVON Hyperparameters
To facilitate the usage of IVON, we provide here some practical guidelines for choosing hyperparameters and refer to their
notations from Algorithm 1.

Learning rate schedule αt. For ResNets, the initial learning rate of IVON can be set to the same value that works well
for SGD, or slightly larger. For Transformers, we have found larger learning rates to work well, such as 0.1 for finetuning
RoBERTa (Liu et al., 2019), or 0.2 for pretraining GPT-2 (Radford et al., 2019) with 355M parameters. Typical learning rate
schedules like linear decay or cosine annealing work well for IVON. We have found decaying the learning rate to 0 to work
best for pretraining GPT-2, better than decaying it to the initial learning rate divided by 10 as suggested by Hoffmann et al.
(2022).

Effective sample size λ. Setting this to the size of training dataset (λ = N) in Eq. (1) is a good starting point. This
recovers the standard evidence lower bound objective for variational learning. Setting it smaller is equivalent to increased
temperature and setting it higher to decreased temperature. In our experiments we mostly set λ ≈ N , except for finetuning
transformers on very small datasets where we notice larger λ can improve performance and stabilize the short training. As
seen from line 8 in Alg. 1, the choice of λ directly influences the posterior variance and too small values may lead to a high
variance and unstable training whereas too large values may lead to a collapsed posterior that offers little benefits.

Weight decay δ. For ResNets, the weight decay of IVON can be set to the same values that work well for SGD or Adam.
For Transformers, we have found smaller values, such as 10−5, which we use for finetuning, or 10−6, which we use
for pretraining, to work well for weight decay. Larger values are feasible when using a quadratic penalty biased to the
initialization of the model for finetuning.

Gradient momentum β1. Setting β1 = 0.9 tends to work well, similar to SGD or Adam. This plays a similar role as the
gradient momentum in other optimizers so we expect the good settings to be similar.

Hessian momentum β2. The Hessian momentum needs to be set rather close to one, for example, β2 = 1− 10−5 worked
well in our experiments. The Hessian momentum in theory is given by β2 = 1− λ−1Nρ, where ρ is the step-size of natural
gradient descent. If β2 is set too small, for example, 0.999 or 0.9999 the training can sometimes become unstable.

Hessian initialization h0. Along with the effective sample size λ, the Hessian initialization h0 controls the noise at
initialization. Typically values between 0.01 and 1 work well in practice but also smaller values like 0.001 have shown good
results. Large values of h0 correspond to more concentrated and deterministic initial posterior and can help stabilizing the
training, but this can lead to poorer results. It can be helpful to monitor the statistics of the Hessian vector h during training,
to see whether a reasonable covariance is being learned.

Batch size, training epochs. Typical batch sizes and training epochs that work well for SGD and AdamW tend to also
work well for IVON. For example, our GPT-2 results in Fig. 1(a) use the same batch size and number of epochs for IVON
and AdamW. This said, we observe that longer training and larger batch size seems to benefit IVON more than SGD,
possibly because this would further improve the Hessian estimate.

Clip radius ξ. When training transformers, element-wise gradient clipping can stabilize the training. A clip-radius of
ξ = 10−3 worked well in practice. When picking a smaller clip-radius, one often requires a larger learning rate.

B. Ablation Studies
B.1. Computational Efficiency of IVON

The computational budget required by IVON is similar to standard deep learning optimizers. To validate its efficiency
empirically, we measure the run time and peak GPU memory usage for image classification experiments on CIFAR-10 with
ResNet-20 (He et al., 2016a) with an identical setup except for the choice of optimizer. Table 6 shows that IVON has similar
computational costs as SGD and AdamW. However, we find a slight overhead when training larger models like GPT-2 as
shown in Fig. 1(a), potentially because of the additional sampling step and unoptimized implementation.

14

Variational Learning is Effective for Large Deep Networks

Runtime (hrs) Memory (GB)
AdamW SGD VOGN IVON AdamW SGD VOGN IVON

ResNet-20 0.38 0.38 0.68 0.38 1.7 1.7 2.0 1.7
GPT-2 (125M) 15.0 - - 18.5 21.8 - - 23.2
GPT-2 (355M) 37.5 - - 44.7 23.7 - - 27.7

Table 6: Runtime and memory for CIFAR-10 classification results with ResNet-20 and pretraining GPT-2 on OpenWebText.
IVON has a small overhead for larger models which might be due to the additional weight sampling and a not fully optimized
implementation.

Acc. ↑ NLL ↓ ECE ↓ Brier ↓ Mem ↓
SG 88.81±0.31 0.464±0.020 0.070±0.004 0.180±0.006 363MB
GGN 92.37±0.23 0.226±0.005 0.008±0.001 0.111±0.003 645MB
Reparam. 92.64±0.13 0.219±0.005 0.009±0.002 0.107±0.002 363MB

Table 7: IVON’s reparameterization-trick-based Hessian estimator has better accuracy and uncertainty than other Hessian
estimators at low computational cost, here for ResNet-20 on CIFAR-10.

B.2. Comparison of Hessian estimators

IVON’s efficiency is enabled by estimating gh with the reparameterization-trick-based estimator in Eq. 3. Here, we
compare this estimator to the two squared-gradient estimators discussed in the previous section: 1) the Squared Gradient
(SG) estimator which uses the square of mini-batch gradients ĥ← ĝ2 used in Vprop and Vadam (Khan et al., 2018);
2) the Gauss-Newton (GN) estimator which uses per-sample squared gradients, ĥ← 1

|B|
∑

i∈B
[
∇`i(θ + σε)

]2
used in

VOGN (Osawa et al., 2019). One drawback of the GN estimator is that per-example gradients require significant overhead,
since the backpropagation process of typical deep learning frameworks only computes an averaged mini-batch gradient ĝ.

Table 7 shows results for training ResNet-20 on CIFAR-10 with these estimators. We observe that the reparameterization
estimator provides best performance. The squared gradient estimator is similarly efficient but underperforms, whereas
Gauss-Newton incurs significant overhead in GPU memory and time usage without large benefits in test performance.

B.3. Hessian initialization

We perform an ablation over the Hessian initialization h0 used in Alg. 1. The model is a ResNet-20 trained on CIFAR-10.
The results are summarized in the following Table 8.

h0 Acc. ↑ NLL ↓ ECE ↓ Brier ↓
0.001 9.89±00.24 2.3027±0.0001 0.0033±0.0024 0.9000±0.0000
0.002 43.95±31.24 1.4919±0.7403 0.0495±0.0410 0.6328±0.2440
0.005 82.78±00.50 0.5612±0.0093 0.1098±0.0024 0.2660±0.0049
0.01 86.74±00.15 0.4477±0.0056 0.1019±0.0006 0.2108±0.0028
0.02 89.60±00.35 0.3598±0.0082 0.0871±0.0032 0.1690±0.0034
0.05 91.72±00.09 0.2777±0.0035 0.0604±0.0030 0.1318±0.0015
0.1 92.25±00.17 0.2419±0.0026 0.0388±0.0031 0.1174±0.0017
0.2 92.44±00.18 0.2243±0.0043 0.0186±0.0012 0.1106±0.0020
0.5 92.71±00.07 0.2173±0.0045 0.0066±0.0015 0.1069±0.0012
1 92.61±00.08 0.2329±0.0042 0.0154±0.0017 0.1111±0.0011
2 92.46±00.23 0.2411±0.0074 0.0251±0.0032 0.1125±0.0025
5 92.34±00.29 0.2613±0.0151 0.0331±0.0036 0.1167±0.0050

Table 8: The initialization of the Hessian h in Alg. 1 can be important to achieve the best results.

15

Variational Learning is Effective for Large Deep Networks

Acc. ↑ Top-5 Acc. ↑ NLL ↓ ECE ↓ Brier ↓
AdamW 90.04±0.27 99.62±0.03 0.589±0.018 0.074±0.002 0.170±0.004
AdaHessian 91.46±0.06 99.71±0.02 0.477±0.018 0.061±0.001 0.144±0.001
SGD 91.86±0.14 99.70±0.08 0.288±0.015 0.040±0.004 0.126±0.003
IVON@mean 92.53±0.04 99.77±0.05 0.256±0.005 0.034±0.001 0.115±0.001

ResNet-20
(272k params)

IVON 92.71±0.07 99.78±0.03 0.219±0.002 0.008±0.001 0.108±0.001

AdamW 92.41±0.26 99.72±0.04 0.594±0.022 0.062±0.002 0.135±0.005
AdaHessian 92.95±0.87 99.72±0.14 0.514±0.028 0.056±0.006 0.124±0.014
SGD 92.54±0.30 99.62±0.04 0.328±0.008 0.050±0.003 0.123±0.003
IVON@mean 93.31±0.31 99.74±0.03 0.282±0.014 0.042±0.003 0.110±0.004

DenseNet-121
(1M params)

IVON 93.53±0.26 99.78±0.04 0.200±0.007 0.009±0.001 0.096±0.003

AdamW 92.39±0.27 99.69±0.05 0.653±0.024 0.064±0.003 0.137±0.005
AdaHessian 93.76±0.25 99.78±0.03 0.431±0.021 0.049±0.002 0.109±0.004
SGD 93.70±0.15 99.66±0.08 0.298±0.010 0.045±0.001 0.107±0.002
IVON@mean 93.99±0.08 99.80±0.03 0.259±0.008 0.042±0.001 0.100±0.002

PreResNet-110
(deep, 4M params)

IVON 94.02±0.14 99.84±0.03 0.180±0.003 0.010±0.001 0.087±0.001

AdamW 92.40±0.32 99.69±0.05 0.676±0.006 0.064±0.003 0.137±0.005
AdaHessian 88.66±1.51 99.38±0.13 0.569±0.037 0.081±0.008 0.190±0.023
SGD 94.03±0.14 99.72±0.03 0.282±0.009 0.043±0.002 0.101±0.003
IVON@mean 94.17±0.08 99.78±0.04 0.305±0.007 0.045±0.001 0.102±0.002

ResNet-18
(wide, 11M params)

IVON 94.32±0.13 99.84±0.03 0.175±0.002 0.010±0.001 0.084±0.001

Table 9: IVON results on CIFAR-10 compared with various baseline optimizers using convolutional networks with different
widths and depths. IVON@mean denotes point estimate results evaluated at the mean of IVON posterior.

C. Experimental Details
C.1. Pretraining GPT-2 Models on OpenWebText

We pretrain GPT-2 models (Radford et al., 2019) on OpenWebText (Gokaslan & Cohen, 2019) for multiple epochs and
around 49.2B tokens in total using a batch size of 480 which is achieved by gradient accumulation. We train on 8 NVIDIA
A100 GPUs with 40GB GPU memory each for up to three days. We use 2,000 warmup steps, 100,000 training steps in total,
and evaluate every 1,000 steps on a held-out set. Each validation step is shown in Fig. 1(a). The learning rate is decayed
to 0, which we have found to work better than 1/10-times the initial learning rate for both AdamW and IVON. This is
recommended in prior work (Hoffmann et al., 2022). For IVON, we use an initial learning rate of 0.3 for the 125M parameter
checkpoint, 0.2 for the 355M parameter checkpoint, and 0.15 for the 773M parameter checkpoint. Note, that we do not
rescale by h0 and δ in this case, because element-wise clipping is used. We use β1 = 0.9, β2 = 1− 10−5, h0 = 0.001 and
a weight decay factor of 10−6, as well as element-wise clipping of 10−3. These hyperparameters were found by grid search
on a smaller model and it is possible that better hyperparameter configurations exist. We train with a single MC sample.

For training GPT-2 with AdamW, we use an initial learning rate of 6 · 10−4, β1 = 0.9, β2 = 0.95 and a weight decay
of 0.1. This follows the hyperparameters used in prior works (Liu et al., 2024). We follow the implementation in
https://github.com/karpathy/nanoGPT/, which uses GeLU activations (Hendrycks & Gimpel, 2016) and
does not use dropout (Srivastava et al., 2014) and biases during pretraining.

C.2. Training with IVON for Image Classification

We train a ResNet-50 (≈ 25.6 million parameters) (He et al., 2016a) with filter response normalization on the ImageNet
dataset (≈ 1.2 million examples with 1000 classes) (Deng et al., 2009). Training for 200 epochs takes around 30 hours
on 8 A100 GPUs for all methods. Our distributed implementation of IVON uses different random perturbations on each
accelerator. IVON’s initial learning rate is 2.5, we set β1 = 0.9, β2 = 1 − 5 · 10−6, δ = 5 · 10−5, h0 = 0.05 and
λ = N = 1281167. No clipping is used and we train with a single MC sample. SGD uses a learning rate of 0.5 with
same momentum β1 = 0.9 and weight-decay δ = 5 · 10−5. AdamW uses β1 = 0.9, β2 = 0.999, learning rate 0.001 and

16

https://github.com/karpathy/nanoGPT/

Variational Learning is Effective for Large Deep Networks

weight-decay 0.1. The damping parameter in AdamW is set to the PyTorch default value ε = 10−8, and larger values could
potentially bring the AdamW performance closer to SGD. All methods anneal the learning rate to zero with a cosine learning
rate schedule after a linear warmup phase over 5 epochs.

Here we also include additional image classification results using also deeper DenseNet-121 (Huang et al., 2017) and
ResNet-20 in addition to ResNet-18 and PreResNet-110 (He et al., 2016b) on CIFAR-10 and the previously reported
CIFAR-100 (Krizhevsky, 2009) and TinyImageNet (Le & Yang, 2015). The results are summarized in Tables 9, 10 and 11.
We also compare to AdaHessian (Yao et al., 2021). We find that IVON improves over other optimizers in terms of both
accuracy and uncertainty, across all datasets and all metrics. Finally, IVON does not overfit on smaller datasets.

For the experiments on CIFAR and TinyImageNet in Tables 1 and 9 to 11, the hyperparameters of all methods were tuned
only for the ResNet-20 on CIFAR-10, and kept fixed across the other models and datasets. For SGD the learning rate α = 0.1
was the largest stable learning rate across all models and datasets and gave the best results. AdaHessian uses α = 0.05. It
was not stable across all datasets when using the same learning rate as SGD as recommended by Yao et al. (2021). AdamW
uses learning rate α = 0.002, except for the PreResNet-110 on TinyImageNet, where we reran with α = 0.0005 to get it to
converge. We set β2 = 0.999 in AdamW. IVON uses α = 0.2, β2 = 1 − 10−5, λ = N and h0 = 0.5. All methods use
gradient momentum β1 = 0.9. We ran all optimizers for 200 epochs with batch-size 50. The learning rate was warmed up
for 5 epochs using a linear schedule, and then decayed using a cosine learning rate annealing. The weight-decay is set to
δ = 0.0002 for all algorithms, datasets and models.

C.3. In-domain and OOD Comparison to Bayesian Deep Learning Methods

We train all ResNet-20 models with 200 epochs and batch size 50. Weight decay is set to 0.0002. Apart from SWAG, which
requires custom scheduling, all other methods use 5 warm-up epochs followed by a cosine annealing learning rate schedule
that decays to zero. We do 5 runs with different random seeds and report the average results and their standard deviations in
the tables.

For the uncertainty estimation metrics used in in-domain and distributional shift experiments, we follow Snoek et al. (2019)

Acc. ↑ Top-5 Acc. ↑ NLL ↓ ECE ↓ Brier ↓
AdamW 60.76±0.47 86.81±0.48 1.931±0.044 0.202±0.004 0.580±0.008
AdaHessian 64.19±0.28 88.68±0.39 1.612±0.033 0.167±0.007 0.521±0.004
SGD 67.23±0.35 90.75±0.11 1.173±0.021 0.059±0.008 0.441±0.005
IVON@mean 67.87±0.55 90.95±0.10 1.168±0.012 0.069±0.007 0.438±0.005

ResNet-20
(272k params)

IVON 68.28±0.50 91.27±0.05 1.113±0.010 0.018±0.003 0.425±0.005

AdamW 65.47±0.93 88.74±0.80 2.967±0.104 0.264±0.007 0.587±0.015
AdaHessian 71.02±0.57 92.00±0.17 2.379±0.038 0.222±0.005 0.494±0.010
SGD 70.74±0.49 91.82±0.10 1.230±0.012 0.131±0.004 0.427±0.006
IVON@mean 72.67±0.43 92.86±0.14 1.118±0.017 0.119±0.002 0.397±0.005

DenseNet-121
(1M params)

IVON 73.68±0.37 93.31±0.15 0.940±0.012 0.022±0.002 0.361±0.004

AdamW 65.88±0.84 88.34±0.56 2.893±0.088 0.258±0.006 0.578±0.014
AdaHessian 72.43±0.36 91.92±0.38 1.844±0.044 0.194±0.004 0.452±0.008
SGD 74.19±0.11 92.41±0.14 1.204±0.012 0.137±0.002 0.393±0.004
IVON@mean 75.23±0.23 93.45±0.16 1.149±0.010 0.136±0.002 0.380±0.003

PreResNet-110
(deep, 4M params)

IVON 75.81±0.18 93.93±0.19 0.884±0.007 0.030±0.003 0.336±0.001

AdamW 64.12±0.43 86.85±0.51 3.357±0.071 0.278±0.005 0.615±0.008
AdaHessian 56.42±6.22 80.56±4.81 2.503±0.261 0.258±0.014 0.666±0.071
SGD 74.46±0.17 92.66±0.06 1.083±0.007 0.113±0.001 0.376±0.001
IVON@mean 74.51±0.24 92.74±0.19 1.284±0.013 0.152±0.003 0.399±0.002

ResNet-18
(wide, 11M params)

IVON 75.14±0.34 93.30±0.19 0.912±0.009 0.021±0.003 0.344±0.003

Table 10: IVON results on CIFAR-100 compared with various baseline optimizers using convolutional networks with
different widths and depths. IVON @mean denotes point estimate results evaluated at the mean of IVON posterior.

17

Variational Learning is Effective for Large Deep Networks

Acc. ↑ Top-5 Acc. ↑ NLL ↓ ECE ↓ Brier ↓
AdamW 46.62±0.78 72.71±0.75 2.387±0.042 0.121±0.004 0.692±0.009
AdaHessian 50.06±0.53 76.09±0.29 2.120±0.016 0.084±0.007 0.642±0.004
SGD 51.08±0.22 77.17±0.25 1.989±0.007 0.020±0.003 0.622±0.002
IVON@mean 50.71±0.38 76.82±0.41 2.014±0.017 0.020±0.006 0.629±0.005

ResNet-20
(272k params)

IVON 50.85±0.42 76.92±0.37 2.017±0.016 0.060±0.005 0.632±0.004

AdamW 50.01±0.28 74.76±0.32 5.515±0.112 0.385±0.003 0.851±0.004
AdaHessian 43.66±10.76 69.86±9.69 3.142±0.320 0.189±0.150 0.772±0.044
SGD 56.57±1.00 80.46±0.81 1.913±0.056 0.126±0.008 0.585±0.012
IVON@mean 58.47±0.10 82.58±0.23 1.675±0.008 0.046±0.004 0.542±0.003

DenseNet-121
(1M params)

IVON 58.90±0.34 82.69±0.35 1.644±0.012 0.035±0.002 0.536±0.003

AdamW 50.65±0.0∗ 74.94±0.0∗ 4.487±0.0∗ 0.357±0.0∗ 0.812±0.0∗

AdaHessian 55.03±0.53 78.49±0.34 2.971±0.064 0.272±0.005 0.690±0.008
SGD 59.39±0.50 81.34±0.30 2.040±0.040 0.176±0.006 0.577±0.007
IVON@mean 60.85±0.39 83.89±0.14 1.584±0.009 0.053±0.002 0.514±0.003

PreResNet-110
(deep, 4M params)

IVON 61.25±0.48 84.13±0.17 1.550±0.009 0.049±0.002 0.511±0.003

AdamW 47.33±0.90 71.54±0.95 6.823±0.235 0.421±0.008 0.913±0.018
AdaHessian 51.80±0.29 75.01±0.10 3.416±0.028 0.304±0.002 0.748±0.005
SGD 61.39±0.18 82.30±0.22 1.811±0.010 0.138±0.002 0.536±0.002
IVON@mean 62.41±0.15 83.77±0.18 1.776±0.018 0.150±0.005 0.532±0.002

ResNet-18
(wide, 11M params)

IVON 62.68±0.16 84.12±0.24 1.528±0.010 0.019±0.004 0.491±0.001

Table 11: IVON results on TinyImageNet compared with various baseline optimizers using convolutional networks with
different widths and depths. IVON @mean denotes point estimate results evaluated at the mean of IVON posterior. (∗)
AdamW only converged for one of the five random seeds for PreResNet-110.

and report three metrics: negative log-likelihood (NLL), expected calibration error (ECE), and Brier score. For the OOD
experiments we used the same metrics as Liang et al. (2018), i.e. False Positive Rate (FPR), the share of misclassified OOD
samples, at 95% TPR, detection error, which measures the probability of misclassifications for 95% TPR, Area Under
the Receiver Operating Characteristic curve (AUROC), AUPR-in, and AUPR-out. Here, AUPR stands for Area under the
Precision-Recall for the in-domain data (AUPR-in) or OOD data (AUPR-out), respectively.

The specific training hyperparameters for each method are:

• SGD and IVON use the same setting as in Section C.2, except that SGD also uses learning rate 0.2 which is stable for
ResNet-20;

• VOGN uses the same hyperparameter setup as IVON;

• BBB uses learning rate 0.002. We set the same initial posterior as IVON and train BBB without using a cold posterior;

• Laplace uses the linearized last-layer Laplace implementation from Daxberger et al. (2021) and the prior precision is
set to 10.0 corresponding to the same prior setup as other methods;

• MC dropout uses learning rate 0.2 and a fixed dropout rate of 0.05;

• For SWAG, we first do normal training with cosine annealing from lr 0.05 to 0.01 over 160 epochs, then do 40 SWAG
epochs with constant learning rate 0.01 and maintain a rank 20 approximation of the SWAG posterior as is done
in (Maddox et al., 2019).

We use 64 posterior samples for IVON, BBB, Laplace, SWAG and VOGN. For MC dropout, we only draw 32 samples for
all experiments as we observe no improvement when drawing 64 samples.

18

Variational Learning is Effective for Large Deep Networks

MNLI-m QNLI QQP RTE SST2 MRPC CoLA STS-B
Metric Acc. Acc. Acc. Acc. Acc. Acc / F1 Spearman MCC
#Train 393k 105k 364k 2.5k 67k 3.7k 8.5k 7k
#Validation 9.8k 5.5k 40.4k 277 872 408 1k 1.5k

Table 12: Dataset sizes of individual GLUE tasks used in this paper and the used evaluation metrics.

C.4. Finetuning on GLUE

GLUE (Wang et al., 2018) is a multi-task benchmark consisting of in total 9 diverse tasks which capture classification
and regression problems. We use all tasks but WNLI (Levesque et al., 2012) following previous work (Devlin et al.,
2019). Namely, we use: CoLA (Warstadt et al., 2018), MNLI (Williams et al., 2018), MRPC (Dolan & Brockett, 2005),
QNLI (Wang et al., 2018), QQP, RTE, SST2 (Socher et al., 2013), and STS-B (Cer et al., 2017).

For IVON, we use the same hyperparameters for the two models used in our experiments: RoBERTa and DeBERTav3 shown
in Sec. 4.3.1. We use an initial learning rate of 0.1 or 0.2 which is decayed to 0.0 using cosine decay. We set β1 = 0.9,
β2 = 1− 10−5, h0 = 1.0, a weight decay factor of 10−5, and also use element-wise clipping of 10−3. Furthermore, we use
500 warmup steps.

For RoBERTa with AdamW, we use the hyperparameters reported in (Liu et al., 2019, Table 10). Namely, we sweep learning
rates over {10−5, 2 · 10−5, 3 · 10−5}. We use a weight decay of 0.1, β1 = 0.9, and β2 = 0.98.

For DeBERTAv3 with AdamW we use the hyperparameters as reported in (He et al., 2023, Table 11) but were unable
to sweep all possible combinations that are listed due to the high computational demand. Therefore, we fix the number
of warmup steps to 500 and the batch size to 32. Also, we do not use last layer dropout. We sweep learning rates over
{5 · 10−6, 8 · 10−6, 9 · 10−6, 10−5}, use a weight decay of 0.1, β1 = 0.9, and β2 = 0.999.

We evaluate after each epoch and train for up to 10 epochs on every dataset but MRPC, where we allow 15 epochs. The
batch size is always set to 32 for both AdamW and IVON.

C.5. Predicting Generalization and Understanding Models’ Sensitivity to Data

We use the memory-perturbation equation (MPE) by Nickl et al. (2023). In their framework, prediction error and variances
for a multi-output vector f i(θt) ∈ RC (with C being the number of classes) at iteration t are obtained as follows,

eit = S(f i(θt))− yi, Vit = ∇f i(θt)
>diag(σ2

t)∇f i(θt),

where S(·) is the softmax function and∇f i(θt) ∈ RP×C is the Jacobian with P being the number of parameters.

For IVON, we set θt = mt and use the posterior variance σ2
t = 1/λ(ht + δ). For SGD and AdamW, we construct σ2

t

in ad-hoc ways. For SGD we use σ2
t = 1/N(1 + δ). For AdamW we use σ2

t = 1/N(
√
ht + δ), where ht is the second

moment vector that maintains a running-average of squared gradients.

For all data sensitivity experiments in the main paper we used the following hyperparameters to train a ResNet-50 on
ImageNet for 100 epochs. IVON uses an initial learning rate of 3, β1 = 0.9, β2 = 1 − 10−6, h0 = 0.008, λ = N and a
weight decay of δ = 5 · 10−5. h0 was selected on a grid of [0.008, 0.01, 0.05] to achieve a faithful estimate of generalization
performance while keeping a competitive test accuracy. AdamW uses a learning rate of 0.001, β1 = 0.9, β2 = 0.999 and
weight decay 0.1. Both methods use 5 warmup epochs after which the learning rate is decayed to 0 using cosine decay. The
model trained with IVON has an accuracy of 75%, whereas the AdamW model has 74.7% accuracy.

D. Additional Results
D.1. IVON with Recurrent Neural Networks

We train a simple model based on Gated Recurrent Units (Cho et al., 2014) on three text classification datasets (CoLA,
IMDB and AG News). The model consists of an embedding layer, two GRUs and a fully connected layer, for a total of 2
million parameters. We train the same model with SGD, AdamW and IVON. IVON results are evaluated both at the mean
and at a Monte-Carlo approximation of the posterior using 64 samples. Results are reported in Table 13. IVON improves

19

Variational Learning is Effective for Large Deep Networks

Acc. ↑ NLL ↓ ECE ↓ Brier ↓ AUROC ↑
AdamW 64.35±0.27 0.666±0.026 0.322±0.026 0.658±0.048 0.579±0.019
SGD 67.65±0.92 0.631±0.011 0.060±0.006 0.448±0.006 0.548±0.027
IVON@mean 68.54±0.00 0.623±0.03 0.030±0.005 0.432±0.003 0.509±0.041

CoLA

IVON 68.54±0.00 0.623±0.03 0.029±0.005 0.432±0.003 0.510±0.041

AdamW 84.66±0.46 1.929±0.344 0.136±0.007 0.285±0.011 0.725±0.013
SGD 85.06±0.38 0.468±0.013 0.065±0.009 0.233±0.011 0.764±0.016
IVON@mean 89.55±0.20 0.428±0.023 0.061±0.003 0.251±0.023 0.811±0.025

IMDB

IVON 87.73±0.96 0.568±0.119 0.065±0.010 0.199±0.018 0.751±0.031

AdamW 90.65±0.32 0.985±0.046 0.408±0.031 0.171±0.006 0.826±0.006
SGD 89.57±0.40 0.386±0.009 0.055±0.004 0.167±0.005 0.845±0.004
IVON@mean 92.43±0.01 0.233±0.003 0.017±0.002 0.118±0.001 0.871±0.003

AG News

IVON 92.46±0.01 0.231±0.002 0.014±0.003 0.117±0.001 0.871±0.002

Table 13: IVON results on NLP classification datasets compared with to SGD and AdamW. IVON@mean denotes point
estimate results evaluated at the mean of IVON posterior.

both accuracy and uncertainty compared to the baselines. The chosen model can easily overfit the presented datasets,
achieving close to 100% accuracy on the training set. Therefore, extra care is required when choosing the hyperparameters
for AdamW and, especially, SGD. However, we find it easier to tune IVON for satisfactory results both in terms of accuracy
and uncertainty.

D.2. Robustness to Distribution Shift

Having trained and evaluated various models on CIFAR-10 in the in-domain scenario, here we conduct distributional shift
experiments, where we use the previously trained networks to directly classify CIFAR-10 test set images corrupted with
artificial perturbations. For this we use the CIFAR-10-C (Hendrycks & Dietterich, 2019) dataset which collects a range
of common image distortions and artifacts, each with 5 severity levels. The results are grouped by severity level and
summarized in Fig. 7 on the next page.

In general, the performance of all models decrease with increasing severity, as the classification task is getting harder.
We observe that IVON keeps the best performance for low severity levels. For high severity levels, IVON is notably
outperformed by SWAG. Despite this, IVON in general is still comparable to BDL baselines for high severity cases. And as
an optimizer, it remains a better choice over the standard SGD training.

D.3. NeurIPS 2021 Approximate Inference Competition

An earlier version of IVON won the first place1 in both the light and extended track of the NeurIPS 2021 Competition on
Approximate Inference in Bayesian Deep Learning (Wilson et al., 2022). The earlier version included an additional heuristic
damping to ĥ in line 3 of Alg. 1 and the weight-decay was added in line 4 rather than in lines 5 and 6. We found the damping
term to be unnecessary when using a proper Hessian initialization h0 and momentum β2 and therefore removed it, making
IVON easier to tune. The three highest scoring submissions to the competition are summarized in Table 14. First place
is Multi-IVON (using the earlier version of IVON), which is a mixture-of-Gaussian ensemble (with uniform weights) as
described in the experiments section on uncertainty estimation in the main paper. The second place solution (Multi-SWAG)
uses multiple runs of SWAG to construct a mixture-of-Gaussian approximation (Izmailov et al., 2021) with SGLD (Welling
& Teh, 2011) as a base optimizer. Third place was obtained by a deep ensembling method called sequential anchored
ensembles (SAE) (Delaunoy & Louppe, 2021). In Table 14, ’Agree’ denotes predictive agreement with a ground-truth
Bayesian posterior obtained by running Hamiltonian Monte-Carlo method on hundreds of TPUs. TVD denotes the total
variation distance and W2 the Wasserstein-2 distance between this ground-truth predictive posterior and the approximate
posterior. We refer to Wilson et al. (2022) for more details.

1For the official results, see https://izmailovpavel.github.io/neurips bdl competition.

20

https://izmailovpavel.github.io/neurips_bdl_competition

Variational Learning is Effective for Large Deep Networks

0 1 2 3 4 5
Severity

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

MAP
BBB
MC Drop.
SWAG
IVON

0 1 2 3 4 5
Severity

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
LL

MAP
BBB
MC Drop.
SWAG
IVON

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

EC
E

MAP
BBB
MC Drop.
SWAG
IVON

0 1 2 3 4 5
Severity

0.2

0.4

0.6

0.8

1.0

Br
ie

r

MAP
BBB
MC Drop.
SWAG
IVON

Figure 7: Distributional shift results on CIFAR-10-C with various degree of severities. Severity 0 corresponds to the
in-domain case.

0 50 100 150 200
Epochs

0.0
0.8
1.6
2.4

NL
L

Test NLL
LOO

0 50 100 150 200
Epochs

0.0
0.8
1.6
2.4

0 50 100 150 200
Epochs

0.0
0.8
1.6
2.4

0 50 100 150 200
Epochs

0.0

0.8

1.6

2.4

NL
L

Test NLL
LOO

0 50 100 150 200
Epochs

0.0

0.8

1.6

2.4

0 50 100 150 200
Epochs

0.0

0.8

1.6

2.4

Figure 8: We predict test NLL using LOO estimation during training of two models on CIFAR10. From top to bottom the
models are: ResNet–18 and PreResNet–110. IVON (first column) allows us to faithfully predict generalization, while the
heuristic LOO estimates with AdamW (second column) and SGD (third column) work less well.

21

Variational Learning is Effective for Large Deep Networks

Rank Method CIFAR-10 MedMNIST UCI
Agree ↑ TVD ↓ Agree ↑ TVD ↓ W2 ↓

1 Multi-IVON† 78.7% 0.198 88.4% 0.099 0.094
2 Multi-SWAG 77.8% 0.219 89.0% 0.098 0.166
3 SAE 77.3% 0.210 87.5% 0.107 0.116

Multi-IVON (Alg. 1) 78.2% 0.204 89.1% 0.097 0.075

Table 14: An earlier version of IVON (denoted by †) won the NeurIPS 2021 competition on approximate inference in
Bayesian deep learning (Wilson et al., 2022). The second best method used a combination of SWAG and SGLD. Third place
was a Sequential Anchored Ensemble (SAE). In the last row of the table we also report results achieved with Alg. 1 which
performs similarly well as the previous version of IVON.

D.4. Predicting Generalization

In Fig. 8, we conduct additional experiments with ResNet-18 and PreResNet-10 on the CIFAR-10 dataset. We estimate
generalization performance during training using the LOO criterion described in App. C.5. The accuracy of IVON is similar
to the SGD baseline. IVON however results in a more faithful estimate of the generalization performance in comparison to
AdamW and SGD. We evaluate the sensitivity of the models to data perturbation as described in App. C.5 with the difference
that we compute the sensitivities as eivi, where vi are the diagonal elements of Vi and viei is an element-wise product.
For training the models, we use the same hyperparameters as in the image classification experiments. The exception is the
Hessian initialization h0. We do a grid search over the values [0.01, 0.05, 0.1, 0.5]. We select the value that results in a
faithful estimate of the generalization performance while keeping a competitive test accuracy. The Hessian initialization
is set to h0 = 0.1 for both models. The test accuracies are 93.68% for ResNet–18 and 93.52% for PreResNet–110 with
predictions at the mean of the variational posterior.

22

	Introduction
	Challenges of Variational Learning for Large Deep Networks
	Improved Variational Online Newton
	IVON is Effective for Large Deep Networks
	Better Scalability and Generalization
	Pretraining language models
	Image classification

	Posterior Averaging for Predictive Uncertainty
	In-domain comparisons
	Out-of-domain (OOD) comparisons
	MC samples for averaging
	NeurIPS 2021 Competition

	Finetuning and Model Merging
	Finetuning pretrained language models
	Merging masked-language models

	Estimating Generalization and Sensitivity to Data
	Predicting generalization Performance
	Sensitivity to Training Data

	Discussion and Limitations
	Practical Guideline for Choosing IVON Hyperparameters
	Ablation Studies
	Computational Efficiency of IVON
	Comparison of Hessian estimators
	Hessian initialization

	Experimental Details
	Pretraining GPT-2 Models on OpenWebText
	Training with IVON for Image Classification
	In-domain and OOD Comparison to Bayesian Deep Learning Methods
	Finetuning on GLUE
	Predicting Generalization and Understanding Models' Sensitivity to Data

	Additional Results
	IVON with Recurrent Neural Networks
	Robustness to Distribution Shift
	NeurIPS 2021 Approximate Inference Competition
	Predicting Generalization

