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ABSTRACT

The connection of optimal transport and neural networks finds a rich application
in machine learning problems. In this paper, we propose a simple algorithm for the
mutual improvement of optimal transport and energy-based models for the semi-
supervised domain adaptation. Having target and source domain samples we use
convex energy-based inference to create a new domain that is class-wise cyclical
monotone to the target domain and its samples contains features from the source
domain examples. Mapping from target to such domain can be solved by optimal
transport much more successfully. We study the performance of our approach by
benchmarking it on a range of optimal transport methods and showed that in our
settings optimal transport can achieve much higher results.

1 INTRODUCTION

Optimal transport provides a theoretical framework to solve mass moving problems for continuous
and discrete distributions (Villani, 2008; Peyré & Cuturi, 2019) and it seems to be a natural solution
to the domain adaptation problem (Courty et al., 2015). But in practice, computational optimal
transport techniques are very sensitive to regularization terms (Courty et al., 2015) and without
special scaling often cannot achieve acceptable results in a high dimensional space. Furthermore,
optimal transport is a cyclical monotone structured mapping, which makes it not applicable to many
empirical distributions.

When we solve the domain adaptation problem with optimal transport, we trying to find a map that
can make the target distribution closer to the source distribution. In our approach, we do not use
the source distribution during domain adaptation. The core of our method is the idea of creating an
”easy” distribution that is class-wise cyclical monotone to the target distribution and still contains
features of the real source dataset. Having a such distribution that is cyclical monotone to target one
we can apply optimal transport for domain adaptation much more efficiently.

According to Rockfellar (Rockafellar, 1966) and Breirer’s theorems (Theorem 1.22 (Santambrogio,
2015)), we know that the gradient of a convex function is cyclical monotone and solves a Monge
problem (Villani, 2008). Owing to this theoretical insight we connect optimal transport and input
convex energy-based model to build an efficient domain adaptation framework.

Our method is based on Input Convex Neural Networks (ICNNs) (Amos et al., 2017), which are
energy-based models that were used for multi-label classification, structured predictions, and rein-
forcement learning. Recently, there has been a strong push to further incorporate ICNNs in opti-
mal transport problems (Villani, 2008; Peyré & Cuturi, 2019; Taghvaei & Jalali, 2019; Makkuva
et al., 2020). Further development of this approach enabled the construction of the non-minimax
Wasserstein-2 generative framework (Korotin et al., 2019). ICNNs were also used for Wasserstein-2
Barycenters estimation (Fan et al., 2020; Korotin et al., 2021). These approaches explored ICNNs
as parameterized convex potentials for optimal transport but did not explore their abilities as energy-
based models.

Our contribution is two-fold because we improve both optimal transport and energy-based learning
method for semi-supervised domain adaptation problems. Usually, the energy-based classifiers are
not used in domain adaptation because have significant challenges in inference. On the contrary, we
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show that convex energy-based inference with a connection to optimal transport can achieve greater
results and improve optimal transport performance in comparison to standard settings.

2 BACKGROUND AND RELATED WORK

2.1 OPTIMAL TRANSPORT

Optimal Transport aims at finding a solution to transfer mass from one distribution to another with
the least effort. Monge’s problem was the first example of the optimal transport problem (Villani,
2008) and can be formally expressed as follows:

inf
T#µs=νt

∫
Ωµs

c(x, T (x))µ(x)dx (1)

The Monge’s formulation of optimal transport aims at finding a mapping T : Ωµ → Ων of the
two probability measures µ and ν and a cost function c : Ω × Ω → [0,+∞], where T#µs = νt
represents the mass preserving push forward operator. In Monge’s formulation, T cannot split the
mass from a single point. The problem is that such constraints on the mapping T may not even exist
and the solution for that mapping, respectively.

To solve this problem, Kantorovitch proposed a relaxation (Villani, 2008). Instead of obtaining a
mapping, the goal is to seek a joint distribution over the source and the target that determines how
the mass is allocated. For a given symmetric cost function c : Ω × Ω → [0,+∞], the primal
Kantorovitch formulation can be expressed as the following problem:

min
γ∈Π(µs,νt)

{∫
Ω×Ω

cdγ = E(x,y)∼γ [c(x,y)]

}
(2)

The primal Kantorovitch formulation has linear objective and linear constraints (Villani, 2008). In
this notation, we look for the joint distribution γ with µs and µt as marginals that minimize the
expected transportation cost. If the independent distribution γ(x,y) = µ(x)ν(y) respects the con-
straints, linear program is convex and always has a solution for a semi lower continuous c:

Π (µs, νt) =

{
γ ∈ P (Ω,Ω) :

∫
γ(x,y)dy = µs(x),

∫
γ(x,y)dx = νt(y)

}
(3)

The primal Kantorovitch formulation can be also presented in dual form as stated by the Rockafellar-
Fenchel theorem (Villani, 2008):

max
φ∈C(Ωs),ψ∈C(Ωt)

{∫
φdµs +

∫
ψdνt | φ(x) + ψ(y) ≤ c(x,y)

}
(4)

After finding a solution to the transport problem, OT provides a measure of similarity between the
two distributions in the form of the optimal transport rate. This similarity is also called Wasserstein
distance (Villani, 2008):

Wp (µs, νt) = min
γ∈Π(µs,νt)

{∫
Ωs×Ωt

c(x,y)dγ(x,y)

} 1
p

(5)

where c(x,y) = ‖x− y‖p and p > 1. The Wasserstein distance encodes the geometry of the space
through the optimization problem and can be used on any distribution of mass.

2.2 ENERGY-BASED LEARNING

Energy-based learning provides a unified framework for many probabilistic and non-probabilistic
approaches, particularly for non-probabilistic training of graphical models including discriminative
and generative approaches, as well as conditional random fields, graph-transformer networks, max-
imum margin Markov networks, and several manifold learning methods (LeCun et al., 2006). In
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energy-based settings for some given fixed x and possibly some fixed elements of y we can perform
inference by:

arg min
y
f(x, y; θ) (6)

Energy-based learning approaches can be considered as an alternative to probabilistic estimation for
prediction, classification, or decision-making tasks. The energy-based representation must capture
both, the discriminative interactions between x and y, and also allow for efficient combinatorial
optimization over y.

2.3 DOMAIN ADAPTATION

Domain adaptation generalizes a learner across different domains of different distributions. The
importance of the divergence between the data probability distribution functions of the different
domains was theoretically researched in (Ben-David et al., 2010a;b; Germain et al., 2013). This
works proposed a primary way of solving the domain adaptation problem by transforming data to
make different domain distributions “closer”.

Globally, we can divide domain adaptation problems into three categories: (i) unsupervised do-
main adaptation, when the set of labels in the target domain is unavailable; (ii) semi-supervised
domain adaptation, when we have a “small” set of labeled target examples; (iii) supervised domain
adaptation, when labels are available for all considered target domain examples. In our paper, we re-
search an semi-supervised settings when we have source domain samplesXs = {xsi}

Ns
i=1 with labels

Ys = {ysi }
Ns
i=1 and target domain samplesXt = {xti}

Nt
i=1 with small number of labels Yt = {yti}

Nt
i=1.

3 APPROACH

3.1 EASY DOMAIN

Current domain adaptation methods estimate both target and source distributions and find a function
that can make these distributions closer and more similar. In our approach instead of making target
distribution closer to the source, we try to make it closer to the distribution which we call “easy”.

It was shown that even after the first epoch, there exist samples that can be easily classified (Arpit
et al., 2017). Our idea is that by using gradient descent in the classifier input space, we can find a
transformation over the target distribution, that makes it “easy” for the classifier. This procedure is
similar to adversarial attacks (Szegedy et al., 2014). We can say that in our case we apply targeted
adversarial attack but using the true class as an aim for the targeted attack. As the result, we will
have a target samples that is similar to the source domain samples with respect to the inductive biases
of the classifier.

A problem can arise when we try to find an optimal transport map from target to the “easy” domain.
The resulting “easy” samples can be less similar to the target than the source. In settings with
standard feed-forward neural architectures, we have no control over the transformations from target
to the “easy” samples and can’t make them monotone. To have control over these transformations,
we turn to ICNNs energy-based classifier, while for this model, “easy” samples generation can be a
convex optimization problem.

3.2 INVERSED CONVEX ENERGY-BASED INFERENCE

Here is our approach in more detail. First of all, we build a model fθ that is Partly Input Convex
Neural Network (PICNNs) (Amos et al., 2017) over x instead of y (Amos et al., 2017), it’s make
possible to apply convex inference over x. Secondary we train our model fθ on the source domain
(Xs, Ys) in setup equal to Structured Prediction Energy Networks (SPEN) (Belanger & McCallum,
2016), but instead of multi-label classification, we simply perform multi-class classification.

In the next step we apply the core idea of our approach, we use a model trained on (Xs, Ys), to
create an “easy” domain which is cyclical monotone to the target domain (Xt, Yt) and contain
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features from the source domain examples. To make it, we simply input xti samples to the model fθ
and apply inference over it with the fixed yti , in general it can be presented as follows:

arg min
x
f(x, y; θ) (7)

As stated before, Rockafellar’s Theorem(Rockafellar, 1966) says that every cyclical monotone map-
ping g is contained in a sub-gradient of some convex function f : X → R. Furthermore, according
to Brenier’s Theorem, these gradients uniquely solve the Monge problem:

Brenier’s Theorem, Theorem 1.22 of (Santambrogio, 2015)). Let µ, ν be probability measures with a
finite second moment, and assume µ has a Lebesgue density pX . Then there exists a convex potential
G such that the gradient map g := ∇G (defined up to a null set) uniquely solves the Monge problem
eq. (1) with the quadratic cost function c(x, y) = ‖x− y‖2.

We used the gradient descent method to inference in (7) and while our fθ is input convex over the
x, applying this procedure over the target samples we can collect a new dataset (Xe, Ye) where Xe

samples are class-wise cyclical monotone to Xt. And according to the theorems presented before,
there exists optimal transport that can solve transportation from Xt to Xe inside each class. The
procedure of solving the semi-supervised domain adaptation problem by our method is presented in
Algorithm 1.

Algorithm 1: Inversed energy-based inference for semi-supervised domain adpatation
Input: Input convex network fθ, optimal transport algorithm OT , source dataset (Xs, Ys), target
dataset (Xt, Yt) with a little Yt and empty (Xe, Ye).
Train EBM fθ on (Xs, Ys).
for xt, yt in (Xt, Yt) do
xe = arg minxt f (xt, yt; θ)
ye = yt
Append xe and ye to “easy” dataset (Xe, Ye)

end for
Use OT to find a map between Xt and Xe.

4 EXPERIMENTAL EVALUATION

We tested our model on MNIST (LeCun & Cortes, 2010) and USPS datasets (Hull, 1994). In both
experiments, we train PICNNs with a one hidden layer size of 100, in the SPEN settings using
SGD (Ruder, 2016) optimizer with a learning rate equal to 1e-3 and momentum equal to 0.9.

Table 1: Results on MNIST and USPS dataset in semi-supervised settings. Source denote accuracy
of the model on the target domain without domain adaptation. U is USPS, M is MNIST, EU is
“easy” USPS, and EM is “easy” MNIST. In the top table presented results for the settings with the
10 known labels for each class in the target domain, and the bottom table present result with the 100
known labels for each class

METHOD SOURCE EMD SINKH SINKH L1LP SINKH L1L2 SINKH SS. MAPT
U→M 28.84 39.33 37.76 31.14 11.8 43.29 28.15
U→EU - 76.13 76.13 76.13 76.13 76.13 68.21
M→U 28.56 34.43 30.42 25.75 14.29 44.80 28.68
M→EM - 68.72 62.74 57.92 16.02 63.27 56.11

U→M 28.84 45.54 35.52 29.19 9.41 45.98 33.58
U→EU - 86.39 86.39 86.34 86.34 86.39 72.09
M→U 28.56 45.01 29.9 26.09 9.68 52.92 48.12
M→EM - 85.80 77.60 69.31 12.59 79.56 61.35
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After training, we obtain an MNIST classifier with 95.70% test set accuracy and USPS trained
classifier with an accuracy equal to 90.24%. The accuracies are lower compared to the standard
machine learning classifiers because energy-based learning has significant challenges in inference.
Then when we have a trained model, we can collect “easy” domain examples. For example: for the
network trained on the MNIST dataset our aim is to improve its accuracy on the USPS dataset, so
the “easy” dataset for the MNIST model will be the USPS dataset transformed by the input gradients
of the network trained on MNIST.

Collected “easy” examples can contain very strong source domain features. The accuracy of the
model can be higher on “easy” examples than on the source. For example, the accuracy of the model
trained on MNIST is 95.70% and the accuracy of the same model on USPS samples transformed
to the “easy” USPS is equal to 96%. For the model trained on USPS, the accuracy on the MNIST
samples transformed to “easy” MNIST is even equal to 99%. When we have such datasets, it
remains only to fit the optimal transport on this data and then transport samples without a label to
this distribution to solve domain adaptation.

Based on the POT library (Flamary & Courty, 2017) we tested the different variations of opti-
mal transport in our task. First of all, we tested and basic Earth Moving Distance (EMD) and
Sinkhorn (Sinkh) (Cuturi, 2013) algorithms. Then we tested regularized versions of the Sinkhorn
algorithm with a group lasso regularization (L1L2) and Laplacian regularization (L1LP) (Courty
et al., 2015). Finally, we benchmarked the semi-supervised (SS) Sinkhorn algorithm and Linear OT
mapping estimators (MapT) (Perrot et al., 2016) in our problem. We provide experiments in semi-
supervised settings with 10 and 100 known labels per class for each dataset, the results presented
in Table 1. In the tables, we can see that mapping to ”easy” representation greatly improves the
accuracy of the optimal transport algorithms. All these scores were computed on the test sets of the
MNIST and USPS.

5 CONCLUSION AND FUTURE WORK

We propose a simple algorithm for the mutual improvement of optimal transport and energy-based
learning for the semi-supervised domain adaptation problem. Using input gradients of the energy-
based model, we transform our target examples and get a new source distribution that can be accu-
rately classified by the energy-based model. These transformations are class-vise cyclical monotone
and can be approximated by optimal transport approaches much more successful than a standard
target to the source domain transformation. We tested our algorithm over the set of optimal trans-
port methods on the MNIST and USPS datasets. This paper is a work in progress. Using Langevin
dynamics for sampling from the underlying distribution defined by EBM (instead of finding min)
can improve the performance of the proposed methods. In the future, we plan to test our method
over the more complicated datasets and optimal transport methods. Also, it is important to test con-
volution ICNNs and develop new input convex architectures to get not class-wise but full cyclical
monotonicity between target and “easy” domains.
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