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ABSTRACT

Generating 3D graphs of symmetry-group equivariance is of intriguing potential
in broad applications from machine vision to molecular discovery. Emerging ap-
proaches adopt diffusion generative models (DGMs) with proper re-engineering
to capture 3D graph distributions. In this paper, we raise an orthogonal and fun-
damental question of in what (latent) space we should diffuse 3D graphs. ❶
We motivate the study with theoretical analysis showing that the performance
bound of 3D graph diffusion can be improved in a latent space versus the orig-
inal space, provided that the latent space is of (i) low dimensionality yet (ii) high
quality (i.e., low reconstruction error) and DGMs have (iii) symmetry preserva-
tion as an inductive bias. ❷ Guided by the theoretical guidelines, we propose to
perform 3D graph diffusion in a low-dimensional latent space, which is learned
through cascaded 2D–3D graph autoencoders for low-error reconstruction and
symmetry-group invariance. The overall pipeline is dubbed latent 3D graph
diffusion. ❸ Motivated by applications in molecular discovery, we further ex-
tend latent 3D graph diffusion to conditional generation given SE(3)-invariant
attributes or equivariant 3D objects. ❹ We also demonstrate empirically that
out-of-distribution conditional generation can be further improved by regular-
izing the latent space via graph self-supervised learning. We validate through
comprehensive experiments that our method generates 3D molecules of higher
validity / drug-likeliness and comparable or better conformations / energetics,
while being an order of magnitude faster in training. Codes are released at
https://github.com/Shen-Lab/LDM-3DG.

1 INTRODUCTION

3D Graph

Topo-Feature

Geom-Feature

Figure 1: 3D graph is composed of the topo-
logical (connectivities) and geometric fea-
tures (spatial coordinates).

Generative AI is shifting the paradigms in broad appli-
cations, with its intriguing potential to simulate various
real-world data (Ho et al., 2020; Song et al., 2020). In this
paper, the research focus is 3D graph generation (see Fig.
1 and Sec. 2 for definition), which is of significant needs
in scientific discovery ranging from biomolecules (Morris
& Lim-Wilby, 2008) to spatial transcriptomics (Burgess,
2019). The emerging approaches (Hoogeboom et al.,
2022; Wu et al., 2022; Vignac et al., 2023; Morehead &
Cheng, 2023) adopt diffusion generative models (DGMs)
(Cao et al., 2022; Croitoru et al., 2023; Yang et al., 2022),
a class of generative AI that witnessed startling empirical
successes in generating Euclidean data, with additional
architectural redesigns to preserve permutation and SE(3)
in/equivariance for non-Euclidean 3D graphs.

Inspired by the seminal works (Hoogeboom et al., 2022;
Wu et al., 2022; Vignac et al., 2023; Morehead & Cheng, 2023) on how to build 3D graph DGMs, this
paper drives the exploration by asking an orthogonal, under-investigated yet fundamental question:
In what space should we diffuse 3D graphs? Typically DGMs are built directly in the product space
of 3D graph topology (i.e. nodes and edges) and geometry (i.e. coordinates). Such space is an
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intuitive choice where symmetry structures exist, but can be arduous for DGMs to capture resulting
distributions (De Bortoli, 2022; Liu et al., 2023). The reason is that real-world data usually distribute
on constrained, low-dimensional manifolds (De Bortoli, 2022). For instance, arbitrarily perturbing
atom types or coordinates could lead to stereochemically invalid molecules (Mislow, 2002) and
randomly distorting expression profiles would result in biologically aberrant transcriptomics (Marsh
et al., 2022). We hypothesize that a more compact, yet informative and symmetry-preserved space
w.r.t. such manifold can benefit 3D graph diffusion generation in both quality and speed.

Contributions.
❶ What (latent) space for 3D graph diffusion? (Sec. 3.2) We provide a motivational analysis show-
ing that 3D graph diffusion performance bound is related to (i) dimensionality of latent embeddings,
(ii) quality of latent spaces w.r.t. distributions, and (iii) symmetry preservation of DGMs. Our anal-
ysis indicates that, the performance for 3D graphs can be improved in a latent space, compared to
that in the original space if the latent space is constructed with (i) low dimensionality and (ii) low
reconstruction error, which present a trade-off, while (iii) preserving group symmetry.
❷ How to construct a compact and informative space for 3D graph diffusion with symmetry pre-
served? (Sec. 3.1) Compared to Euclidean-structured data (Rombach et al., 2022; Jing et al., 2022),
3D graph data are much more challenging to “parametrize” due to the symmetry groups of permuta-
tion and SE(3) transformations (Hoogeboom et al., 2022; Wu et al., 2022) and the abstraction of data
of diverse natures (You et al., 2020a; 2021). Our solution is to learn a low-dimension latent space
parametrization in a data-driven manner, by pretraining a 3D graph autoencoder (AE). We innovate
in building the AE architecture strategically on the decomposed topological and geometric features
such that the symmetry constraints of permutation and SE(3) transformations are disentangled and
properly tackled in separate but cascaded AE models. DGM is then trained in the resulting latent
space to model distributions, and the overall pipeline is dubbed latent 3D graph diffusion.
❸ How to introduce latent diffusion for conditional 3D graph generation with additional symmetry
structures w.r.t. conditions? (Sec. 3.3) Through the motivating example of molecular discovery,
we further extend our pipeline to the more challenging conditional generation, where the generated
3D graphs need to be invariant to scalar attributes or equivariant to 3D objects. We achieve this by
redesigning 3D graph AEs and diffusion with conditional in/equivariance preserved.
❹ How to regularize latent space for better “generalizability” of latent 3D graph diffusion? We
empirically observe that the out-of-distribution robustness can be improved with appropriate regu-
larization of the latent space via graph self-supervised learning; and the extent of semantic alignment
(Kwon et al., 2022) in the latent space is indicative of generation quality.
Experimental results (Sec. 4) demonstrate that, our method is capable of generating 3D molecular
graphs of higher validity / drug-likeliness and comparable conformations / energetics compared to
state-of-the-art competitors, while being at least an order of magnitude faster in diffusion training.
The advantage in speed can increase as the molecule size / complexity increases.

2 RELATED WORKS

3D graph generation. A 3D graphM := (G, C) ∈ M is composed of topology G and geometry
C (Barthélemy, 2011) as shown in Fig. 1. One inspiring example is molecules (Hoogeboom et al.,
2022; Wang et al., 2022) whose topology is G = (A,B), where a ∈ A (nodes) contains information
of atom identities and features and b ∈ B (edges) of bond types, and geometry is c ∈ C denoting the
3D coordinates of a node. Therefore, the aim of 3D graph generation is to learn the underlying distri-
bution pθ parametrized by θ, of the set of observed samples D = {M1,M2, ...},Mi ∼ pdata(M)
with the optimization minθ ℓ(D, D̄), where D̄ = {M̄1,M̄2, ...} is the set of generated samples
that M̄i ∼ pθ(M), and ℓ(·) is objective function. The emerging approaches adopt varied generative
models to the 3D graph space M, including autoregressive (Gebauer et al., 2019), normalizing flows
(Satorras et al., 2021), and recently diffusion models (Hoogeboom et al., 2022; Wu et al., 2022;
Vignac et al., 2023; Morehead & Cheng, 2023), with additional architectural redesigns to certify
permutation and SE(3) in/equivariance.

Diffusion models. Diffusion generative models (DGMs) (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2020; Chen et al., 2022a) have received an explosion of interest recently, for their
startling empirical successes in modeling distributions of Euclidean data, denoted as pdata(x) in the
RD space with dimension D. The forward diffusion process perturbs data with noises in time T
through a stochastic differential equation dx(t) = x(t)dt+

√
2dw,x(0) ∼ pdata(x),x

(t) ∼ p(t)(x)
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where w is the Wiener process (Ross, 1995), and the reverse reconstructs from noisy data via
dx̄(t) =

(
x̄(t) + 2∇x ln p

(T−t)(x̄(t))
)
dt +

√
2dw, x̄(0) ∼ p(T )(x). DGMs thus are targeted

at training a score estimator fθ : RD × R≥0 → RD parametrized by θ with the optimization
minθ Ep(t),p(t)(x(t))∥fθ(x(t), t)−∇x ln p

(t)(x(t))∥2. In practice, the continuous processes are usu-
ally discretized into S steps with step size T

S (Sohl-Dickstein et al., 2015; Ho et al., 2020).

Latent diffusion and autoencoders for structured data. Recent work (Rombach et al., 2022; Yu
et al., 2020) has shown improved generative modeling by exploring expressive generative models
over the latent space of Euclidean data, which is parametrized with autoencoders (AEs). As a well-
studied data-driven dimension reduction technique, AEs (Kramer, 1991; Kingma & Welling, 2013)
have been recently explored for 2D topological graphs (Simonovsky & Komodakis, 2018; Jin et al.,
2020; Tang et al., 2022; Gómez-Bombarelli et al., 2018; De Cao & Kipf, 2018; Lim et al., 2018;
Woodward; Huang et al., 2022; Chen et al., 2022b) and point clouds (Anvekar et al., 2022; Zeng
et al., 2022; Zhu et al., 2022a). The investigation on 3D graph AEs and their impact on 3D graph
diffusion however remains open.

3 METHODS

We begin with the conclusion of theoretical analysis to elucidate the motivation behind the proposed
latent 3D graph diffusion (Proposition 2 in Sec. 3.2), described informally as follows:

3D Graph Diffusion Performance ≤ Latent Space Reconstruction Quality
+ Symmetry Preservation× Data Dimensionality.

One end of the spectrum is equivariant diffusion (e.g. (Hoogeboom et al., 2022; Wu et al., 2022)) in
the original 3D graph space which results in the highest dimensionality but lossless reconstruction.
We aim at better DGMs in the constructed latent space that balances reconstruction and dimension-
ality, while maintaining symmetry for better generation.

With the above guidelines, the proposed method comprises the following three components, with
an overview depicted in Fig. 2(a). The pivotal one is the cascaded 2D–3D graph autoencoder
that constructs a high-quality and lower-dimensional latent space in a data-driven manner, and is
invariant to permutation and SE(3) transformations, where the diffusion model is built upon.

• Pretrained 3D graph autoencoder (AE) to map between non-Euclidean structuresM and latent
embeddings z: z =

−→
h ϕ1(M),M̄ =

←−
h ϕ2(z). We build a qualified 3D graph AE via (i) de-

composing features into topological and geometric views and (ii) auto-encoding, to bypass the
optimization barrier on the complex data structures regarding symmetry (to achieve sufficiently
low reconstruction errors versus non-cascaded AEs, Sec. 3.1 & Fig. 2(b)), while preserving
permutation- and SE(3)-equivariance, respectively.

• Diffusion generative model (DGM) to capture data distributions pθ(z) in the latent space. The
implemented DGM in the pipeline is standardized as described in Sec. 2.

• Conditional in/equi-variance fed to DGM. In SE(3) invariant conditional generation, we featur-
ize SE(3)-invariant conditions xcond and overwrite the score estimator as fθ(z

(t),xcond, t). We
also extend the pipeline to SE(3)-equivariant generation conditioned on 3D objects (Sec. 3.3 &
Fig. 3). Besides, we investigate how to improve “generalizability” of conditional generation via
regularizing latent spaces with graph self-supervised learning (Fig. 2(c)).

The sampling procedure is cascaded with latent sampling z̄ ∼ pθ and then decoding M̄ =
←−
h ϕ2(z̄).

Please refer to Algs. 1 & 2 for details.

3.1 CASCADED AUTO-ENCODING ON DECOMPOSED VIEWS OF 3D GRAPHS

Our preliminary efforts attempt to build a 3D graph AE directly in “one shot”, that embeds and
reconstructs topology and geometry simultaneously, via minϕ1,ϕ2

ε
(←−
h ϕ2

(
−→
h ϕ1

(M)),M
)
. The

permutation- and SE(3)-invariance is guaranteed in the objective functions ε(·) via graph match-
ing (Yu et al., 2020) and superimposition algorithms (Kabsch, 1976) (see Append. B.1). However,
substantial difficulty is encountered in optimizing the 3D graph AE with the intertwined symmetry
constraints (of permutation and SE(3)) on such complex data structures (see Tab. 1 one-shot AE
reconstruction performance on 3D molecules and Tab. 16 for more variants).
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Figure 2: (a) Pipeline overview of self-supervised latent 3D graph diffusion where the latent space is (b)
learned by an autoencoder architecture on the decomposed 3D graph topologies and geometries and can be (c)
regularized by graph self-supervision through an auxiliary objective during autoencoder training.

Table 1: Reconstruction performance of
AE workflows on molecule data, evaluated
with topological accuracy (Recon.), Tani-
moto score (Tani.), and geometric root-mean-
square error (RMSE).

Methods Recon.↑ Tani.↑ RMSE ↓
Random Init. 0% 9.50% 1.86
One-Shot AE 0.80% – 1.80
Cascaded AE 79.57% 95.68% 0.69

Cascaded AEs on decomposed 3D graph features
with disentangled symmetry constraints. Instead of
auto-encoding the 3D graph features M straightfor-
wardly in one shot, we propose to build AEs on the de-
composed features of topology G and geometry C where
the symmetry constraints are disentangled: topological
AE are optimized with the permutation constraint and
geometric AE with SE(3) (Fig. 2(b)). We are thus able to
bypass the optimization barrier in a “divide and conquer”
manner, mainly inspired by the sub-band coding theory
(Vetterli, 1984): signals are divided into different frequency bands before/after encoding/decoding
to be transmitted in the bandlimited system. The auto-encoding processes are formulated as:

Encoding: zG =
−→
h ϕ1,G

(G), zC =
−→
h ϕ1,C

(C), z = [zG; zC],

Decoding: Ḡ =
←−
h ϕ2,G

(zG), C̄ =
←−
h ϕ2,C

(Ḡ, zC), (1)

where the topological and geometric latent encoders
−→
h ϕ1,G

,
−→
h ϕ1,C

are constructed to be
permutation- and SE(3)-invariant, respectively, together with the invariant training objec-
tives in optimization as minϕ1,G,ϕ2,G Ep(G)εG

(←−
h ϕ2,G(

−→
h ϕ1,G(G)),G

)
(Jin et al., 2020) and

minϕ1,C,ϕ2,C
Ep(G,C)εC

(←−
h ϕ2,C

(G,
−→
h ϕ1,C

(C)), C
)

(Zhu et al., 2022a).

Note that the 3D graph cascaded AE is pretrained for once and utilized repetitively. We adopt
architectures from (Jin et al., 2020) for the topological AE and (Zhu et al., 2022a) for the geometric
(see Append. B.2 for details). Tab. 1 demonstrates its qualified reconstruction.

3.2 ANALYSIS OF LATENT 3D GRAPH DIFFUSION

We would like to understand how the choice of diffusion space impacts the generation quality of
3D graphs. We provide an analysis extended from prior works (Chen et al., 2022a; Lee et al., 2023;
Liu et al., 2022c; Block et al., 2020; Lee et al., 2022) to the non-Euclidean space of 3D graphs, by
further considering the symmetry structures via introducing symmetry-group equivariance.

Our reaching conclusions are (i) 3D graph diffusion performance could be related to data dimen-
sionality (Propos. 1), revealing the motivation for why needing latent 3D graph diffusion; and (ii)
performance could be improved if mappings to the lower-dimensional space of 3D graphs are ap-
propriately constructed (Propos. 2), identifying the guidelines to building 3D graph AEs.

Setup. The featurization of a 3D graph M = ((A,B), C) of size N is instantiated as xM =
(xA,xC) where xA ∈ RN×DA is the node feature matrix of dimension DA and xC ∈ RN×3 the
coordinate matrix. The connection information can be later determined with certain domain rules
as B = rule(A, C). Such featurization is widely adopted (Hoogeboom et al., 2022; Wu et al., 2022;
Morehead & Cheng, 2023) and therefore serves our analysis.

Different from Euclidean data assessing the DGM performance with the “flat” distribution discrep-
ancy Dist(pθ, pdata), e.g., the ℓ-infinity, total variation distance (Chen et al., 2022a) or Wasserstein
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metric (De Bortoli, 2022), there exist symmetry structures in the 3D graph space. We character-
ize it by introducing the equivariance class [xM]Π,Ω := {π ◦ ω(xM) : ∀π ∈ Π, ω ∈ Ω}, where
Π,Ω are the N -permutation and SE(3) groups, respectively, i.e., π(xM) = (πxA, πxC), ω(xM) =
(xA,xCω),∀π ∈ Π, ω ∈ Ω. Thus, the assessment for 3D graphs is formulated with the distribu-
tion discrepancy on equivariance classes as Dist(p̃θ, p̃data), where p̃θ([xM]Π,Ω) = Pr{x′M : x′M ∈
[xM]Π,Ω,x

′
M ∼ pθ} and p̃data([xM]Π,Ω) = Pr{x′M : x′M ∈ [xM]Π,Ω,x

′
M ∼ pdata}.

We first illustrate the potential factors relevant to diffusion performance in the 3D graph space.

Proposition 1. (Performance bound of 3D graph diffusion is related to feature dimensional-
ity of data and model inductive bias. See proof in Append. A.1) Assume DGM is trained to
model pdata(xM) with pθ(xM), ∀t ≥ 0 the score ∇x ln p

(t) is L-Lipschitz, for some η > 0
the moment Epdata(xM)∥xM∥2+η is finite, and ∀t ≥ 0 the score estimation error is bounded
that E

p(t)(x
(t)
M )
∥fθ(x(t)

M , t) − ∇x ln p
(t)(x

(t)
M )∥2 ≤ ε2score. Denote the second moment m =

Epdata(xM)∥xM∥2 and suppose the DGM step size is 1. Then, it holds for the 3D graph DGM
assessment (total variation distance or TV below):

TV(p̃θ, p̃data) ≲ α(pθ,Π,Ω)
(√

KL(pdata∥ND′)e−T + (L
√
D′ + Lm+ εscore)

√
T
)
, (2)

where α(·) depends on both the score estimator architecture and the symmetric groups, and ND′ is
the normal distribution of dimension D′ that D′ = N × (DA + 3). □□□

However it is not necessary to model the distribution spanning the full RD′
space, if (i) the dis-

tribution is supported constrainedly on a low-dimensional manifold, a.k.a. the manifold hypothe-
sis (De Bortoli, 2022; Fefferman et al., 2016) (which applies to molecules), and (ii) the manifold
(Do Carmo & Flaherty Francis, 1992) can be parametrized. We next illustrate the factors relevant to
3D graph diffusion performance in the latent space.

Proposition 2. (3D graph diffusion could benefit from the lower-dimensional latent space if ap-
propriately constructed. See proof in Append. A.2) Assume there existing mappings

−→
h : RD′ →

RD′′
,
←−
h : RD′′ → RD′

that D′′ < D′ and
←−
h is injective. Assume DGM now is trained in RD′′

to model −→p data(z) = Pr{xM :
−→
h (xM) = z,xM ∼ pdata} with pθ(z), and it is evaluated in RD′

on ←̃−p θ([xM]Π,Ω) = Pr{z :
←−
h (z) ∈ [xM]Π,Ω, z ∼ pθ} (as in Propos. 1), and the assumptions in

Propos. 1 retain for the score estimator fθ and mapping distribution. Then, it holds:
TV(←̃−p θ, p̃data) ≲ TV(←̃→p data, p̃data)+

ᾱ(pθ,
−→
h ,
←−
h ,Π,Ω)

(√
KL(−→p data∥ND′′)e−T + (L

√
D′′ + Lm+ εscore)

√
T
)
, (3)

where ←̃→p data([xM]Π,Ω) = Pr{x′M :
←−
h (
−→
h (x′M)) ∈ [xM]Π,Ω,x

′
M ∼ pdata}, and ᾱ(·) depends on

both the latent diffusion architecture that ᾱ(pθ,
−→
h ,
←−
h ,Π,Ω) = α(←−p θ,Π,Ω) if←→p data = pdata. □□□

Both latent space and DGMs influence the generation quality. By comparing the bounds in Ineq. (2)
(original space) and Ineq. (3) (latent space), assuming that Π and Ω equivariance is satisfied in both
DGMs, the performance bound in the latent space could outperform that in the original space only
if D′′ < D′ (dimensionality) and TV(←̃→p data, p̃data) ⩾ 0 is low (reconstruction error).

Guided by the theoretical analysis, we are motivated to seek such “qualified” manifold parametriza-
tions for 3D graph DGMs, that is,

−→
h and

←−
h with low latent dimension D′′ and low reconstruction

error, which presents a non-trivial trade-off. The intertwined symmetries of 3D graphs present ad-
ditional challenge to the latent space. Our solutions are cascaded 3D graph AEs on decomposed
features and separate symmetries, as described in Sec. 3.1.

3.3 3D GRAPH GENERATION WITH EQUIVARIANT CONDITIONS

We are further interested in conditional generation of 3D graphs given another 3D object (e.g. a 3D
graphMcond), for instance, generating 3D molecules binding to given target-protein structures (Liu
et al., 2022a; Guan et al., 2023a). Here the SE(3)-equivariant constraint needs to be satisfied, i.e.,
generated 3D graphs would translate/rotate accordingly w.r.t. conditional objects.

Since the latent space is constructed invariant to permutation and SE(3) transformations, latent 3D
graph diffusion can be directly extended to conditional generation on equivariant attributes, featur-
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Figure 3: (a) Pipeline overview of latent 3D graph diffusion conditional on equivariant 3D objects. (b) Au-
toencoder architecture on the 3D graph topology and complex geometry.

ized as xcond, by simply overwriting the score estimator as fθ(z(t),xcond, t). We extend our pipeline
accordingly into equivariant conditional generation (see Fig. 3(a) for overview).

Complex encoding. We keep the topological AE as in Sec. 3.1 and feed the geometrical AE with
the 3D graphs of the complex (of generated molecules and conditional proteins) (Stärk et al., 2022).

Equivariant decoding. The latent space is still constructed invariant to (i.e. insensitive to) the rigid-
body pose of conditional objects, i.e., the absolute geometry of conditions. Since conditional objects
are always accessible during decoding/generation, we additionally feed them into the geometric
decoder to provide such information as shown in Fig. 3(b), where the decoder is implemented to be
equivariant based upon (Stärk et al., 2022). The auto-encoding processes are then formulated as:

Encoding: zG =
−→
h enc,G(G), zC =

−→
h enc,C(C,Mcond), z = [zG; zC];

Decoding: Ḡ =
←−
h dec,G(zG), C̄ =

←−
h dec,C(Ḡ,Mcond, zC). (4)

Thereafter, during latent diffusion, we learn to restore the latent distribution of topology and relative
geometry given conditional objects as pθ(z|Mcond), which is achieved by overwriting the score
estimator as fθ(z(t),Mcond, t). See Append. C.1 for more details of architectures.

Graph self-supervised learning as auxiliary pretraining objectives. We also explore how 3D
graph AEs constructed differently would impact latent diffusion performance. We leverage graph
self-supervised learning (You et al., 2020a) to regularize the latent space, by acting as the auxiliary
objective (i.e. multi-task learning) during topological and geometric AE pretraining. See Append.
B.3 for more details. Inspired by (Kwon et al., 2022), we conjecture the better ”semantics-aware”
latent space is more amenable to DGMs capturing distributions. We thus quantify the extent of
semantics-awareness and verify it is indeed indicative of 3D graph generation quality (Sec. 4.2).

4 EXPERIMENTS

We evaluate the proposed pipeline, (self-supervised) latent 3D graph diffusion, in three scenarios of
real-world applications on 3D molecules: unconditional generation (Hoogeboom et al., 2022) (Sec.
4.1), invariant generation conditioned on quantum properties (Sec. 4.2), and equivariant generation
conditioned on protein targets (Guan et al., 2023a) (Sec. 4.3). Before detailing the results, we briefly
summarize our main findings as follows.

• Latent 3D graph diffusion generates topologically more valid and geometrically as stable
molecules against competitors, for which AE’s reconstruction quality is critical (results (i,vi)).

• Latent diffusion can better capture data distribution, even in the “out-of-distribution” scenario.
Such capability is related to “semantic awareness” of the latent space (results (ii,iv,v,vii)).

• An additional bonus of latent diffusion is training efficiency: It is trained faster in the lower-
dimensional latent space, by an order of magnitude than competitors (results (iii,vi)).

4.1 UNCONDITIONAL GENERATION OF 3D MOLECULES

Configurations. We pretrain our topological and geometric AEs on the large-scale public databases
as ChEMBL (Gaulton et al., 2012) and PubChemQC (Nakata & Shimazaki, 2017), respectively,
which can be repetitively utilized in almost all later experiments. We benchmark our method on the
datasets of QM9 (with 100K smaller molecules up to 29 atoms) (Ramakrishnan et al., 2014) and
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Drugs (with 450K larger molecules up to 181 atoms) (Axelrod & Gomez-Bombarelli, 2022) follow-
ing (Hoogeboom et al., 2022; Wu et al., 2022; Vignac et al., 2023; Morehead & Cheng, 2023). The
performance is evaluated on both validness of generated molecules (whether obeying stereochem-
ical constraints) and distribution discrepancy with training data (whether capturing the distribution
of observed molecules). See Append. D.1 for more details.

We compare with state-of-the-art (SOTA) competitors, including non-diffusion based models ENF
(Satorras et al., 2021), G-Schnet (Gebauer et al., 2019) and diffusion models GDM, EDM (Hooge-
boom et al., 2022; Wu et al., 2022), MiDi (Vignac et al., 2023), GCDM (Morehead & Cheng, 2023),
GraphLDM, and GeoLDM (Xu et al., 2023).

Results. The results of unconditional generation are shown in Tabs. 2 and 3. We obtain the following
observations based on the validness and distribution assessments.

Table 2: Unconditional generation evaluation on validness of 3D molecules. Valid: proportion of (POF)
chemically valid molecules; Valid&Uni: POF chemically valid and unique molecules; AtomSta: POF atoms
with correct valency; MolSta: POF molecules without unstable atoms. Numbers(std) in red are the best results.

Methods QM9 Drugs MeanValid Valid&Uni AtomSta MolSta Valid AtomSta

ENF 40.2 39.4 85.0 4.9 – – 42.37
G-Schnet 85.5 80.3 95.7 68.1 – – 82.40

GDM – – 97.0 63.2 90.8 75.0 81.50
GDM-Aug 90.4 89.5 97.6 71.6 91.8 77.7 86.43

EDM 91.9(0.5) 90.7(0.6) 98.7(0.1) 82.0(0.4) 92.6 81.3 89.53
EDM-Bridge 92.0 90.7 98.8(0.1) 84.6(0.3) 92.8 82.4(0.8) 90.21

GCDM 94.8(0.2) 93.3(0.0) 98.7(0.0) 85.7(0.4) – 89.0(0.8) 92.30
MiDi 97.9 97.0 97.9 84.0 78.0 82.2 89.50

GraphLDM 83.6 82.7 97.2 70.5 97.2 76.2 84.56
GraphLDM-Aug 90.5 89.5 97.9 78.7 98.0 79.6 89.03

GeoLDM 93.8(0.4) 92.7(0.5) 98.9(0.1) 89.4(0.5) 99.3 84.4 93.08

Ours 100.00(0.00) 95.27(0.25) 97.57(0.02) 86.87(0.23) 100.00(0.00) 80.51(0.08) 93.37

Table 3: Unconditional generation evaluation on distribution discrepancy with test data. NLL denotes negative
log-likelihood values estimated by diffusion models, and other metrics represent total variation distances (×1e-
2) of certain molecular properties, between generated and observe molecules, the lower the better.

Methods NLL MW ALogP PSA QED FCD Energy

EDM -1.22 2.89(0.38) 0.85(0.12) 2.37(0.18) 0.87(0.05) 58.04(0.39) 2.81(0.29)
Ours -3.48 2.52(0.39) 0.91(0.10) 1.22(0.12) 1.04(0.05) 47.66(3.42) 1.87(0.18)

(i) Quality of AEs is critical for latent diffusion validness performance. Our latent diffusion
generates more valid and diverse molecules in topology and as stable molecules in geometry versus
SOTAs, as shown in Tab. 2. We realize these two perspectives of validness measurements are
actually linked to the reconstruction quality of topological and geometric features of 3D graphs, that
means, the quality of AEs is the bottleneck of validness assessment. As numerically reflected in Tab.
1, the topological AE is better trained for reconstruction than geometric in the sense of molecular
data, which interprets the above validness results. This phenomenon also echoes our motivational
analysis in Sec. 3.2 on AEs. Overall, our method leads to the best validness performance on average
compared to SOTAs, credit to the well-constructed and trained 3D graph AE.

Table 4: Training time per epoch (im-
provement) in unconditional genera-
tion. s: seconds; m: minutes.

Methods QM9 Drugs

EDM 146s 349m
GeoLDM 356s 1307m

Ours 12s (↓12×) 10m (↓34×)

(ii) Diffusion in latent space better captures data distri-
butions. Compared to EDM in the original 3D graph space,
latent diffusion generates molecules of more similar property
distributions as training data in 5 out of 7 metrics, as shown in
Tab. 3. Results in other metrics such as Hellinger distance and
Wasserstein metric are presented in Append. E.1. We also pro-
vide the probabilistic measure of negative log-likelihood (nor-
malized on variables to remove the dimensionality bias) esti-
mated by diffusion models, to demonstrate that our approach
appropriately captures data distributions. The results again echo our motivational analysis in Sec.
3.2 on latent diffusion. Another more intuitive interpretation is that the lower-dimensional latent em-
beddings preserve the more semantically important bits of data (Rombach et al., 2022), facilitating
diffusion to learn distributions of molecules with similar properties.
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Furthermore, since latent diffusion is trained in the (Euclidean) space of lower dimensionality and
does not rely on the complicated message passing mechanism in score estimators, it provides an
additional bonus of (iii) 12 / 34 times faster training on the smaller / larger dataset as in Tab. 4.

4.2 CONDITIONAL GENERATION ON (INVARIANT) QUANTUM PROPERTIES

Configurations. We benchmark our approach on QM9 (Ramakrishnan et al., 2014) following
(Hoogeboom et al., 2022) where molecules are annotated with six quantum properties which are
invariant to SE(3) transformations. Models take additional featurized properties as inputs, and are
evaluated with the mean absolute error (MAE) between the conditional and oracle-predicted prop-
erties. We also examine whether models can correctly generate molecules conditional on properties
different from training, which we refer as the “out-of-distribution” setting (OOD, versus ID).

We compare with the representative EDM (Hoogeboom et al., 2022), which however poses a strong
bias between molecular sizes and property ranges. We argue it restricts the applicability of diffusion
models, and thus remove the bias for a more realistic evaluation. See Append. D.2 for more details.

Results. The results of conditional generation on invariant attributes are shown in Tab. 5. We
achieve the following observations through comparing between w/o and w/ latent diffusion in ID
and OOD, and w/o and w/ applying graph self-supervised learning (GSSL) during AE training.

Table 5: Conditional generation on six quantum properties(unit) evaluation. Numbers represent the mean
absolute error between conditional and oracle-predicted properties (Satorras et al., 2021), the lower the better.
ID: in-distribution; OOD: out-of-distribution; GSSL: graph self-supervised learning.

Methods α(Bohr3) ∆ε(meV) εH(meV) εL(meV) µ(D) Cv( cal
molK)

ID

Random 41.00 193.36 103.30 121.83 8.40 13.56
EDM 20.15 287.00 158.70 166.20 7.01 13.63
Ours 15.56 107.14 54.62 63.08 6.33 13.66

Ours-GSSL 16.43 113.15 55.03 66.53 9.22 13.65

OOD

Random 73.03 344.43 183.00 217.01 14.96 24.15
EDM 55.70 1561.9 1196.80 228.20 19.13 38.42
Ours 32.06 363.13 109.30 178.69 22.18 31.12

Ours-GSSL 30.07 388.31 103.86 179.41 26.89 40.82

(iv) Latent diffusion leads to better generation quality conditional on ID or OOD properties.
Our latent diffusion achieves lower MAEs than EDM for 5 out of 6 ID and OOD properties. The
greater challenges appear in the OOD setting (where the random baseline is pretty strong) and also
the benefits of latent diffusion. This again demonstrates the compact semantics-focused latent space
is more amenable for diffusion model learning, than the 3D graph space.

For a deeper understanding of what is learned by latent diffusion, we visualize the generated
molecules conditional on different polarizability values (α) in Append. E.2, which are expected less
isometrically shaped for larger α (Wu et al., 2012). We find our model learns to generate molecules
of larger α by increasing the chain length (Khan et al., 2002; Rodrigues et al., 2023). This behavior
is different from that in EDM, which needs to prescribe the molecular size before generation. It
points to a direction to explicitly bridging between latent and semantics, as in (Liu et al., 2022b).

(v) Graph self-supervised learning (GSSL) improves OOD generation quality if further incor-
porating “semantics-awareness”. Applying GSSL during AE training improves 2 out of 6 metrics
in the OOD setting. We additionlly explore on when GSSL would benefit latent diffusion. Based
on the previous results and inspired by (Kwon et al., 2022), we conjecture the more “semantics-
aware” latent space is easier for DGMs to capture distributions. We thus quantify such concept
with the homogeneity ratio (Kwon et al., 2022) in the latent space, i.e., how consistently certain
direction contributes to increasing property values for all data points. We find only for properties
α and εH, GSSL improves the homogeneity ratio for certain direction as shown in Figs. 10 & 11,
corresponding to the observed improvements of OOD results. See Append. E.2 for more details.
This indicates a future potential to design semantics-specific GSSL tasks to boost latent diffusion, if
prior knowledge is presented for the designated generation scenario.

4.3 CONDITIONAL GENERATION BINDING TO (EQUIVARIANT) PROTEIN TARGETS

Configurations. We retain the topological AE, pretrain complex geometric AE and benchmark
our method on the dataset of CrossDocked (100K complexes) (Francoeur et al., 2020) following
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(Guan et al., 2023a). The evaluation is on the potentness of the generated 3D molecules justified
by (in topology) drug-likeliness (QED), synthesizability (SA), and (in geometry) binding affinity
with protein targets computed with AutoDock Vina (Huey et al., 2012) (HiAff: the proportion of
generated molecules with higher affinity than reference). See Append. D.3 for more details.

We compare our method with SOTA competitors including non-diffusion based models LiGAN
(Ragoza et al., 2022), GraphBP (Liu et al., 2022a), AR (Luo et al., 2021), Pocket2Mol (Peng et al.,
2022) and diffusion models TargetDiff (Guan et al., 2023a), DecompDiff (Guan et al., 2023b), DiffS-
BDD (Schneuing et al., 2022). Since competitors are all pocket-dependent that pocket information
is utilized during generation, for a fair comparison, we also use it via filtering the closest molecules
to pocket residues after generation. The result of the pocket-free version without filtering is also
reported for reference.

Table 6: Conditional generation on protein binding targets evaluation. Assessment metrics QED/SA & Vina
scores are calculated with RDKit (Landrum, 2013) & AutoDock (Huey et al., 2012), respectively.

Methods Time↓ QED↑ SA↑ HiAff↑ Vina↓ VDock↓ Vina (Top-10%)↓ Diversity↑
LiGAN – 0.39 0.59 21.1% – -6.33 – 0.66

GraphBP – 0.43 0.49 14.2% – -4.80 -7.16 0.79
AR 211m 0.51 0.63 37.9% -5.75 -6.75 – 0.70

Pocket2Mol 390m 0.56 0.74 48.4% -5.14 -7.15 -8.71 0.69
TargetDiff 340m 0.48 0.58 58.1% -5.47 -7.80 -9.66 0.72
DiffSBDD – 0.46 0.55 – -7.33 – -9.92 0.75

DecompDiff – 0.45 0.61 64.4% -5.67 -8.39 – 0.68

Ours 6m (↓35×) 0.60 0.71 48.08% -5.23 -6.85 -12.34 0.80

(vi) Latent diffusion generates more potent molecules for target proteins. For conditional gen-
eration of 3D molecules equivariantly to conditional protein structures (Tab. 6), latent diffusion gen-
erates molecules of the highest drug-likeliness and diversity and the second-highest synthesizability.
This superior performance in topology generation is consistent with our previous experiments, and
not sensitive to using protein pockets or not. As to geometry generation, although our method un-
derperforms in the population evaluation of binding affinity, without AutoDock Vina docking (Vina)
or with docking to change geometries (VDock), partly due to increasing diversity, it significantly
outperforms others in the top 10% most potent binders, following the DiffSBDD evaluation. Fur-
thermore, pre-training 3D graph AE with GSSL (Sec. 3.3), which regularizes the learning of the
latent space, improves the Vina Dock score (Tab. 17).

Qualitatively, we also find (vii) latent diffusion has the potential to model the pocket distribu-
tion. We visualize the generated 3D molecules before pocket filtering in Fig. 12, where the circle
area is a potential pocket that is not reflected in the reference molecule, and our method generates
molecules appropriately covering both the reference and potential pockets. This is of significance in
real-world drug discovery when exploring druggable protein pockets is pressing (Pérot et al., 2010).

5 CONCLUSIONS

This paper proposes an effective and efficient pipeline for 3D graph generation, dubbed latent 3D
graph diffusion. It captures the 3D graph distribution by first encoding them into the latent space,
training a diffusion model accordingly, and then decoding back to 3D graphs. The key questions
explored in this paper are: why latent diffusion is useful for 3D graphs (motivational analysis, Sec.
3.2), how to parametrize the 3D graph latent space (auto-encoding decomposed views, Sec. 3.1),
and what latent spaces better benefit latent 3D graph diffusion (semantics-awareness, Sec. 4.2).
In applications, we also extend latent diffusion to the more significant conditional generation on
invariant attributes (Sec. 4.2) or equivariant 3D objects (Sec. 4.3). Experiments in drug discovery
verify the superiority of our pipeline in both generation quality and diffusion training efficiency.

Although our study illuminates the potential of generative modeling in the latent space for complex
non-Euclidean data, it remains intriguing how to explicitly regularize the latent space with specific
priors beyond our GSSL strategies.
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A PROOFS FOR ANALYSIS

A.1 PROOF FOR PROPOSITION 1

Proposition 1. Assume DGM is trained to model pdata(xM) with pθ(xM), ∀t ≥ 0 the score
∇x ln p

(t) is L-Lipschitz, for some η > 0 the moment Epdata(xM)∥xM∥2+η is finite, and ∀t ≥ 0

the score estimation error is bounded that E
p(t)(x

(t)
M )
∥fθ(x(t)

M , t)−∇x ln p
(t)(x

(t)
M )∥2 ≤ ε2score. De-

note the second moment m = Epdata(xM)∥xM∥2 and suppose the DGM step size is 1. Then, it holds
for the 3D graph DGM assessment:

TV(p̃θ, p̃data) ≲ α(pθ,Π,Ω)
(√

KL(pdata∥ND′)e−T + (L
√
D′ + Lm+ εscore)

√
T
)
,

where α(·) depends on both the score estimator architecture and the symmetric groups, and ND′ is
the normal distribution of dimension D′ that D′ = N × (DA + 3).

Proof. We bound the distribution discrepancy of the total variation distance between generated and
training 3D graph features with the following inequalities:

TV(p̃θ, p̃data)
(a)
= α(pθ,Π,Ω) TV(pθ, pdata)

(b)
≲ α(pθ,Π,Ω)

(√
KL(pdata∥ND′)e−T + (L

√
D′ + Lm+ εscore)

√
T
)
,

where (a) results from the definition of α(pθ,Π,Ω) = TV(p̃θ,p̃data)
TV(pθ,pdata)

, and (b) is the result from
(Chen et al., 2022a) Theorem 2. Note by data processing inequality (Beaudry & Renner, 2011),
α(pθ,Π,Ω) ∈ [0, 1]. We thus reach the conclusion.

Symmetry-related term α(pθ,Π,Ω). How does the DGM architecture regard symmetry structures
affects the generation performance of 3D graphs, as reflected in the term α(pθ,Π,Ω). Specifically,
if the DGM pθ is constructed in/equivariant to permutation Π and SE(3) transformations Ω, e.g. in
(Hoogeboom et al., 2022), α(pθ,Π,Ω) reaches the minimal value. That is, pθ satisfies:

pθ(xM) =
{
p̃θ([xM]Π,Ω), if I(xM) = 1,

0, otherwise,
where I(xM) ∈ {0, 1} is the indicator function which specifies only one xM in each [xM]Π,Ω

with value 1 and 0 for others. This means the DGM treats all members in one equivalent class the
same and thus only learns to capture one data point in each class. The ultimate distribution can be
recovered later via p′θ(xM) = pθ(x

′
M)pΠpΩ where x′M ∈ [xM]Π,Ω, I(x′M) = 1, and pΠ, pΩ denote

the probability of the transformation operators which are uniformly sampled. Given an arbitrary
learned distribution qθ that retains q̃θ = p̃θ, we have:

TV(qθ, pdata)

(a)
= sup

S⊂RD′
|Pr{xM : xM ∈ S,xM ∼ qθ} − Pr{xM : xM ∈ S,xM ∼ pdata}|

(b)
=

∑
xM∈S+

qθ(xM)− p̃data([xM]Π,Ω)pΠ, pΩ

(c)
=

∑
[x′

M]Π,Ω

∑
xM∈[x′

M]Π,Ω∩S+

(
qθ(xM)− p̃data([x

′
M]Π,Ω)pΠ, pΩ

)
(d)
≤

∑
[xM]Π,Ω,[xM]Π,Ω∩S+ ̸=∅

q̃θ([xM]Π,Ω)− p̃data([xM]Π,Ω)pΠ, pΩ

(e)
=

∑
[x′

M]Π,Ω,[x′
M]Π,Ω∩S+ ̸=∅

∑
xM∈[x′

M]Π,Ω,I(xM)=1

(
pθ(xM)− p̃data([x

′
M]Π,Ω)pΠ, pΩ

)
(f)
≤ TV(pθ, pdata),

where (a) results from the definition of the total variation distance, (b) results from the equiv-
alent definition of the total variation distance in the ℓ1 distance, and denoting S+ = {xM :
qθ(xM) > p̃data([xM]Π,Ω)pΠ, pΩ}, (c) results from grouping the summation in the individual
equivalent classes, (d) results from the inequality qθ(xM) ≤ q̃θ([xM]Π,Ω), (e) results from the
in/equivariant construction of pθ, and (f) results from the definition of the total variation distance.
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Thus, given an arbitrary learned distribution qθ without altering q̃θ, we always can reframe it to be
in/equivariant as pθ that α(pθ,Π,Ω) ≤ α(qθ,Π,Ω), leading to a tighter bound in Prop. 1.

A.2 PROOF FOR PROPOSITION 2

Proposition 2. Assume there existing mappings
−→
h : RD′ → RD′′

,
←−
h : RD′′ → RD′

that D′′ <
D′ and

←−
h is injective. Assume DGM now is trained in RD′′

to model −→p data(z) = Pr{xM :
−→
h (xM) = z,xM ∼ pdata} with pθ(z), and it is evaluated in RD′

on ←̃−p θ([xM]Π,Ω) = Pr{z :
←−
h (z) ∈ [xM]Π,Ω, z ∼ pθ} (as in Propos. 1), and the assumptions in Propos. 1 retain for the score
estimator fθ and mapping distribution. Then, it holds:

TV(←̃−p θ, p̃data) ≲ TV(←̃→p data, p̃data)+

ᾱ(pθ,
−→
h ,
←−
h ,Π,Ω)

(√
KL(−→p data∥ND′′)e−T + (L

√
D′′ + Lm+ εscore)

√
T
)
,

where ←̃→p data([xM]Π,Ω) = Pr{x′M :
←−
h (
−→
h (x′M)) ∈ [xM]Π,Ω,x

′
M ∼ pdata}, and ᾱ(·) depends on

both the latent diffusion architecture that ᾱ(pθ,
−→
h ,
←−
h ,Π,Ω) = α(←−p θ,Π,Ω) if←→p data = pdata.

Proof. We bound the distribution discrepancy of total variation distance between generated (from
submanifold then reconstructed) and training 3D graph features with the following inequalities:

TV(←̃−p θ, p̃data)

(a)
≤ TV(←̃→p data, p̃data) + TV(←̃−p θ,

←̃→p data)

= TV(←̃→p data, p̃data) +
TV(←̃−p θ,

←̃→p data)

TV(pθ,
−→p data)

TV(pθ,
−→p data)

(b)
= TV(←̃→p data, p̃data) + ᾱ(pθ,

−→
h ,
←−
h ,Π,Ω) TV(pθ,

−→p data)

(a)
≲ TV(←̃→p data, p̃data) + ᾱ(pθ,

−→
h ,
←−
h ,Π,Ω)

(√
KL(−→p data∥ND′′)e−T + (L

√
D′′ + Lm+ εscore)

√
T
)
,

where (a) is achieved by constructing an intermediate distribution and applying the triangle equality,

(b) comes from the rewriting by denoting ᾱ(pθ,
−→
h ,
←−
h ,Π,Ω) = TV(←̃−p θ,

←̃→p data)

TV(pθ,
−→p data)

that we have 0 <

ᾱ(pθ,
−→
h ,
←−
h ,Π,Ω) ≤ 1 due to the data processing inequality, and (c) is the result from (Chen et al.,

2022a) Theorem 2. We thus reach the conclusion.

Besides, when the latent mappings are capable of recovering the complete data distribution that
←→p data = pdata, we have ᾱ(pθ,

−→
h ,
←−
h ,Π,Ω) = TV(←̃−p θ,

←̃→p data)

TV(pθ,
−→p data)

(a)
= TV(←̃−p θ,p̃data)

TV(←−p θ,pdata)
= α(←−p θ,Π,Ω)

where (a) results from the ideal reconstruction of
−→
h ,
←−
h , injectivity of

←−
h and data processing in-

equality, which matches the symmetry-related term in Prop. 1.

B ADDITIONAL DETAILS FOR 3D GRAPH AES

B.1 PRELIMINARY EFFORTS IN BUILDING 3D GRAPH ONE-SHOT AES

Our preliminary efforts attempt to build a 3D graph AE simply following the topological graph AE
workflow (Simonovsky & Komodakis, 2018), as shown in Fig. 4. It compromises the following
components.

Encoders & decoders. Topology and geometry information is encoded in the latent embedding,
through separate encoding processes and then concatenation. The topological encoder is built with
graph attention networks (Veličković et al., 2017) and geometric with polarizable atom interaction
neural networks (Schütt et al., 2021). The decoder takes the concatenated latent embedding as in-
put to reconstruct topological and geometric features, built with transformer architectures (Vaswani
et al., 2017) followed by three multi-layer perceptrons for nodes, edges, and coordinates, respec-
tively.

Permutation- and SE(3)-invariant loss. We enforce permutation and SE(3) invariance in the op-
timization objective. Specifically, before calculating the mismatch measurement between the input
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Figure 4: Pipeline overview of preliminary one-shot 3D graph AE.

and reconstructed 3D graph, we execute the neural graph matching algorithm (Yu et al., 2020) to
sort out the correct node-to-node mapping, which leads to the permutation-invariant loss. After-
ward, the superimposition algorithm (Kabsch, 1976) is executed to align the input and reconstructed
coordinates with the global rotation and translation operations, which leads to the SE(3)-invariant
loss. The final optimization objective then is the weighted sum of these losses.

B.2 ADDITIONAL DETAILS FOR 3D GRAPH CASCADED AES

Related works: Latent diffusion models. Considerable research (Dai & Wipf, 2019; Yu et al.,
2020) has focused on enhancing generative modeling capacity by exploring expressive generative
models over the latent space. VQ-VAEs (Ragoza et al., 2022) proposed discretizing latent variables
and leveraging autoregressive models to establish an expressive prior. (Ma et al., 2019), on the
other hand, employed flow-based models as the latent prior, particularly for non-autoregressive text
generation. Another line of research was inspired by the limitations of simple Gaussian priors in
variational autoencoders (VAEs), which could not accurately match encoding posteriors and resulted
in poor sample generation. To address this issue, (Dai & Wipf, 2019; Aneja et al., 2021) proposed
using VAEs and energy-based models, respectively, to learn the latent distribution. More recently,
various works have successfully developed latent diffusion models with promising results across
different applications, such as image generation (Vahdat et al., 2021) and point clouds (Zeng et al.,
2022). Among these methods, stable diffusion Models (Rombach et al., 2022) stand out for their
impressive success in text-guided image generation, demonstrating remarkably realistic results.

Encoders & decoders. The topological AE is built with (Jin et al., 2020). Specifically, the topo-
logical encoder is composed of hierarchical layers of node message passing, attachment message
passing, and motif message passing, and the decoder is composed of motif decoding, attachment de-
coding, and graph decoding. The geometric AE is built with (Satorras et al., 2021; Zhu et al., 2022a;
Halgren, 1999). Specifically, the geometric encoder is composed of E(n) equivariant graph neural
networks, and the decoder is composed of local node/edge message passing, global representation
message passing, coordinate decoding and refinement Landrum (2013). We train both topological
and geometric AEs for 2 days.

The topological encoder (Jin et al., 2020) consists of three Message Passing Networks (MPNs)
to encode the hierarchical graph’s three layers. Specifically, Atom Layer MPN encodes the atom
layer of the hierarchical graph (HG). It takes embedding vectors of atoms and bonds as inputs.
The network propagates message vectors between atoms over several iterations, culminating in the
output of atom representation for each atom. In the topological decoder: (i) Decoder Function:
The graph decoder incrementally expands the hierarchical graph to generate a molecule. It uses the
same hierarchical MPN architecture to encode motifs and atoms in the partial hierarchical graph.
(ii) Motif and Atom Vectors: At each generation step, the decoder produces motif vectors and atom
vectors for the existing motifs and atoms in the graph. (iii) Motif Prediction: The model predicts
the next motif to be attached, formulated as a classification task over the motif vocabulary. (iv)
Attachment Prediction: The model predicts the attachment configuration of the next motif, focusing
on the intersection of the motif with its neighbor motifs. This too is a classification task over an
attachment vocabulary.
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The geometric AE (Zhu et al., 2022a) consists of the following components. (i) Bond Representation
Layer: Incorporates coordinate information into bond representations. The updated bond represen-
tation is derived from the previous bond representation, MLP operations on coordinate differences,
and global representation. (ii) Atom Representation layer: Atom representations are updated using
a Graph Attention Network version 2 (GATv2) to aggregate bond representations and then further
refined with MLP operations and global representation. (iii) Global Molecule Representation: The
global representation is updated by aggregating updated atom and bond representations with MLP
operations. (iv) Conformation Construction: Each atom’s conformation is predicted and normalized
by centering the coordinates at the origin, ensuring numeric stability. The final prediction of the
conformation is outputted by the last block with refinement Landrum (2013).

Training via teacher forcing. As depicted in Fig. 2(a), the decoding process is sequentially con-
ducted, since the geometry decoding relies on the topology input. We remove such reliance during
training to improve efficiency (that AEs can be trained in parallel and sampling is not needed during
training), via applying teacher forcing: The topology input for the geometry decoding is the ground
truth graph rather than generated, formulated as:

Encoding: zG =
−→
h enc,G(G), zC =

−→
h enc,C(C), z = [zG; zC];

Decoding: Ḡ =
←−
h dec,G(zG), C̄ =

←−
h dec,C(G, zC).

Reconstruction quality of 3D graph AEs. The results in Tab. 1 demonstrate the qualified recon-
struction capability of 3D graph AEs. We further plot the topology and geometry reconstruction re-
sults for 3D graphs (3D molecules here) of varied properties, as shown in Figs. 5 and 6, respectively.
Properties include number of heavy atoms (AtomNum), number of atoms (AtomNumWithHs),
molecular weight (MW), octanol-water partition coefficient (ALOGP), number of hydrogen bond
donors (HBD), number of hydrogen bond acceptors (HBA), polar surface area (PSA), number of
rotatable bonds (ROTB), number of aromatic rings (AROM), and structural alerts (ALERTS). We
do not see a strong correlation between certain properties and reconstruction quality.

We include in Append. E.1 more details on conceptual and numerical comparisons between oneshot
AEs and our cascaded AEs.

B.3 GRAPH SELF-SUPERVISED LEARNING IN AE TRAINING

Related works: Graph self-supervised learning. Graph self-supervised learning, surging recently,
learns empirically more generalizable representations through exploiting vast unlabelled graph data
(You et al., 2020a;b; 2021; 2022; You & Shen, 2022; Wei et al., 2022; Xu et al.) (please refer to (Xie
et al., 2022) for a comprehensive review). The success of self-supervision hinges on big data and
carefully designed pretext tasks, to enforce specific prior knowledge in graph models.

We apply graph self-supervised learning (GSSL) during AE training to regularize the 3D graph la-
tent space. The adopted GSSL, graph contrastive learning (You et al., 2020a), is implemented as the
auxiliary objective (i.e. multi-task learning), during which the node dropping augmentation is con-
ducted on topological / geometric graphs, and the contrastive loss is optimized on the representations
of augmented views.

C 3D GRAPH GENERATION WITH EQUIVARIANT CONDITIONS

C.1 ADDITIONAL DETAILS FOR 3D GRAPH AES

Encoders & decoders. We retain the topological AE same as in Sec. 3.1. The geometric AE is built
with (Guan et al., 2023a; Satorras et al., 2021; Stärk et al., 2022; Huey et al., 2012). Specifically,
Specifically, the geometric encoder is composed of E(n) equivariant graph neural networks, and
the decoder is composed of independent SE(3)-equivariant graph matching networks, multi-head
SE(3)-equivariant attentions, docking transformation and refinement.

The conditional geometric AE (Guan et al., 2023a; Stärk et al., 2022) consists of the following
components. (i) K-NN Graph Representations. Ligand Graph: Represented as a spatial k-nearest
neighbor (k-NN) graph, using atoms as nodes. The graph includes atom pairs within a 4 Å distance
cutoff. Receptor Graph: Constituted by residues as nodes, connected to the closest 10 other nodes
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Figure 5: Topology reconstruction results versus dif-
ferent molecular properties.
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Figure 6: Geometry reconstruction results versus dif-
ferent molecular properties.
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within a 30 Å distance. (ii) IEGMN (Independent E(3)-Equivariant Graph Matching Network): This
network combines Graph Matching Networks and E(3)-Equivariant Graph Neural Networks, allow-
ing for joint transformation of features and 3D coordinates. (iii) Transformation Process: Ensures
that any independent rotation and translation of input structures are precisely mirrored in the output,
which is crucial for data-scarce problems like structural drug binding. (iv) Layer Architecture: Each
layer involves specific operations that update the features and coordinates of the nodes, maintaining
SE(3) invariance and employing shallow neural networks for various transformation functions.

D EXPERIMENTAL SETTINGS

D.1 UNCONDITIONAL GENERATION

Algorithm 1 Latent 3D Graph Diffusion Pipeline

Input: 3D graph data D = {M1, ...,MN} = {(G1, C1), ..., (GN , CN )}, initial 2D en-
coder/decoder

−→
h

ϕ
[0]
1,G

,
←−
h

ϕ
[0]
2,G

, 3D encoder/decoder
−→
h

ϕ
[0]
1,C

,
←−
h

ϕ
[0]
2,C

, and diffusion model pθ[0] .

▷ Autoencoder training:
for iteration k = 1 to K do

1. Latent encoding that Z = {
(−→
h

ϕ
[k−1]
1,G

(G),
−→
h

ϕ
[k−1]
1,C

(C)
)
: (G, C) ∈ D}.

2. Cascaded decoding that D′ = {
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ϕ
[k−1]
2,G

(zG),
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ϕ
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2,C

(G, zC)
)
: (zG, zC) ∈ Z}

3. Updating parameters that ϕ[k]
i,U = ϕ

[k−1]
i,U − η∇ϕεrec(D,D′), i ∈ {1, 2},U ∈ {G,C}.

end for
▷ Diffusion model training:
1. Latent encoding that Z = {

(−→
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ϕ
[K]
1,G

(G),
−→
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ϕ
[K]
1,C

(C)
)
: (G, C) ∈ D}.

2. Updating parameters that for k = 1 to K ′: θ[k] = θ[k−1] − η∇θεdiff(Z, pθ[k−1]).
▷ Sampling:
1. Sampling latent that (zG, zC) ∼ pθ[K′] .
2. Reconstructing 3D graphM = (G, C) that G =

←−
h

ϕ
[K]
2,G

(zG), C =
←−
h

ϕ
[K]
2,C

(G, zC).

Background. 3D molecule generation is a field within computational chemistry and drug discovery
that focuses on the automated generation of three-dimensional structures of molecules. It plays
a crucial role in understanding the properties and behavior of chemical compounds, as well as in
the development of new drugs and materials. The process of generating 3D molecular structures
computationally involves predicting the spatial arrangement of atoms and bonds in a molecule while
satisfying various constraints, such as bond lengths, bond angles, and dihedral angles. 3D molecule
generation has become an essential tool in various scientific and industrial applications. In drug
discovery, it is employed to explore and optimize potential drug candidates, predict their binding
to target proteins, and assess their pharmacokinetic properties. In materials science, 3D molecule
generation aids in designing novel materials with specific properties, such as improved strength,
flexibility, or conductivity.

Evaluation (Hoogeboom et al., 2022). Our model’s performance is assessed by evaluating the
chemical feasibility of the generated molecules to determine if the model effectively learns chemi-
cal rules from the data. The ’atom stability’ metric measures the proportion of atoms in the generated
molecules that have the correct valency, ensuring that the atom configurations are chemically valid.
On the other hand, the ’molecule stability’ metric represents the proportion of generated molecules
in which all atoms maintain stable configurations. In essence, this metric assesses whether the en-
tire molecular structure is chemically feasible. In addition to the stability metrics, we also report
validity and uniqueness measurements. The ’validity’ metric represents the percentage of gener-
ated molecules that are deemed valid according to RDKIT, a widely used software for molecular
validation. This ensures that the generated molecules comply with well-established chemical rules
and constraints. The ’uniqueness’ metric, on the other hand, indicates the percentage of unique
molecules among all the generated compounds, allowing us to quantify the model’s ability to pro-
duce diverse and novel chemical structures.
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The featurization of 3D molecules follows (Zhu et al., 2022b; Liu et al., 2021). The validness
measurement is evaluated in the chemical feasibility of generated molecules, indicating whether
the model can learn chemical rules from data (Xu et al., 2023), including topological validity and
uniqueness, and geometric stability in atoms and molecules. The distribution measurement quanti-
fies the discrepancy between the properties of observed and generated molecules, including molec-
ular weight (MW), octanol-water partition coefficient (ALOGP), polar surface area (PSA), drug-
likeness (QED), Fréchet ChemNet distance (FCD) (Polykovskiy et al., 2020) and conformer energy.
We also provide the probabilistic measure of negative log-likelihood (NLL) estimated by diffusion
models, which is normalized on variables to remove the dimensionality bias (Hoogeboom et al.,
2022).

D.2 CONDITIONAL GENERATION ON (INVARIANT) QUANTUM PROPERTIES

Evaluation. In this task, our objective is to perform controllable molecule generation while adher-
ing to desired properties. This capability proves valuable in practical applications such as material
and drug design, where the focus is on discovering molecules that exhibit specific property pref-
erences. To assess the performance, we use the QM9 dataset, which encompasses six properties:
polarizability, orbital energies and their gap, Dipole moment, and heat capacity. To evaluate the
model’s ability to conduct property-conditioned generation, we follow the approach introduced by
(Hoogeboom et al., 2022). We initially split the QM9 training set into two halves, each containing
50,000 samples. Next, we train a property prediction network on the first half of the dataset and
subsequently train conditional models on the second half. During evaluation, we employ a range of
property values, to conditionally draw samples from the generative models. We then use the property
prediction network to calculate the corresponding predicted property values. To gauge the perfor-
mance of property-conditioned generation, we report the Mean Absolute Error (MAE) between the
actual property values and their predicted counterparts. A lower MAE indicates that the generated
molecules closely align with the specified property conditions. Furthermore, to evaluate the bias
of the property prediction network, we directly apply it to the second half of the QM9 dataset. A
smaller MAE gap between the property-conditioned generation results and the QM9 dataset indi-
cates a better property-conditioning performance, demonstrating the model’s efficacy in generating
molecules that closely match the desired property preferences.

The conditional properties are α(Bohr3), tendency of a molecule to acquire an electric dipole mo-
ment when subjected to anexternal electric field; ∆ε(meV), the energy difference between HOMO
and LUMO; εH(meV), highest occupied molecular orbital energy; εL(meV), lowest unoccupied
molecular orbital energy; µ(D), dipole moment; Cv( cal

molK), heat capacity at 298.15K.

We compare with the representative diffusion baseline (Hoogeboom et al., 2022). Different from
(Hoogeboom et al., 2022) that poses overly strong inductive bias between the molecule size and
properties during evaluation, i.e. p(M|xcond) ∝

∑
N p(MN |N,xcond)p(N)p(xcond|N), MN is

the molecule with N atoms, where the range of xcond given certain N could be as narrow as 2 (ver-
sus random baseline 9.01 in (Hoogeboom et al., 2022)). We argue that such bias seriously restricts
the applicability of the models. We thus conduct a more realistic evaluation for (Hoogeboom et al.,
2022) on p(M|xcond) ∝

∑
N p(MN |N,xcond)p(N) by removing the size correlation, and our

model can implicitly learn the size distribution without prescribing it as prior p(N) as in (Hooge-
boom et al., 2022). We also construct the random baseline by randomly selecting molecules from
the training set.

D.3 CONDITIONAL GENERATION BINDING TO (EQUIVARIANT) PROTEIN TARGETS

Evaluation. The evaluation metrics are on the potentness of the generated 3D molecules justified by
(in topology) drug-likeliness (QED), synthesizability (SA), and (in geometry) binding affinity with
protein targets (HiAff: the proportion of generated molecules with higher affinity than the reference
ligand). During the evaluation, we utilize pocket information by filtering the (top 33%) closest
molecules to pocket residues after generation, where the pocket of the target protein is defined by
the residues surrounding the reference ligand within 10Å (Liu et al., 2022a; Guan et al., 2023a). The
Vina score is computed with AutoDock Vina, before docking (Vina) and after docking (VDock).
Top-10% means only the lowest 10% of scores are evaluated.
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Algorithm 2 Conditional Latent 3D Graph Diffusion Pipeline

Input: Paired 3D graph data D = {(M1,Mcond,1), ..., (MN ,Mcond,N )} =
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,
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, 3D
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ϕ
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,
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ϕ
[0]
2,C

, and diffusion model pθ[0] .

▷ Autoencoder training:
for iteration k = 1 to K do

1. Latent encoding that Z = {
(
(
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ϕ
[k−1]
1,G
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ϕ
[k−1]
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)
:
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2. Cascaded decoding that D′ = {
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)
:
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3. Updating parameters that ϕ[k]

i,U = ϕ
[k−1]
i,U − η∇ϕεrec(D,D′), i ∈ {1, 2},U ∈ {G,C}.

end for
▷ Diffusion model training:
1. Latent encoding that Z = {

(
(
−→
h

ϕ
[K]
1,G

(G),
−→
h

ϕ
[K]
1,C

(C,Mcond)),Mcond

)
: ((G, C),Mcond) ∈

D}.
2. Updating parameters that for k = 1 to K ′: θ[k] = θ[k−1] − η∇θεdiff(Z, pθ[k−1]).
▷ Sampling:
1. Sampling latent that (zG, zC)|Mcond ∼ pθ[K′] .
2. Reconstructing 3D graphM = (G, C) that G =

←−
h

ϕ
[K]
2,G

(zG), C =
←−
h

ϕ
[K]
2,C

(G,Mcond, zC).

E MORE RESULTS AND DISCUSSIONS

E.1 UNCONDITIONAL GENERATION

Unconditional generation Evaluated in alternative metrics. We also provide the results for un-
conditional generation evaluated in Hellinger distance and Wasserstein distance in Tabs. 7 & 8,
respectively. Our improvement is consistent under various metrics.

Table 7: Unconditional generation evaluation on distribution discrepancy with training data. Metrics represent
Hellinger distances (×1e-2) of certain molecular properties, between generated and observe molecules.

Methods MW ALogP PSA QED Energy

EDM 17.04(0.30) 8.37(0.20) 11.44(0.15) 6.45(0.43) 13.54(0.35)
Ours 8.29(0.19) 7.04(0.09) 9.76(0.38) 11.49(0.22) 8.25(0.24)

Table 8: Unconditional generation evaluation on distribution discrepancy with training data. Metrics represent
Wasserstein distances (×1e-2) of certain molecular properties, between generated and observe molecules.

Methods MW ALogP PSA QED Energy

EDM 176.77(9.94) 17.53(0.36) 261.21(9.75) 0.57(0.01) 28.56(0.45)
Ours 60.98(3.59) 10.64(0.31) 192.25(12.01) 1.81(0.05) 25.08(0.26)

Summary of differences across 3D-graph diffusion methods. We summarize the conceptual dif-
ference across different methods in Tab. 9. We observe that:

• Lower LD latent space, better generation quality: Shifting from EDM and GeoLDM by
reducing LD per node, better generation quality is achieved.

• Overly low LD latent space challenges its quality (in reconstruction) for generation: Shift-
ing from GeoLDM to our one-shot model by further reducing the node factor in LD, it is
difficult to achieve sufficient low reconstruction errors for for generation.
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• More qualified latent space (in reconstruction), better generation quality: Shifting from
our one-shot model to cascaded model, we achieve state-of-the-art generation results by
building the 3D graph AE with low reconstruction errors.

• More “well-structured” latent space (in semantics), better OOD generation quality: Shift-
ing from our cascaded model to self-supervised cascaded model, we achieve better OOD
conditional generation results when the homogeneity metric is higher.

Table 9: Comparison across different methods, assuming the 3D graph has N nodes, each of which is equipped
with a D-dimensional invariant feature and 3-dimensional equivariant feature. Then the feature dimension of
data is N × (D + 3), and we denote the latent dimension as D′.

Methods Topo/Geom Diffusion Latent Dimension

EDM Joint N × (D + 3)
GeoLDM Joint N × (D′ + 3)

Ours (One-Shot) Joint D′

Ours (Cascaded) Separate D′

Visualization of latent embeddings. We provided t-SNE visualization of the latent embedding
in Figs 7 & 8. We annotate data with four 2D and six 3D property values of molecules. Our
visualization shows information of 2D properties is more preserved in topological embeddings, that
data with similar properties tends to cluster. In addition, information of 3D properties is more
preserved in geometric embeddings. The observation is also confirmed by quantitative evaluation,
by computing the silhouette score of the latent embeddings w.r.t. properties.
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Figure 7: t-SNE visualization for topological and geometric latent embeddings. The colors are annotated by
four 2D molecular properties: MW, ALogP, PSA, and QED. SS: Silhouette Score (×100).

More ablation studies. We here provide additional ablation studies. The experimental results of
replacing the diffusion model with VAE are shown in Tabs. 10, 11 and 12. The experimental results
of omitting the 3D latent space are shown in Tab. 13. The experimental results of training on less
data (only 10% of the original data) are shown in Tabs. 14 & 15. And the experimental results of
one-shot AE of different variants are shown in Tab. 16.

E.2 CONDITIONAL GENERATION

Visualization of conditionally generated molecules. Please refer to Figs. 9, 12 for generated
molecules conditional on different quantum properties and protein targets.
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Figure 8: T-SNE visualization for topological and geometric latent embeddings. The colors are annotates by
six 3D molecular properties. SS: Silhouette Score (×100).

Table 10: Unconditional generation evaluation on distribution discrepancy with training data. Metrics represent
total variation distances (×1e-2) of certain molecular properties, between generated and observe molecules, the
lower the better. Reported are the mean values followed by the standard deviations in parentheses.

Methods MW ALogP PSA QED FCD Energy

VAE 64.30(22.78) 66.29(23.57) 64.25(23.37) 66.60(23.57) 2813.26(3.35) 64.83(23.02)
Diffusion 2.52(0.39) 0.91(0.10) 1.22(0.12) 1.04(0.05) 47.66(3.42) 1.87(0.18)

Table 11: Unconditional generation evaluation on distribution discrepancy with training data. Metrics represent
Hellinger distances (×1e-2) of certain molecular properties, between generated and observe molecules, the
lower the better. Reported are the mean values followed by the standard deviations in parentheses.

Methods MW ALogP PSA QED Energy

VAE 87.93(5.32) 92.94(2.81) 88.36(2.68) 97.52(1.38) 90.49(3.24)
Diffusion 8.29(0.19) 7.04(0.09) 9.76(0.38) 11.49(0.22) 8.25(0.24)

Table 12: Unconditional generation evaluation on distribution discrepancy with training data. Metrics represent
Wasserstein distances (×1e-2) of certain molecular properties, between generated and observe molecules, the
lower the better. Reported are the mean values followed by the standard deviations in parentheses.

Methods MW ALogP PSA QED Energy

VAE 1861.87(1944.16) 114.75(47.24) 1983.42(610.91) 13.67(3.91) 585.78(327.58)
Diffusion 60.98(3.59) 10.64(0.31) 192.25(12.01) 1.81(0.05) 25.08(0.26)

Table 13: Unconditional generation evaluation on distribution discrepancy with training data. Metrics represent
total variation distances (×1e-2) of certain molecular properties, between generated and observe molecules, the
lower the better. Reported are the mean values followed by the standard deviations in parentheses.

Methods MW ALogP PSA QED FCD

2D 6.06(0.85) 1.80(0.17) 2.74(0.59) 2.14(0.30) 133.04(2.63)
2D+3D 2.52(0.39) 0.91(0.10) 1.22(0.12) 1.04(0.05) 47.66(3.42)

Rationale to enforce “semantic-awareness”. Several studies demonstrate if the latent space
is aware of the specific semantic, there existing particular direction (for latent embeddings) to
strength/weaken such semantic (Kwon et al., 2022; Liu et al., 2022b). We thus conjecture that such
characteristics of the latent space could be linked to conditional generation performance: If a certain
latent direction stands out to correlate with conditional property increasing/decreasing, diffusion
models should easily capture it. We then leverage graph self-supervised learning (You et al., 2020a),
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Table 14: Unconditional generation evaluation on distribution discrepancy with test data. Metrics represent
total variation distances (×1e-2) of certain molecular properties, between generated and observe molecules,
the lower the better. Reported are the mean values followed by the standard deviations in parentheses.

Methods MW ALogP PSA QED FCD Energy

100% Data
EDM 2.89(0.38) 0.85(0.12) 2.37(0.18) 0.87(0.05) 58.04(0.39) 2.81(0.29)
Ours 2.52(0.39) 0.91(0.10) 1.22(0.12) 1.04(0.05) 47.66(3.42) 1.87(0.18)

Ours-GSSL 3.09(0.29) 1.24(0.02) 1.95(0.03) 1.23(0.19) 114.16(3.61) 1.84(0.12)

10% Data
EDM 12.33(1.70) 4.98(0.20) 5.25(1.07) 4.73(0.09) 598.83(14.18) 7.56(1.02)
Ours 11.63(1.90) 2.72(1.23) 4.06(1.02) 3.25(0.44) 401.30(31.87) 6.80(1.06)

Ours-GSSL 10.04(2.08) 3.74(0.20) 3.65(0.40) 2.24(0.24) 387.80(10.86) 5.53(0.65)

Table 15: Conditional generation on polarizability evaluation. Numbers represent the mean absolute error
between conditional and oracle-predicted properties (Satorras et al., 2021), the lower the better. Reported are
the mean values followed by the standard deviations in parentheses. GSSL: graph self-supervised learning.

Methods 100% Data 10% Data

Random 41.00
EDM 20.15 24.07
Ours 15.56 21.02

Ours-GSSL 16.43 20.49

Table 16: Reconstruction performance of AE workflows on molecule data, evaluated with topological accuracy
(Recon.), and geometric root-mean-square error (RMSE).

Methods Recon.↑ RMSE ↓
Random Init. 0% 1.86
One-Shot AE 0.80% 1.80

One-Shot AE w/ Higher Topo Weight 0.30% 1.66
One-Shot AE w/ Higher Geom Weight 0.60% 1.60

One-Shot AE w/ More Layers 0.70% 1.74
Cascaded AE 79.57% 0.69

which is an effective way to regularize the latent space with specific priors. We adopt the standard
node dropping prior. We further adopt the homogeneity ratio (Kwon et al., 2022) to quantify it. We
surprisingly find the homogeneity ratio correlates with conditional generalization performance (Sec.
4.2 result (v)).

Homogeneity ratio to quantify semantic-awareness. We follow (Kwon et al., 2022) to calculate
the homogeneity ratio to quantify semantic-awareness in the latent space. The idea is to check how
the increasing/decreasing of the conditional properties is consistent toward a certain direction in the
latent space. Specifically, given a latent embedding and its annotated property, (i) we search for its
50 nearest neighbors, (ii) calculate the angles between the center and neighbors and bin them into
10 groups, (iii) calculate the ratio (%) of property increasing within each group, and (iv) average
the values on the dataset. If there existing outstanding ratios in a specific direction, it indicates
the model can easily generate data toward the direction for the higher property, which we can it
is semantic-aware; otherwise the latent space is not aware of the specific semantic and will reach
50% homogeneity ratios in all directions. The visualization of homogeneity ratios w.r.t. all six
conditional properties are shown in Figs. 10 and 11.

Ablation studies. We include more ablation studies on conditional 3D molecule generation for
given protein structures: Tab. 17 reported the impact of graph self-supervised learning (GSSL) and
the resulting latent space regularization: topological evaluation of QED and topological plus geo-
metric evaluation of Vina were actually worse, although VDock (after Vina docking thus changing
geometries) improved. We expect that improving the cascaded AEs, especially the geometry AE,
and testing the designs on new protein targets would better manifest the benefits of GSSL. Tab. 18
reported the impact of filtering generated molecules based on protein pockets (if known): high-
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Figure 9: Visualization of molecules generated by latent 3D graph diffusion, conditional on different polariz-
ability values (α). Molecules of higher α are expected less isometrically shaped.

Figure 10: Polar plot for homogeneity ratios of α and εH, w/o and w/ GSSL. γ is calculated as the absolute
difference between maximum and median ratios.

affinity designs increased from 42% to 48% whereas topological evaluations such as QED and SA
did not see significant changes. However, when no binding site information is available, our default
latent diffusion model could uncover binding pockets (potentially novel), as observed in Fig. 12.

Table 17: Conditional generation on protein binding targets evaluation with graph self-supervised learning
(GSSL). Numbers of QED/SA & Vina scores are calculated with RDKit (Landrum, 2013) & AutoDock (Huey
et al., 2012), respectively.

Methods QED↑ SA↑ Vina↓ VDock↓ Vina (Top-10%)↓
Ours 0.60 0.71 -5.23 -6.85 -12.34

Ours-GSSL 0.46 0.73 -4.00 -8.26 -11.84
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Figure 11: Polar plot for homogeneity ratios of α, ∆ε, εH, εL, µ, Cv , w/o and w/ GSSL. γ is calculated as the
absolute difference between maximum and median ratios.

Table 18: Conditional generation on protein binding targets evaluation. Numbers of QED/SA & HiAff are
calculated with RDKit (Landrum, 2013) & AutoDock (Huey et al., 2012), respectively. Pocket Unknown:
latent diffusion without knowing the binding pocket and 3D molecules are generated for the conditional protein
structures, which applies when no pocket information is known or novel pockets are desired (as discovered and
illustrated in Fig. 12). Pocket Known: 3D molecules are still generated for the conditional protein structures
but filtered based on the known binding pockets of protein structures.

Methods QED↑ SA↑ HiAff↑
Pocket Known (Filtering molecules) 0.60 0.71 48.08%

Pocket Unknown (Default) 0.61 0.72 42.65%

Reference
Molecule

Generated
Molecules

Figure 12: Visualization of the reference molecule and molecules generated by latent 3D graph diffusion,
conditional on a protein binding target. The circled area is a potential binding pocket that is not reflected by the
reference molecule.
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