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ABSTRACT

Understanding the interactions and interplay of microorganisms is a great chal-
lenge with many applications in medical and environmental settings. In this work,
we model bacterial communities directly from their genomes using graph neural
networks (GNNs). GNNs leverage the inductive bias induced by the set nature
of bacteria, enforcing permutation equivariance and granting combinatorial gen-
eralization. We propose to learn the dynamics implicitly by directly predicting
community relative abundance profiles at steady state, thus escaping the need for
growth curves. On two real-world datasets, we show for the first time generalization
to unseen bacteria and different community structures. To investigate the prediction
results more deeply, we create a simulation for flexible data generation and analyze
effects of bacteria interaction strength, community size, and training data amount.

1 INTRODUCTION

Microorganisms are ubiquitous and essential: in our gut, they digest our food and influence our
behavior (Cani et al., 2019); in industrial plants, they treat our wastewater (Mathew et al., 2022); their
biomining ability outside of Earth was even tested on the International Space Station (Cockell et al.,
2020). Accordingly, understanding their functioning and optimizing their use are crucial challenges.

Microbial communities are driven by interactions that dictate the assembly of communities and
consequently microbial output. To comprehend the functioning of a community, it is necessary to
characterize these interactions. Ideally, one would acquire time-series data for every combination of
bacteria to obtain a complete understanding of their dynamics. However, in reality, this is not possible
because the number of experiments grows exponentially with the number of bacteria. Accordingly,
several challenges are faced when modeling bacterial interactions: (i) available data generally depict
a single time-point of a community; (ii) models of interactions should generalize to new bacteria and
communities to limit the need for additional experiments; (iii) models should be interpretable and
provide insights on the system.

The most common approach to model interactions in bacterial communities is to use generalized
Lotka-Volterra models (Gonze et al., 2018; van den Berg et al., 2022; Picot et al., 2023) (gLV, see
Sec. 2.1). However, these deterministic models fit parameters on time-series data for each bacterium
in the system: therefore, they cannot generalize to new bacteria and are limited by experimental data.
Furthermore, as they only model pairwise interactions, they may fail to recover higher-order/complex
interactions (Chang et al., 2023; Gonze et al., 2018; Picot et al., 2023). However, it should be noted
that there is a debate in the field about whether bacterial communities are shaped by simple (Friedman
et al., 2017; Goldford et al., 2018) or complex (Bairey et al., 2016; Chang et al., 2023) assembly rules.
To address the potential complexity of microbial systems, neural networks are emerging as alternatives
to gLV models, as they can capture complex interactions (Baranwal et al., 2022; Michel-Mata et al.,
2022). For instance, Baranwal et al. (2022) fit recurrent neural networks to microbial communities
of up to 26 bacteria to predict their assembly and ultimately a function of interest, namely butyrate
production. Although their results are encouraging, their models are fitted on growth trajectories and
rely on time-series, impeding their generalization to new bacteria and communities.

In this work, we model bacterial communities directly from bacterial genomes using graph neural
networks (GNNs). Our contribution can be described as follows.
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Figure 1: We propose to leverage Graph Neural Networks to implicitly learn bacterial communities’
dynamics from bacterial genomes. This method allows accurate predictions of steady-state community
profiles and generalization to larger communities and unseen bacteria.

1. We propose using GNNs as a powerful class of function approximators to model microbial
communities, such that each node in the graph represents a bacterial species and the GNN
performs regression on nodes. Through the graph structure, GNNs isolate information and
share parameters across nodes, thus granting permutation equivariance and generalization to
unseen bacteria, and enabling the prediction of compositions of microbial communities.

2. We explore learning community dynamics directly from genomes: since nucleic acids are the
universal information carrier of living organisms, this can, in principle, allow generalizing
to any unseen microorganisms.

3. We propose learning dynamics implicitly by directly predicting community relative abun-
dance profiles at steady state, thus escaping the need for growth curves.

4. We propose a simulation framework to facilitate exploratory benchmarks for models of
microbial communities using genome features.

In practice, we evaluate the ability of conventional architectures (i.e. MLPs) and GNNs to model
bacterial communities on two publicly available datasets (Friedman et al., 2017; Baranwal et al.,
2022), and further explore hypotheses in simulations. Our results show that GNNs can accurately
predict the relative abundances of bacteria in communities from their genomes for communities of
various compositions and sizes. Furthermore, GNNs can generalize to marginally bigger communities
and new bacteria not seen during training.

2 METHODS

2.1 TERMINOLOGY AND PROBLEM DEFINITION

Bacterial communities A bacterium, plural bacteria, is a unicellular microorganism. Bacteria are
classified via a taxonomy based on the DNA, the finer-grained groupings being the genus, species,
and strain. The bacteria in one strain are clones with almost identical DNA. In this work, we will
use the species designation to refer to different bacteria. A bacterial community is formed by two or
more species of bacteria that grow in the same environment. A community can be described by a set
S of bacterial species. At any time t, each bacterial species si ∈ S is present in the environment in
abundance ni(t). We define yi(t) := ni(t)/

∑
j∈[1,|S|] nj(t) as the relative abundance of bacterium

si at time t. Over time, these metrics vary according to the properties of each species (e.g. growth
rate), as well as complex inter-species interactions. Extrinsic factors may affect the amount of bacteria
in the environment, for instance, the amount of resources, but we will ignore them for simplicity as in
previous work (Bashan et al., 2016). This is especially justified in the case of experimental data from
controlled environments (van den Berg et al., 2022).

Generalized Lotka-Volterra model Our method learns to model community dynamics implicitly
through a neural network and thus makes minimal modeling assumptions. Nevertheless, to give an
intuition of how bacterial communities change over time, we now describe a simplified predictive
model.

The generalized Lotka-Volterra model (Lotka, 1920; Volterra, 1926) describes the change in abun-
dances in the environment (van den Berg et al., 2022; Gonze et al., 2018) according to

dni

dt
= ni(t) · µi ·

(
1− 1

Ki

|S|∑
j=1

ai,jnj(t)
)
, (1)

with S the set of bacterial species in the environment. For a given species si ∈ S, µi is the growth
rate and Ki represents the carrying capacity, which limits the amount of bacteria that can exist in the
environment. Finally, ai,j is an interaction factor describing the effect of species si on species sj ,
and ai,i = 1 ∀i ∈ [1, |S|].
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Genomes Bacterial genomes consist of DNA sequences organized into genes, coding for all infor-
mation related to bacterial functioning, e.g. metabolism, growth. Thus, genomes can be represented
by the presence/absence of genes or groups of genes. An example of gene grouping is their mapping
to the KEGG Orthology database to group them by molecular function (Moriya et al., 2007). For in-
stance, the genome of Anaerostipes caccae carries the gene coding for the enzyme EC 1.3.8.1, which
is a butyryl-CoA dehydrogenase belonging to the KEGG group KO K00248. Through the KEGG
Orthology database mapping, genes coding for proteins with similar functions across species have
the same annotation, and bacteria with similar molecular abilities have more similar representations.

In the context of this work, we represent genomes using feature vectors. Such vectors should have the
same dimensionality and semantics across all bacteria. To represent all bacteria in a unified way, we
consider all genes that occur in any genome in the pool of bacteria and record their presence/absence in
the feature vector. Given an ordered set of M genes (gk)Mk=0, we represent the genome of species si ∈
S as a binary indicator vector xi = (xk

i )
M
k=0 such that xk

i is one if gene gk is present in the genome of
si, and zero otherwise. Hence, each bacterium, or node, has for attributes a binary vector representing
the genome. For real data, the representation is taken from geanome annotations and for simulations
the representation is abstracted to contain information on bacterial growth (see section 2.4).

Task Our aim is to predict the composition of bacterial communities C ⊆ S at steady state from
the genomes of the mixed bacteria. More specifically, we cast this task as a supervised learning
problem. Assuming an equilibrium is reached at time-step T , our learning target is the observed
relative abundance of each bacterial species si ∈ C at equilibrium: y(T ) = (y1(T ), . . . , y|C|(T )).
Our inputs are the feature vector representation of genomes of bacteria present in the mixture
xi ∀i ∈ [1, |C|]. To compare architectures with fixed length input, namely MLPS, we add null feature
vectors xi = (0)Mk=0 for the bacteria absent from the mix.

2.2 MODELS

Our method learns an implicit model of the dynamics of a bacterial community. Instead of estimating
the parameters of a differential equation, which can then be solved to retrieve an equilibrium, we
apply a flexible class of function approximators and directly regress the solution at equilibrium.
MLPs constitute a simple baseline, as they can in principle approximate arbitrary functions (Cybenko,
1989). As most commonly used neural network architectures, MLPs assume that the position of
each input carries a semantic value. The prediction of bacterial community dynamics, however, has
an interesting property, namely permutation equivariance. This is due to the fact that a community
is a set of species, and the predictions of the model should not be affected by the order in which
the species are presented. For this reason, we propose to leverage Graph Neural Networks (GNNs)
(Scarselli et al., 2009; Gilmer et al., 2017; Kipf & Welling, 2017; Battaglia et al., 2018) to exploit
this particular inductive bias.

GNNs can be formalized as Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017). A
graph is described by the tuple G = (V,E), where V denotes the set of vertices and E the edges. The
neighborhood of a vertex, i.e. node, v ∈ V is described by N (v) = {u|{u, v} ∈ E}. The attribute
of each node is given by xi for i ∈ [1, |V |]. In general, the attribute xi of each node in the graph is
updated as follows in each message passing step:

e(i,j) = ge
(
xi,xj

)
(2)

x′
i = gv

(
xi, aggrj∈N (i)

(
e(i,j)

))
. (3)

where ge and gv are arbitrary functions used for the edge and node computations respectively. The
permutation-equivariant aggregation function is given by aggr. Depending on the choice of the node
and edge update rules, we can recover different GNN architectures. In this work, we investigate
two architectures: a spatial-convolutional GNN using the GraphSAGE implementation (Hamilton
et al., 2017), and a slight variation of the message passing GNN architecture in Kipf et al. (2020),
which we will refer to as MPGNN. The GATv2 (Veličković et al., 2018; Brody et al., 2022) and GCNII
(Kipf & Welling, 2017; Chen et al., 2020) architectures were also tested but underperform the above
models; see results in the Appendix A and Table S3. Given the lack of prior knowledge about the
underlying graph topology, we use fully connected graphs such that each node is updated based
on all other nodes within one message-passing step. The information propagation over k-hops can
capture k-order relations between entities: the first message passing is limited to the neighboring
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node attributes (pairwise interactions) and the next ones propagate the interactions of neighbors
(bacterium ni receives information from nj and how it has been affected by others).

For GraphSAGE, the edge computation e(i,j) returns the attributes of neighboring nodes j ∈ N (i),
i.e. ge

(
xi,xj

)
= xj . The node update function gv is given by: x′

i = W1xi +W2 ·meanj∈N (i) xj ,
where W1 and W2 are learnable parameters. The mean is used as the aggregation function. By using k
graph convolutional layers after one another, we can achieve k-hop information propagation. Finally,
we have an additional linear layer at the end with sigmoid activation for the node attribute readouts.

In the MPGNN, we update the node attributes as x′
i = gv

(
xi,meanj∈N (i)(ge(xi,xj))

)
. Here, gv

and ge are MLPs with l linear layers, each followed by a non-linearity, e.g. ReLU activation. Layer
normalization is applied in the final layer. For the mapping from the node attributes to the outputs, we
also have a linear layer with sigmoid activation. For MPGNN, k message-passing steps are equivalent
to the k-hop information propagation we get by stacking k GraphSAGE layers. We treat k as a
hyperparameter for both MPGNN and GraphSAGE. For MPGNN, the number and size of the hidden
layers of ge and gv are both tuned as hyperparameters, more details are given in Table S2.

Models were trained with the Adam optimizer (Kingma & Ba, 2015) to minimize the Mean Squared
Error (MSE). We use the coefficient of determination R2 to assess model performance on test set,
with R2 = 1−

∑
i∈N (xi−x̂i)∑
i∈N (xi−x̂) . To allow calculating R2 across communities, we center values with

each community such that x̂ = 0. We compute R2 on 100 bootstraps of communities and report
its average and 95% confidence interval; R2 = 1 correspond to a perfect model, R2 ≤ 0 means
the model is worse than random (i.e. predicting the mean). Implementation details, data splits, and
reported metrics are detailed in Appendix A.

2.3 PUBLICLY AVAILABLE REAL DATA

We use two publicly available datasets independently recorded by separate laboratories; we describe
them here and provide more details in Appendix A.2. Networks were trained independently on each.

FRIEDMAN2017 Experimental data from Friedman et al. (2017) consists of the relative abundances
of 2, 3, 7, and 8-bacteria communities (Fig. S3, Fig. S4, and Fig. S5). The dataset contains 93 samples
with 2 to 15 replicates each. Raw data was kindly provided by Friedman et al. (2017) and is now
available on our project webpage https://sites.google.com/view/microbegnn.

BARANWALCLARK2022 The dataset is published by Baranwal et al. (2022), with certain samples
originally produced by Clark et al. (2021). The dataset is composed of relative abundances of 459
samples of 2 to 26-bacteria communities, each replicated 1 to 9 times. When testing generalization
to excluded bacteria (see Sec. 3.3), we do not attempt to generalize to (i) Holdemanella biformis
(HB) as the samples containing this bacterium are only present in two community sizes (2 and 26),
resulting in a small test set, and (ii) Coprococcus comes (CC), Eubacterium rectale (ER), Roseburia
intestinalis (RI), and Faecalibacterium praustnitzii (FP) due to their over-representation in samples,
and so the resulting small training sets.

Genomes of bacterial species were downloaded from NCBI (Sayers et al., 2022) or the ATCC Genome
Portal (Yarmosh et al., 2022), annotated with the NCBI prokaryotic genome annotation pipeline
Tatusova et al. (2016), and genes were mapped to the KEGG database to obtain functional groups
(Moriya et al., 2007). When a specific strain’s genome was unavailable, the genome of the closest
type strain was used instead. Details on strain genomes are provided in Supplementary Table S4. We
used the presence/absence of each KO group as input for fitting models; KO annotations present in
all genomes in a dataset were excluded.

2.4 MODELING BACTERIAL COMMUNITIES IN SIMULATION

We design a simulator for the growth of bacterial communities based on the generalized Lotka-
Volterra model (see Sec. 2.1), to control data parameters and specifically assess the application of
GNNs to bacterial communities. This simulator, as illustrated in Fig. 2, is not meant to produce a
faithful representation of real communities, but rather to provide a generative procedure that captures
certain challenges in the data, e.g. large dimensionality, while controlling other characteristics, e.g.
sample size.
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Input: simulated genome
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Figure 2: Simulation of bacterial community growth dynamics and genomes. For each bacterium
i in the community, we randomly draw its growth parameters: the growth rate µi, the carrying
capacity Ki, and its interaction factors ai,.. From these parameters, we calculate the abundances of
bacteria at equilibrium according to the generalized Lotka-Volterra equations. We use the relative
abundances of bacteria at equilibrium as a learning target. In parallel, we simulate genomes by
creating binary vectors that encode for the growth parameters. For that, we first approximate two
vectors per bacterium of ndim dimensions: one to determine the effect of bacterium i on others, νsi ,
and the other to determine the effect of other bacteria on i, νri . For bacteria i and j, we assume that
the effect of i on j is expressed as ai,j = νsi · νrj . The approximation is performed by minimizing the
distance between the real matrix of interactions and the one generated by the approximated vectors.
We generate the binary encoding of the parameters µi, Ki, and the values in νri and νsi . We also
randomly draw a [0− 1] vector to add noise to genomes. We use these “genomes” as input features
to predict the relative abundances of bacteria at equilibrium.

Bacterial growth The growth of each bacterium in the community was simulated using the general-
ized Lotka-Volterra equation (Eq. 1), with: ln(µi) ∼ N (1, 0.52) clipped to [0.5, 2], Ki ∼ U(5, 15),
and ai,j ∼ Laplace(0, 0.22) clipped to [−2, 2], ∀i, j ∈ [1, |S|]. The target relative abundance
was calculated by simulating community growth until equilibrium: ni(0) = 10 ∀i ∈ [1, |S|] and
equilibrium was reached when dni/dt ≤ 10−3 ∀i ∈ [1, |S|] (Fig. S1). Theoretically, this is similar
to solving the roots of Eq. 1 which implies that steady-states depend on the parameters Ki and
ai,j ∀i, j ∈ [1, |S|]. Given our set of parameters, all simulated communities were stable.

Bacterial genomes Bacterial genomes are generated to encode the simulated growth parameters
such that there exists an approximately bijective mapping from genomes to parameters. We achieve
this by rescaling parameters to [0, 1], discretizing them, and performing a simple binary encoding to
ng bits as gbin = bin

(
round

(
(g − gmin)/(gmax − gmin) · (2ng − 1)

))
. Although the encoding is

not representative of any biological process, the mapping can be computed efficiently, provides a
compact representation, and can be inverted up to discretization. This method is applied directly to
the parameters µ and K, resulting in two binary vectors of size ng .

Encoding the interaction factors ai,j into the genomes of each bacteria requires an additional step.
Given a bacterial community S, two intermediate ndim-dimensional vectors for each bacterium si ∈ S
are needed: one determining its effect on interaction partners, νsi ∈ Rn, and the other determining
how it is affected by others, νri ∈ Rn. These vectors should contain sufficient information, such
that the influence of bacterium si on sj (encoded in ai,j) can be retrieved from νsi and νrj . For
each pair of bacteria (si, sj) ∈ S2, we simply reconstruct interactions through inner products:
âi,j = νsi · νrj . We treat intermediate vectors as learnable parameters, and optimize them through
gradient descent by minimizing the distance of the reconstructed interaction matrix from its ground
truth: J =

∑
i∈[1,|S|]

∑
j∈[1,|S|](âi,j−ai,j)

2. The ndim vector coordinates for both vectors are finally
encoded in the genomes as described above for µ and K.

Here, we use ng = 7 for all parameters, ndim = 20 for the 25 simulated bacteria, and add 5 %
of random genes. Empirically, we verify that µ, K, and νs, νr can be accurately recovered from
simulated genomes.

3 EXPERIMENTS AND RESULTS

The general goal of this work is to train and evaluate neural models for the dynamics of bacterial com-
munities, directly from their genomes. On real data (FRIEDMAN2017 and BARANWALCLARK2022),
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Figure 3: Accuracy of MLP and GNN models on predictions of in-distribution and bigger
bacterial communities. Average R2 values for predictions on in-distribution test sets with 95%
confidence interval (R2 = 1: perfect model, R2 ≤ 0: random model). The ensemble predictions
across 5 model seeds were used and 5-folds CV was additionally used for A. B: Models were trained
on communities of constrained sizes and tested on communities of distinct sizes.

we first investigate whether in-distribution predictions of unseen bacterial communities with known
bacteria are possible. Then, we evaluate the generalization of learned models to (i) larger commu-
nities and (ii) unseen bacteria with respect to those used for training. Finally, due to the scarcity
of real data, we leverage our proposed simulator to produce a dense and controllable distribution
over communities: by retraining models on simulated data, we are able to validate whether trends
emerging in real data can be explained in a simplified setting.

3.1 CAN WE MODEL REAL COMMUNITIES? — YES

We first set out to evaluate the general feasibility of predicting bacterial community profiles from
bacterial genomes using GNNs (Fig. 3 A-B). Due to the set nature of communities, their dynamics
are inherently permutation equivariant. This known property of the target function might however not
be captured by universal function approximators such as MLPs. To confirm this, we train both GNNs
and MLPs on the FRIEDMAN2017 dataset. When shuffling the order of bacteria within the train
and test communities, the accuracy of MLPs drops significantly, clearly showing that the dynamics
learned by MLPs are not equivariant to permutations (Fig. 3 A), and thus fundamentally incorrect.
Both MPGNN and GraphSAGE provide accurate predictions. After some parameter tuning (see
Supplementary Table S2), our best model predicts unseen bacterial mixes with a goodness of fit
R2 = 0.8088 and R2 = 0.7656, for FRIEDMAN2017 and BARANWALCLARK2022 respectively
(Fig. 3 A).

3.2 CAN WE GENERALIZE TO LARGER COMMUNITIES? — MARGINALLY.
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0.0

0.2

0.4

0.6

Pr
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MSE = 0.0161

Friedman2017 Bacteria
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Pch
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Pf
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Figure 4: Prediction of larger commu-
nities in FRIEDMAN2017. Each point
represents a bacterium in a community of
size ≥ 7 bacteria; x-axis: average of the
observed rel. abundance; y-axis: model
predictions. Models trained on communi-
ties of size ≤ 3.

We assess the ability of the models to generalize to com-
munities of larger or smaller sizes. The motivation in
the former case is to transfer knowledge from lab experi-
ments on smaller communities to larger ones observed in
the wild. In the latter case, the motivation is to evaluate
whether one can learn a model from a large dataset of
observed samples, and infer a model of bacterial inter-
actions from it to monitor bacteria in the lab.

We train GNNs on communities with 2- and 3-bacteria
and predict those with 7- and 8-bacteria from the FRIED-
MAN2017 set. For the BARANWALCLARK2022 dataset,
we train either on communities with 2- to 15- or 2- to 22-
bacteria and predict the 23- to 26-bacteria communities
(Fig. 3 B). The best ensemble models for each dataset
have an accuracy of R2 = 0.5525, R2 = 0.2606, and
R2 = 0.4486, respectively (Fig. 4 and Fig. 5). For
BARANWALCLARK2022, including communities of sizes closer to test sizes greatly improves accu-
racy, suggesting that interactions may be different in larger communities, hence limiting the models’
ability to generalize; we explore this hypothesis on simulated data in Sec. 2.4. This may explain why
the models wrongly predict the growth of Pseudomonas citronellolis (Pci) and Serratia marcescens
(Sm) in the FRIEDMAN2017 dataset (Fig. 4). Although in the observed communities, these bacteria
do not survive, the models predict a significant abundance.
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Figure 6: Accuracy of GNN models on predictions of bacterial communities containing unseen
bacteria. For each bacterium, communities containing the bacterium are used for testing, and not
for training. Average R2 values on the test set are shown with 95% confidence interval (calculated
on 100 sample bootstraps). A-B: Results and phylogenetic tree for FRIEDMAN2017. C: Results for
BARANWALCLARK2022.

For the BARANWALCLARK2022 data, predictions on Anaerostipes caccae (AC) are the less accurate:
the relative abundance of the bacterium is largely overestimated with an MSE = 0.0185 compared to
MSE = 0.0006 for the other bacteria (Fig. 5). This difficulty to generalize to AC is consistent across
our results (see Sec. 3.3). Training on larger communities to predict smaller ones does not achieve
good results with all R2 lower than zero, indicating worse accuracy than predicting the average
(Fig. 3 B). Empirically, our results suggest that generalization to smaller communities poses different
challenges with respect to generalization to larger communities.

3.3 CAN WE GENERALIZE TO UNKNOWN BACTERIA? — SORT OF.
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Figure 5: Prediction of larger
communities in BARANWAL-
CLARK2022. Models trained
on communities of size ≤ 22
bacteria, predictions for ≥ 23.

Generalization to unseen bacteria is a challenging task that to our
knowledge has not yet been performed for community growth
dynamics. If successful, this suggests that models are able to
extract relevant information from genomes that likely relate to
biological processes causing the observed relative abundance of
a bacterium in a community. This could open new possibilities,
such as anticipating the effect of new pathogens on microbiomes
or creating communities in an informed way by forecasting
which bacteria is most likely to serve a desired purpose.

In practice, for every bacterium si ∈ S we filter the training set
to remove all communities that contain si, and use all commu-
nities that contain si for testing. As no parameter tuning was
performed, we do not use a validation set; results are shown for
the test set directly.

The results vary depending on which species was left out as an
unseen bacterium (Fig. 6). For instance, reasonable accuracies were obtained on the FRIEDMAN2017
dataset for predicting unseen bacteria Enterobacter aerogenes (Ea) and Sm (Fig. 6 A and Fig. S7 C;
R2 = 0.5528 and R2 = 0.5796, respectively). Interestingly, these two bacteria were the most distant
to the rest, being the only non-Pseudomonas (Fig. 6 B). A hypothesis is that they do not interact much
with the Pseudomonas, or that they both interact in a similar manner. In line with this hypothesis,
for Pseudomonas, growing with either Sm or Ea led to resembling communities, making it possible
for the knowledge gained from the genome of one non-Pseudomonas to be accurately transferred
to the other. This hypothesis is supported by the comparable relative abundances of Pseudomonas
in 2- and 3-bacteria communities with Sm or Ea (Fig. S7 A). Predictions of communities with
Pseudomonas chlororaphis (Pch) achieve the lowest accuracy, in fact lower than predicting the mean
relative abundance for both types of models (Fig. 6 A, R2 < 0). The genome of this species is not
available on public databases, so the genome of the closest species had to be used instead. Hence,
an uncontrolled error was introduced in the data. Furthermore, the substitute genome belongs to the
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Figure 7: Evaluation of prediction accuracy according to community features on simulated data.
Bacterial communities were simulated following the procedure described in Sec. 2.4 with varying
parameters. MLP∗ receives each bacterium at a fixed input location. Bacteria not present have 0-
vectors. MLP is a version with shuffled input at training time. A: The edge density, i.e. the probability
of an edge, is varied between 0.1 and 0.6. B: The edge density is set to 0.2 except for 2 bacteria with an
edge density of 0.8 to mimic keystone bacteria. Each keystone and five random bacteria are excluded
from training as in Sec. 3.3, results are shown for the test set including communities with these
bacteria. C: The training set is limited to communities of sizes below 10, 15, 25 bacteria; the test set
contains communities of sizes 16 to 25. The number of training communities is reported below (size).

same species as Pseudomonas aurantiaca (Pa), which has a different phenotype than Pch in cultures,
leading to different relative abundances in communities (Fig. S7 B). Nonetheless, models generalize
better to Pa (Fig. 6 A, R2 = 0.1279 for GraphSAGE). Hence, we can hypothesize that the models
learn well from other Pseudomonas genomes, but cannot generalize well to Pch due to its substitute
genome.

The results obtained on BARANWALCLARK2022 are superior to those on FRIEDMAN2017 data
(Fig. 6 C). This could be attributed to the larger dataset size, which includes more bacteria and
community sizes, thus providing a better resolution of the feature space (a wider range of genomes
to learn from) and output space (more examples of co-cultures due to the increased number of
communities). Nevertheless, we report significantly lower accuracy when generalizing to communities
including AC. This bacterium is not particularly phylogenetically distant from others (Fig. S6), but
is the only one that can produce butyrate from lactate and is a driver of butyrate production (Clark
et al., 2021). Empirically, it inhibits the growth of CC, CH, BO, BT, BU, BC, and BY in communities
of 11- to 13-bacteria while promoting the growth of CA and DL (Fig. S8 A; see the abbreviations
in Supplementary Table S4). However, these effects are less clear in communities of 23- to 25-
bacteria (Fig. S8 B). The other bacterium to which models can transfer less accurately is Bacteroides
thetaiotaomicron (BT; Fig. 6 C). This bacterium is considered a keystone of the human gut microbiota,
meaning that it drives community assembly (Banerjee et al., 2018). Consequently, communities
including such a bacterium may be harder to predict due to the changes in interactions compared
to communities without the bacterium, which explains the lower accuracy of the GNNs when
generalizing to communities with BT. Actinobacteria, the phylum to which AC belongs, are also
considered a keystone of the human microbiota (Banerjee et al., 2018). Although AC itself has not
been reported to be a keystone, our results, together with the observation of butyrate production from
Clark et al. (2021), suggests that it may be one. We explored this hypothesis on simulated data in
Sec. 2.4.

Our results suggest that GNNs can generalize predictions of bacterial relative abundances to commu-
nities including unseen bacteria. In practice, the performance of models may still be limited due to
noise in inputs (genomes) and output resolution (similar genomes but different phenotypes).

3.4 VALIDATING SOURCES OF MODEL INACCURACIES THROUGH SIMULATION

Due to the scarcity and lack of control of real data, we take advantage of the simulator introduced
in Sec. 2.4 to assess whether model inaccuracies originate from community-specific features. We
remark that these experiments are carried out on simulated data, generated through a simplified
process, and therefore results in this section are meant to undergo further validation in the real world.

First, we investigate the effect of the density of community interactions on the performance of
prediction models. We simulate communities with varying amount of interactions between bacteria
by controlling the probability of an edge in the interaction matrix. We observe that, as we simulate
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denser interactions in the train and test sets, the GNN accuracies stay stable on average (Fig. 7 A).
For the MLP, we show two versions. MLP∗ receives input bacteria in a fixed order. Thus, it can solely
rely on positional information, and avoid extracting information from the genome. Consequently,
it cannot generalize to unseen bacteria (Fig. 7 B). This MLP∗ shows the prediction performance
that could be obtained by overfitting to each bacterium. The second version, marked MLP, receives
bacteria in a shuffled order as input in training and testing. It is forced to extract all information
from the genomes, but is evidently unable to make useful predictions.

Next, we test the ability of the models to generalize to unseen keystone bacteria, which could explain
the drop in accuracy for certain species in Fig. 6. For that, we increase the edge density for two
specific bacteria by increasing the probability of an edge to exist from 0.2 to 0.8 for these nodes
only. We simulate communities, exclude each keystone from training, and predict the growth for
communities including them as in Sec. 3.3. We perform the same procedure on five non-keystone
bacteria for comparison. However, the results do not validate our hypothesis (Fig. 7 B). This implies
that GNNs are, in principle, capable of generalizing well to keystone bacteria and that other factors
may explain the lack of generalization to AC and its communities in BARANWALCLARK2022. In
Appendix B and Supplementary Fig. S10, we additionally study the aspect of scaling the number of
bacterial species across all communities, while training on a sufficient number of communities. We
find that increasing the diversity of bacteria seen during training helps generalize to unseen species,
while maintaining good accuracy for seen ones.

Finally, we explore the impact of community sizes in training versus testing sets. For that, we initially
assess whether we can reproduce the decrease in accuracy when generalizing to larger communities
with our simulations (see Fig. 3 B). Crucially, while in real data higher-order interactions can drive
the drop in accuracy on the test sets, this effect cannot be verified with our simulated data, as it
includes only pairwise interactions. In fact, we see a decrease in accuracy when the size of the
training communities is reduced compared to the test communities (Fig. 7 C). Specifically, models
trained on samples with communities of up to 10 bacteria cannot accurately predict communities
of 16 to 25 bacteria (R2 < 0). Furthermore, we find that, in simulation, relative abundances are
systematically over-estimated in predictions with larger communities. This is likely a consequence of
the higher relative abundances in the smaller communities of the training set, indicating a tendency to
overfit to training communities. It also suggests that in real data where over- and under-estimations
are observed, other factors must influence the lack of generalization. Moreover, we report a trend
of higher accuracy when a larger number of communities is used for training, while controlling for
community size. We investigate this effect in more detail in Appendix B and Supplementary Fig. S9.
We show that our approach can scale to more complex microbial networks of up to 200 bacterial
species when provided with sufficient samples for training.

Overall, our results suggest that it is crucial to ensure that sufficient data is gathered along three axes:
(1) a sufficient number of bacterial species, (2) a sufficient number of community samples, and (3)
communities of size similar to target.

4 CONCLUSION

Our work sets the stage for the application of GNNs to microbial communities. These models
can implicitly learn growth dynamics, and empirically outperform MLPs in terms of accuracy
and generalization. Empirically, they outperform MLPs in terms of accuracy and generalization
capabilities. Altogether, GNNs hold great potential for further applications. Furthermore, our results
show that genomes are sufficient to learn an accurate model that can generalize predictions beyond
observed communities. To our knowledge, this is the first attempt at predicting microbial community
profiles from genomes directly. Recently, Lam et al. (2020) employed genome-scale metabolic
models (GEMs) (van den Berg et al., 2022) adapted for microbial communities (Machado et al.,
2018) to predict pairwise bacterial interactions. Hence, a potential next step would be to apply GNNs
to such GEMs. Finally, our simulations provide a flexible data generation procedure, which can be
used to benchmark models for bacterial growth from genomes. In the future, the simulation can
be further improved to account for higher-order interactions and potentially environmental factors.
Nonetheless, we hope that its accessibility will encourage the explainable ML community to develop
tools to interpret GNN models of bacterial communities. As new properties emerge from microbial
communities, scientific discoveries may arise from interactions between our fields.
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REPRODUCIBILITY STATEMENT

We will make our code as well as the trained models available on our project webpage https:
//sites.google.com/view/microbegnn such that all figures presented in the paper can
be reproduced. The real-world datasets used in our work are open-source for which we thank the
authors of Friedman et al. (2017) and Baranwal et al. (2022). The datasets can also be found on our
webpage. Implementation details and training parameters are detailed in Appendix A.
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Appendix

A IMPLEMENTATION DETAILS

The datasets contain replicates for some of the settings. To make evaluation simple, we average the
results of replicates when included in the validation or test sets. Cross-validation (CV) was performed
on 5 train/validation/test data splits with 5 model initialization seeds for hyperparameter tuning (see
Supplementary Table S2).

We chose the hyperparameter combination resulting in the lowest validation error. Consequently,
we used 2 convolutional layers/message-passing steps with 50 and 100 hidden features for FRIED-
MAN2017 and BARANWALCLARK2022 data, respectively. Note that for all architectures, we first
have an embedding layer that maps the input genomes to the hidden feature size. For predictions on
the test sets, we show each of the 3-models and the average of the 3-models ensemble on Fig. 3 and
Fig. 6. Otherwise, predictions on test sets correspond to the average of the 3-models ensemble. As we
assume no prior knowledge of bacterial interactions, our graphs are fully connected. For the MPGNN,
we used single layer MLPs for the node and edge update functions gv and ge (see Eq. 3). These
layers were followed by layer normalization and a ReLU activation. For all architectures, output
predictions were made with a linear layer followed by the sigmoid function to constrain values into
[0, 1]. Note that applying the SoftMax instead of sigmoid did not improve models (Supplementary
Table S2). We trained the spatial-convolution GNN with GraphSAGE layers implemented in the
PyTorch Geometric Python package (Fey & Lenssen, 2019) with mean aggregation. We also apply
ReLU activation after each GraphSAGE layer and layer normalization is applied before the activation
in the final layer.

A.1 MODEL TRAINING

For all models, the batch size was 16, training samples were shuffled for making batches, and the
learning rate was set to 0.005 for the Adam optimizer (Kingma & Ba, 2015).

Cross-validation on real data For cross-validation (Fig. 3 A), data were split into 80/10/10 %
train/validation/test sets; five splits were created. We trained models for 500 epochs, with the Adam
optimizer to minimize the Mean Squarred Error (MSE); five seeds per model were used. The MSE
on the validation set was used to select parameters; we assessed the number of layers, the number of
hidden features, whether to train on the average of replicates or each replicate, and whether to apply a
SoftMax instead of Sigmoid function after making predictions. Additionally, for the FRIEDMAN2017
dataset, the position of bacteria in the community was shuffled for predictions on the test set for Fig. 3.
For the BARANWALCLARK2022 dataset, CV was performed on non-shuffled samples. Models’
performances according to parameters are given in Supplementary Table S2.

Fitting of models on real data When no cross-validation was performed, data were split according
to community size (Fig. 3 B) or composition (Fig. 6) and no validation set was used. Models were
trained for 500 epochs, five seeds were used.

Fitting of models on simulated data We simulated a community of 25 bacteria as described in
Sec. 2.4. Samples were created by randomly drawing a subset of bacteria and calculating their relative
abundance at equilibrium, also as described in Sec. 2.4. Unless mentioned (Fig. 7 C), 100 samples
were generated for training, 10 for validation, and 10 for testing. Models were trained for 1000
epochs; results on test sets are given in Supplementary Table S5.

A.2 REAL DATASETS

Friedman2017 The first set of data was published by Friedman et al. (2017). Experimental data
consisted of the relative abundances of bacteria in 2, 3, 7, and 8-bacteria communities at the beginning
of the experiment and after 5 days of daily passage, i.e. a fraction of the culture is re-inoculated into
fresh growth media. For each mix of bacteria, several initial inoculum ratios were used; 248 samples
were performed in duplicates, and 25 samples were not replicated.

13



Under review as a conference paper at ICLR 2024

Growth curves for mono-cultures are shown in Supplementary Fig. S3, and relative abundances
of bacteria in co-cultures are shown in Supplementary Fig. S4 and Supplementary Fig. S5. Given
our task to predict stable states of bacterial communities from genomes, we exclude data from
mono-cultures and treat mixes started from different inoculum ratios as one sample. Hence, the
final dataset consisted of 93 samples with 2 to 15 replicates each. Samples were randomly split in
80/10/10 % train/validation/test sets for cross-validation (CV). We perform experiments in which we
exclude 1 bacterium at a time. For those, bacterial communities of 7- and 8-bacteria were excluded
from training and testing, so only samples of 2- and 3-bacteria communities were used. For the
experiments testing for generalization to bigger communities, training was performed on 2- and
3-bacteria communities and testing on 7- and 8-bacteria communities.

Raw experimental data was kindly provided by Friedman et al. (2017) and is now available on our
project website: https://sites.google.com/view/microbegnn.

BaranwalClark2022 The second dataset was published by Baranwal et al. (2022), with certain
samples originally produced by Clark et al. (2021). From the initial 1,850 replicates, we removed 258
with records of contamination or “Low Abundance”, 39 with an OD600 ≤ 0.1, and 593 which had
more than 0.1 % of non-inoculated bacteria – despite not being recorded as contaminated by authors,
resulting in 960 replicates from 459 samples. Each sample was replicated 1 to 9 times.

CV was performed on random 80/10/10 % train/validation/test splits. We carefully looked at the
community size representation when excluding each bacterium, and removed samples from the test set
if their community size had not been seen during training or only for a few samples (Supplementary
Table S1). In particular, we did not attempt to generalize to (i) Holdemanella biformis (HB) as only
2- and 26-bacteria communities had been produced with this bacterium, making up a very small test
set, and (ii) Coprococcus comes (CC), Eubacterium rectale (ER), Roseburia intestinalis (RI), and
Faecalibacterium praustnitzii (FP) due to their over-representation in samples, and so the resulting
small training sets.

A.3 ADDITIONAL ARCHITECTURES

In addition to the MPGNN and GraphSAGE architectures, we also tested improved versions of the
Graph Attention (Veličković et al., 2018; Brody et al., 2022) (GATII) and Graph Convolution (Kipf
& Welling, 2017; Chen et al., 2020) (GCNv2) architectures. We fitted models on the five CV folds
of real data, BARANWALCLARK2022 and FRIEDMAN2017, as for the MPGNN and GraphSAGE
models. The average coefficient of determinations (R2) of the ensemble models fitted on each dataset,
with a 95% confidence interval, and calculated on 100 bootstraps of test samples, are reported in the
Supplementary Table S3.

B ADDITIONAL RESULTS

B.1 SCALABITY OF THE METHOD

We evaluate the scalability of our approach on datasets made of communities of sizes 5-20, 12-25,
25-100, and 50-200 (Supplementary Fig. S9). Note that these communities contain 20, 50, 100 and
200 different bacteria species respectively.

We find that models trained on as few as 50 samples can already generalize in-distribution. Here, in-
distribution refers to communities of the same size as seen during training, but with new combinations
of the bacterial species in the data. Models trained on larger communities benefit from increasing
the number of samples for training. For instance, in the experiment with a set of 200 bacteria and
community sizes of 50 to 200 bacteria, we see a jump in generalization performance when we increase
the number of samples in the training set from 50 to 250. With only 50 samples, the network doesn’t
see enough combinations of bacteria in communities to generalize to unseen combinations at test
time. However, as we further increase the sample size from 250 to 500, we only see a marginal
improvement. This indicates that for a training set containing 200 species, the combinations seen in
250 samples are seemingly adequate for a GNN to generalize.

Given the jump in complexity of communities when increasing community sizes, overfitting with
smaller communities and lower generalization for larger ones is expected.
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B.2 DIVERSITY

Finally, we assessed the effect of out-of-distribution bacteria on models’ predictions. For that, we
fixed (i) a set of 20 baseline bacteria and (ii) a set of 10 bacteria used only in test samples. Training
samples consisted of the 20 baseline bacteria, incrementally augmented with more bacteria to create
training sets of bacterial diversity, i.e. number of different bacteria, of 20, 50, and 100. The test
set comprised communities made of the baseline bacteria plus one test bacterium. We gathered
predictions on baseline bacteria, i.e. “seen” during training, and out-of-distribution, i.e. “unseen”,
and calculated the R2 (goodness of fit) for each type across all test samples. We show results with
one unseen bacterium in test communities in the Supplementary Fig. S10. In this case, we see that a
higher bacterial diversity seen during training time increases the generalization performance on the
unseen bacteria at test time for the MPGNN. Notably, we observe an overall high accuracy of MPGNN
on seen bacteria despite including an unseen one to the community, indicating strong robustness of
the learnt GNN models.
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Figure S1: Growth curves for a simulated bacterial community of 5 members. The grey dotted
line indicates the time point considered for equilibrium. In practice, the relative abundances (B) at
this point would be used as the target for fitting models.
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Figure S2: Recovery of growth parameters from genomes. Most parameters can be reconstructed
to high accuracy. Approximations errors compound in the reconstructed interaction matrix, but
interaction coefficients can still be reconstructed with an coefficient of determination R2 > 0.7.
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Figure S4: Relative abundances of bacteria in co-cultures from Friedman et al. (2017). Each
line corresponds to a replicate; cultures were started with 0.95 / 0.05 relative abundances of each
bacterium.
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Figure S5: Relative abundances of bacteria in 3-bacteria cultures from Friedman et al. (2017).
Each line corresponds to a replicate; cultures were started with different relative abundance ratios.
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Figure S6: Phylogenetic tree of bacteria used in the BaranwalClark2022 data set (from Clark
et al. (2021)). Tree branches are colored by phylum and underlined bacteria are butyrate producers.
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Figure S7: Comparison of the effect of two bacteria on the relative abundances of others in 2-
and 3-bacteria cultures, in the Friedman2017 data set. For each bacterium on the x and y-axis,
communities were matched by co-partners, and the average relative abundances of the bacteria are
shown, colored by bacteria. Suppose the x- and y-axis bacteria had similar interaction effects with
their partners in the matched communities. In that case, the relative abundances of the other bacteria
should be similar and so, close to the x = y grey dotted line. A/ The two non-Pseudomonas resulted
in resembling communities when grown with Pseudomonas, with a mean squared distance between
relative abundances in matching communities of 0.0078. B/ Despite being the phylogenetically
closest strains, Pch and Pa resulted in different communities C-D/ Predicted versus observed relative
abundances when generalizing to Sm, Pa, and Pch. The average relative abundances across replicates
are shown for the observed values.
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Figure S8: Comparison of relative abundances of bacteria when grown in communities contain-
ing or not Anaerostipes caccae (AC). Due to the scale of relative abundances according to the size
of the community, we show as examples results for communities of A/ 11 to 13-bacteria and B/ 22 to
25-bacteria.
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Figure S9: Scalability of GNNs to larger communities. We simulate sets of n = 20, 50, 100, and
200 bacteria, and draw communities of size n/4 to 0.9 ∗ n for training and testing. All bateria in
the test-sets have been observed. Models are trained on increasing number of samples, showing an
increase in accuracy throughout. The MLP gets the bacteria in a fixed order. For this reason, we
observe good performance with larger training set sizes.
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Figure S10: Generalization of GNNs to unseen bacteria improves with higher diversity seen
during training. We simulate sets of n = 20, 50 and 200 bacteria, and draw communities of size
n/4 to 0.9 ∗ n for training. At test time, we introduce a new bacteria that has not been seen before
and test the generalization capabilities of our models on communities including this new bacterium
that was not seen at training time. The test sets are shared across models, and so all bacteria, except
the new one, are from the smallest set of 20 bacteria. We use 10,000 samples for training all models.
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Table S1: Species and community sizes excluded from the test sets for results in 3.3.
Species Community sizes excluded from test set

CH 24-26
BT 24-26
DP 23-26
BL 22-26
BH 22-26
CG 22-26
EL 22-26
BF 22-26
PJ 22-26
BY 22-26
BA 18-26
DL 18-26
BP 18-26
CA 18-26
BV 18-26
BC 18-26
PC 2-4, 17-26
BU 2-4, 17-26
BO 2-10, 17-26
DF 16-26

1BC: BaranwalClark2022, F: Friedman2017
2BC: BaranwalClark2022, F: Friedman2017
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Table S2: Mean Squared Error of models on validation sets after 500 epochs of training. #conv
refers to the number of convolution layers stacked for GraphSAGE and the number of message-passing
steps for MPGNN, both corresponding to the depth of information propagation in the graph.

Dataset1 Architecture # n hidden MSE Comment
conv features validation set

F MPGNN 2 50 0.013607
F GraphSAGE 2 200 0.014383
F GraphSAGE 2 50 0.014627
F MPGNN 2 200 0.014736
F GraphSAGE 3 50 0.014987
F MLP 2 100 0.015226 no permutation
F MPGNN 2 100 0.015554
F GraphSAGE 1 100 0.01597
F MPGNN 3 50 0.016013
F GraphSAGE 2 100 0.016515
F MPGNN 1 100 0.035642
F MLP 2 100 0.051399

BC GraphSAGE 2 200 0.006484
BC MPGNN 2 100 0.006641 train average replicates
BC GraphSAGE 2 100 0.006683
BC MPGNN 2 100 0.006821
BC GraphSAGE 2 50 0.006881
BC MPGNN 2 200 0.006897
BC GraphSAGE 3 100 0.006986
BC MPGNN 2 50 0.007218
BC GraphSAGE 2 100 0.007532 train average replicates
BC GraphSAGE 2 100 0.007538 SoftMax instead of Sigmoid
BC GraphSAGE 1 100 0.007584
BC MPGNN 1 100 0.015077
BC MPGNN 3 100 0.023026
BC MPGNN 2 100 0.811864 SoftMax instead of Sigmoid

Table S3: Mean Squared Error of models on validation sets after 500 epochs of training and
coefficient of determination R2 on test sets, with a 95% confidence interval. #conv refers to the
number of convolution layers, corresponding to the depth of information propagation in the graph.
Dataset2 Architecture # n hidden MSE R2

conv features validation set test set
F GCNII 1 50 0.0778 (0.0676, 0.0879) 0.0618 (-0.1410, 0.2822)
F GATv2 1 50 0.0724 (0.0642, 0.0805) 0.0279 (-0.0808, 0.1266)

BC GATv2 1 50 0.0468 (0.0379, 0.0556) 0.3569 (0.2455, 0.4711)
BC GATv2 1 100 0.0478 (0.0399, 0.0556) 0.1034 (0.0075, 0.1914)
BC GATv2 2 50 0.0539 (0.0464, 0.0613) -0.1621 (-0.2635, -0.0975)
BC GATv2 2 100 0.0550 (0.0469, 0.0632) -0.1305 (-0.1993, -0.0840)
BC GCNII 1 50 0.0405 (0.0327, 0.0483) 0.5059 (0.2705, 0.6959)
BC GCNII 1 100 0.0435 (0.0311, 0.0558) 0.2080 (-0.1771, 0.4842)
BC GCNII 2 50 0.0219 (0.0173, 0.0264) 0.6793 (0.4865, 0.8143)
BC GCNII 2 100 0.0235 (0.0187, 0.0283) 0.7090 (0.5498, 0.8277)
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Table S4: Bacterial strains in experimental data, their designation in the article, and the genomes used
to fit models.

Data3 Bacterial strain Designation Substitute genome Database

BC Anaerostipes caccae L1-92 AC NCBI
BC Bacteroides cellulosilyticus CRE21 BY NCBI
BC Bacteroides uniformis VPI 0061 BU NCBI
BC Bifidobacterium adolescentis E194a

(Variant a)
BA ATCC

BC Bifidobacterium longum subs. infan-
tis S12

BL NCBI

BC Bifidobacterium pseudocatenulatum
B1279

BP NCBI

BC Blautia hydrogenotrophica S5a33 BH NCBI
BC Clostridium asparagiforme N6 CG NCBI
BC Clostridium hiranonis T0-931 CH NCBI
BC Collinsella aerofaciens VPI 1003 CA NCBI
BC Desulfovibrio piger VPI C3-23 DP NCBI
BC Dorea formicigenerans VPI C8-13 DF NCBI
BC Dorea longicatena 111–35 DL NCBI
BC Eggerthella lenta 1899 B EL NCBI
BC Bacteroides caccae VPI 3452 A BC Bacteroides caccae

CL03T12C61
NCBI

BC Bacteroides fragilis EN-2 BF NCBI
BC Bacteroides ovatus NCTC 11153 BO NCBI
BC Bacteroides thetaiotaomicron VPI

5482
BT NCBI

BC Bacteroides vulgatus NCTC 11154 BV ATCC
BC Coprococcus comes VPI CI-38 CC NCBI
BC Eubacterium rectale VPI 0990 ER ATCC
BC Faecalibacterium prausnitzii A2-165 FP NCBI
BC Parabacteroides johnsonii M-165 PJ NCBI
BC Prevotella copri CB7 PC NCBI
BC Roseburia intestinalis L1-82 RI NCBI
BC Holdemanella biformis DSM 3989 HB NCBI

F Enterobacter aerogenes ATCC 13048 Ea NCBI
F Pseudomonas aurantiaca ATCC

33663
Pa Pseudomonas chlororaphis

strain qlu-1
NCBI

F Pseudomonas chlororaphis ATCC
9446

Pch NCBI

F Pseudomonas citronellolis ATCC
13674

Pci Pseudomonas citronellolis
strain P3B5

NCBI

F Pseudomonas fluorescens ATCC
13525

Pf NCBI

F Pseudomonas putida ATCC 12633 PP NCBI
F Pseudomonas veronii ATCC 700474 PV Pseudomonas veronii strain

ASM202832
NCBI

F Serratia marcescens ATCC 13880 Sm NCBI

3BC: BaranwalClark2022, F: Friedman2017
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Table S5: Mean Squared Error on validation set and coefficient of determination R2 on test sets of
models fitted on simulated data after 250 epochs of training. MLP and MLP* are the same models,
hence they have the same MSE on validation set; MLP received shuffled input bacteria for the test set
(similar to GNNs) while MLP* did not (optimal conditions).

Model Edge density MSE R2

validation set test set
MLP* 0.1 0.000202 0.8364
MLP* 0.4 0.000563 0.7798
MLP* 0.6 0.000566 0.7173
MLP 0.1 0.001205 -0.1911
MLP 0.4 0.003315 -0.2980
MLP 0.6 0.003471 -0.4157

GraphSAGE 0.1 0.001592 0.4749
GraphSAGE 0.4 0.001924 0.4034
GraphSAGE 0.6 0.002191 0.4184

MPGNN 0.1 0.001612 0.4324
MPGNN 0.4 0.001799 0.6016
MPGNN 0.6 0.001882 0.4173

Excluded bacteria
MLP* key 0.000897 -7.3473
MLP* random 0.000926 -8.5531
MLP key 0.011816 -0.1689
MLP random 0.013400 -0.1162

GraphSAGE key 0.001101 0.4900
GraphSAGE random 0.0011308 0.4465

MPGNN key 0.000576 0.6438
MPGNN random 0.000756 0.5594

Max training community size / training sample size
MLP* 10 / 100 0.002040 -1.0551
MLP* 10 / 200 0.000906 -0.0141
MLP* 15 / 50 0.000700 0.4234
MLP* 15 / 100 0.000306 0.7998
MLP* 15 / 200 0.000123 0.8959
MLP* 25 / 100 0.00324 0.8147
MLP 10 / 100 0.002953 -1.3241
MLP 10 / 200 0.002516 -1.3176
MLP 15 / 50 0.001244 -0.0740
MLP 15 / 100 0.001263 0.0011
MLP 15 / 200 0.001278 0.0404
MLP 25 / 100 0.001668 -0.066

GraphSAGE 10 / 100 0.002823 -1.7475
GraphSAGE 10 / 200 0.001779 -0.8447
GraphSAGE 15 / 50 0.001227 -0.3847
GraphSAGE 15 / 100 0.00100 0.1108
GraphSAGE 15 / 200 0.000789 0.3243
GraphSAGE 25 / 100 0.000760 0.4360

MPGNN 10 / 100 0.002595 -1.5964
MPGNN 10 / 200 0.001689 -0.8451
MPGNN 15 / 50 0.001529 -0.5713
MPGNN 15 / 100 0.000996 0.1456
MPGNN 15 / 200 0.000503 0.6597
MPGNN 25 / 100 0.000764 0.4579
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