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Abstract—In this paper, we propose a novel data-driven
approach to compensate for the effects of cyber attacks on
neural network-based control systems. As neural networks be-
come increasingly integral to critical control applications, these
systems face heightened vulnerability to adversarial attacks. Our
approach utilizes historical data to theoretically analyze and
compensate for deviations in control performance caused by
such attacks. The method integrates attack detection with a
compensation mechanism designed to adjust the control input in
real-time, aiming to mitigate the impact of the attack. Through
rigorous theoretical analysis, we demonstrate the potential of
this approach to enhance system stability and performance in
the presence of cyber threats.

Index Terms—Data-driven control, Neural networks, Cyber
attack compensation, Control systems, Attack detection.

I. INTRODUCTION

The adoption of neural networks (NN) in control systems
has seen a rapid increase due to their ability to approximate
complex nonlinear functions and their flexibility in learning
from data. However, this widespread adoption has also made
these systems susceptible to various forms of cyber attacks.
Adversarial attacks on neural networks, such as perturbation-
based attacks and data poisoning, can significantly degrade
system performance or even lead to catastrophic failures in
safety-critical applications.

Given the high stakes involved, it is crucial to develop
robust control strategies that can detect and compensate for the
effects of such attacks in real time. Traditional control methods
often rely on pre-defined models and assumptions, which may
not be valid under attack scenarios. In contrast, data-driven
approaches offer a promising alternative by utilizing real-time
data to adapt the control strategy dynamically.

A. Relevance of Data-Driven Control

Data-driven control methods have gained prominence due
to their ability to handle complex, nonlinear, and uncertain
systems without requiring an explicit mathematical model.
These methods rely on historical and real-time data to infer the
system’s behavior and adjust the control inputs accordingly. In
the context of neural network-based control systems, a data-
driven approach can be particularly effective in compensating
for the unforeseen effects of cyber attacks, as it can learn and
adapt to the changes in system dynamics caused by the attack.

Recent research has explored various data-driven techniques
for control and estimation in the presence of uncertainties [1],

[2]. However, the application of these techniques specifically
to compensate for cyber attacks on neural networks remains
relatively unexplored. This paper seeks to fill this gap by
proposing a data-driven control framework that integrates
attack detection with compensation mechanisms.

B. Problem Statement and Objectives

Consider a control system where the control input u(t) is
generated by a neural network controller N (x(t); θ), where
x(t) is the state vector, and θ represents the neural network
parameters. The system dynamics can be expressed as:

ẋ(t) = f(x(t)) + g(x(t))u(t),

where f(·) and g(·) are nonlinear functions representing the
system dynamics. In the presence of an attack, the control
input may be compromised, leading to a modified input
ua(t) = u(t)+∆u(t), where ∆u(t) represents the perturbation
caused by the attack.

The objective of this paper is to design a data-driven
compensation mechanism that can detect the presence of the
attack and adjust the control input u(t) to mitigate the impact
of ∆u(t). Specifically, we aim to achieve the following:

1. Attack Detection: Develop a mechanism that utilizes
historical and real-time data to detect deviations in control
performance indicative of an attack.

2. Compensation Control: Design a compensation strategy
that adjusts the control input based on the detected attack,
ensuring that the system remains stable and performs within
acceptable bounds.

II. ATTACK DETECTION MECHANISM

To detect the presence of an attack, we propose a data-
driven anomaly detection algorithm that monitors the residual
r(t) between the expected system output ŷ(t) generated by
the neural network model and the actual system output y(t).
The residual is defined as:

r(t) = y(t)− ŷ(t).

Under normal operating conditions, r(t) is expected to be
small and bounded. However, when an attack occurs, r(t)
is likely to deviate significantly from its normal range. By
analyzing the statistical properties of r(t), we can identify the
onset of an attack.



A threshold ϵ is set based on the historical distribution of
r(t), and an attack is detected if |r(t)| > ϵ for a specified
duration. This detection mechanism is integrated with the
compensation control strategy to ensure that corrective actions
are taken promptly.

III. COMPENSATION CONTROL STRATEGY

Once an attack is detected, the control input u(t) is adjusted
to compensate for the perturbation ∆u(t). The compensation
is achieved by introducing an adjustment term ∆cu(t) to the
original control input:

uc(t) = u(t) + ∆cu(t),

where ∆cu(t) is determined based on the estimated attack
impact. We propose a data-driven approach to estimate ∆u(t)
by using a neural network-based estimator that learns the
relationship between the residual r(t) and the required com-
pensation ∆cu(t).

The estimator is trained using historical attack data, and
during operation, it continuously updates its parameters using
real-time data to improve its accuracy. The overall compensa-
tion control law can be expressed as:

uc(t) = u(t)− α∆̂u(t),

where ∆̂u(t) is the estimated perturbation, and α is a gain
parameter that controls the level of compensation.

A. Stability Analysis

To ensure the stability of the compensated control system,
we analyze the closed-loop system dynamics with the com-
pensation mechanism in place. The compensated system can
be described by:

ẋ(t) = f(x(t)) + g(x(t))(u(t)− α∆̂u(t)).

Using a Lyapunov function V (x(t)) = x(t)TPx(t), where P
is a positive definite matrix, we can derive conditions under
which the system remains stable despite the presence of an
attack. The derivative of V (x(t)) along the trajectories of the
system is given by:

V̇ (x(t)) = x(t)T
(
∂f(x(t))

∂x
+

∂g(x(t))

∂x
(u(t)− α∆̂u(t))

)
x(t).

By appropriately choosing the compensation gain α and en-
suring that ∆̂u(t) accurately reflects the attack impact, we
can guarantee that V̇ (x(t)) is negative definite, thus ensuring
stability.
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