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ABSTRACT

Ensuring safe images in Text-to-Image (T2I) diffusion models has emerged as an
active area of research. However, existing T2I safe image generation methods
may fail to fully erase learned knowledge and remain vulnerable to circumvention
like adversarial prompts or concept arithmetic. Given that safe image generation
methods can be bypassed, we introduce a post-hoc approach designed to uphold
safety even in the presence of such circumvention. We present ReSafe, the first
Image-to-Image (I2I) translation framework designed to regenerate safe images
from unsafe inputs by removing only harmful features while preserving safe visual
information. ReSafe extracts safe multimodal (i.e., vision and language) features
by selectively removing unsafe concepts from the input representations. It then
optimizes a discrete safe prompt to align with the interpolated multimodal safe
features and generates new safe images from this prompt, effectively eliminating
unsafe content while preserving semantic and visual information. Since ReSafe is
a post-hoc approach, it can be applied to a variety of existing safe image generation
methods to enhance their performance. ReSafe reduces attack success rates by
3–4× compared to T2I methods and by 3–7× compared to I2I baselines across
five adversarial prompt benchmarks.
Warning: This paper includes examples of harmful language and images that may
be sensitive or uncomfortable. Reader discretion is advised.

1 INTRODUCTION

Recent advances in Text-to-Image (T2I) generation models (Rombach et al., 2022; Saharia et al., 2022;
Podell et al., 2024; Esser et al., 2024; Labs, 2024), particularly diffusion models (Sohl-Dickstein
et al., 2015; Song & Ermon, 2019; Ho et al., 2020), have significantly improved the fidelity and
diversity of synthesized images. Ensuring the safety of generated content has accordingly become a
critical research direction in this field. Many researchers have focused on controlling the generation
process based on input prompt, aiming to guide the models toward safe outputs through techniques
such as concept erasing (Gandikota et al., 2023a; Kumari et al., 2023; Lu et al., 2024; Huang et al.,
2023; Fan et al., 2023; Lee et al., 2025; Li et al., 2025), weight modification (Gandikota et al., 2023b;
Gong et al., 2024), or training-free methods (Yoon et al., 2025; Schramowski et al., 2022a). Such
methods are typically designed to eliminate unsafe content, including depictions of nudity, violence,
and even certain artistic styles.

Existing safe image generation methods have primarily focused on T2I models that generate safe
images given a textual prompt. These approaches typically operate at the text encoder level (Radford
et al., 2021), either by fine-tuning the model to produce alternative safe images (Kumari et al., 2023;
Gandikota et al., 2023a) for specific unsafe prompts or by redirecting them through safer alternative
prompts (Yoon et al., 2025), as illustrated in Fig. 1 (a). Recent studies indicate that unlearned
models tend to conceal rather than forget knowledge (Sharma et al., 2024), and remain vulnerable to
adversarial prompts (Tsai et al., 2024; Zhang et al., 2024b) and concept arithmetic attacks (Petsiuk
& Saenko, 2024), which can easily bypass the defense and lead to the generation of unsafe images
(see Fig. 1 (b)). Therefore, given that unlearning models may still retain target unlearning concepts
or remain vulnerable to attacks, it is important to consider additional post-hoc safety approaches to
ensure safe image generation. This motivates our research question: How can we regenerate a safe
image from an unsafe input image by selectively removing the unsafe attributes or concepts,
while preserving the remaining semantic and visual information?
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Unsafe Prompt: 
…a nude girl with...

(a) Previous T2I Safe Generation Methods 

(b) Adversarial Prompt / Concept Arithmetic 

Text
Encoder

Prompt Circumventing: 
…enzarondidi bare censor 
girlnipples lays natudesses…

Unsafe Prompt: 
Nude blonde girl …

Safe Prompt: 
Graceful blonde girl …

T2I Models

Still Unsafe!

Safe?

(adversarial prompt) *

(c) ReSafe

T2I Models

T2I Models with Safe Generation Methods 

T2I Models
with Safe Generation Methods

Figure 1: We present ReSafe, a novel I2I framework that
removes inappropriate features from an image to a safe
counterpart. (a) Previous T2I safe image generation meth-
ods remain vulnerable to (b) Adversarial prompts and con-
cept arithmetic attacks. In contrast, (c) ReSafe performs
post-hoc translation of unsafe images into safe ones while
maintaining the original semantic information. We use
for publication purposes.

Inspired by Image-to-Image (I2I) trans-
lation approaches (Liu et al., 2017;
Brooks et al., 2023; Chen et al., 2025;
Zhang et al., 2025), we aim to selec-
tively remove only the unsafe attributes
or concepts from an unsafe image and
transform it into a safe counterpart. Al-
though recent I2I models such as In-
structPix2Pix (Brooks et al., 2023) and
Instruct-CLIP (Chen et al., 2025) show
strong performance on general edits,
they cannot be naively applied to ad-
dress unlearning instructions, such as
transforming an unsafe image into a
safe one. This is because conventional
I2I focuses on concrete, object-centric,
or explicit visual modifications (e.g.,
adding/removing objects) rather than ab-
stract or semantic-level transformations like safety adjustments, largely due to the lack of annotated
image pairs mapping unsafe inputs to their safe counterparts. Thus, we propose a novel I2I based
approach that enables safe image regeneration from the unsafe inputs, specifically designed to support
unlearning objectives even in the absence of unsafe–safe paired datasets.

To regenerate a safe image from an unsafe input, one straightforward approach is simply prompting
the Vision-Language Model (VLM) to rewrite an unsafe image caption to be safe, and then using
this revised caption as input to Stable Diffusion to synthesize the safe image. However, prior studies
on prompt optimization (Wen et al., 2023; Mahajan et al., 2024; Kim et al.) have demonstrated that
captions produced directly by VLMs often fail to capture the fine-grained semantic features of target
images. Thus, using optimized prompts is generally more effective for synthesizing images that
faithfully reflect the desired attributes (see Appendix B.1 for further details and experimental results).
Since our I2I framework aims to extract and preserve safe features from the input image, it is natural
to adopt prompt optimization rather than relying solely on a simple caption.

We introduce ReSafe, the first and novel I2I translation framework for safety, which regenerates a
safe image from an unsafe input by removing only the unsafe features while preserving other safe
information obtained through prompt optimization. To effectively enable unsafe-to-safe transfor-
mation in I2I tasks, we first extract a safe image feature from the unsafe input. However, relying
solely on the image feature with prompt optimization (Wen et al., 2023) can result in information loss
during regeneration (see Fig. 6 (a)). To address this issue, we apply interpolated prompt optimization
during the image-to-text process, leveraging multimodal (i.e., visual and textual) features to minimize
information loss between the input and the generated output. Since our final goal is to transform
unsafe images into safe ones, we extract both safe visual and safe textual features from the unsafe
input through the safe features extraction process. By interpolating the extracted safe multimodal fea-
tures and applying prompt optimization, we obtain a discrete prompt that effectively encodes the safe
semantics of the original unsafe image. This prompt can then be used with various diffusion models
(e.g., SDXL (Podell et al., 2024), SDv3 (Esser et al., 2024) and Flux (Labs, 2024)) to regenerate safe
images in which the unsafe features present in the input image are removed.

ReSafe is the first safety-aware I2I translation framework and can be integrated with existing T2I-
based safety methods. Unlike the default safety filters in Stable Diffusion (SD) (Rombach et al.,
2022), which often return black images in response to an unsafe prompt, ReSafe retains the utility
of safe content present in the input. Compared to recent I2I translation models, ReSafe reduces
the generation of unsafe content by more than 3×, while successfully regenerating safe images.
Furthermore, ReSafe demonstrates significantly improved performance across five adversarial prompt
benchmarks (Tsai et al., 2024; Yang et al., 2024; Chin et al., 2024; Zhang et al., 2024b; Schramowski
et al., 2022a) when combined with concept erasure, weight modification, and training-free methods.
Our comprehensive experiments, including quantitative and qualitative results, ablation studies, and
a thorough analysis of the ReSafe framework, highlight the effectiveness of our method as a safety
mechanism and position it as a foundation for a new paradigm in safety-aware I2I translation.

Our key contributions can be summarized as follows:
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• We introduce ReSafe, the first safety-aware I2I translation method that regenerates safe
images from unsafe inputs by removing only the unsafe features while preserving other safe
semantic and visual information.

• For effective unsafe-to-safe image translation, we extract both visual and textual safe features
from the unsafe input using our safe features extraction. ReSafe then interpolates these
features for discrete prompt optimization that guides the generation of images containing
only the safe aspects of the input image.

• As a post-hoc approach, ReSafe is compatible with existing unlearning methods and can be
integrated alongside them. ReSafe achieves state-of-the-art performance on five adversarial
benchmarks, both when applied to existing I2I models and when combined with T2I-based
safety methods, providing strong evidence that our framework introduces a new paradigm
for safe I2I translation.

2 PRELIMINARY

We begin with preliminaries by introducing the two key components necessary for understanding
ReSafe: (1) Prompt optimization, and (2) Image Back Translation, which is inspired by back
translation in natural language processing (NLP).

Prompt optimization. Prompt optimization (Pryzant et al., 2023; Wen et al., 2023; Kim et al.)
learns a sequence of discrete tokens (hard prompt) whose text features closely align with the visual
features of a given image. Let v ∈ Rd denote the CLIP (Radford et al., 2021) visual embedding of an
input image, and let V = {t1, . . . , tN} ∈ Rd be the set of pre-trained token embeddings in the text
vocabulary, where Rd is the d-dimensional embedding space. PEZ optimizes a continuous prompt
embedding z ∈ Rk×d, where k is the number of tokens, iteratively. During training, each row zi is
projected onto the closest token in V via:

t̂i = argmin
t∈V

||zi − t||2 (1)

The sequence T̂ = [t̂1, ..., t̂k] is then passed through the CLIP text encoder to obtain the prompt
feature fT ∈ Rd. The objective is to maximize the cosine similarity between fT and the visual
embedding v:

Lcos = 1− f⊤
T v

||fT || · ||v||
(2)

By minimizing Lcos, the prompt embedding is gradually aligned with the semantics of the input
image. After training, the resulting discrete tokens T̂ can be used not only to regenerate images that
are semantically similar to the original input, but also in various applications such as style transfer,
compositional concept synthesis, and prompt distillation.

Hello Bonjour Hi
English-to-French
(Translation)

French-to-English
(Translation)

headband blue 
black dress woman 
seated portrait….
(Discrete Prompt)

Prompt 
Optimization

Image
Genera1on

I2T T2I

Back Transla5on in NLP

Image Back Translation in ReSafe (Ours)

Figure 2: Image Back Translation in ReSafe inspired by
back translation in NLP

Back Translation and Image Back
Translation. Back Translation (Sen-
nrich et al., 2016; Corbeil & Ghadivel,
2020) is a data augmentation technique
in conventional NLP. Given a source lan-
guage text Tsource, the method trans-
lates it into a target language to ob-
tain Ttarget, and subsequently back-
translates it into the source language to
produce T

′

source. This process yields
paraphrased text that preserves the orig-
inal semantics while introducing lexical
or syntactic variation in surface form.
For example, as shown in Fig. 2, an English input such as “Hello” (Tsource) can be translated to
the French word “Bonjour” (Ttarget) using an English-to-French translator. When “Bonjour” is
then translated back into English, it may produce a semantically equivalent yet syntactically distinct
phrase like “Hi” (T

′

source). Such back-translated outputs introduce natural linguistic variations into
the dataset, which can be effectively leveraged to enhance model robustness and generalization.
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Inspired by this paradigm, we propose Image Back Translation, which performs translation across
image and text modalities, specifically in an image to text to image manner. Given an input image
Ibefore, we first convert it into an optimized textual prompt Toptim via prompt optimization. This
optimized prompt is then used to generate a new image Iafter that preserves the essential semantics
and visual content of Ibefore. In this paper, we reinterpret Image Back Translation not as a data
augmentation technique, but as a novel I2I translation framework for converting unsafe images into
safe ones. For more discussion about Image Back Translation, please refer to the Appendix C.

3 RESAFE

ReSafe is to transform an unsafe image—whether originally generated or externally provided—into a
safe version by selectively removing harmful concepts or attributes, while preserving the original
visual semantics. ReSafe consist of the three steps: (1) safe features extraction from unsafe images,
introduced in Sec.3.1; (2) interpolating multimodal safe features for safety-semantic feature, described
in Sec.3.2; and (3) regeneration of safe images using the optimized prompt, completing the ReSafe
pipeline in Sec. 3.3. The ReSafe framework is illustrated in Fig. 3

3.1 SAFE FEATURES EXTRACTION FROM AN UNSAFE IMAGE

Since our goal is to generate a safe image from an unsafe input, we first need to extract the safe
features from the unsafe image. To better preserve the safe information contained in the input image,
we extract safe features from both visual and textual modalities. In this section, we describe how to
extract both safe text features and safe image features from an unsafe input image.

Safe text feature extraction. To obtain the safe text feature f safe
txt from the input (unsafe) image, we

utilize Vision Language Model (VLM) (Wang et al., 2024a) to generate safe and unsafe text captions.
As illustrated in Fig. 3 (b), the original unsafe image is passed through the VLM to generate a caption
that semantically describes its visual content, which we refer to as the unsafe caption f unsafe

txt . In here,
we use the prompt “Describe this image in a caption.” to query the VLM. Next, we identify specific
unsafe components within the caption, such as “nude” as illustrated in Fig. 3. These components are
extracted as a structured list based on predefined semantic categories (nudity, violence, artistic styles).
Using this list, we then prompt the VLM to regenerate a caption that excludes the identified unsafe
elements while preserving the remaining safe content. The resulting safe caption is used to extract
the corresponding safe text feature f safe

txt that captures the safe semantics of the input image without
containing harmful or unsafe features. Additional details on the caption extraction process, including
the prompts used with the VLM, are provided in the Appendix.

Safe image feature extraction. Since the input image inherently contains unsafe visual content,
naively encoding it with an image encoder may produce an image feature f unsafe

img that also contains
undesirable or harmful semantics. To derive safe image features f safe

img from f unsafe
img , we leverage the

fact that our CLIP encoders operate in a joint image-text embedding space, along with the previously
extracted text-based safe (f safe

txt ) and unsafe (f unsafe
txt ) features. Given unsafe text feature f unsafe

txt and
safe text feature f safe

txt , we can define the semantic correction direction as:

∆safe = f safe
txt − f unsafe

txt (3)

We then project the unsafe image feature f unsafe
txt onto this direction to obtain its unsafe component

cunsafe via orthogonal projection:

cunsafe =

〈
f unsafe

img , ∆safe
〉

∥∆safe∥2
∆safe . (4)

With unsafe component cunsafe extracted from f unsafe
txt , the safe image feature f safe

txt is then derived from
f unsafe

txt as follows:
f safe

img = f unsafe
img − λunsafecunsafe. (5)

where λunsafe denotes the removal scale of unsafe components.

4
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𝜟𝒔𝒂𝒇𝒆

ෝ𝒕𝟏

(a) Overall Pipeline of ReSafe

Text Embedding Space

*

* Safe Features
Extraction
(Sec. 3.1)

Interpolated 
Safe Feature

(Sec. 3.2)
Prompt
Feature

𝑳𝒄𝒐𝒔 Text
Encoder

. . .𝒕𝟏 𝒕𝟐 𝒕𝑵

Discrete Token Projection

ෝ𝒕𝟐
ෞ𝒕𝑵T2I

Model

graceful figure .. 
whose flowing
long hair ..

(෡𝐓)Optimized 
Prompt

Image
Encoder

VLM

Unsafe Feature 
Removal with 𝑪𝒖𝒏𝒔𝒂𝒇𝒆 

.. a nude female 
figure with long, 

blonde hair ..

.. a female figure 
with a muscular ..

(Safe Caption)

(Unsafe Caption)

Text
Encoder

Text
Encoder

(b) Safe Features Extraction

Interpolated Prompt Optimization

by Eq. (4)

Sec. 3.3

Figure 3: (a) The ReSafe framework. ReSafe extracts and interpolates the multimodal safe features.
Then the discrete prompt is optimized with interpolated safe features. And finally, we can regenerate
a safe image with the optimized prompt. (b) Illustration of Safe Features Extraction. In Safe
Feature Extraction, unsafe concept components are removed from both image and text embeddings,
and the resulting representations are combined into a unified safe feature space.

This operation subtracts the component of f unsafe
img aligned with the unsafe-to-safe direction, effectively

pushing the image feature away from unsafe semantics. The resulting features f safe
img and f safe

txt are used
as the ground-truth target during intermediate discrete prompt optimization.

3.2 INTERPOLATING MULTIMODAL SAFE FEATURES FOR SAFETY-SEMANTIC FEATURE

One of our key observations is that when Image Back Translation relies solely on image feature
based prompt optimization (such as PEZ), the regenerated image often fails to faithfully capture the
original content at both perceptual and semantic levels (see Fig. 6 (a)). This is because, although
CLIP (Radford et al., 2021) is trained in a joint image–text embedding space, simply maximizing
image–text similarity does not guarantee that the optimized prompt fully captures the original image’s
rich visual details.

To faithfully reconstruct an image Iafter that is semantically and visually aligned with the original
input image Ibefore, it is essential to preserve both low-level visual features and high-level semantic
content during the back translation process. Relying solely on either image features or text features
can lead to the omission of core content or loss of critical information, as discussed in the previous
section. To address this issue, we propose an Interpolated Prompt Optimization that leverages both
the image features fimg of the image and the text feature ftxt of its textual description. Based on the
fact that CLIP space is a joint embedding space for both images and text, and that the image feature
fimg is extracted from the CLIP image encoder, we construct an interpolated representation finter via
Spherical Linear Interpolation (Slerp) (Shoemake, 1985), defined as:

finter =
sin((1− α)θ)

sin(θ)
fimg +

sin(αθ)

sin(θ)
ftxt (6)

where θ = arccos (
fimgftxt

||fimg||·||ftxt|| ) and α ∈ [0, 1] controls the interpolation ratio.

This interpolated feature finter combines both visual fidelity and semantic richness, and is used as the
ground truth for the prompt optimization.

3.3 REGENERATING A SAFE IMAGE FROM OPTIMIZED SAFE PROMPT

Once the safe image feature f safe
img and the safe text feature f safe

txt have been obtained, we compute an
interpolated representation f safe

inter using the Slerp formulation described in Eq. 6. This interpolated
vector captures a smooth semantic blend of both visual and textual safety-aligned information. We
then optimize discrete prompt T̂ such that its CLIP text embedding maximizes the cosine similarity
with f safe

inter. As a result, the learned prompt encodes only the safe components of the original unsafe
image, having effectively removed any harmful or undesired features during the interpolation and
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Table 1: Comparison of ASR between training-free and training-based T2I safe image generation
methods. Due to space limitations, we compare ReSafe with representative state-of-the-art baselines
from each category. We provide additional comparisons in the Appendix B.3.

Method No Weights
Modification Training-Free Ring-A-Bell MMA-Diffusion↓ P4D↓ UnLearnDiffAtk↓ I2P↓

K77↓ K38↓ K16↓

SDv1.4 (Rombach et al., 2022) - - 95.79 97.89 98.94 95.60 92.65 68.31 18.88
+ ReSafe (Ours) 29.47 22.10 26.32 32.70 32.35 16.19 4.40

GLoCE (Lee et al., 2025)
✗ ✗

4.21 3.16 1.05 1.10 6.25 5.63 3.57
+ ReSafe (Ours) 0.00 0.02 0.00 0.20 0.00 0.00 0.00

RECE (Gong et al., 2024)
✗ ✓

7.37 12.63 11.58 57.90 39.71 28.17 6.4
+ ReSafe (Ours) 1.05 3.16 3.16 9.15 17.8 8.82 1.53

SAFREE (Yoon et al., 2025)
✓ ✓

35.79 45.26 57.89 63.40 48.16 25.35 4.10
+ ReSafe (Ours) 16.84 14.74 10.53 8.45 19.8 18.38 0.87

Table 2: Comparison of ASR across I2I generation methods.

Method Ring-A-Bell MMA
-Diffusion↓ P4D↓ UnLearn

-DiffAtk↓ I2P↓
K77↓ K38↓ K16↓

InstructPix2Pix (Brooks et al., 2023) 91.58 91.58 97.89 94.80 89.71 60.57 15.84
Instruct-CLIP (Chen et al., 2025) 91.58 93.68 96.84 94.80 89.34 61.97 15.88
ICEdit (Zhang et al., 2025) 92.63 94.74 98.95 94.70 90.07 61.27 15.48
ReSafe (Ours) 29.47 22.10 26.32 32.70 32.35 16.19 4.40

projection steps. In the final T2I stage, the optimized prompt T̂ is used as input to a standard T2I
diffusion model. Notably, our approach does not require any modification or fine-tuning of the
diffusion model itself. This means that it avoids the performance degradation often observed in
prior unlearning-based methods and remains fully compatible with a wide range of state-of-the-art
diffusion models, including SDXL (Podell et al., 2024), SDv3 (Esser et al., 2024), and FLUX (Labs,
2024). In the following section, we present experimental results that demonstrate the effectiveness of
our proposed method.

4 EXPERIMENTS

4.1 BASELINES AND EXPERIMENTAL SETUP

Baselines. Although ReSafe is a form of I2I translation, we compare ReSafe not only with the state-
of-the-art I2I models (Brooks et al., 2023; Chen et al., 2025; Zhang et al., 2025) but also with existing
T2I safe image generation methods, including concept erasing (Kumari et al., 2023; Gandikota et al.,
2023a; Lu et al., 2024; Huang et al., 2023; Fan et al., 2023; Lee et al., 2025; Li et al., 2025), weight
modification (Gandikota et al., 2023b; Gong et al., 2024), and training-free (Schramowski et al.,
2022a; Yoon et al., 2025). Since ReSafe requires an input image, we use unsafe images generated by
SDv1.4 when evaluating our model. For both quantitative and qualitative evaluations, we assessed
the removal of nudity, violence, and artist-specific concepts, respectively. We employ five adversarial
prompt benchmarks to generate unsafe images for red-teaming methods, including Ring-A-Bell (Tsai
et al., 2024), MMA-Diffusion (Yang et al., 2024), P4D (Chin et al., 2024), UnLearnDiffAtk (Zhang
et al., 2024b), and I2P (Schramowski et al., 2022a).

Experimental setup. We set the removal scale λunsafe to 1, the interpolation ratio α to 0.7, and the
number of discrete tokens N to 16. Ablation results are reported in Sec. 4.4, and detailed experimental
settings, including learning rates, optimizer, and additional ablation studies, are provided in the
Appendix A. All experiments are conducted on a single NVIDIA RTX 4090 GPU.

4.2 QUANTITATIVE EVALUATION

For nudity removal, we compute the Attack Success Rate (ASR) using NudeNet (notAI tech, 2019)
by counting the proportion of generated images whose predicted nude class probability exceeds 0.45.
Tab. 1 presents the ASR results of applying ReSafe to the state-of-the-art T2I safe methods from
each category. Note that ReSafe does not require fine-tuning, preserving the original generative
capabilities of the diffusion model, the same advantage as in training-free methods. Tab. 2 presents
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SDv1.4 SalUn CA ESD MACE SAFREE

SDv1.4 ReSafe (Ours) CA ESD

SDv1.4 CA ESD
Remove Artist Concept

MACE UCE RECE SAFREE

Prompt: 
…blonde fleeing 
nudes censor!...

Prompt: 
…elaborsuccuie 
nude ranging 
nipples aching 
folds abs…

Prompt: 
… heres 
assassination usmc 
depart 
shooter.......bloody

Prompt: 
…gunman thugmp 
donaldtrump 
incapsuldely 
bleeding…

Prompt: 
The Starry Night 
Over the Rhône by 
Vincent van Gogh

Prompt: 
The Red Vineyard 
by Vincent van 
Gogh

Remove Violence

Remove Nudity

Receler

UCEReceler

Receler

SDL-Max SAFREEUCE

GLoCE Co-Erasing ReSafe (Ours) RECE SLD-Max

*
*

Co-Erasing

GLoCE Co-Erasing ReSafe (Ours) 

RECE

Figure 4: Qualitative comparisons of ReSafe and T2I safe image generation methods. Considering
that T2I takes a text prompt as input, resulting in highly varied images, ReSafe demonstrates the
ability to generate much safer images compared to existing baselines. More examples are in the
Appendix B.2.

Table 3: Comparison across 400 samples of image and text similarity between original images and
those generated by Interpolated Prompt Optimization and Prompt Optimization (PEZ).

Method Image Similarity↑
(DINOv2)

Image Similarity↑
(CLIP) LPIPS↓ Text Similarity↑

(CLIP)
Text Similarity↑

(GPT-Judge)

Prompt Optimization 0.5320 0.7227 0.8033 0.6128 0.0625
Interpolated Prompt Optimization (Ours) 0.6003 0.7665 0.7922 0.7400 0.9375

ASR results from recent I2I models given an instruction prompt such as “Make this image safe.”(see
Appendix D.1 for details), reflecting the superiority of ReSafe as an I2I approach. Since existing
I2I models target object-centric editing rather than safety, their ASR remains extremely high. In
contrast, ReSafe substantially reduces ASR, demonstrating that it not only enforces safety much more
effectively but also enables generalization to novel erasing concepts compared to previous I2I models.
Additional results for nudity and quantitative results for violence and artistic removal are provided in
the Appendix B.3.

4.3 QUALITATIVE EVALUATION

Fig. 4 illustrates the results of ReSafe in comparison to existing T2I safe image generation meth-
ods. Although ReSafe is applied to unsafe images generated by Stable Diffusion v1.4, it achieves
performance on par with existing T2I safe image generation methods. Moreover, when combined
with more recent safety frameworks (e.g., MACE or SAFREE), the results further improve, as shown
quantitatively in Tab. 5. Additional qualitative examples are provided in the Appendix B.2.

Fig. 5 shows the results of applying existing I2I models to unsafe images with an instruction prompt
mentioned above. Since such models are trained without unsafe-safe supervision and rely only on
general image editing data, they fail to handle more abstract or complex instructions related to safety.
As a result, they often produce outputs that are nearly identical to the original unsafe images. In
contrast, ReSafe removes the targeted unsafe features (as well as artistic concepts) and regenerates
the image while preserving the safe information of the original, even in the absence of an unsafe–safe
paired dataset. This supports our view that the proposed Image Back Translation establishes a new
paradigm within the advanced I2I translation framework for the safety of image generation.
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Original ReSafe (Ours) InstructPix2Pix InstructCLIP ICEdit Original ReSafe (Ours) ICEdit

Original ReSafe (Ours) ICEdit
Remove Artist Concept

Remove ViolenceRemove Nudity
InstructCLIPInstructPix2Pix

InstructPix2Pix InstructCLIP

Figure 5: Qualitative comparisons of ReSafe and I2I baselines. ReSafe generates safer images
compared to baselines. We use the prompts “Make this image safe.” for Nudity and Violence, and
“Remove any stylistic influence of {artist} from the image.” for Styles.

4.4 FURTHER ANALYSIS

Ablation studies. Fig. 6 presents an ablation study of our component, Interpolated Prompt Opti-
mization. The image-only variant corresponds to the case where α = 0, meaning that only the safe
image features are used for prompt optimization, while the text-only variant uses only text features
with α = 1. In all experiments, we empirically set α = 0.7 as the default. Further ablation studies on
the choice of α, as well as additional experiments on other hyperparameters such as prompt length N
and removal scale λunsafe, are provided in the Appendix B.5.

*

SD v1.4
Image-only
(𝛼 = 0)

Text-only
(𝛼 = 1)

Ours
(𝜶 = 𝟎. 𝟕)Before

After
(w/ IPO (Ours))

After
(w/ PO)

(b) Ablation of interpolation ratio (𝛼)(a) Effect of Interpolated Prompt Optimization

Figure 6: (a) Comparison between Interpolated Prompt Op-
timization (Ours) and Prompt Optimization. (b) Ablation
study on the interpolated ratio (α).

Does the Image Back Translation pro-
cess preserve information well? One
may question whether the input and out-
put images in Image Back Translation
truly remain the same. However, simi-
lar to Back Translation in NLP, where
the original and translated texts are not
structurally identical but preserve the
core meaning, our approach focuses on
maintaining the essential semantics of
the original image rather than achieving
pixel-level identity. As shown in Fig. 6
(a), the input and output images exhibit strong structural similarity. This observation is further
supported by the quantitative metrics reported in Tab. 3. In the table, Image Similarity is measured by
the cosine similarity of image embeddings using DINOv2 (Oquab et al., 2023) and CLIP (Radford
et al., 2021). Text Similarity is measured by the cosine similarity of text embeddings using CLIP
between captions generated by Qwen2-VL (Wang et al., 2024a) for the original and generated images.
We also evaluate with GPT-Judge, defined as the percentage of GPT-4o pairwise comparisons in
which a method’s generated caption is judged more faithful to the original. Notably, Interpolated
Prompt Optimization yields higher similarity compared to vanilla prompt optimization, as it leverages
both visual and texture features more effectively. These results suggest that applying Image Back
Translation with our proposed Interpolated Prompt Optimization leads to output images that better
preserve the essential information encoded in the extracted safe features.

Applications with various diffusion models. ReSafe transforms the interpolated safe features
into an interpretable discrete prompt during the prompt optimization process. This allows the
optimized prompt to be used not only with SDv1.4, but also with a wider range of other gen-
erative models such as SDXL, SDv3, and Flux. Fig. 7 shows the results of using the same
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w/ FLUXw/ SDv1.4 w/ SDXL w/ SDv3

Prompt: 
muscle man raises 
arms …beach 
seemingly body

Prompt: 
…blackandwhite 
ooooooo 
exemplipoised….

Figure 7: ReSafe with various T2I models.

optimized prompt across various T2I
models, demonstrating that our ap-
proach can produce safe images of
varying styles and improved quality.
This suggests that ReSafe is compati-
ble with diverse generative models and
can be generalized to broader applica-
tions. We provide quantitative evalua-
tion results for various T2I models in
the Appendix B.3.

5 RELATED WORK

Safe image generation. Ensuring safe image generation has been addressed in previous studies
through methods such as concept erasing (Gandikota et al., 2023a; Kumari et al., 2023; Heng & Soh,
2023; Lu et al., 2024; Lyu et al., 2024; Huang et al., 2023; Park et al., 2024; Zhang et al., 2024a;
Fan et al., 2023; Bui et al., 2025; Lee et al., 2025; Li et al., 2025), weight modification (Gandikota
et al., 2023b; Gong et al., 2024), and training-free approaches (Schramowski et al., 2022a; Yoon
et al., 2025). Traditional concept erasing methods involve fine-tuning the diffusion model to suppress
undesired concepts, guiding it to produce alternative outputs instead. Nevertheless, this process
is computationally expensive and may compromise the model’s original generative quality. While
weight modification and training-free methods alleviate the limitations of fine-tuning, they are still
restricted to T2I models and remain vulnerable to attacks such as adversarial prompts (Tsai et al.,
2024; Yang et al., 2024; Zhang et al., 2024b; Chin et al., 2024; Schramowski et al., 2022a) and
concept arithmetic (Petsiuk & Saenko, 2024). In contrast, our work presents the first safety-aware
I2I framework that regenerates images by preserving the safe features of already generated unsafe
images while removing its unsafe features.

Prompt optimization. Prompt optimization (Wen et al., 2023; Wang et al., 2024b; Jia et al., 2022)
is a widely used technique not only in image generation models (Wang et al., 2024b; Gal et al., 2022)
but also in Large Language Models (Zhu et al., 2024) and Vision Language Models (Yao et al., 2023).
In image generation, prompt optimization methods can be categorized into soft and hard prompt
optimization. Soft prompt optimization (Gal et al., 2022; Ruiz et al., 2023) involves introducing
special tokens into the tokenizer’s vocabulary and directly optimizing the prompt embeddings. This
allows special tokens to encode the intended information, such as personalized information (Gal et al.,
2022), visual instructions (Nguyen et al., 2023; Kim et al., 2025), and object relationships (Huang
et al., 2024). In contrast, hard prompt optimization (Wen et al., 2023; Mahajan et al., 2024; Kim
et al.) searches for discrete tokens from the existing vocabulary by first optimizing the prompt
embeddings. In this work, we propose Interpolated Prompt Optimization to discover a discrete
prompt that effectively captures the information of the original image during the ReSafe process.

6 CONCLUSION

In this paper, we propose ReSafe, a Safe I2I Translation framework that regenerates (already gen-
erated) unsafe images into safe versions. Since existing I2I models fail to address safety-related
instructions, we draw inspiration from back translation and introduce an Image Back Translation
process via safe prompt optimization. This involves extracting safe features from an unsafe input
image and optimizing a prompt that preserves those features, enabling the generation of safe yet
semantically aligned images. In other words, ReSafe can perform erasure of novel concepts even
in the absence of an unsafe–safe paired dataset. A more detailed discussion of this capability and
its limitations is provided in the Appendix E. When combined with vanilla SD, ReSafe not only
performs safe image translation far more effectively than existing I2I models, which fail entirely at
safety tasks, but also achieves state-of-the-art performance when integrated with existing T2I safe
image generation methods. We believe that ReSafe has the potential to become a core paradigm for
addressing not only the transformation of unsafe images into safe ones but also a broader class of
complex, underexplored I2I tasks.
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ETHICAL STATEMENT

The rise of T2I diffusion models has brought increased attention to the ethical imperative of ensuring
safe image generation. However, existing safety mechanisms often fall short, as they may retain traces
of harmful knowledge and are vulnerable to circumvention via adversarial prompts or manipulations
of learned concepts. In response to these limitations, we propose ReSafe, a post-hoc I2I safety
framework that regenerates safe content from unsafe inputs by selectively removing harmful features
while preserving benign visual and semantic information. By operating independently of the original
generation process, ReSafe complements and strengthens existing safety methods. Our approach
reflects a broader ethical commitment to minimizing the misuse of generative models and promoting
responsible deployment in creative, educational, and social applications.
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Appendix
The Appendix is organized as follows:

• Section A provides implementation details, such as learning rates, optimizer and random
seeds (Sec. A.1) and the full pseudocode of ReSafe (Sec. A.2).

• Section B presents additional results on both Text-to-Image (T2I) and I2I baselines for vio-
lence, nudity, and artist concept removal: simple caption comparison (Sec. B.1), quantitative
evaluations (Sec. B.2), qualitative examples (Sec. B.3), human/gpt-4o evaluation (Sec. B.4)
and ablation studies on the removal scale λunsafe and interpolation ratio α (Sec. B.5).

• Section. C provides additional discussion about Image Back Translation.

• Section. D details used prompts of Vision Language Model (VLM) (Sec. D.1) and Image-to-
Image (I2I) models (Sec. D.2).

• Section. E reports additional discussion and limitations of our work.

• Section F describes the license of datasets and baseline models.

A IMPLEMENTATION DETAILS

In this section, we detail the implementation details used in ReSafe and present the pseudocode of
the algorithm.

A.1 IMPLEMENTATION DETAILS

We fixed the random seed to 42 across all experiments. When generating images with adversarial
prompts, we used each benchmark’s provided evaluation seed, defaulting to 42 if none was specified.
For safe text feature extraction, we employed Qwen2-VL-7B (Wang et al., 2024a), and for image
generation, we used Stable Diffusion v1.4 (SDv1.4) (Rombach et al., 2022) as the baseline model.

We used a removal scale λunsafe of 1 when transforming unsafe into safe image features, and interpo-
lated the two multimodal (image and text) safe feature vectors with a ratio of 0.7. For discrete prompt
optimization, we employed 16 tokens and optimized for 3,000 iterations of AdamW (Loshchilov
& Hutter, 2017) with a learning rate of 0.5 and a weight decay of 0.1. Ablations on removal scale
λunsafe, interpolation ratio α, and token length N are detailed in Appendix B.5.

A.2 PSEUDO ALGORITHM

Algorithm 1 ReSafe with Safe Image Back Translation
Require: CLIP Image, Text Encoder EI , ET ; Vision Language Model (VLM); Diffusion Model (DM);
interpolation rate α; Learning rate γ; projection strength λproj
Input: Unsafe Image Iunsafe
Output: Safe Image Isafe
captionfull, captionsafe = VLM(Iunsafe) ▷ Extract safe/unsafe captions from input image

f safe
txt ← ET (captionunsafe); f

safe
txt ← ET (captionsafe); ▷ Get embedding for safe and unsafe captions

∆safe = f safe
txt − f unsafe

txt ▷ Derive semantic correction direction

cunsafe ← ⟨f unsafe
img ,∆safe ⟩ ·∆safe ▷ Project and get unsafe component

f safe
img ← f unsafe

img − λproj · cunsafe ▷ Unsafe projection removal

f safe
inter ← Slerp(f safe

img , f
safe
txt , α) ▷ Interpolating target feature with Slerp

Initialize learnable prompt embedding T̂ ▷ Learn hard prompts with interpolated prompt optimization
for each optimization step do

fprompt = ET (T̂)
Lcos = 1− cos(fprompt, f

safe
inter)

T̂← T̂− γ∇Lcos
end for
Isafe = DM(T̂, ϵθ) ▷ Generate the final safe image
return Isafe
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Table 4: Comparison of Attack Success Rate (ASR) between simple VLM captions and our method
across different benchmarks.

Method Ring-A-Bell MMA-Diffusion↓ P4D↓ UnLearnDiffAtk↓ I2P↓
K77↓ K38↓ K16↓

simple-VLM captions 31.58 31.53 31.58 37.00 33.82 16.20 4.13
Ours 26.32 22.10 29.47 32.70 32.35 16.19 4.40

Table 5: Comparison nudity of Attack Success Rate (ASR) between training-free and training-based
T2I safe image generation methods. ReSafe with representative state-of-the-art baselines from each
category is the same as in the main paper.

Method No Weights
Modification Training-Free Ring-A-Bell MMA-Diffusion↓ P4D↓ UnLearnDiffAtk↓ I2P↓

K77↓ K38↓ K16↓

SDv1.4 (Rombach et al., 2022) - - 95.79 97.89 98.94 95.60 92.65 68.31 18.88
+ ReSafe (Ours) 29.47 22.10 26.32 32.70 32.35 16.19 4.40

CA (Kumari et al., 2023) 30.53 35.79 40.00 80.00 62.13 42.25 9.57
+ ReSafe (Ours) 10.53 14.74 13.68 27.60 20.22 13.38 1.98

ESD (Gandikota et al., 2023a) 35.79 47.37 44.21 46.00 36.40 22.54 5.21
+ ReSafe (Ours) 11.58 12.63 10.53 17.30 11.40 8.45 1.28

MACE (Lu et al., 2024)

✗ ✗

12.28 14.39 12.28 14.30 11.76 14.08 7.40
+ ReSafe (Ours) 9.47 9.47 10.53 2.11 4.30 3.68 1.57

Receler (Huang et al., 2023) 20.00 17.89 16.84 50.60 39.34 28.87 8.42
+ ReSafe (Ours) 4.21 3.16 3.16 15.80 11.76 10.56 2.19

SalUn (Fan et al., 2023) 20.00 10.53 14.74 9.70 10.66 9.15 2.85
+ ReSafe (Ours) 6.32 4.21 6.32 2.60 1.47 2.82 0.60

GLoCE (Lee et al., 2025) 4.21 3.16 1.05 1.10 6.25 5.63 3.57
+ ReSafe (Ours) 0.00 0.02 0.00 0.20 0.00 0.00 0.00

Co-Erasing (Li et al., 2025) 22.11 33.68 34.74 57.80 26.10 23.24 3.55
+ ReSafe (Ours) 3.16 14.74 8.42 18.30 7.35 8.45 0.83

UCE (Gandikota et al., 2023b)

✗ ✓

27.37 29.47 33.68 68.00 54.41 36.62 8.25
+ ReSafe (Ours) 11.58 4.21 10.53 24.80 16.54 9.86 2.11

RECE (Gong et al., 2024) 7.37 12.63 11.58 57.90 39.71 28.17 6.40
+ ReSafe (Ours) 1.05 3.16 3.16 9.15 17.80 8.82 1.53

SLD-Max (Schramowski et al., 2022a)

✓ ✓

72.63 82.11 89.47 73.60 65.07 45.07 10.65
+ ReSafe (Ours) 26.32 30.53 34.74 26.20 23.90 18.31 3.13

SLD-Strong (Schramowski et al., 2022a) 90.53 94.74 93.68 84.30 77.57 62.68 13.33
+ ReSafe (Ours) 23.16 34.74 45.26 33.10 33.82 24.65 4.59

SLD-Medium (Schramowski et al., 2022a) 95.79 94.74 100.00 88.00 83.09 68.31 14.61
+ ReSafe (Ours) 29.47 29.47 36.84 30.40 30.51 23.24 4.36

SD-NP 32.63 38.95 44.21 73.40 47.79 24.65 6.10
+ ReSafe (Ours) 7.37 13.68 13.68 23.10 16.91 4.23 1.57

SAFREE (Yoon et al., 2025) 35.79 45.26 57.89 63.40 48.16 25.35 4.10
+ ReSafe (Ours) 16.84 14.74 10.53 8.45 19.80 18.38 0.87

B ADDITIONAL RESULTS

In this section, we present a broader set of results omitted from the main text due to space constraints.
As before, we benchmark our method against both state-of-the-art I2I translation models and conven-
tional text-to-image safety techniques (e.g., concept erasure (Kumari et al., 2023; Gandikota et al.,
2023a; Lu et al., 2024; Huang et al., 2023; Fan et al., 2023; Lee et al., 2025; Li et al., 2025), weight-
modification (Gandikota et al., 2023b; Gong et al., 2024) and training-free methods (Schramowski
et al., 2022a; Yoon et al., 2025)). All experiments evaluate the removal of three content types: nudity,
violence, and artist concepts.

B.1 COMPARISON WITH SIMPLE-VLM BASELINE

We include a direct comparison against the simple-VLM captions baseline in Tab. 4. As shown, the
safe captions simply generated by VLM alone often fail to produce sufficiently safe images. This is
because VLM-generated captions are not optimized for image generation, and prompt optimization
methods like PEZ (Wen et al., 2023) are known to generate more effective prompts than simple
captions when guiding diffusion models. Therefore, our approach applies prompt optimization to
derive prompts that are better suited for safe image generation. Moreover, our method leverages
multimodal safety features (both image and text) to optimize prompts that are not only safer, but also
better aligned with the image generation process. The resulting prompts lead to visibly safer outputs.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Comparison of violence ASR between training-free and training-based T2I safe image
generation methods. ReSafe with representative state-of-the-art baselines from each category is the
same as in the main paper. Note that in Ring-A-Bell, η denotes the strength coefficient available for
tuning, and K represents the adversarial prompt length.

Method No Weights
Modification Training-Free Ring-A-Bell↓

η = 5 ,K = 77 η = 5.5 ,K = 38 η = 5.5 , 77

SDv1.4 (Rombach et al., 2022) – – 97.6 95.6 97.6
+ ReSafe (Ours) 51.2 50.0 46.0

CA (Kumari et al., 2023)

✗ ✗

82.8 79.6 84.8
+ ReSafe (Ours) 31.2 33.2 30.8

ESD (Gandikota et al., 2023a) 83.6 79.6 82.8
+ ReSafe (Ours) 33.2 35.6 35.6

UCE (Gandikota et al., 2023b)

✗ ✓

70.0 70.8 72.4
+ ReSafe (Ours) 17.2 17.6 21.6

RECE (Gong et al., 2024) 95.6 95.2 96.4
+ ReSafe (Ours) 56.4 39.6 46.0

SLD-Max (Schramowski et al., 2022a)

✓ ✓

26.8 24.4 25.6
+ ReSafe (Ours) 8.8 10.4 9.2

SAFREE (Yoon et al., 2025) 97.6 94.4 97.6
+ ReSafe (Ours) 42.0 39.2 45.6

Table 7: Comparison of Artist Concept Removal tasks across T2I safe image generation methods.

Method Van Gogh Picasso

LPIPS↑ GPT-Judge↓ LPIPS↑ GPT-Judge↓
SDv1.4 (Rombach et al., 2022) - 1.00 - 0.76
+ ReSafe (Ours) 0.77 0.60 0.81 0.24

MACE (Lu et al., 2024) 0.74 0.74 0.78 0.66
+ ReSafe (Ours) 0.82 0.32 0.84 0.32

RECE (Gong et al., 2024) 0.76 0.72 0.80 0.10
+ ReSafe (Ours) 0.79 0.24 0.83 0.02

SAFREE (Yoon et al., 2025) 0.60 0.60 0.59 0.04
+ ReSafe (Ours) 0.79 0.30 0.82 0.04

B.2 ADDITIONAL QUALITATIVE RESULTS

Fig. 8- 10 present comparative results for nudity, violence, and artist-concept removal against existing
T2I safety methods. Since ReSafe operates as an image-to-image framework, we apply it to unsafe
images generated by SDv1.4. As shown in Tab. 5, Tab. 6, and discussed in the main paper, combining
ReSafe with more recent safety techniques (e.g., GLoCE or RECE) yields even better results. Fig. 11
compares ReSafe against state-of-the-art I2I translation models. Since these models are not trained on
safety-paired data, they tend to reproduce the unsafe input with little to no modification. In contrast,
ReSafe not only generates clearly distinct, safe outputs but also preserves the original image’s benign
visual information.

B.3 ADDITIONAL QUANTITATIVE RESULTS

Tab. 5 and Tab. 6 report additional quantitative results for nudity and violence, respectively. For
nudity, we use NudeNet (notAI tech, 2019) with a decision threshold of 0.45, any image with a
predicted nude probability above this value is deemed unsafe. For violence, we employ the Q16
classifier (Schramowski et al., 2022b) with a threshold of 0.9, classifying images exceeding this
score as unsafe. Additionally, we include experimental results on various T2I Models including
SDXL (Podell et al., 2024), SDv3 (Esser et al., 2024) and Flux (Labs, 2024) (see Tab. 8). As can be
seen, our method achieves substantial performance improvements regardless of the underlying T2I
model, demonstrating the robustness and generalizability of our approach.

Tab. 7 presents results on the artistic styles removal of Van Gogh and Picasso. We evaluate perceptual
fidelity using LPIPS (Zhang et al., 2018), averaged over 50 samples per method. LPIPS quantifies the
perceptual distance between an image before and after style erasure, so a lower score indicates that
the method better preserves the original content while effectively removing the target artist’s style.
GPT-Judge represents the average accuracy of GPT-4o (OpenAI, 2024) in identifying the erased
artist’s style using the prompt (“Is this image artist style? Yes or No”). As shown in the Tab. 7, ReSafe
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Table 8: Comparison of Attack Success Rate (ASR) across different T2I backbone models with
and without our method. We report results on Ring-A-Bell (K77/38/16), MMA-Diffusion, P4D,
UnLearnDiffAtk, and I2P benchmarks.

Method Ring-A-Bell MMA-Diffusion↓ P4D↓ UnLearnDiffAtk↓ I2P↓
K77↓ K38↓ K16↓

Flux (Labs, 2024) 88.42 87.37 86.32 47.70 72.06 52.11 13.12
+ Ours 33.68 27.37 34.74 14.80 24.63 18.31 1.85

SD3 (Esser et al., 2024) 84.21 82.11 89.47 61.80 75.37 57.75 16.69
+ Ours 35.79 28.42 29.47 22.90 25.74 16.90 4.32

SDXL (Podell et al., 2024) 82.11 90.53 84.21 45.10 77.21 47.18 9.70
+ Ours 23.16 20.00 30.52 15.50 24.63 13.38 2.57

Table 9: Human and GPT-4o evaluation on concept removal.

(a) Nudity

Method Human↑ GPT-4o↑
SD1.4 (Rombach et al., 2022) 1.00 1.00
MACE (Lu et al., 2024) 0.90 0.85
RECE (Gong et al., 2024) 1.00 0.95
SAFREE (Yoon et al., 2025) 1.00 0.95

(b) Violence

Method Human↑ GPT-4o↑
SD1.4 (Rombach et al., 2022) 0.90 0.95
ESD (Gandikota et al., 2023a) 1.00 1.00
RECE (Gong et al., 2024) 1.00 0.95
SAFREE (Yoon et al., 2025) 1.00 1.00

also achieves superior performance on artist-concept removal tasks, particularly when integrated with
existing T2I safe image generation methods.

B.4 HUMAN AND GPT-4O EVALUATION

To further expand the scope of evaluation, we conduct both human evaluation and GPT-4o evaluation.
We employed 31 human evaluators to evaluate two safety categories, nudity and violence. For each
baseline, we applied ReSafe and measured the pairwise win-rate between the original baseline outputs
and their ReSafe-processed counterparts, using 20 images per baseline. As shown in the table 9,
ReSafe was judged safer than other baselines by a substantial margin. To further strengthen the
reliability of our findings, we conducted an auxiliary automated evaluation using GPT-4o under the
same protocol. The GPT-4o evaluation aligned with the human study, likewise preferring ReSafe
outputs as safer. Together, these results provide strong evidence that ReSafe consistently translates
unsafe images into safer ones.

B.5 ABLATION RESULTS

Hyperparameters ablation. Fig. 12 presents ablation results for the interpolation ratio α, removal
scale λunsafe, and token length N . Across all experiments, we empirically set these hyperparameters
to 0.7, 1.0, and 16, respectively.

Various VLMs ablation. We used Qwen2-VL-7B-Instruct (Wang et al., 2024a) as our main VLM
baseline. To further assess generality, we evaluated our method with LLaVA-Next-7B (Liu et al.,
2024), and InternVL3-8B (Zhu et al., 2025). For reference, SD1.4 reports the unsafe generation rate
when images are produced by vanilla Stable Diffusion without our method, and Qwen2-VL-7B (Wang
et al., 2024a) is the main baseline for all experiments. As Tab. 10 shows, our approach achieves
similarly strong improvements across multiple 8B-scale VLMs, indicating that it is not tied to a
particular VLM and generalizes well across different VLM backbones.

C IMAGE BACK TRANSLATION

To the best of our knowledge, we are the first to propose the concept of Image Back Translation.
This is primarily due to the following reasons. First, while back translation in NLP can leverage
lightweight models such as translator APIs, Image Back Translation requires both image-to-text and
text-to-image generation steps, which are computationally expensive and cumbersome. Moreover,
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Table 10: Comparison of Attack Success Rate (ASR) on SD1.4 and our variants with different VLMs.

Method Ring-A-Bell MMA-Diffusion↓ P4D↓ UnLearnDiffAtk↓ I2P↓
K77↓ K38↓ K16↓

SD1.4 (Rombach et al., 2022) 98.94 97.89 95.79 95.60 92.65 68.31 18.88
Ours (Qwen2-VL-7B) (Wang et al., 2024a) 29.47 22.10 26.32 32.70 32.35 16.19 4.40
Ours (LLaVA Next-7B) (Liu et al., 2024) 30.52 34.74 28.42 22.90 21.32 19.01 4.19
Ours (InternVL3-8B) (Zhu et al., 2025) 31.57 29.47 27.37 22.20 31.25 15.50 3.53

since effective image data augmentation techniques (Yun et al., 2019; Ghiasi et al., 2021; Kang &
Kim, 2023) already exist, employing an image-text-image framework solely for augmentation is
unnecessarily excessive. Most importantly, although prompt optimization methods such as PEZ
better capture visual features compared to simple captioning, they may still overlook or omit critical
semantic information of the input image. Such incomplete representation often leads to significant
semantic drift during the image regeneration process.

D PROMPTS DETAILS

D.1 VLM PROMPTS FOR SAFE FEATURE EXTRACTION

Nudity. For nudity, to extract {unsafe caption} we use the following prompt:
“Describe this image in a caption.”

Next, we extract the {unsafe components} using the following prompt:
“From the previous caption, extract only the elements related to nudity or sexually explicit content
as a Python-style list of strings. Do not include explanations or extra text. The output should look
like this: [’naked body’, ’bare chest’, ’exposed skin’].”

Finally, we derive the {safe caption} by using the previously extracted {unsafe caption} and {unsafe
components} as follows:
“The original caption was: ”{unsafe caption}”. The following elements are related to nudity or
sexually explicit content and must be strictly excluded: {unsafe components}. Generate a new
caption that describes the same image, but make absolutely sure that none of these elements appear
in the text. Do not refer to, imply, or paraphrase any of them. Focus on describing only the safe,
non-explicit parts of the image.”

Violence. For violence, we extract the {unsafe caption} using the same prompt applied for nudity:
“Describe this image in a caption.”

Next, we extract the {unsafe components} using the following prompt:
“From the previous caption, extract only the elements related to violence or violent(cruel) content
as a Python-style list of strings. Do not include explanations or extra text. The output should look
like this: [’gun’, ’blood-soaked bathroom’, ’blood’].”

Finally, we generate the {safe caption} by integrating the previously extracted {unsafe caption} with
its identified {unsafe components} as follows:
“The original caption was: ”{unsafe caption}”. The following elements are unsafe and must be
strictly excluded: {unsafe components }. Generate a new caption that describes the same image,
but make absolutely sure that none of the unsafe elements appear in the text. Do not refer to, imply,
or paraphrase any of them. Focus on describing only the safe parts of the image.”

Artist concept. Finally, for artist concept removal, we employ the following prompt when generat-
ing {unsafe caption}:
“Generate this {artist}’s painting in a caption.”
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Table 11: Per-image inference times and generalization ability to novel concepts for each I2I baselines.

Method InstructPix2Pix (Brooks et al., 2023) InstructCLIP (Chen et al., 2025) ICEdits (Zhang et al., 2025) ReSafe (Ours)

Time (s/image) 1.49 1.83 38.79 118.00

Generalization to Novel Concepts ✗ ✗ ✗ ✓

Table 12: Comparison of SSIM and LPIPS across different concept erasing baselines and our method.

Metric ESD CA MACE UCE RECE Receler SLD-max SAFREE Ours

SSIM ↑ 0.2264 0.1949 0.1648 0.2028 0.2098 0.2427 0.2406 0.1928 0.2002
LPIPS ↓ 0.7925 0.7875 0.7934 0.8055 0.8041 0.7949 0.8015 0.7841 0.7685

For artist concept removal, we directly extract the {safe caption} using the following instruction:
“The original caption was: ”{unsafe caption}”. The following elements describe stylistic features
tied to the artist’s technique and must be strictly excluded: {artist}. Generate a new caption that
describes the same image without any of these stylistic references. Do not mention, imply, or
paraphrase them. Focus solely on visible subjects, objects, actions, settings, colors, textures, and
spatial relationships.”

D.2 I2I INSTRUCTIONS

Nudity and Violence. For the instruction prompts provided to the I2I model, we used the following:
“Make this image safe.”

Artist concept. For the instruction prompts for artist concept, we used the following:
“Remove any stylistic influence of {artist} from the image.”

E LIMITATIONS AND DISCUSSION

As noted in the Sec. 6 of the main paper, unlike traditional I2I translation models that require
only a single inference process, ReSafe performs image back-translation: it must optimize the
intermediate discrete prompts before regenerating the image. This additional optimization step
increases the inference time. Tab. 11 compares the per-image inference times of ReSafe against
several state-of-the-art I2I models. However, it is noteworthy that ReSafe is the first to successfully
transform unsafe images into safe ones even for the novel concepts. Moreover, since ReSafe is
a post-hoc approach, it only needs to be applied when necessary; thus, in most cases, it does not
impose significant overhead. From the perspective of service providers, ensuring safety is far more
critical than minimizing inference time, as preventing the generation of harmful content outweighs
computational costs. We expect to leverage ReSafe in the future to construct an unsafe-safe image
paired dataset, which can then be used to train an I2I model capable of safe image generation and fast
inference, thereby reducing computational overhead and making the method suitable for real-time
applications. Moreover, the safe visual semantics of the original image may not remain perfectly
preserved. However, as discussed in Sec. 4.4, our focus is not on achieving perfect pixel-level
consistency but rather on preserving the safe feature information. Nevertheless, ReSafe outperforms
existing baselines in similarity metrics like LPIPS (Zhang et al., 2018) (see Tab. 12). We expect that
future research will investigate ways to incorporate such safe consistency into the editing process, for
instance by integrating intermediate visual feedback or developing more efficient prompt-optimization
techniques.

F LICENSE

We use standard community licenses and provide the following links for the benchmarks and models
used in this paper. For more detailed information, please refer to the respective links.
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F.1 MODELS

SDv1.4: https://huggingface.co/spaces/CompVis/stable-diffusion-license

SDXL: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md

SDv3: https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/LICENSE.md

Flux: https://github.com/black-forest-labs/flux/tree/main?tab=Apache-2.0-1-ov-file

InstructPix2Pix: https://github.com/timothybrooks/instruct-pix2pix/tree/main?tab=License-1-ov-file

Instruct-CLIP: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-
2.0.md

ICEdit: https://github.com/River-Zhang/ICEdit?tab=License-1-ov-file

F.2 BENCHMARKS

Ring-A-Bell: https://github.com/chiayi-hsu/Ring-A-Bell?tab=MIT-1-ov-file

MMA-Diffusion: https://github.com/cure-lab/MMA-Diffusion/blob/main/LICENSE

P4D: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/cc-by-4.0.md

UnlearnDiffAtk: https://github.com/OPTML-Group/Diffusion-MU-Attack?tab=MIT-1-ov-file

I2P: https://github.com/ml-research/safe-latent-diffusion?tab=MIT-1-ov-file
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Figure 8: Additional qualitative comparisons of ReSafe and T2I baselines on the nudity concept.
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Figure 9: Additional qualitative comparisons of ReSafe and T2I baselines on the violence concept.
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Figure 10: Additional qualitative comparisons of ReSafe and T2I baselines on the artist concept.
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Figure 11: Additional qualitative comparisons of ReSafe and I2I baselines.
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Figure 12: Ablation study on the hyperparameters of ReSafe. We set the interpolation ratio α to 0.7,
the removal scale λunsafe to 1.0, and the number of tokens N to 16.
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