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Abstract

Stochastic gradient Markov chain Monte Carlo (SGMCMC) is considered the gold standard
for Bayesian inference in large-scale models, such as Bayesian neural networks. Since
practitioners face speed versus accuracy tradeoffs in these models, variational inference
(VI) is often the preferable option. Unfortunately, VI makes strong assumptions on both
the factorization and functional form of the posterior. In this work, we propose a new non-
parametric variational approximation that makes no assumptions about the approximate
posterior’s functional form and allows practitioners to specify the exact dependencies the
algorithm should respect or break. The approach relies on a new Langevin-type algorithm
that operates on a modified energy function, where parts of the latent variables are averaged
over samples from earlier iterations of the Markov chain. This way, statistical dependencies
can be broken in a controlled way, allowing the chain to mix faster. This scheme can be
further modified in a “dropout” manner, leading to even more scalability. By implementing
the scheme on a ResNet-20 architecture, we obtain better predictive likelihoods and larger
effective sample sizes than full SGMCMC.

1. Introduction

Bayesian neural networks (BNNs) rely on scalable MCMC approaches based on inexpensive
stochastic gradients, of which stochastic gradient Markov chain Monte Carlo (SGMCMC)
algorithms are the gold standard (Li et al., 2016; Welling and Teh, 2011; Patterson and
Teh, 2013). The main downside of using SGMCMC algorithms in high dimensions is their
slow mixing rates since they explore the parameter space in a random walk fashion. Alter-
native, faster methods include variational inference (VI) algorithms which approximate the
posterior distribution with a simpler (often factorized) one.

In this work, we derive a fundamentally new SGMCMC approach that takes inspira-
tion from structured VI. While our approach remains a sampling algorithm resembling
SGMCMC, we speed up the mixing time by systematically breaking posterior correlations.
Furthermore, the resulting algorithm allows users to specify which posterior correlations to
keep and which ones to break all while making no assumptions on the functional form of
the approximate posterior. We call our approach structured SGMCMC since it relies on a
structured (i.e., partially factorized) variational approximation of the posterior (Wainwright
and Jordan, 2008).

Related Work Our work connects both to (stochastic) variational inference (Bishop,
2006; Hoffman et al., 2013; Ranganath et al., 2014; Blei et al., 2017; Zhang et al., 2018)
and scalable MCMC (Welling and Teh, 2011; Chen et al., 2014; Ma et al., 2017; Zhang
et al., 2020; Leimkuhler et al., 2019; Wenzel et al., 2020; Izmailov et al., 2021). For space
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limitations, we focus on the most related work at the intersection of both topics. (de Fre-
itas et al., 2001) constructed a variational proposal distribution in the Metropolos-Hastings
step of MCMC. An improved approach to that was proposed by (Habib and Barber, 2018),
where they introduce low-dimensional auxiliary variables. Other related advances to MCMC
Levy et al. (2017) developed a method to train MCMC kernels with NNs, and Wang et al.
(2018); Gong et al. (2018) who leveraged meta learning schemes in SGMCMC methods.
Other works aim at explicitly interpolating between MCMC and VI. Domke (2017) pro-
poses a divergence bound for hybridizing VI and MCMC, essentially by running Langevin
dynamics on a tempered evidence lower bound (ELBO). Salimans et al. (2015) embody
MCMC steps into the variational inference approximation. Ahn et al. (2012) leverage the
central limit theorem and use the estimated inverse Fisher information matrix to sample
from the approximate posterior distribution. Rezende and Mohamed (2015) interpreted
the path of an MCMC algorithm as a variational distribution. Recently, Hoffman and Ma
(2020) interpreted (parametric) VI as approximate Langevin dynamics and showed that
both algorithms have similar transient dynamics.

2. Proposed Methodology

Structured SGMCMC Given data D = {(xi, yi)}i=1,...,N , parameters θ, a proper prior

distribution p(θ), and a likelihood p(D|θ) =
∏N

i=1 p(yi|xi, θ), suppose we are interested in
the corresponding posterior distribution p(θ|D) ∝ p(D|θ)p(θ). A convenient representation
of the posterior is as a Boltzmann distribution:

p(θ|D) ∝ exp{−U(θ)} where U(θ) = − log p(θ,D) = −
∑

(x,y)∈D

log p(y|x, θ)− log p(θ). (1)

U is typically referred to as the posterior energy function. The basis of SGMCMC algorithms
is using a sampled minibatch of data D̃ from D to produce a differentiable, unbiased estimate
of the posterior energy function:

U(θ) ≈ Û(θ; D̃) = − N

|D̃|

∑
(x,y)∈D̃

log p(y|x, θ)− log p(θ). (2)

To achieve partial factorization, we must first partition θ into M > 1 distinct, mutually
independent groups: θ1, . . . , θM . This partitioning structure is assumed to be known a
priori. We will denote the distribution that respects this partitioning structure as q(θ) =∏M

i=1 qi(θi). Similar to VI, we would like this distribution q(θ) to best approximate the true
posterior distribution p(θ|D) according to some criteria, such as KL-divergence. This leads
to a natural objective function to minimize:

J(q(θ)) = DKL(q(θ)||p(θ|D)) ≡ Eθ∼q

[
log

q(θ)

p(θ|D)

]
(3)

The following Theorem 1 proves that there is a unique solution to the non-parametric
KL minimization problem described in Eq. (3). To describe it, we compose θ = {θi, θ̃¬i}
for any i where θ̃ ∼ q and define a structured energy function:

U (S)(θ) =

M∑
i=1

U
(S)
i (θi), with U

(S)
i (θi) := Eθ̃∼qU({θi, θ̃¬i}) := −Eθ̃∼q log p(θi, θ̃¬i,D). (4)
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That is, we first define the marginals U
(S)
i (θi), where we marginalize U(θ) with respect to all

q(θ)-factors except qi(θi), and then sum up these marginals to define U (S)(θ). Having a well-
defined energy function U (S) allows us to use standard SGMCMC methods to approximate
the posterior q(θ) with samples. This serves as the basis for our proposed algorithm that
actually approximates this distribution q(θ), which will be discussed shortly.

Theorem 1 The unique solution to the KL minimization problem given in Eq. 3 is given

by the Boltzmann distribution q(θ) ∝ exp{−
∑M

i=1 U
(S)
i (θi)}.

Our proposed algorithm that actually approximates distribution q(θ) is the following:

U (S)(θ) ≈ Û (S)(θ; D̃) =

M∑
i=1

Eθ̃∼qÛ({θi, θ̃¬i}; D̃), (5)

where Û(·) is defined in Eq. (2). The update step for structured SGLD (S-SGLD) is the
following:

θ(t+1) = θ(t) − ϵt
2
∇θÛ

(S)(θ; D̃) + ξt where ξt ∼ N (0, ϵtI). (6)

Structured Dropout SGMCMC This section presents such a method that both closely
resembles the S-SGMCMC procedure and scales independently from the partitioning scheme.,
which we call structured dropout SGMCMC (Sd-SGMCMC). The main motivation for this

technique can be seen by recognizing that the composition {θ(t)i , θ̃
(t)
¬i } from Eq. (5) can be

rewritten as a sum of masked values rθ(t) + (1− r)θ̃(t) where θ̃(t) ∼ q(t) and rj = (i = j) for
i = 1, . . . ,M . We can decouple the computational scaling from the number of parameter
groups M by replacing the M deterministic masks r’s with K stochastically sampled masks
r̃.1 Doing so results in a slightly different energy function and minibatch loss to optimize:

Û (Sd)(θ(t); D̃) ≈ M

KE
[∑M

i=1 ρi

] K∑
k=1

Û(r̃(t,k)θ(t) + (1− r̃(t,k))θ̃(t,k); D̃) (7)

where r̃(t,k) is the kth sample of r̃ for timestep t. These energy function approximations
lead to the following update step for structured dropout variant of SGLD (Sd-SGLD):

θ(t+1) = θ(t) − ϵt
2
∇θÛ

(Sd)(θ; D̃) + ξt where ξt ∼ N (0, ϵtI). (8)

3. Experiments

This section studies our methods with ResNet-20 (He et al., 2016) on CIFAR-10 (Krizhevsky
et al., 2009), SVHN (Netzer et al., 2011), and Fashion MNIST (Xiao et al., 2017) and com-
pares them for their accuracy. Our experiments reveal that the chains in our proposed
methods mix faster than SGMCMC and achieve either comparable or even higher accura-
cies on average. The primary predictive metric of interest use to evaluate our proposal is

1. K is a hyperparameter that is chosen independent of M ; however, both M and the distribution of r̃
largely influence how small K can be due to how they affect the variance of the gradient of the associated
posterior energy function.
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Figure 1: Comparison for (a) CIFAR-10, (b) SVHN and (c) FMNIST using ResNet-20 with
(i) pSGLD and (ii) SGHMC sampling algorithms and their proposed variational variants
for model averaged accuracy. Grid search was used to determine optimal hyperparameters
for each method.

classification accuracy. We take the average of an ensemble of 100 models whose weights
are sampled from the past samples of the parameters chains in order to calculate the accu-
racy. We deploy pSGLD and SGHMC as optimizers for our experiments. Bernoulli(ρ) and
uniform masking distributions were investigated on either fully joint or fully factorized pos-
teriors. In Fig. 1 we observe how quickly the proposed methods and the baseline SGMCMC
methods approach their optimum accuracy over the course of training. As is shown, our
proposed methods appear to achieve optimal accuracy values much faster than SGMCMC.
Sometimes as in the case of CIFAR10 we achieve a higher accuracy score with our methods
than with SGMCMC.

3.1. Exploring Partitioning Schemes

This part of the study aims to explore the capabilities of the proposed methodology further.
Here we explore different parameter partitioning schemes on regression datasets.

Here we present the results with different partitions on various regression datasets. We
used 7 different datasets: the wine quality dataset (Cortez et al., 2009), the Boston housing
dataset (Harrison Jr and Rubinfeld, 1978), the obesity levels dataset (Palechor and de la
Hoz Manotas, 2019), the Seoul bike-sharing dataset (E et al., 2020; E and Cho, 2020), the
concrete compressive strength dataset (Yeh, 1998), and the airfoil self-noise dataset (Brooks
et al., 1989). For the evaluation we chose a simple fully connected network with two layers
with 50 neurons each, and we use SGLD as an optimizer. As a performance metric we chose
mean squared error (MSE). We did hyperparameter tuning with different learning rates and
the final results are the means with the standard deviations of 5 runs with different seeds.
We do not observe any specific systematic trends on the partitions, apart from the fact that
in some cases random performs better. In that way the use of either random partitioning or
the fully-factorized partitioning, where every parameter is in a different group appears to
be a valid choice a priori ; especially the latter since we have noted earlier the faster mixing
times associated with this partitioning scheme. Full paper is in the Appendix.
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Table 1: MSE for various partitioning schemes on the parameters for a 2-layer fully-
connected BNN.

Partition Scheme Wine Housing Obesity Bike Concrete Airfoil

2*Random (M = 3) 0.0454 0.0233 0.0232 0.0242 0.0226 0.0454
±0.001 ±0.003 ±0.005 ±0.001 ±0.003 ±0.001

2*By Layer 0.0494 0.0236 0.0274 0.0247 0.0243 0.0494
±0.001 ±0.003 ±0.002 ±0.001 ±0.003 ±0.001

2*By Neurons 0.0496 0.0233 0.0262 0.0247 0.0238 0.0496
±0.001 ±0.003 ±0.003 ±0.001 ±0.003 ±0.001

2*Fully-Factorized 0.0478 0.0236 0.0227 0.025 0.0238 0.0478
±0.002 ±0.002 ±0.002 ±0.001 ±0.001 ±0.002
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4. Introduction

There has been much recent interest in deep Bayesian neural networks (BNN) due to their re-
liable confidence estimates and generalization properties (Wilson and Izmailov, 2020; Jospin
et al., 2020; Cardelli et al., 2019). BNNs rely on ensemble averages over model parameters
typically obtained from Markov chain Monte Carlo (MCMC) algorithms, which contrasts
to regular neural networks that depend on a single set of parameters. The sheer size of
these models requires scalable MCMC approaches based on inexpensive stochastic gradi-
ents, of which stochastic gradient Markov chain Monte Carlo (SGMCMC) algorithms are
the gold standard (Li et al., 2016; Welling and Teh, 2011; Patterson and Teh, 2013). These
algorithms owe their scalability to approximating gradients via mini-batching.

The main downside of using SGMCMC algorithms in high dimensions is their slow mix-
ing rates since they explore the parameter space in a random walk fashion. An often faster
alternative is variational inference (VI) algorithms that approximate the posterior with
a simpler (typically factorized) distribution. This formulation results in an optimization
problem that can be solved more efficiently using stochastic optimization (Blei et al., 2017;
Zhang et al., 2018).

One downside of VI approximations is their solid distributional assumptions. A typical
choice is to approximate the Bayesian posterior by a product of univariate Gaussian distri-
butions. These distributional assumptions are frequently over-simplistic in high-dimensional
models, where the posterior can be highly multi-modal and possibly heavy-tailed. Another
downside is that the variational approximation typically underestimates the posterior vari-
ance, leading to poorly calibrated uncertainties and overfitting (Ormerod and Wand, 2010;
Giordano et al., 2015; Zhang et al., 2018).

In this work, we derive a fundamentally new SGMCMC approach that takes inspiration
from structured VI. While our approach remains a sampling algorithm resembling SGM-
CMC, we speed up the mixing time by systematically breaking posterior correlations. The
resulting algorithm furthermore allows users to specify which posterior correlations to keep
and which ones to break. It makes no assumptions on the functional form of the approxi-
mate posterior. We call our approach structured SGMCMC since it relies on a structured
(i.e., only partially factorized) variational approximation of the posterior (Wainwright and
Jordan, 2008).

In more detail, we derive the optimal variational distribution for a given posterior sub-
ject to factorization constraints by assuming a functional view on variational inference.
We show how to sample from this optimal distribution by running SGMCMC on a modi-
fied energy function. This energy function is obtained by marginalizing the model’s joint
distribution over previously generated samples from the Markov chain, leading to an ap-
proximate factorization over user-specified parameter groups. Further, we provide a more
robust and computationally efficient approximation to the procedure that allows for inter-
polation between regular SGMCMC and our structured SGMCMC by taking inspiration
from dropout techniques. Both methods are compatible with any Markovian SGMCMC
algorithm, including Langevin dynamics and stochastic gradient Hamiltonian Monte Carlo.

In sum, our contributions are as follows:
• We propose a new approximate MCMC scheme running SGMCMC on a modified
energy function, trading accuracy for speed. This setup effectively allows sampling
from a fully joint posterior, a completely factorized posterior, and any in-between.
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• We prove mathematically that the resulting scheme asymptotically generates samples
from the best possible posterior approximation subject to user-specified factorization
constraints between groups of parameters.

• We extend this scheme further by making it more scalable with a dropout-inspired
approximation. This new scheme has a hyperparameter that enables a smooth in-
terpolation between full SGMCMC and a ”mean-field” version where all posterior
correlations are broken.

• We show in both small and large scale experiments that our method well-approximates
posterior marginals and gives improved results over SGMCMC on Resnet-20 architec-
tures on CIFAR-10, Fashion MNIST, and SVHN in terms of both runtime and final
accuracy.

Our paper is structured as follows: Section 5 presents the related work to our proposal,
Section 6 introduces preliminaries regarding the energy function and the stochastic gradient
updates, Sections 7 and 8 derive our proposed methods, Section 9 details experiments and
their results, and Section 10 contains our concluding thoughts.

5. Related Work

Our work connects both to (stochastic) variational inference (Bishop, 2006; Hoffman et al.,
2013; Ranganath et al., 2014; Blei et al., 2017; Zhang et al., 2018) and scalable MCMC
(Welling and Teh, 2011; Chen et al., 2014; Ma et al., 2017; Zhang et al., 2020; Leimkuhler
et al., 2019; Wenzel et al., 2020; Izmailov et al., 2021). For space limitations, we focus on
the most related work at the intersection of both topics.

Among the earliest works to hybridize both approaches was (de Freitas et al., 2001)
who constructed a variational proposal distribution in the Metropolos-Hastings step of
MCMC. An improved approach to that was introduced in (Habib and Barber, 2018), where
by introducing low-dimensional auxiliary variables they fit a more accurate approximating
distribution.

Most recent work focuses on connections between VI and stochastic gradient-based
MCMC, or between VI and stochastic gradient descent (SGD). For example, Mandt et al.
(2016, 2017) and Duvenaud et al. (2016) consider SGD as a type of variational inference,
but their approaches did not attempt to close the gap to exact MCMC. Other works aim at
explicitly interpolating between both methods. Domke (2017) proposes a divergence bound
for hybridizing VI and MCMC, essentially by running Langevin dynamics on a tempered
evidence lower bound (ELBO). Salimans et al. (2015) embody MCMC steps into the vari-
ational inference approximation. Ahn et al. (2012) improve stochastic gradient Langevin
dynamics by leveraging the central limit theorem and using the estimated inverse Fisher
information matrix to sample from the approximate posterior distribution. Rezende and
Mohamed (2015) interpreted the path of an MCMC algorithm as a variational distribution,
and then fitting parameters to tighten a variational bound. Recently, Hoffman and Ma
(2020) interpreted (parametric) VI as approximate Langevin dynamics and showed that
both algorithms have similar transient dynamics.

Our approach is different from all these papers in that it is a non-parametric, structured
mean-field VI scheme inspired by coordinate VI updates (Bishop, 2006). At the same time,
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it is also an approximate SGMCMC scheme in that the variational distribution is a Markov
Chain and the ELBO is implicit.

6. Preliminaries

Variational inference (VI) approaches differ from MCMC in two regards: (1) they impose
a structured (e.g., fully-factorized) approximation of the posterior for tractability, and (2)
they often make parametric assumptions. Is it possible to construct a modified scheme
that only relies on the assumption (1), inheriting the non-parametric nature of MCMC
while breaking posterior correlations in a controlled manner? The answer is affirmative and
will be answered as follows. We will first derive a modified energy function for Langevin
dynamics that we can sample from and then prove that its negative exponential results in
the optimal posterior approximation subject to specified factorization constraints. Running
SGMCMC algorithms on this energy function will consequently generate samples from this
distribution.

Before we explain our new method, we introduce the setup and common notation. Given
data D = {(xi, yi)}i=1,...,N , parameters θ, a proper prior distribution p(θ), and a likelihood

p(D|θ) =
∏N

i=1 p(yi|xi, θ), suppose we are interested in the corresponding posterior distri-
bution p(θ|D) ∝ p(D|θ)p(θ). A convenient representation of the posterior is as a Boltzmann
distribution:

p(θ|D) ∝ exp{−U(θ)} where U(θ) = − log p(θ,D) = −
∑

(x,y)∈D

log p(y|x, θ)− log p(θ). (9)

U is typically referred to as the posterior energy function. Note that the posterior distribu-
tion is typically intractable due to the normalizing constant.

The gold standard for approximating the entire posterior distribution is by deploying
Markov chain Monte Carlo (MCMC) algorithms. These methods work by producing an
empirical distribution of samples through a random walk in parameter space. While being
very accurate and having asymptotic guarantees, these methods are known to not scale well
with respect to both data and parameters (Brooks et al., 2011; Geyer, 1992).

Stochastic gradient MCMC (SGMCMC) is a class of scalable MCMC algorithms that can
produce posterior samples through gradients on minibatches of data. These algorithms are
largely derived from discretized approximations of continuous-time diffusion processes. Ex-
amples of these algorithms include stochastic gradient Langevin dynamics (SGLD) (Welling
and Teh, 2011), preconditioned SGLD (pSGLD) (Li et al., 2016), and stochastic gradient
Hamiltonian Monte Carlo (SGHMC) (Chen et al., 2014).

As alluded to, the basis of SGMCMC algorithms is using a sampled minibatch of data
D̃ from D to produce an differentiable, unbiased estimate of the posterior energy function:

U(θ) ≈ Û(θ; D̃) = − N

|D̃|

∑
(x,y)∈D̃

log p(y|x, θ)− log p(θ). (10)

Once Û is defined, it is fairly straight forward to generate new samples from the posterior
distribution. For instance, the SGLD update is

θ(t+1) = θ(t) − ϵt
2
∇θÛ(θ(t); D̃t) + ξt where ξt ∼ N (0, ϵtI). (11)
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Similar rules for pSGLD and SGHMC can be found in the Supplement. All of these update
rules produce a chain of samples up to time step t that ultimately form an empirical
distribution p̂(t)(θ|D). Should the algorithms converge, then limt→∞ p̂(t)(θ|D) = p(θ|D).

7. Structured SGMCMC

By design, SGMCMC methods produce a completely joint posterior distribution over pa-
rameters θ. For models with a large number of parameters, this can lead to various compli-
cations due to the curse of dimensionality. This is typically observed with slow convergence
times and potentially unexplored parameter spaces. A viable solution is to break dependen-
cies in the posterior distribution by leveraging ideas commonly used in variational inference
(VI). This would reduce the number of various potential posterior correlations that the
model would need to capture while sampling.

To achieve partial factorization, we must first partition θ into M > 1 distinct, mutually
independent groups: θ1, . . . , θM . This partitioning structure is assumed to be known a
priori. We will denote the distribution that respects this partitioning structure as q(θ) =∏M

i=1 qi(θi). Similar to VI, we would like this distribution q(θ) to best approximate the true
posterior distribution p(θ|D) according to some criteria, such as KL-divergence. This leads
to a natural objective function to minimize:

J(q(θ)) = DKL(q(θ)||p(θ|D)) ≡ Eθ∼q

[
log

q(θ)

p(θ|D)

]
(12)

The following Theorem 2 proves that there is a unique solution to the non-parametric
KL minimization problem described in Eq. (12). To describe it, we compose θ = {θi, θ̃¬i}
for any i where θ̃ ∼ q and define a structured energy function:

U (S)(θ) =
M∑
i=1

U
(S)
i (θi), with U

(S)
i (θi) := Eθ̃∼qU({θi, θ̃¬i}) := −Eθ̃∼q log p(θi, θ̃¬i,D). (13)

That is, we first define the marginals U
(S)
i (θi), where we marginalize U(θ) with respect

to all q(θ)-factors except qi(θi), and then sum up these marginals to define U (S)(θ). A
similar partial marginalization procedure is carried out for conjugate exponential family
distributions in coordinate ascent VI (Bishop, 2006). Having a well-defined energy function
U (S) allows us to use standard SGMCMC methods to approximate the posterior q(θ) with
samples. This serves as the basis for our proposed algorithm that actually approximates
this distribution q(θ), which will be discussed shortly.

Theorem 2 The unique solution to the KL minimization problem given in Eq. 12 is given

by the Boltzmann distribution q(θ) ∝ exp{−
∑M

i=1 U
(S)
i (θi)}. Please refer to the Supplement

for the proof.
In an ideal world, we would be able to use the findings of Theorem 2 directly in con-

junction with algorithms like Langevin dynamics and Hamiltonian Monte Carlo to produce
empirical distributions for q using U (S) (Liu et al., 2019). However, this is intractable for
two reasons: (1) these algorithms generally work only well with small amounts of data, and

(2) more importantly, the marginals U
(S)
i (θi) do not have a closed-form solution but need
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to be approximated via samples from q. Luckily, since SGMCMC methods only need access
to noisy estimates of U (S), we can run these algorithms on a stochastic estimate of Eq. (13),

U (S)(θ) ≈ Û (S)(θ; D̃) =

M∑
i=1

Eθ̃∼qÛ({θi, θ̃¬i}; D̃), (14)

where Û(·) is defined in Eq. (10). In practice, at timestep t for i = 1, . . . ,M we estimate
Eθ̃∼qÛ({θi, θ̃¬i}; D̃t) with a Monte Carlo approximation using a single sample θ̃(t,i) from the

current approximate distribution q̂(t) which is composed of samples from previous timesteps.
This leads to the following update step for structured SGLD (S-SGLD):

θ(t+1) = θ(t) − ϵt
2
∇θÛ

(S)(θ; D̃) + ξt where ξt ∼ N (0, ϵtI). (15)

Similar rules for structured variants of pSGLD (S-pSGLD) and SGHMC (S-SGHMC) can
be found in the Supplement. Additionally, the full procedure for structured SGMCMC
(S-SGMCMC) can be seen in Algorithm 1.

Remark Since ∇θÛ
(S) is an unbiased estimator for U (S), we are guaranteed to converge

to q from sampling with S-SGMCMC with sufficiently decreasing learning rates so long
as we are in a stationary state. While it is unlikely to have the procedure initialize to a
stationary state, we observe in practice that our scheme both tends to converge towards
and remain in a stationary state. A general proof of convergence is outside the scope of this
work and is left to follow-up research.

An example of S-SGMCMC can be seen in Fig. 2(a-b), which features the approximate
posterior distributions of a linear regression model with three coefficients and with various
independence structures imposed with S-SGLD: (a) joint dependence between w1, w2, and
w3; (b-left) dependence between w1 and w2 but independence between w3 and the other
coefficients; (b-right) fully factorized. Of note is that the bivariate posterior distributions
appear to respect the imposed independence structure. Interestingly, it also appears that
the variance shrinks as we induce these factorizations which is a commonly seen artifact
when using VI.

8. Structured Dropout SGMCMC

While S-SGMCMC can successfully break dependencies between parameter groups, it does
suffer computationally due to each parameter update scaling linearly with respect to M .
This means that for a single new sample of θ, the model’s forward pass needs to be computed
M different times on the same batch of data D̃, which can quickly become prohibitively
expensive for deep models when M is large. Ideally, we would prefer a method that both
closely resembles the S-SGMCMC procedure and scales independently from the partitioning
scheme. This section presents such a method that achieves this, which we call structured
dropout SGMCMC (Sd-SGMCMC), as well as an informal motivation and derivation of the
method. More formal details and a theorem proving both SGMCMC and S-SGMCMC are
limiting cases for Sd-SGMCMC can be found in the Supplement.

The main motivation for this technique can be seen by recognizing that the composition

{θ(t)i , θ̃
(t)
¬i } from Eq. (14) can be rewritten as a sum of masked values rθ(t)+(1−r)θ̃(t) where
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Figure 2: Sampled posterior distributions between w1 & w2 (top row) and w1 & w3 (bottom
row) for a linear regression model. From left to right, (a) the first column has posterior
distributions sampled with SGLD, (b) the second and third columns are sampled from S-
SGLD, and (c) the fourth and fifth are sampled from Sd-SGLD. The imposed parameter
structure for each are shown above the plots.

θ̃(t) ∼ q(t) and rj = (i = j) for i = 1, . . . ,M . We can decouple the computational scaling
from the number of parameter groups M by replacing the M deterministic masks r’s with
K stochastically sampled masks r̃.2 Doing so results in a slightly different energy function
and minibatch loss to optimize:

Û (Sd)(θ(t); D̃) ≈ M

KE
[∑M

i=1 ρi

] K∑
k=1

Û(r̃(t,k)θ(t) + (1− r̃(t,k))θ̃(t,k); D̃) (16)

where r̃(t,k) is the kth sample of r̃ for timestep t. A formal justification for Eq. (16) can
be found in the Supplement. These energy function approximations lead to the following
update step for structured dropout variant of SGLD (Sd-SGLD):

θ(t+1) = θ(t) − ϵt
2
∇θÛ

(Sd)(θ; D̃) + ξt where ξt ∼ N (0, ϵtI). (17)

The corresponding update rules for the structured dropout variants for pSGLD (Sd-pSGLD)
and SGHMC (Sd-SGHMC) are defined in the Supplement. The exact procedure for gen-
erating samples of the approximate posterior q̂(t) using structured dropout SGMCMC (Sd-
SGMCMC) can also be found in the Supplement.

An example of this method (specifically Sd-SGLD with r̃i
iid∼ Bernoulli(0.5) and K = 4)

used on a linear regression model can be seen in Fig. 2(c). Of note, we can see that the

2. K is a hyperparameter that is chosen independent of M ; however, both M and the distribution of r̃
largely influence how small K can be due to how they affect the variance of the gradient of the associated
posterior energy function.
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dropout variant largely respects the independence structure imposed, but maybe not as
strictly as the exact S-SGLD method seen in Fig. 2(b). Additionally, the posterior variance
also seems to have shrunk similarly to S-SGLD when compared against SGLD.

Masking Distribution Should r̃i
iid∼ Bernoulli(ρ), alongside a structure that factorizes by

activation components, then the method starts to resemble dropout with rate ρ (Srivastava
et al., 2014). The main difference being that instead of replacing a parameter value with 0 it
is replaced with a sample from the approximate posterior distribution at time t: q̂(t). While
a Bernoulli distribution for r̃ is a natural choice, there are other distributions that can be

chosen as well. For instance, r̃i
iid∼ N (0, 1) or r̃i

iid∼ Beta(α, β) are both viable distributions
and can be seen as analog to Gaussian and Beta-dropout respectively (Srivastava et al.,
2014; Liu et al., 2019). Our experiments will largely focus on sampling r̃ from Bernoulli
and uniform over [0, 1] (equivalent to Beta(0.5, 0.5)) distributions.

9. Experiments

Overview In this section we evaluate our proposed approach on various models and
datasets. Section 9.1 investigates the impact of the variational approximation on the algo-
rithms’ mixing and autocorrelation times using a fully-connected network architecture on
MNIST (LeCun et al., 2010). Section 9.2 studies our methods with ResNet-20 (He et al.,
2016) on CIFAR-10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and Fashion
MNIST (Xiao et al., 2017) and compares them for their accuracy and mixing time. Our
experiments reveal that the chains in our proposed methods mix faster than SGMCMC and
achieve either comparable or even higher accuracies on average.

We have also conducted experiments on uncertainty visualization, where we tested the
proposed methodology on predictive uncertainty estimation by deploying a two-layer fully
connected network on a toy dataset. The uncertainty experimental setup and results, along
with more technical details for the other experiments, can be found in the Appendix.

Metrics The primary predictive metric of interest use to evaluate our proposal is clas-
sification accuracy. We take the average of an ensemble of 100 models whose weights are
sampled from the past samples of the parameters chains in order to calculate the accu-
racy. Additionally, we also monitor the mixing time of the chains of our methods with
both integrated autocorrelation time (IAC) (Sokal, 1997; Goodman and Weare, 2010) and
effective sample size (ESS) (Geyer, 1992). IAC measures the correlation between samples
in a chain and, in turn, describe the inefficiency of a MCMC algorithm. IAC is computed
as τf =

∑∞
τ=−∞ ρf (τ) where ρf is the normalized autocorrelation function of the stochastic

process that generated the chain for f and is calculated as ρ̂f (τ) = ĉf (τ)/ĉf (0); where

ĉf (τ) = 1
N−τ

∑N−τ
n=1 (fn − µf ) (fn+τ − µf ) and µf = 1

N

∑N
n=1 fn. We note that we calcu-

lated ĉf (τ) with a fast Fourier transform as it is more computationally efficient than using
the direct sum. ESS measures how many independent samples would be equivalent to a
chain of correlated samples and is calculated as neff = n

1+(n−1)p , where n is the number of

samples and p is the autocorrelation.3 We note that a model with higher ESS and lower

3. We used the TensorFlow implementation for ESS which uses the direct sum for the autocorrelation.
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Input: Initial sample θ(0); parameter partitions θ1, . . . , θM ; step sizes {ϵt}t=0,...,T−1.
Output: q̂(T )(θ) := {θ(t)}t=1,...,T

for t = 0 to T − 1 do

Sample minibatch D̃(t) ⊂ D for i = 1 to M do

Sample θ̃
(t)
¬i ∼ q̂

(t)
¬i G

(S,t)
i = G([θ

(t)
i , θ̃

(t)
¬i ]; D̃(t))

end

∇̂θU
(S,t) = N

∑M
i=1∇θG

(S,t)
i θ(t+1) = SGMCMC step(θ(t), ∇̂θU

(S,t), ϵt)

end

return q̂(T )(θ)
Algorithm 1: S-SGMCMC

Table 2: IAC and ESS metrics for CIFAR-10, SVHN, and FMNIST with various methods.
Subscripts after method names refers to number of equally sized parameter groups, with |θ|
meaning every parameter belongs to its own group. Best results are bolded.

CIFAR-10 SVHN FMNIST

Method IAC↓ ESS↑ IAC↓ ESS↑ IAC↓ ESS↑

pSGLD 842 6.79 839 6.82 779 7.09
S-pSGLD2 777 7.34 840 6.80 740 7.55
S-pSGLD4 783 7.26 834 6.83 751 7.45
S-pSGLD8 833 6.86 857 6.67 776 7.24
Sd-pSGLD|θ| 816 7.05 803 7.00 677 8.24

SGHMC 916 6.14 858 6.59 795 6.83
S-SGHMC2 874 6.37 949 5.74 928 5.67
S-SGHMC4 875 6.37 961 5.66 915 5.77
S-SGHMC8 1195 4.68 1056 5.30 1142 4.87
Sd-SGHMC|θ|1079 5.28 828 6.56 782 7.08
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IAC have faster mixing time. Please see the Appendix for the detailed implementation
details and experimental setup for the metrics and our models.

9.1. Dropout Rate & Group Size Investigation

The aim of this set of experiments is to study the effects that the number of independent
parameter groups (or alternatively, the amount of allowed posterior correlations) has on ac-
curacy and mixing time when using our proposed methods. We compare pSGLD, S-pSGLD,
and Sd-pSGLD a Bernoulli(ρ) masking distribution with dropout rates ρ ∈ {0.1, 0.3, 0.5} on
a fully-connected neural network with 2 hidden layers, with 50 hidden units each, trained
and evaluated with MNIST using the standard train and test split. The model has 42,200
parameters in total. For S-pSGLD and Sd-pSGLD, these parameters are evenly distributed
into M groups where M ranges from 4 to 42,200. Accuracy, IAC, and ESS are reported
in Fig. 3 using 100,000 posterior samples after a 150,000 burn in period. More details on
the implementation of the model regarding training and evaluation can be found in the
Appendix.

As shown in Fig. 3(a), for S-pSGLD we observe that as we increase the number of
groups the accuracy drops dramatically whereas Sd-pSGLD’s accuracy improves slightly
and then remains fairly stable. In the best case, Sd-pSGLD achieves an accuracy of 96.3%
with 32 groups and dropout rate of 0.5 which outperforms pSGLD with accuracy of 94.2%.
We speculate that the dropout-like behavior is beneficial for regularizing the model (much
like normal dropout), hence the improved accuracy across all dropout rates. Similarly, a
single sample used for the Monte Carlo estimate in S-SGMCMC may not be enough as the
number of groups M increase; however, increasing the number of samples in this scenario
is infeasible due to S-SGMCMC scaling as O(M).

Fig. 3(b-c) portrays the comparison between number of groups and mixing time metrics
IAC and ESS. As the number of groups gradually increase, we note that S-pSGLD mixes
faster, as does Sd-pSGLD to lesser and lesser degrees as ρ increases. This behavior is to
be expected due to Theorem 3, with Sd-pSGLD exhibiting mixing times more similar to
pSGLD when ρ = 0.5 and more similar to S-pSGLD when ρ = 0.1.

9.2. Systematic Comparison on Real-World Data

The goal of these experiments is to test the proposed methodology on larger-scale datasets
which mimic real-world data: CIFAR-10, SVHN, and FMNIST. We evaluate our methods on
performance accuracy and on mixing times of the chains. We employ ResNet-20 for SVHN
and FMNIST without any data augmentation to assess our methods. For CIFAR10 we
employ the same data augmentation process as proposed in Cubuk et al. (2019). We evaluate
the precision of the methods on accuracy over time and the overall mixing time of them
on IAC and ESS with 2 base algorithms: pSGLD and SGHMC. For efficiency purposes we
limited our scope to models with either fully joint posteriors or fully factorized. As such, for
the latter we employed Sd-SGMCMCmethods as S-SGMCMC would not be feasible with the
amount of parameter groups present. Bernoulli(ρ) and uniform masking distributions were
investigated and are denoted as SBernoulli-SGMCMC and SUniform-SGMCMC respectively,
with ρ varying between datasets as determined by a hyperparameter search (detailed in the
Appendix).
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Figure 3: Comparison between pSGLD, S-pSGLD, and Sd-pSGLD of various numbers of
parameter groups M for (a) accuracy, (b) IAC, and (c) ESS. Right-most points on the
plots represent models that have every parameter belonging to its own parameter group.
S-pSGLD methods are were not able to be evaluated at such extreme values of M due to
computational scaling.

In Fig. 4 we observe how quickly the proposed methods and the baseline SGMCMC
methods approach their optimum accuracy over the course of training. As is shown,
SBernoulli-SGMCMC and SUniform-SGMCMC appear to achieve optimal accuracy values
much faster than SGMCMC on all datasets and with all base sampling schemes. In some
cases, the variational methods achieve better accuracy values than the baseline methods,
as seen for CIFAR10 in Fig. 4.

Mixing Time Comparisons We further validated our findings from Section 6.1 by evalu-
ating the IAC and ESS on larger datasets using various methods. Both pSGLD and SGHMC
were used as base methods in conjunction with both S-SGMCMC and Sd-SGMCMC using
a Bernoulli masking distribution. IAC and ESS were calculated for these methods using
the latest 5,000 samples after sampling for 300 epochs; the results of which can be found in
Table 2. For CIFAR-10, we see that Sd-SGMCMC with every parameter in a different group
mixes the fastest against all other methods. Likewise, for SVHN and FMNIST, Sd-pSGLD
with every parameter belonging to its own group mixes faster than all other methods. At
times it does appear that increasing the number of parameter groups causes slower mixing
time for S-SGMCMC. This could potentially be attributed to large variance in the gradients
from using only a single sample per Monte Carlo estimate.

9.3. Exploring Partitioning Schemes

This part of the study aims to explore the capabilities of the proposed methodology further.
Here we explore different parameter partitioning schemes on regression datasets.

Here we present the results with different partitions on various regression datasets. We
used 7 different datasets: the wine quality dataset (Cortez et al., 2009), the Boston housing
dataset (Harrison Jr and Rubinfeld, 1978), the obesity levels dataset (Palechor and de la
Hoz Manotas, 2019), the Seoul bike-sharing dataset (E et al., 2020; E and Cho, 2020), the
concrete compressive strength dataset (Yeh, 1998), and the airfoil self-noise dataset (Brooks
et al., 1989). For the evaluation we chose a simple fully connected network with two layers
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Figure 4: Comparison for (a) CIFAR-10, (b) SVHN and (c) FMNIST using ResNet-20 with
(i) pSGLD and (ii) SGHMC sampling algorithms and their proposed variational variants
for model averaged accuracy. Grid search was used to determine optimal hyperparameters
for each method — more details can be found in the Appendix.

Table 3: MSE for various partitioning schemes on the parameters for a 2-layer fully-
connected BNN.

Partition Scheme Wine Housing Obesity Bike Concrete Airfoil

2*Random (M = 3) 0.0454 0.0233 0.0232 0.0242 0.0226 0.0454
±0.001 ±0.003 ±0.005 ±0.001 ±0.003 ±0.001

2*By Layer 0.0494 0.0236 0.0274 0.0247 0.0243 0.0494
±0.001 ±0.003 ±0.002 ±0.001 ±0.003 ±0.001

2*By Neurons 0.0496 0.0233 0.0262 0.0247 0.0238 0.0496
±0.001 ±0.003 ±0.003 ±0.001 ±0.003 ±0.001

2*Fully-Factorized 0.0478 0.0236 0.0227 0.025 0.0238 0.0478
±0.002 ±0.002 ±0.002 ±0.001 ±0.001 ±0.002

with 50 neurons each, and we use SGLD as an optimizer. As a performance metric we chose
mean squared error (MSE). We did hyperparameter tuning with different learning rates and
the final results are the means with the standard deviations of 5 runs with different seeds.
We do not observe any specific systematic trends on the partitions, apart from the fact that
in some cases random performs better. In that way the use of either random partitioning
or the fully-factorized partitioning, where every parameter is in a different group appears
to be a valid choice a priori ; especially the latter since we have noted earlier the faster
mixing times associated with this partitioning scheme. More details about the partitioning
schemes experiments can be found in the Appendix.

10. Conclusions

In an attempt to hybridize MCMC and VI, we proposed S-SGMCMC: an approach that
produces samples from an structured posterior by running SGMCMC on a modified en-
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ergy function. The resulting Markov chain becomes asymptotically decoupled across user-
specified groups of parameters, resulting in faster convergence. For better computational
efficiency, we proposed Sd-SGMCMC: a further generalization of S-SGMCMC inspired by
dropout. This extension allows interpolating between a SGMCMC algorithm and its corre-
sponding S-SGMCMC method.

Our experimental results demonstrate that the proposed methods impose structure over
posterior distributions, increase mixing times of the chains, and result in similar or better
posterior predictive accuracies compared to SGMCMC on a variety of (deep) models. Our
experimental evaluations have provided strong empirical evidence for the efficacy of our
approach. We also showed that the proposed approach is compatible with various deep
learning architectures, including ResNet-20, and various datasets.

Despite its proven capabilities, our proposed methodology does come with some limita-
tions. Namely, for quick access our methods require keeping chains of samples on the GPU
whereas the baseline SGMCMC methods can simply save samples to disk. Additionally,
S-SGMCMC scales poorly with respect to the number of parameter groups. Sd-SGMCMC
manages to break this dependency; however, it still requires slightly more compute than
SGMCMC per sample, but it is comparable in wall clock time. Possible future work could
focus on more theoretical analyses of S-SGMCMC, such as formal proofs of convergence.

Appendix A. Theorem 1

Proof We begin with some preliminaries from the main text. Given dataD = {(xi, yi)}i=1,...,N ,

parameters θ, a proper prior distribution p(θ), and a likelihood p(D|θ) =
∏N

i=1 p(yi|xi, θ),
suppose we are interested in the corresponding posterior distribution p(θ|D) ∝ p(D|θ)p(θ).
A convenient representation of the posterior is as a Boltzmann distribution:

p(θ|D) ∝ exp{−U(θ)} where U(θ) = −
∑

(x,y)∈D

log p(y|x, θ)− log p(θ). (18)

U is typically referred to as the posterior energy function. Note that the posterior distribu-
tion is typically intractable due to the normalizing constant.

We also write the equation for KL divergence from the main text:

J(q(θ)) = DKL(q(θ)||p(θ|D)) (19)

≡ Eθ∼q

[
log

q(θ)

p(θ|D)

]
(20)

We then rewrite Eq. 12 as follows:

J(q(θ)) =θ∼q [log q(θ)]−θ∼q [log(θ,D)] + C (21)

=θi∼qi [log qi(θi)] +
∑
i ̸=j

θj∼qj [log qj(θj)]−
∫

log p(θ,D)qi(θi)dθi
∏
i ̸=j

qj(θj)dθj + C (22)

for some i ∈ {1, . . . ,M} where ¬i := {1, . . . ,M}\{i} and C = log p(D). In order to find the
optimal distribution that respects the factorization constraints imposed between parameter
groups, we need to minimize this functional over q — or rather every qi. This is done by
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taking the functional derivative of J with respect to qi, setting it equal to zero, and solving
for qi:

δJ(q(θ))

δqi(θi)
=

∫
log p(θ,D)

∏
i ̸=j

qj(θj)dθj − 1− log qi(θi) := 0 (23)

=⇒ log qi(θi) =θ̃¬i∼q¬i

[
log p(θi, θ̃¬i,D)

]
− 1 (24)

=⇒ qi(θi) ∝ exp
{
θ̃¬i∼q¬i

[
log p(θi, θ̃¬i,D)

]}
. (25)

By defining the energy U
(S)
i (θi) = −θ̃¬i∼q¬i

[
log p(θi, θ̃¬i,D)

]
, we realize that by minimizing

the KL-divergence in Eq. 12, the approximate posterior distribution q =
∏M

i=1 qi takes the

form of a Boltzmann distribution as in Eq. 9 with U (S)(θ) =
∑M

i=1 U
(S)
i (θi).

It remains to be shown that the solution is unique. To this end, we refer to the convexity
of the KL divergence in function space (Cover and Thomas, 2001). This implies that the
stationary point of the KL is indeed a global optimum and unique.

Appendix B. Deriving U (S)

With just a slight shift in perspective, it is actually possible to further generalize U (S) (and
consequently S-SGMCMC) to produce a broader class of approximate sampling algorithms.
This is done by first noting that U (S) can be represented with a scaled double-expectation:

U (S)(θ) = − M

r∼p(S)

[∑M
i=1 ri

]Er∼p(S)Eθ̃∼q

[
log p(rθ + (1− r)θ̃,D)

]
(26)

where p(S)(r) = Cat(r;M−1, . . . ,M−1) and (rθ + (1 − r)θ̃)i is equal to θi if ri = 1 and
θ̃i otherwise for i = 1, . . . ,M . Note that this is constructed in this manner specifically so
that U (S) remains differentiable with respect to θ. Also note that though the denominator
appears superfluous as r∼p(S) [

∑M
i=1 ri] = 1, it is necessary for certain theoretic properties,

as seen in Theorem 3.
By replacing p(S) with a more flexible distribution, we can further generalize and en-

capsulate different energy functions to sample from. One such choice is p(Sd)(r; ρ) :∝∏M
i=1Bern(ri; ρ)(

∑M
i=1 ri > 0) with ρ ∈ (0, 1).4 Substituting p(S) for p(Sd) in Eq. (26)

yields a new energy function that we will refer to as U (Sd). We note that this choice in
distribution leads to a dropout-like behavior (Nalisnick et al., 2019; Srivastava et al., 2014),
where the composition of model parameters as rθ+(1−r)θ̃ leads to each parameter group θi
having a probability of approximately ρ to be used in a prediction and a (1−ρ) probability
of being replaced by θ̃i from the approximate posterior (in traditional dropout, θi would
instead be replaced with 0). Likewise, we will denote methods that use this energy function
for sampling as structured dropout SGMCMC (Sd-SGMCMC) with different variants all
sharing the same Sd prefix (e.g. Sd-SGHMC).

4. Other choices of distribution that are well justified include any with support over [0, 1]M and with
measure 0 over {0}M . Exploring the effects these distributions have are an interesting line of future
inquiry.
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In practice, the double-expectation in U (Sd) is jointly approximated using a Monte Carlo
estimate with K samples. This leads to Eq. (16) in the main paper. We note that by
approximating U (Sd) in this way, computing a gradient no longer scales on the order of
O(M), but rather O(K). This means that the choice of structure imposed on the posterior
distribution remains independent of computing resources. As such, configurations with
large amounts of parameter groups are typically only feasible when using Sd-SGMCMC as
S-SGMCMC would use too much memory and/or compute per sample.

Appendix C. Theorem 2

Theorem 3 For a given set of parameters θ partitioned into M groups, under minor
assumptions (i) U (Sd) → U as ρ → 1 and (ii) U (Sd) → U (S) as ρ → 0. Thus, distributions
approximated by Sd-SGMCMC lie on a continuum with those generated by S-SGMCMC at
one extreme and with those from SGMCMC at the other.
Proof Assume an arbitrary θ, D, n ∈ N, and that θ̃∼q

[
log p(rθ + (1− r)θ̃,D)

]
exists for

r ∈ R. As an aside, this proof assumes that p(Sd)(r; ρ) :∝
∏M

i=1Bern(ri; ρ)(
∑M

i=1 ri > 0)
with ρ ∈ (0, 1); however, the theorem still holds an arbitrary p(Sd) so long as the mean
approaches 1 and variance approaches 0 as n → ∞.

(i) Let r(n) ∼ p(Sd)(ρn) where ∀nρn ∈ (0, 1) and ρn → 1. It follows that r(n) → {1}M as
n → ∞ in distribution (see Theorem 4 in Supplement). Due to bounded and finite support
R, we find the following:

U (Sd)(θ) = − M

r∼p(Sd) [
∑M

i=1 ri]

∑
r∈R

p(Sd)(r; ρn)θ̃∼q

[
log p(rθ + (1− r)θ̃,D)

]
(27)

→ −M

M

∑
r∈R

(∀iri = 1)θ̃∼q [log p(θ,D)] as n → ∞ (28)

= − log p(θ,D) = U(θ) (29)

(ii) Let r(n) ∼ p(Sd)(ρn) where ∀nρn ∈ (0, 1) and ρn → 0. It follows that r(n) → r ∼
Cat(M−1, . . . ,M−1) as n → ∞ in distribution (see Theorem 5 in Supplement). Due to
bounded and finite support R, we find the following:

U (Sd)(θ) = − M

r∼p(Sd) [
∑M

i=1 ri]

∑
r∈R

p(Sd)(r; ρn)θ̃∼q

[
log p(rθ + (1− r)θ̃,D)

]
(30)

→ −M

1

∑
r∈R

(
∑M

i=1 ri = 1)

M θ̃∼q

[
log p(rθ + (1− r)θ̃,D)

]
as n → ∞ (31)

= −
M∑
i=1

θ̃∼q[log p([θi, θ̃¬i,D)] = U (S)(θ) (32)

For both Theorems 4 and 5, let

p(Sd)(r; ρ) =
ρ
∑M

i=1 ri(1− ρ)M−
∑M

i=1 ri

1− (1− ρ)M
(∀iri ∈ {0, 1})

(
M∑
i=1

ri > 0

)
(33)
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Lemma 4 For r(n) ∼ p(Sd)(ρn), ρn ∈ (0, 1) and n ∈ N, if ρn → 1 as n → ∞ then
r(n) → r ∼ δ({1}M ) in distribution as n → ∞.

Proof

p(Sd)(r = {1}M ; ρn) =
ρMn (1− ρn)

0

1− (1− ρn)M
(34)

→ 1 as n → ∞ (35)

=⇒ r(n) → δ({1}M ) in distribution. (36)

Lemma 5 For r(n) ∼ p(Sd)(ρn), ρn ∈ (0, 1) and n ∈ N, if ρn → 0 as n → ∞ then
r(n) → r ∼ Cat(M−1, . . . ,M−1) in distribution as n → ∞.

Proof Let i ∈ {1, . . . ,M}.

p(Sd)(ri = 1, r¬i = 0; ρn) =
ρn(1− ρn)

M−1

1− (1− ρn)M
(37)

l’Hôspital’s Rule
H
=

(1− ρn)
M−1 + ρn(M − 1)(1− ρn)

M−2

M(1− ρn)M−1
(38)

→ 1

M
as n → ∞ (39)

Since the resulting probabilities sum to 1, this implies that r(n) → r ∼ Cat(M−1, . . . ,M−1)
in distribution as n → ∞.

Appendix D. Deriving U (Sd)

To derive U (Sd), we must first start with a shift in perspective on how U (S) is represented.
We will rewrite the function in the following way:

U (S)(θ) = −
M∑
i=1

θ¬i∼q¬i
[log p([θi, θ¬i],D)] (40)

= − M

r∼p(S) [
∑M

i=1 ri] r∼p(S)

θ̃∼q

[
log p(rθ + (1− r)θ̃,D)

]
(41)

where p(S) is aM -dimensional categorical distribution with uniform weightsM−1 and p(rθ+
(1 − r)θ̃,D) is the joint probability of parameters taking values of rθ + (1 − r)θ̃ and data
D.5

We note that changing the distribution of r leads to different energy functions to

sample from. One such choice is to have p(Sd)(r; ρ) ∝ ρ
∑M

i=1 ri(1 − ρ)M−
∑M

i=1 ri(∀iri ∈

5. rθ + (1 − r)θ̃ is a slight abuse of notation that is meant to represent masking out θi when ri = 0 and
masking out θ̃i when ri = 1.
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{0, 1})(
∑M

i=1 ri > 0) for ρ ∈ (0, 1). Note that this is identical to ri
iid∼ Bernoulli(ρ) condi-

tional to
∑M

i=1 ri > 0. Let the support of p(Sd) be denoted as R = {0, 1}M \ {0}M . This
leads to the following energy function:

U (Sd)(θ) = − M

r∼p(Sd) [
∑M

i=1 ri] r∼p(Sd)

θ̃∼q

[
log p(rθ + (1− r)θ̃,D)

]
. (42)

In practice, a few approximations are made to compute the corresponding U (Sd). Firstly,
we approximate p(Sd) with an M -dimensional Bernoulli(ρ) distribution as the difference is
minute when Mρ is large. Secondly, the outer expectation in Eq. (42) is approximated with
a Monte Carlo estimate of K samples. The inner expectation is also approximated with
a Monte Carlo estimate using the latest approximate posterior q̂(t). However, just like for
S-SGMCMC, only a single sample is used. This further leads to:

U (Sd)(θ(t); D̃) = − 1

Kρ

K∑
k=1

U(r(t,k)θ(t) + (1− r(t,k))θ̃(t,k); D̃) (43)

Appendix E. Algorithm for Sd-SGMCMC

The procedure for Sd-SGMCMC can be seen in Algorithm 2.

Input: Initial sample θ(0); parameter partitions θ1, . . . , θM ; data set D; initial auxiliary
statistics ξ(0); step sizes {ϵt}t=1,...,T ; masking distribution p(Sd); dropout iterations
K.

Output: q̂(T )(θ) := {θ(t)}t=1,...,T

for t = 0 to T − 1 do

Sample minibatch D̃(t) ⊂ D for k = 1 to K do

Sample masks r
(t,k)
1 , . . . , r

(t,k)
M ∼ p(Sd) Sample θ̃(t,k) ∼ q̂(t) θ(t,k) = [r

(t,k)
i θ

(t)
i + (1 −

r
(t,k)
i )θ̃

(t,k)
i ]i=1,...,M Û

(Sd,t)
k = Û(θ(t,k); D̃(t))

end

∇θÛ
(Sd,t) = M

KE
r∼p(Sd)

[
∑M

i=1 ri]

∑K
k=1∇θÛ

(Sd,t)
k θ(t+1), ξ(t+1) =

SGMCMC step(θ(t),∇θÛ
(Sd,t), ξ(t), ϵt)

end

return q̂(T )(θ)
Algorithm 2: Sd-SGMCMC
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Appendix F. SGMCMC Update Rules

The update rules for SGLD, pSGLD, and SGHMC are defined as follows:

SGLD θ(t+1) = θ(t) − ϵt
2
∇θÛ(θ(t)) +N (0, ϵtI) (44)

pSGLD θ(t+1) = θ(t) − ϵt
2

[
R(θ(t))∇θÛ(θ(t)) +

∑
θ

∇θR(θ(t))

]
+N (0, ϵtR(θ(t))) (45)

SGHMC θ(t+1) = θ(t) + ϵtM
−1m(t+1) (46)

m(t+1) = (1− γϵtM
−1)m(t) − ϵt∇θÛ(θ(t)) +N (0, 2γ − ϵtV̂ (θ(t))) (47)

where ϵt is the step size at time step t, R(·) and M are preconditioners, γ ≥ 0 is a friction
term, and V̂ (·) is an estimate of the covariance induced by the stochastic gradient.6

The update rules for the S-SGMCMC variants are similarly defined as Eqs. 44-47 but all
instances of Û(θ(t)) are replaced with Û (S)(θ(t)). Likewise, replacing with Û (Sd)(θ(t)) yields
the Sd-SGMCMC variants.

Appendix G. Ablation Study

This subsection aims to further explore the capabilities of the proposed methodology. More
specifically we experiment with various parameter partitions.

Parameter Partitions. We tested our proposal with four partitioning schemes on a 2
layer with 50 neurons fully connected network on a regression task. The partitioning schemes
that we used are the following: (a) the parameters are split into 3 groups randomly, (b)
the parameters are split by layer(3 layers, 1 input and 2 hidden), (c) by activating neurons
inside the layers and (d) every parameter belongs in each own group. We used 7 different
datasets: the wine quality datsetCortez et al. (2009), the Boston housing datasetHarrison Jr
and Rubinfeld (1978), the obesity levels datasetPalechor and de la Hoz Manotas (2019), the
Seoul bike-sharing datasetE et al. (2020); E and Cho (2020), the concrete compressive
strength datasetYeh (1998), and the airfoil self-noise datasetBrooks et al. (1989). Every
dataset was split into 75% training data, 10% validation data, and 15% test data. We trained
the model on training set and validated it in the validation set with an early stoppage. For
every dataset and every partitioning scheme we used the learning rates: 1e-3,1e-4,1e-5,1e-
6,1e-7 for hyperparameter tuning. For each combination of partition and dataset, we chose
the learning rate that provides the best accuracy score on the test set. In this case, as an
accuracy score, we used the Mean Squared Error. The final learning rates that we used are
presented in Table 4.

Appendix H. Details on Experiments

H.1. Qualitative Regression Experiments

First, we aim to showcase qualitative differences in the empirical posterior distributions
generated by a baseline SGMCMC algorithm and our proposed variants. To do so, we

6. Note that we abuse notation in Eqs. 44-47 where the addition of N (µ,Σ) denotes the addition of a
normally distributed random variable with mean µ and covariance Σ.
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Partition Scheme Wine Housing Obesity Bike Concrete Airfoil

Random (M = 3) 1e-3 1e-5 1e-5 1e-4 1e-5 1e-4
By Layer 1e-3 1e-5 1e-4 1e-4 1e-5 1e-4
By Neurons 1e-3 1e-5 1e-4 1e-4 1e-5 1e-5
Fully-Factorized 1e-5 1e-4 1e-5 1e-4 1e-4 1e-3

Table 4: Best Learning Rates for various partitioning schemes on multiple regression
datasets.

consider a regression task where 100 randomly sampled three-dimensional covariates {xi =
[xi,1, xi,2, xi,3]

T }i=1,...,100 are used to sample response values yi ∼ N (wTxi + b, σ2) where
w = [w1, w2, w3]

T = [1.5,−0.8, 1.3]T , b = 0.5, and σ2 = 1. More details on the generation
process for x can be found in the Supplement.

We choose to fit a linear regression model of the same form as the generation process.
σ2 is assumed to be known. Thus, θ = [w1, w2, w3, b]. A standard normal distribution is
used as the prior for each parameter. Due to conjugacy, the posterior distribution can be
calculated analytically. As such, the MAP is roughly θ̂MAP ≈ [0.52, 0.31, 0.47, 0.84].

The approximated posterior distributions for θ are found using SGLD, S-SGLD, and Sd-
SGLD. For the latter two sampling schemes, two parameter partitions are tested: (i) two
groups of parameters where θ1 = [w1, w2] and θ2 = [w3, b] and (ii) four groups of parameters
where θ1 = w1, θ2 = w2, θ3 = w3, and θ4 = b. For Sd-SGLD, ρ = 0.5 and K = 4 was used.

The resulting posterior distributions for (w1, w2) and (w1, w3) from all five scenarios,
with SGLD in the leftmost column as our baseline, can be seen in Fig. 2. We observe that,
as expected, correlations between (w1, w2) still exist when they are allocated to the same
parameter group and become apparently independent when assigned to different groups. We
also note that the variance of the distributions shrink as the parameter space is partitioned
into smaller groups. The underestimation of posterior variance is a commonly reported find-
ing for VI techniques and is interesting to note that our non-parametric methods appear to
exhibit this behavior as well. Finally, it appears that the Sd-SGLD adequately approximates
S-SGLD with just slightly higher variances and very minor correlations between parameter
groups being exhibited.

H.2. Real-World Data Experiments

Framework details. In this subsection, we provide more detailed results for our exper-
iments and a grid search for FMNIST, CIFAR10, and SVHN. We note that all the code
apart from the metrics was written in PyTorch (Paszke et al., 2019). Regarding the metrics,
ESS was adopted from the TensorFlow probability library (Dillon et al., 2017; Abadi et al.,
2016) and IAC was calculated in python. For all the experiments, we used a seed of 2.
Moreover, we note that we grouped the parameters in an ordered way for Sd-pSGLD and
S-pSGLD. We denoted previously that Kρ is the number of groups. So every parameter
will go to the i mod Kρ group where i is the parameter index. If, for instance, Kρ is 8
then parameter 1 will go to group 1, parameter 2 will go to group 2, parameter 9 will go to
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group 1, etc. If Kρ is the same as the number of parameters, every parameter will go into
its own group.

MNIST. Regarding MNIST, we ran all the experiments for 500 epochs with a batch size
of 500 and a learning rate of 1e-2. For Sd-pSGLD, the K is set to 300, which is the forward
passes that the model does within 1 epoch. For the grouping of the parameters, for Sd-
pSGLD we used group sizes of 2,4,8,32,128,512,2048,4096,8192,16384,32768 and 42200; and
for S-pSGLD we used groups sizes of 2,8,32,128,512,2048,4096 and 8192.

FashionMNIST. We ran all experiments for 300 epochs with a batch size of 500. For
Sd-SGHMC the K is set to 2, which is the forward passes that the model does within 1
epoch. We observed with experimenting with K that we do not need to set K very high,
and even a small number like 2 that we used here is enough to produce the same results
as with an K of 200 or 300. In this way, we save significant time in training. Regarding
the parameter partitioning, for Sd-SGMCMC, we put every parameter in a different group,
and for S-SGMCMC we used groups of 2,4,8, and 16. For Sd-pSGLD, pSGLD, Sd-SGHMC
and SGHMC we tested their performances with learning rates of 1e-2,1e-3,1e-4,1e-5. For
S-pSGLD we used a learning rate of 1e-3 and for S-SGHMC a learning rate of 1e-2.

Table 5: Evaluation Metrics on FashionMNIST with pSGLD, Sd-pSGLD and S-pSGLD

Method dropout LR IAC ESS Accuracy

Sd-pSGLD|θ| 0.1 1e-05 1018 5.63 0.918

Sd-pSGLD|θ| 0.1 1e-04 808 7 0.925

Sd-pSGLD|θ| 0.1 1e-03 754 7.48 0.924

Sd-pSGLD|θ| 0.1 1e-02 723 8.05 0.911

Sd-pSGLD|θ| 0.5 1e-05 778 7.08 0.923

Sd-pSGLD|θ| 0.5 1e-04 777 7.15 0.923

Sd-pSGLD|θ| 0.5 1e-03 737 7.57 0.924

Sd-pSGLD|θ| 0.5 1e-02 677 8.24 0.91

pSGLD - 1e-5 779 7.09 0.924

pSGLD - 1e-4 774 7.16 0.911

pSGLD - 1e-3 770 7.26 0.809

pSGLD - 1e-2 745 7.48 0.724

S-pSGLD2 - 1e-3 740 7.55 0.918

S-pSGLD4 - 1e-3 751 7.45 0.919

S-pSGLD8 - 1e-3 776 7.24 0.919

S-pSGLD16 - 1e-3 855 6.64 0.916

CIFAR10. The setup is similar to the one we used in FashionMNIST as we ran all experi-
ments for 300 epochs with a batch size of 128. For Sd-SGHMC, the K is set to 2, which K is
the forward passes that the model does within 1 epoch. Regarding the parameter partition-
ing, for Sd-SGMCMC, we put every parameter in a different group, and for S-SGMCMC
we used groups of 2,4,8, and 16. For Sd-pSGLD, pSGLD, Sd-SGHMC and SGHMC we
tested their performances with learning rates of 1e-2,1e-3,1e-4,1e-5. For S-pSGLD, we used
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Table 6: Evaluation Metrics on FashionMNIST with SGHMC, Sd-SGHMC and S-SGHMC

Method dropout LR IAC ESS Accuracy

Sd-SGHMC|θ| 0.1 1e-05 782 7.08 0.412

Sd-SGHMC|θ| 0.1 1e-04 888 6.41 0.796

Sd-SGHMC|θ| 0.1 1e-03 793 6.98 0.92

Sd-SGHMC|θ| 0.1 1e-02 1113 5.06 0.922

Sd-SGHMC|θ| 0.5 1e-05 790 6.93 0.207

Sd-SGHMC|θ| 0.5 1e-04 789 6.9 0.758

Sd-SGHMC|θ| 0.5 1e-03 796 6.81 0.0.92

Sd-SGHMC|θ| 0.5 1e-02 923 5.7 0.927

SGHMC - 1e-5 791 6.93 0.206

SGHMC - 1e-4 789 6.9 0.751

SGHMC - 1e-3 795 6.83 0.92

SGHMC - 1e-2 920 5.72 0.928

S-SGHMC2 - 1e-2 928 5.67 0.928

S-SGHMC4 - 1e-2 915 5.77 0.927

S-SGHMC8 - 1e-2 1142 4.87 0.919

S-SGHMC16 - 1e-2 1121 4.92 0.906

a learning rate of 1e-3, and for S-SGHMC, a learning rate of 1e-2. We focused our strat-
egy on evaluating the accuracy of the different combinations of hyperparameters with the
proposed methods, as can be seen in Figs. 5 and 6. Quantitative results on IAC, ESS and
maximum accuracy are depicted in Tables 7 and 8.

SVHN. We also ran all of the experiments for 300 epochs with a batch size of 128. Here
for Sd-SGHMC, the K is set to 2, which is the forward passes that the model does within 1
epoch. We note that K here is less than on CIFAR10 and FashionMNIST, but as we men-
tioned before, this does not make a difference for our results, as we have tested. Regarding
the parameter partitioning, for Sd-SGMCMC, we put every parameter in a different group,
and for S-SGMCMC we used groups of 2,4,8, and 16. For Sd-pSGLD, pSGLD, Sd-SGHMC
and SGHMC we tested their performances with learning rates of 1e-1,1e-2,1e-3,1e-4,1e-5,1e-
6. For S-pSGLD we used a learning rate of 1e-4, and for S-SGHMC, a learning rate of 1e-2.
Same as in CIFAR10, we conducted a grid search for learning rate, dropout rate, and opti-
mizers to find the best performing models and test them for their accuracy. We can observe
these results in Figure 3 in the main paper. The strategy that we followed is the same as
in CIFAR10 and is presented in Figs. 7 and 8.
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Table 7: Evaluation Metrics on CIFAR10 with pSGLD, Sd-pSGLD and S-pSGLD

Method dropout LR IAC ESS Accuracy

Sd-pSGLD|θ| 0.1 1e-02 623 7.23 0.191

Sd-pSGLD|θ| 0.1 1e-03 572 7.6 0.896

Sd-pSGLD|θ| 0.1 1e-04 692 6.45 0.921

Sd-pSGLD|θ| 0.1 1e-05 922 4.88 0.922

Sd-pSGLD|θ| 0.5 1e-02 546 8.01 0.768

Sd-pSGLD|θ| 0.5 1e-03 582 7.88 0.918

Sd-pSGLD|θ| 0.5 1e-04 691 6.85 0.926

Sd-pSGLD|θ| 0.5 1e-05 620 7.22 0.927

pSGLD - 1e-2 716 8.01 0.666

pSGLD - 1e-3 740 7.87 0.866

pSGLD - 1e-4 780 7.41 0.914

pSGLD - 1e-5 831 6.89 0.926

S-pSGLD2 - 1e-3 600 7.44 0.894

S-pSGLD4 - 1e-3 599 7.4 0.905

S-pSGLD8 - 1e-3 709 6.41 0.881

S-pSGLD16 - 1e-3 767 5.93 0.836

Table 8: Evaluation Metrics on CIFAR10 with SGHMC, Sd-SGHMC and S-SGHMC

Method dropout LR IAC ESS Accuracy

Sd-pSGLD|θ| 0.1 1e-02 608 7.16 0.91

Sd-pSGLD|θ| 0.1 1e-03 975 4.6 0.922

Sd-pSGLD|θ| 0.1 1e-04 654 6.63 0.869

Sd-pSGLD|θ| 0.1 1e-05 652 6.65 0.724

Sd-pSGLD|θ| 0.5 1e-02 584 7.7 0.918

Sd-pSGLD|θ| 0.5 1e-03 751 6.23 0.927

Sd-pSGLD|θ| 0.5 1e-04 679 6.73 0.886

Sd-pSGLD|θ| 0.5 1e-05 772 6.01 0.778

pSGLD - 1e-2 727 7.94 0.86

pSGLD - 1e-3 832 6.84 0.926

pSGLD - 1e-4 862 6.57 0.885

pSGLD - 1e-5 858 6.6 0.746

S-pSGLD2 - 1e-3 583 7.49 0.913

S-pSGLD4 - 1e-3 624 7.03 0.919

S-pSGLD8 - 1e-3 904 4.97 0.908

S-pSGLD16 - 1e-3 822 5.47 0.774
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Figure 5: Model comparison with different hyperparameters for the pSGLD versions of
our baselines and proposed algorithms. We evaluated expected accuracy over iterations on
CIFAR-10. Subscript ”d” denotes the dropout version of our approach. LR refers to the
learning rate, and ρ denotes the dropout rate.
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Figure 6: Model comparison with different hyperparameters for the SGHMC versions of
our baselines and proposed algorithms. We evaluated expected accuracy over iterations on
CIFAR-10. Subscript ”d” denotes the dropout version of our approach. LR refers to the
learning rate, and ρ denotes the dropout rate.
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Figure 7: Model comparison with different hyperparameters for the pSGLD versions of
our baselines and proposed algorithms. We evaluated expected accuracy over iterations
on SVHN. Subscript ”d” denotes the dropout version of our approach. LR refers to the
learning rate, and ρ denotes the dropout rate.
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Figure 8: Model comparison with different hyperparameters for the SGHMC versions of
our baselines and proposed algorithms. We evaluated expected accuracy over iterations
on SVHN. Subscript ”d” denotes the dropout version of our approach. LR refers to the
learning rate, and ρ denotes the dropout rate.

34


	Introduction
	Proposed Methodology
	Experiments
	Exploring Partitioning Schemes

	Introduction
	Related Work
	Preliminaries
	Structured SGMCMC
	Structured Dropout SGMCMC
	Experiments
	Dropout Rate & Group Size Investigation
	Systematic Comparison on Real-World Data
	Exploring Partitioning Schemes

	Conclusions
	Theorem 1
	Deriving U(S)
	Theorem 2
	Deriving U(Sd)
	Algorithm for Sd-SGMCMC
	SGMCMC Update Rules
	Ablation Study
	Details on Experiments
	Qualitative Regression Experiments
	Real-World Data Experiments


