
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Self-Play Preference Optimization for Language Model Alignment

Anonymous Authors1

Abstract
Traditional reinforcement learning from human
feedback (RLHF) approaches relying on paramet-
ric models like the Bradley-Terry model fall short
in capturing the intransitivity and irrationality in
human preferences. Recent advancements sug-
gest that directly working with preference prob-
abilities can yield a more accurate reflection of
human preferences, enabling more flexible and
accurate language model alignment. In this pa-
per, we propose a self-play-based method for lan-
guage model alignment, which treats the prob-
lem as a constant-sum two-player game aimed
at identifying the Nash equilibrium policy. Our
approach, dubbed Self-Play Preference Optimiza-
tion (SPPO), approximates the Nash equilibrium
through iterative policy updates and enjoys a the-
oretical convergence guarantee. Our method can
effectively increase the log-likelihood of the cho-
sen response and decrease that of the rejected
response, which cannot be trivially achieved by
symmetric pairwise loss such as Direct Prefer-
ence Optimization (DPO) and Identity Preference
Optimization (IPO). In our experiments, using
only 60k prompts (without responses) from the
UltraFeedback dataset and without any prompt
augmentation, by leveraging a pre-trained pref-
erence model PairRM with only 0.4B parame-
ters, SPPO can obtain a model from fine-tuning
Mistral-7B-Instruct-v0.2 that achieves the state-
of-the-art length-controlled win-rate of 28.53%
against GPT-4-Turbo on AlpacaEval 2.0. It also
outperforms the (iterative) DPO and IPO on MT-
Bench and the Open LLM Leaderboard. No-
tably, the strong performance of SPPO is achieved
without additional external supervision (e.g., re-
sponses, preferences, etc.) from GPT-4 or other
stronger language models.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1 Introduction
Large Language Models (LLMs) have demonstrated im-
pressive capabilities, yet they face challenges in ensuring
reliability, safety, and ethical alignment. Reinforcement
Learning from Human Feedback (RLHF) offers a solution
by fine-tuning models to align with human preferences. Tra-
ditional RLHF methods (Christiano et al., 2017; Ouyang
et al., 2022) rely on reward models to guide this process, but
they often fall short of capturing the complexities of human
behavior.
Recent research highlights the limitations of parametric pref-
erence models like Bradley & Terry (1952), which assume
consistent and transitive human preferences. Instead, stud-
ies suggest that human preferences can be inconsistent and
influenced by various factors, challenging the effectiveness
of these models(Tversky, 1969).
To address these issues, researchers have begun exploring
more flexible algorithms that directly handle preference
probabilities. Emerging approaches, such as Self-play Pref-
erence Optimization (SPO, Swamy et al., 2024), aim to iden-
tify optimal policies through self-play mechanisms. These
methods offer potential improvements but require significant
adaptation for large-scale LLM fine-tuning.
In this paper, we introduce Self-Play Preference Optimiza-
tion (SPPO), a new self-play algorithm designed to solve the
two-player constant-sum game for LLM alignment. SPPO
utilizes an exponential weight update algorithm within a self-
play framework, where policies are fine-tuned on synthetic
data generated by the model itself. Our contributions in-
clude a provably convergent SPPO algorithm for LLM align-
ment, optimizing a simple loss function. Comparisons with
state-of-the-art methods like DPO, IPO, and KTO, demon-
strate SPPO’s superior performance on various benchmarks.
Empirical evidence shows that SPPO enhances the Mistral-
7B-Instruct-v0.2 model, achieving significant improvements
without external supervision from stronger models like GPT-
4. Our findings suggest that SPPO provides a robust and
scalable solution for aligning large language models with
human preferences.

2 Preliminaries
We consider the preference learning scenario as follows.
Given a text sequence (commonly referred to as prompt)
x = [x1, x2, . . .], two text sequences y = [y1, y2, . . .] and

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Self-Play Preference Optimization for Language Model Alignment

y′ are generated as responses to the prompt x. An autore-
gressive language model π given the prompt x can generate
responses y following the probability decomposition

π(y|x) =
N∏
i=1

π(yi|x,y<i).

Given the prompt x and two responses y and y′, a prefer-
ence oracle (either a human annotator or a language model)
will provide preference feedback o(y ≻ y′|x) ∈ {0, 1}
indicating whether y is preferred over y′. We denote
P(y ≻ y′|x) = E[o(y ≻ y′|x)] as the probability of y
“winning the duel” over y′. The KL divergence of two
probability distributions of density p and q is defined as
KL(p∥q) = Ey∼p(y)

[
log p(y)

q(y)

]
.

2.1 RLHF with General Preference

Following Wang et al. (2024); Munos et al. (2023), we aim
to establish RLHF methods without a reward model, as the
human preference can be non-transitive (Tversky, 1969).
Under a general preference oracle P(y ≻ y′|x), we follow
Dudı́k et al. (2015) and aim to identify the von Neumann
winner. More specifically, the von Neumann winner π∗

is the (symmetric) Nash equilibrium of the following two-
player constant-sum game:

(π∗, π∗) = argmax
π

min
π′

Ex∼X

[
Ey∼π(·|x),y′∼π′(·|x)

[
P(y ≻ y′|x)

]]
. (2.1)

In addition, we define the winning probability of one re-
sponse y against a distribution of responses π as

P(y ≻ π|x) = Ey′∼π(·|x)[P(y ≻ y′|x)],

and the winning probability of one policy π against another
policy π′ as

P(π ≻ π′|x) = Ey∼π(·|x)Ey′∼π′(·|x)[P(y ≻ y′|x)].

Furthermore, we define P(π ≻ π′) = Ex∼X [P(π ≻ π′|x)],
where x is a prompt drawn from the prompt distribution X .
The two-player constant-sum game (2.1) can be simplified
as

(π∗, π∗) = argmax
π

min
π′

P(π ≻ π′).

3 Self-Play Preference Optimization (SPPO)
In this section, we introduce the Self-Play Preference Op-
timization (SPPO) algorithm, derived from the following
theoretical framework.

3.1 Theoretical Framework

There are well-known algorithms to approximately solve
the Nash equilibrium in a constant-sum two-player game. In

this work, we follow Freund & Schapire (1999) to establish
an iterative framework that can asymptotically converge to
the optimal policy on average. We start with a theoretical
framework that conceptually solves the two-player game for
t = 1, 2, . . . as follows:

πt+1(y|x) ∝ πt(y|x) exp(ηP(y ≻ πt|x)). (3.2)

(3.2) is an iterative framework that relies on the multiplica-
tive weight update in each round t and enjoys a clear struc-
ture. Initially, we have a base policy π1 usually from some
supervised fine-tuned model. In each round, the updated
policy πt+1 is obtained from the reference policy πt follow-
ing the multiplicative weight update. More specifically, a
response y should have a higher probability weight if it has
a higher average advantage over the current policy πt.
Equivalently, (3.2) can be written as

πt+1(y|x) =
πt(y|x) exp

(
ηP(y ≻ πt|x)

)
Zπt(x)

, (3.3)

where Zπt(x) =
∑

y πt(y|x) exp
(
ηP(y ≻ πt|x)

)
is the

normalizing factor (a.k.a., the partition function). For any
fixed x and y, the ideal update policy πt+1 should satisfy
the following equation:

log

(
πt+1(y|x)
πt(y|x)

)
= η · P(y ≻ πt|x)− logZπt

(x).

(3.4)

Unlike the pair-wise design in DPO or IPO that cancels the
log normalizing factor logZπt(x) by differentiating (3.4)
between y and y′, we choose to approximate (3.4) directly
in terms of L2 distance:

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)(
log

(
π(y|x)
πt(y|x)

)
−

(
ηP(y ≻ πt|x)− logZπt

(x)
))2

.

(3.5)

Estimation of the Probability The optimization objective
(3.5) can be approximated with finite samples. We choose
to sample K responses y1,y2, . . . ,yK ∼ πt(·|x) for each
prompt x, and denote the empirical distribution by π̂K

t . The
finite-sample optimization problem can be approximated as

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)

(
log

(
π(y|x)
πt(y|x)

)
−
(
ηP(y ≻ π̂K

t |x)− logZπ̂K
t
(x)

))2

. (3.6)

Specifically, P(y ≻ π̂K
t |x) =

∑K
k=1 P(y ≻ yk|x)/K

and Zπ̂K
t
(x) = Ey∼πt(·|x)[exp(ηP(y ≻ π̂K

t |x))]. Zπ̂K
t
(x),

treated as an expectation, can be further estimated by B

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Self-Play Preference Optimization for Language Model Alignment

Algorithm 1 Self-Play Preference Optimization (SPPO)

1: input: base policy πθ1
, preference oracle P, learning rate η, number of generated samples K.

2: for t = 1, 2, . . . do
3: Generate synthetic responses by sampling x ∼ X and y1:K ∼ πt(·|x).
4: Annotate the win-rate P(yk ≻ yk′ |x),∀k, k′ ∈ [K].
5: Select responses from y1:K to form dataset Dt = {(xi,yi, P̂ (yi ≻ πt|xi))}i∈[N].
6: Optimize πθt+1

according to (3.7):

θt+1 ← argmin
θ

E(x,y,P̂ (y≻πt|x))∼Dt

(
log

(
πθ(y|x)
πt(y|x)

)
− η

(
P̂ (y ≻ πt|x)−

1

2

))2

. (3.1)

7: end for

new samples with in total O(KB) queries of the preference
oracle P. (3.6) is an efficiently tractable optimization prob-
lem. Informally speaking, when K →∞, (3.6) will recover
(3.5). We have the following guarantee on the convergence
of (3.5):
Theorem 3.1. Assume the optimization problem (3.5) is re-
alizable. Denote πt as the policy obtained via (3.5) and the
mixture policy π̄T = 1

T

∑T
t=1 πt. By setting η = Θ(1/

√
T),

we have that

max
π

[
P(π ≻ π̄T)

]
−min

π

[
P(π ≺ π̄T)

]
= O(1/

√
T).

Theorem 3.1 characterizes the convergence rate of the av-
erage policy across the time horizon T towards the Nash
equilibrium, in terms of the duality gap. The proof is based
on Theorem 1 in Freund & Schapire (1999) with slight
modification. For completeness, we include the proof in
Appendix E.
Alternatively, we can avoid estimating logZπ̂K

t
(x) by re-

placing it simply with η/21 in (3.6) to obtain a more clear
objective:

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)(
log

(
π(y|x)
πt(y|x)

)
− η

(
P(y ≻ π̂K

t |x)−
1

2

))2

.

(3.7)

Intuitively, if a tie occurs (i.e., P(y ≻ π̂K
t |x) = 1/2), we

prefer the model does not update weight at y. If y wins
over π̂K

t on average (i.e., P(y ≻ π̂K
t |x) > 1/2), then we

increase the probability density at y to employ the advantage
of y over π̂K

t . In our experiments, we choose to minimize
the objective (3.7).

3.2 The SPPO Algorithm

Based on the aforementioned theoretical framework, we
propose the Self-Play Preference Optimization algorithm in

1Assuming the winning probability between any pair is a fair
coin toss, when K → ∞, we can show that indeed Zπ̂K

t
(x) →

eη/2.

Algorithm 1.
In each round t, Algorithm 1 will first generate K responses
y1,y2, . . . ,yK according to πt(·|x) for each prompt x
(Line 3). Then, the preference oracle P will be queried
to calculate the win rate among the K responses (Line 4).
At Line 5, certain criteria can be applied to determine
which response should be kept in the constructed dataset
Dt and construct the prompt-response-probability triplet
(x,y, P̂ (y ≻ πt|x)). We will discuss the design choices
later in Section 4. One straightforward design choice is to
include all K responses into Dt and each P̂ (yi ≻ πt|x)
is estimated by comparing yi to all K responses. In to-
tal, O(K2) queries will be made. Then the algorithm will
optimize (3.7) on the dataset Dt (Line 6).

4 Experiments
We conduct extensive experiments to show the performance
of our method and compare it with other baselines.

4.1 Experiment Setup

We briefly summarize our experiment setup as below. For a
full description of our experiment setup, see Section C.
Base Model and Datasets: We follow Snorkel’s experimen-
tal setup, using Mistral-7B-Instruct-v0.2 as our base model
and Ultrafeedback for prompts. We split the dataset into
three portions to avoid overfitting and ensure fair compari-
son with Snorkel.
Preference Model: We use PairRM, a 0.4B pair-wise pref-
erence model based on DeBERTA-V3, trained on high-
quality human-preference datasets. PairRM outputs a ”rela-
tive reward” to balance accuracy and efficiency, following
Snorkel’s methodology.
Response Generation and Selection: We sample K = 5
responses per prompt with top p = 1.0 and temperature 1.0.
We select the responses with the highest and lowest PairRM
scores as the winning and losing responses respectively.
Baselines and Benchmarks: We evaluate Mistral-7B-
Instruct-v0.2, Snorkel, iterative DPO and IPO, and Self-
rewarding LM. Benchmarks include AlpacaEval 2.0, MT-

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Self-Play Preference Optimization for Language Model Alignment

Table 1: AlpacaEval 2.0 evaluation of various models (de-
tailed in Baselines) in terms of both normal and length-
controlled (LC) win rates in percentage (%). Mistral-
7B stands for Mistral-7B-instruct-v0.2; Snorkel stands for
Snorkel (Mistral-PairRM-DPO); bo16 stands for best-of-
16. SPPO demonstrates steady performance gains across
iterations and outperforms other baselines which show a ten-
dency to produce longer responses. Additionally, re-ranking
with the PairRM reward model (best-of-16) at test time con-
sistently enhances the performance across all models.

Model AlpacaEval 2.0
LC Win Rate Win Rate Avg. Len

Mistral-7B 17.11 14.72 1676
Mistral-7B (bo16) 22.45 17.94 1529

Snorkel 26.39 30.22 2736
Snorkel (bo16) 29.97 34.86 2616

Self-Rewarding Iter1 - 9.94 1092
Self-Rewarding Iter2 - 15.38 1552
Self-Rewarding Iter3 - 20.44 2552

DPO Iter1 23.81 20.44 1723
DPO Iter2 24.23 24.46 2028
DPO Iter3 22.30 23.39 2189

IPO Iter1 23.78 20.77 1693
IPO Iter2 21.08 23.38 2660
IPO Iter3 20.06 22.47 2760

SPPO Iter1 24.79(+7.69) 23.51(+8.79) 1855
SPPO Iter2 26.89(+2.10) 27.62(+4.11) 2019
SPPO Iter3 28.53(+1.64) 31.02(+3.40) 2163

SPPO Iter1 (bo16) 28.71(+6.26) 27.77(+9.83) 1901
SPPO Iter2 (bo16) 31.23(+2.52) 32.12(+4.35) 2035
SPPO Iter3 (bo16) 32.13(+0.9) 34.94(+2.82) 2174

Bench, and the Open LLM Leaderboard, covering various
aspects of language model evaluation.

4.2 Experimental Results

In the assessment of AI chatbots, human evaluation remains
the benchmark for quality and accuracy (Askell et al., 2021;
Ouyang et al., 2022). However, due to its limitations in
scalability and reproducibility, we explore the alternative ap-
proach of using the advanced capabilities of GPT-4 (OpenAI
et al., 2023) as an automatic evaluation tool. We conduct
GPT-4-based automatic evaluation on AlpacaEval 2.0 (Li
et al., 2023b) and MT-Bench (Zheng et al., 2023) to measure
the chatbot capability of our model. Due to the space limit,
we only report the results on AlpacaEval 2.0 in the follow-
ing and postpone other results including ablation studies to
the appendix.
Table 1 (AlpacaEval 2.0) shows the win rate over the GPT-
4-Turbo baseline of different models on 805 prompts. We
also include one column indicating the length-controlled
win rate, and one column on the average length of each
model, to account for the tendency of the LLM-based judge
to favor longer sequence outputs — an issue colloquially

Table 2: AlpacaEval 2.0 leaderboard results of both normal
and length-controlled (LC) win rates in percentage (%).
Snorkel stands for Snorkel (Mistral-PairRM-DPO). Our
SPPO model outperforms many competing models trained
on proprietary alignment data (e.g., Claude 2, Gemini Pro,
& Llama 3 8B Instruct). With test-time reranking, SPPO
Iter3 (best-of-16) is even competitive to GPT-4 0613 and
Llama 3 70B Instruct.

Model AlpacaEval 2.0
LC. Win Rate Win Rate

GPT-4 Turbo 50.0 50.0
Claude 3 Opus 40.5 29.1
GPT-4 0314 35.3 22.1
Llama 3 70B Instruct 34.4 33.2
SPPO Iter3 (best-of-16) 32.1 34.9
GPT-4 0613 30.2 15.8
Snorkel (best-of-16) 30.0 34.9
Mistral Medium 28.6 21.9
SPPO Iter3 28.5 31.0
Claude 2 28.2 17.2
Snorkel 26.4 30.2
Gemini Pro 24.4 18.2
Mistral 8×7B v0.1 23.7 18.1
Llama 3 8B Instruct 22.9 22.6
GPT-3.5 Turbo 0613 22.7 14.1
Vicuna 33B v1.3 17.6 12.7

termed the ”reward hacking” phenomenon. According to
the table, SPPO Iter3 has the highest win rate, 28.52% for
the length-controlled version, and 31.02% for the overall
win rate. The performance gains over previous iterations
are 7.69% (Mistral-7B-Instruct→ Iter1), 2.10% (Iter1→
Iter2), and 1.64% (Iter2→ Iter3), respectively, indicating
steady improvements across iterations. Additionally, the
data indicates that SPPO achieves superior performance
compared to the iterative variants of DPO and IPO. The
length-controlled win rate for SPPO reaches 28.53%, out-
performing the DPO’s best rate of 26.39% (by Snorkel)
and IPO’s rate of 25.45% . Notably, while DPO and IPO
training tend to significantly increase the average output
length—2736 and 2654, respectively—SPPO shows a more
moderate length increase, moving from 1676 in the base
model to 2163 at the third iteration. We find that re-ranking
with the preference model at test time can consistently im-
prove the performance of base models (Mistral-7B-Instruct-
v0.2), DPO (Snorkel), and SPPO (Iter3) by 5.34%, 3.57%,
and 3.6%, respectively. Notably, this shows that while SPPO
significantly enhances model alignment using PairRM-0.4B
as the sole external supervision, it has not resulted in over-
optimization against the preference model (Gao et al., 2023).
Future work will explore further improvements in model
alignment, potentially through additional iterations beyond
the current three (following Snorkel’s methodology).

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Self-Play Preference Optimization for Language Model Alignment

References
Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D.,

Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma,
N., et al. A general language assistant as a laboratory for
alignment. arXiv preprint arXiv:2112.00861, 2021.

Azar, M. G., Rowland, M., Piot, B., Guo, D., Calandriello,
D., Valko, M., and Munos, R. A general theoretical
paradigm to understand learning from human preferences.
arXiv preprint arXiv:2310.12036, 2023.

Beeching, E., Fourrier, C., Habib, N., Han, S., Lambert,
N., Rajani, N., Sanseviero, O., Tunstall, L., and Wolf, T.
Open llm leaderboard. Hugging Face, 2023a.

Beeching, E., Fourrier, C., Habib, N., Han, S.,
Lambert, N., Rajani, N., Sanseviero, O., Tun-
stall, L., and Wolf, T. Open llm leader-
board. https://huggingface.co/spaces/
HuggingFaceH4/open_llm_leaderboard,
2023b.

Bradley, R. A. and Terry, M. E. Rank Analysis of Incomplete
Block Designs: I. The Method of Paired Comparisons.
Biometrika, 39(3/4):324–345, 1952. ISSN 0006-3444.
doi: 10.2307/2334029.

Calandriello, D., Guo, D., Munos, R., Rowland, M., Tang,
Y., Pires, B. A., Richemond, P. H., Lan, C. L., Valko, M.,
Liu, T., et al. Human alignment of large language models
through online preference optimisation. arXiv preprint
arXiv:2403.08635, 2024.

Chen, Z., Deng, Y., Yuan, H., Ji, K., and Gu, Q. Self-play
fine-tuning converts weak language models to strong lan-
guage models. arXiv preprint arXiv:2401.01335, 2024.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Cui, G., Yuan, L., Ding, N., Yao, G., Zhu, W., Ni, Y., Xie,
G., Liu, Z., and Sun, M. Ultrafeedback: Boosting lan-
guage models with high-quality feedback. arXiv preprint
arXiv:2310.01377, 2023.

Dubois, Y., Galambosi, B., Liang, P., and Hashimoto, T. B.
Length-controlled alpacaeval: A simple way to debias
automatic evaluators. arXiv preprint arXiv:2404.04475,
2024a.

Dubois, Y., Li, C. X., Taori, R., Zhang, T., Gulrajani, I., Ba,
J., Guestrin, C., Liang, P. S., and Hashimoto, T. B. Al-
pacafarm: A simulation framework for methods that learn
from human feedback. Advances in Neural Information
Processing Systems, 36, 2024b.

Dudı́k, M., Hofmann, K., Schapire, R. E., Slivkins, A., and
Zoghi, M. Contextual dueling bandits. In Conference on
Learning Theory, pp. 563–587. PMLR, 2015.

Ethayarajh, K., Xu, W., Muennighoff, N., Jurafsky, D., and
Kiela, D. Kto: Model alignment as prospect theoretic
optimization. arXiv preprint arXiv:2402.01306, 2024.

Freund, Y. and Schapire, R. E. Adaptive game playing using
multiplicative weights. Games and Economic Behavior,
29(1-2):79–103, 1999.

Gao, L., Schulman, J., and Hilton, J. Scaling laws for reward
model overoptimization. In International Conference on
Machine Learning, pp. 10835–10866. PMLR, 2023.

Gao, Z., Chang, J. D., Zhan, W., Oertell, O., Swamy, G.,
Brantley, K., Joachims, T., Bagnell, J. A., Lee, J. D., and
Sun, W. Rebel: Reinforcement learning via regressing
relative rewards. arXiv preprint arXiv:2404.16767, 2024.

He, P., Gao, J., and Chen, W. Debertav3: Improving
deberta using electra-style pre-training with gradient-
disentangled embedding sharing, 2021.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Hong, J., Lee, N., and Thorne, J. Reference-free monolithic
preference optimization with odds ratio. arXiv preprint
arXiv:2403.07691, 2024.

Ji, K., He, J., and Gu, Q. Reinforcement learning from
human feedback with active queries. arXiv preprint
arXiv:2402.09401, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023a.

Jiang, D., Ren, X., and Lin, B. Y. Llm-blender: Ensembling
large language models with pairwise ranking and genera-
tive fusion. arXiv preprint arXiv:2306.02561, 2023b.

5

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Self-Play Preference Optimization for Language Model Alignment

Li, J., Sun, S., Yuan, W., Fan, R.-Z., Zhao, H., and Liu, P.
Generative judge for evaluating alignment. arXiv preprint
arXiv:2310.05470, 2023a.

Li, X., Zhang, T., Dubois, Y., Taori, R., Gulrajani, I.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Alpacae-
val: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/
alpaca_eval, 2023b.

Lin, S., Hilton, J., and Evans, O. Truthfulqa: Measuring
how models mimic human falsehoods. arXiv preprint
arXiv:2109.07958, 2021.

Liu, T., Zhao, Y., Joshi, R., Khalman, M., Saleh, M.,
Liu, P. J., and Liu, J. Statistical rejection sam-
pling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

Munos, R., Valko, M., Calandriello, D., Azar, M. G., Row-
land, M., Guo, Z. D., Tang, Y., Geist, M., Mesnard, T.,
Michi, A., et al. Nash learning from human feedback.
arXiv preprint arXiv:2312.00886, 2023.

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt,
J., Altman, S., Anadkat, S., et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Pal, A., Karkhanis, D., Dooley, S., Roberts, M., Naidu, S.,
and White, C. Smaug: Fixing failure modes of pref-
erence optimisation with dpo-positive. arXiv preprint
arXiv:2402.13228, 2024.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Rosset, C., Cheng, C.-A., Mitra, A., Santacroce, M., Awadal-
lah, A., and Xie, T. Direct nash optimization: Teaching
language models to self-improve with general preferences.
arXiv preprint arXiv:2404.03715, 2024.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil,
P., Liu, P. J., Harrison, J., Lee, J., Xu, K., Parisi, A.,

et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint
arXiv:2312.06585, 2023.

Swamy, G., Dann, C., Kidambi, R., Wu, Z. S., and Agarwal,
A. A minimaximalist approach to reinforcement learning
from human feedback. arXiv preprint arXiv:2401.04056,
2024.

Tversky, A. Intransitivity of preferences. Psychological
review, 76(1):31, 1969.

Wang, Y., Liu, Q., and Jin, C. Is rlhf more difficult than
standard rl? a theoretical perspective. Advances in Neural
Information Processing Systems, 36, 2024.

Xiong, W., Dong, H., Ye, C., Zhong, H., Jiang, N., and
Zhang, T. Gibbs sampling from human feedback: A prov-
able kl-constrained framework for rlhf. arXiv preprint
arXiv:2312.11456, 2023.

Xu, J., Lee, A., Sukhbaatar, S., and Weston, J. Some
things are more cringe than others: Preference opti-
mization with the pairwise cringe loss. arXiv preprint
arXiv:2312.16682, 2023.

Ye, C., Xiong, W., Zhang, Y., Jiang, N., and Zhang, T. A the-
oretical analysis of nash learning from human feedback
under general kl-regularized preference. arXiv preprint
arXiv:2402.07314, 2024.

Yuan, W., Pang, R. Y., Cho, K., Sukhbaatar, S., Xu, J.,
and Weston, J. Self-rewarding language models. arXiv
preprint arXiv:2401.10020, 2024.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhao, Y., Joshi, R., Liu, T., Khalman, M., Saleh, M., and
Liu, P. J. Slic-hf: Sequence likelihood calibration with
human feedback. arXiv preprint arXiv:2305.10425, 2023.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in Neural Information Processing Systems, 36,
2023.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Zhu, B., Jiao, J., and Jordan, M. I. Principled reinforcement
learning with human feedback from pairwise or k-wise
comparisons. arXiv preprint arXiv:2301.11270, 2023.

6

https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Self-Play Preference Optimization for Language Model Alignment

A Related Work
RLHF with Explicit/Implicit Reward Model Originally, reinforcement learning from human feedback (RLHF) was
proposed by Christiano et al. (2017) as a methodology that first learns a reward model reflecting human preferences and
then uses reinforcement learning algorithms to maximize the reward. This methodology is applied by Ouyang et al. (2022)
to fine-tune instruction-following large language models and leads to the popular ChatGPT.
The reward model in the works mentioned above assumes a parametric model such as the Bradley-Terry model (Bradley &
Terry, 1952), which assigns a “score” representing how preferred a given response is. More recently, Rafailov et al. (2024)
proposed to instead directly solve the closed-form solution of such a score implied by the Bradley-Terry model. The Direct
Policy Optimization (DPO) method is claimed to be more efficient and stable, yet, still implicitly assumes such a reward
model that specifies the “score”. In a similar spirit, Zhao et al. (2023) proposed to calibrate the score so that the score of the
winner in comparison has a margin over the score of the loser, and induces a different SLic loss. Similarly, Ethayarajh et al.
(2024) derived a different loss function (called KTO) from the Kahneman-Tversky human utility function, which implicitly
denotes a score of the given response. Liu et al. (2023) proposed Rejection Sampling Optimization (RSO) which utilizes a
preference model to generate preference pairs with candidates sampled from the optimal policy; then preference optimization
is applied on the sampled preference pairs. Hong et al. (2024) proposed Odds Ratio Preference Optimization (ORPO)
algorithm that can perform supervised fine-tuning and preference alignment in one training session without maintaining an
intermediate reference policy.

RLHF with General Preference Model Often, the human preference is not strictly transitive, and cannot be sufficiently
represented by a single numerical score. Azar et al. (2023) proposed a general preference optimization objective based
on the preference probability between a pair of responses instead of a score of a single response. They further propose a
learning objective based on identity mapping of the preference probability called IPO (Preference Optimization with Identity
mapping), which aims to maximize the current policy’s expected winning probability over a given reference policy. Munos
et al. (2023) formulated the RLHF problem with general preference as a two-player, constant-sum game, where each player
is one policy that aims to maximize the probability of its response being preferred against its opponent. They aim to identify
the Nash equilibrium policy of this game and propose a mirror-descent algorithm that guarantees the last-iterate convergence
of a policy with tabular representations2. Wang et al. (2024) proposed to identify the Nash equilibrium policy for multi-step
MDPs when a general preference model is present and shows that the problem can be reduced to a two-player zero-sum
Markov game.

Theory of RLHF There is also a line of research to analyze RLHF and provide its theoretical guarantees. Zhu et al. (2023)
studied the standard RLHF with separate reward-learning and model-tuning and proposed a pessimistic reward-learning
process that provably learns a linear reward model. Wang et al. (2024) proposed a framework to reduce any RLHF problem
with a reward model to a reward-based standard RL problem. Additionally, they proposed to identify the Nash equilibrium
policy when a general preference model is present and show that the problem can be reduced to a two-player zero-sum
Markov game. Xiong et al. (2023) studied the reverse-KL regularized contextual bandit for RLHF in different settings and
proposed efficient algorithms with finite-sample theoretical guarantees. Ye et al. (2024) studied the theoretical learnability
of the KL-regularized Nash-Learning from Human Feedback (NLHF) by considering both offline and online settings
and proposed provably efficient algorithms. Ji et al. (2024) proposed an active-query-based proximal policy optimization
algorithm with regret bounds and query complexity based on the problem dimension and the sub-optimality gap.

Self-Play Fine-Tuning Most works mentioned above (Rafailov et al., 2024; Zhao et al., 2023; Azar et al., 2023; Ethayarajh
et al., 2024) consider one single optimization procedure starting from some reference policy. The same procedure may be
applied repeatedly for multiple rounds in a self-play manner. In each round, new data are generated by the policy obtained
in the last round; these new data are then used for training a new policy that can outperform the old policy.
The self-play fine-tuning can be applied to both scenarios with or without human preference data. For example, Singh
et al. (2023) proposed an Expectation-Maximization (EM) framework where in each round, new data are generated and
annotated with a reward score; the new policy is obtained by fine-tuning the policy on the data with a high reward. Chen
et al. (2024) proposed a self-play framework to fine-tune the model in a supervised way. In each round, new preference
pairs are synthesized by labeling the policy-generated responses as losers and the human-generated responses as winners.
Then DPO is applied in each round to fine-tune another policy based on these synthesized preference data. Yuan et al.
(2024) proposed Self-Rewarding Language Models, where the language model itself is used to annotate preference on its

2Due to the tabular representation, computing the normalizing factor is prohibitive and the algorithm is approximately executed by
sampling one token instead of a full response.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Self-Play Preference Optimization for Language Model Alignment

own responses. Iterative DPO is applied to fine-tune language models on these annotated data. These works show iterative
fine-tuning can significantly improve the performance.
Swamy et al. (2024) considered a more general multi-step Markov Decision Process (MDP) setting and proposed Self-play
Preference Optimization (SPO), an RLHF framework that can utilize any no-regret online learning algorithm for preference-
based policy optimization. They then instantiated their framework with the Soft Policy Iteration as an idealized variant of
their algorithm, which reduces to the exponential weight update rule (3.2) when constrained to the bandit setting. The main
difference is that they focus on the multi-round Markov decision process (MDP) in robotic or game tasks rather than on
fine-tuning large language models and approximating the update using policy optimization methods such as PPO.
Concurrent to our work, Rosset et al. (2024) proposed the Direct Nash Optimization (DNO) algorithm based on the
cross-entropy between true and predicted win rate gaps, and provided theoretical guarantees on the error of finite-sample
approximations. However, their practical version still utilizes the iterative-DPO framework as in Xu et al. (2023) with the
DPO loss instead of their own DNO loss. Notably, in their experiments, they added the GPT-4 generated responses as
their “gold sample” into their fine-tuning data, and used GPT-4 as a judge to assign a numerical score to each response for
preference pair construction. In sharp contrast, our work does not require use any strong external supervision besides a
small-sized reward model. Another concurrent work (Gao et al., 2024) proposed REBEL, an iterative self-play framework
via regressing the relative reward. When applied to the preference setting, it results a similar algorithm to our algorithm
SPPO, except that SPPO approximate the log-partition factor logZπt

(x) with η/2 while REBEL regresses on the win rate
difference (so that logZπt(x) is cancelled). Additionally, Calandriello et al. (2024) pointed out that optimising the IPO loss
(Azar et al., 2023) iteratively with self-play generated data is equivalent to finding the Nash equilibrium of the two-player
game, and they proposed the IPO-MD algorithm based on this observation which generates data with a mixture policy
similarly as the Nash-MD algorithm.

B Comparison with DPO, IPO, and KTO
In practice, we utilize mini-batches of more than 2 responses to estimate the win rate of a given response, while the DPO and
IPO loss focus on a single pair of responses. When only a pair of responses yw and yl is available, we have the pair-wise
symmetric loss based on the preference triplet (x,yw,yl) defined as:

ℓSPPO(x,yw,yl;θ;πref) :=

(
log

(
πθ(yw|x)
πref(yw|x)

)
− η

(
P(yw ≻ yl|x)−

1

2

))2

+

(
log

(
πθ(yl|x)
πref(yl|x)

)
− η

(
P(yw ≺ yl|x)−

1

2

))2

, (B.1)

where P(yw ≻ yl|x) can be either a soft probability within [0, 1] or a hard label 1 indicating yw ≻ yl.
We now compare the SPPO loss to other baselines assuming a hard label yw ≻ yl is given. For the ease of comparison, let

a = β log

(
πθ(yw|x)
πref(yw|x)

)
, b = β log

(
πθ(yl|x)
πref(yl|x)

)
, c = βKL(πθ∥πref),

then we have

ℓDPO(yw,yl,x) = − log σ(a− b), (B.2)

ℓIPO(yw,yl,x) = [(a− b)− 1]2, (B.3)
ℓKTO(yw,yl,x) = σ(−a+ c) + σ(b− c) (simplified), (B.4)

where σ(x) = ex/(ex + 1) and the SPPO loss can be written as

ℓSPPO(yw,yl,x) = (a− 1/2)2 + (b+ 1/2)2.

It can be seen that SPPO not only pushes the gap between a and b to be 1, but also attempts to push value of a to be close to
1/2 and the value of b to be close to −1/2 such that πθ(yw|x) > πref(yw|x) and πθ(yl|x) < πref(yl|x). We believe this is
particularly important: when there are plenty of preference pairs, DPO and IPO can ensure the policy will converge to the
target policy, but when the preference pairs are scarce (e.g., one pair for each prompt), there is no guarantee that the estimated
reward of the winner a will increase and the estimated reward of the loser b will decrease. Instead, only the reward gap
between the winner and the loser (i.e., a− b) will increase. This phenomenon is observed by Pal et al. (2024) that DPO only

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Self-Play Preference Optimization for Language Model Alignment

drives the loser’s likelihood to be small, but the winner’s likelihood barely changes. We believe that fitting β log
(

πt+1(y|x)
πt(y|x)

)
directly to P(y ≻ πt|x)− 1/2 is more effective than IPO which attempts to fit β log

(
πt+1(yw|x)
πt(yw|x)

)
− β log

(
πt+1(yl|x)
πt(yl|x)

)
to

P(yw ≻ πt|x)− P(yl ≻ πt|x). In addition, SPPO shares a similar spirit as KTO. The KTO loss pushes a to be large by
minimizing σ(−a+ c) and pushes b to be small by minimizing σ(b− c). In contrast, SPPO pushes a to be as large as 1/2
and b to be as small as −1/2.
On the other hand, we would like to comment that although DPO and KTO can be extended to their iterative variants, they
are not by nature iterative algorithms and do not have provable guarantees that they can reach the Nash equilibrium. In
contrast, SPPO and IPO are by design capable to solve the Nash equilibrium iteratively. SPPO is superior to IPO because its
design explicitly alleviates the data sparsity issue, as discussed above and detailed in Pal et al. (2024).

C Experiment Setup

Base Model and Datasets We follow the experimental setup of Snorkel3, a model that utilizes iterative DPO to achieve
state-of-the-art performance on AlpacaEval benchmarks. Specifically, we use Mistral-7B-Instruct-v0.2 as our base model4.
Mistral-7B-Instruct-v0.2 is an instruction fine-tuned version of Mistral-7B-v0.2 model (Jiang et al., 2023a). We also adopt
Ultrafeedback (Cui et al., 2023) as our source of prompts which includes around 60k prompts from diverse resources. During
generation, we follow the standard chat template of Mistral-7B. In order to avoid overfitting during the fine-tuning, we split
the dataset into three portions and use only one portion per iteration. These settings were also adopted by training the model
Snorkel-Mistral-PairRM-DPO5 (Snorkel). We follow the splitting in Snorkel for a fair comparison.

Preference Model We employ PairRM (Jiang et al., 2023b), an efficient pair-wise preference model of size 0.4B. PairRM
is based on DeBERTA-V3 (He et al., 2021) and trained on high-quality human-preference datasets. Results on benchmarks
like Auto-J Pairwise dataset (Li et al., 2023a) show that it outperforms most of the language-model-based reward models and
performs comparably with larger reward models like UltraRM-13B (Cui et al., 2023). We refer the readers to the homepage
on Huggingface6 for detailed benchmark results. We therefore keep PairRM as our ranking model following Snorkel for a
balance between accuracy and efficiency.
Specifically, PairRM will output a “relative reward” s(y,y′;x) that reflects the strength difference between y and y′, i.e.,
P(y ≻ y′|x) = exp(s(y,y′;x))

1+exp(s(y,y′;x)) . Unlike the Bradley-Terry-based reward model, PairRM only assigns the relative reward
which is not guaranteed to be transitive (i.e., s(y1,y2;x) + s(y2,y3;x) ̸= s(y1,y3;x)). So it indeed models the general
preference.

Response Generation and Selection During the generation phase in each iteration, we use top p = 1.0 and temperature
1.0 to sample from the current policy. We sample with different random seeds to get K = 5 different responses for each
prompt. Previous works utilizing Iterative DPO choose 2 responses to form a pair for each prompt. For a fair comparison,
we do not include all K = 5 responses in the preference data but choose two responses among them. Following Snorkel, we
choose the winner yw and loser yl to be the response with the highest and lowest PairRM score, which is defined for each
response yi as:

sPairRM(yi;x) :=
1

K

K∑
k=1

s(yi,yk;x).

Probability Estimation We then estimate the win rate over the distribution by the average win rate over all the sampled
responses as explained in (3.6):

P̂ (yi ≻ πt|xi) =
1

K

K∑
k=1

P(yi ≻ yk|x),∀i ∈ [K].

Hyperparameter Tuning The experiments are conducted on 8 × Nvidia A100 GPUs. For SPPO, we trained three
iterations in total. In each iteration, we selected the model that was trained on the first epoch of the 20k prompts from
UltraFeedback to proceed to the next iteration. The global training batch size is set to 64 and η is set to 1e3. The learning

3https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
4https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
5https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
6https://huggingface.co/llm-blender/PairRM

9

https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
https://huggingface.co/llm-blender/PairRM

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Self-Play Preference Optimization for Language Model Alignment

rate schedule is determined by the following hyperparameters: learning rate=5.0e-7, number of total training epochs=18,
warmup ratio=0.1, linear schedule. The best hyper-parameters for each model is selected by the average win-rate (judged
by PairRM-0.4B) on a hold-out subset of Ultrafeedback as the metric. For more details on the win-rate comparison using
PairRM as a judge, please refer to Section 4.2 and Figure 3.

Baselines We evaluate the following base models as well as baseline methods for fine-tuning LLMs:

• Mistral-7B-Instruct-v0.2: Mistral-7B-Instruct-v0.2 is an instruction fine-tuned version of Mistral-7B-v0.2 model (Jiang
et al., 2023a). It is the starting point of our algorithm.

• Snorkel (Mistral-PairRM-DPO): We directly evaluate the uploaded checkpoint on HuggingFace7. This model is obtained
by three rounds of iterative DPO from Mistral-7B-Instruct-v0.2.

• (Iterative) DPO: We also implement the iterative DPO algorithm by ourselves. The experimental settings and model
selection schemes align with those used for SPPO, except for the adoption of the DPO loss function as defined in (B.2).
Hyperparameters are optimized to maximize the average win-rate assessed by PairRM at each iteration. Note that the
practical algorithm in Rosset et al. (2024) is essentially the same as iterative DPO.

• (Iterative) IPO: We implement the iterative IPO algorithm by ourselves. The experimental setting and the model
selection scheme is the same as iterative DPO, except that the loss function is the IPO loss (B.3). For fair comparison,
hyperparameters for IPO is also selected by evaluation using the average PairRM win-rate on the hold-out subset of
Ultrafeedback.

• Self-rewarding LM: Yuan et al. (2024) proposed to prompt the LLM itself as a preference judge to construct new preference
pairs and iteratively fine-tune the LLM with the DPO algorithm. We use the AlpacaEval 2.0 win rate reported by Yuan
et al. (2024) for comparison. Note that Self-rewarding LM is a trained from Llama 2 70B.

Benchmarks Following previous works, we use AlpacaEval 2.0 (Dubois et al., 2024a), MT-Bench (Zheng et al., 2024),
and Open LLM Leaderboard (Beeching et al., 2023b) as our evaluation benchmarks.

• AlpacaEval 2.0 is an LLM-based automatic evaluation benchmark. It employs AlpacaFarm (Dubois et al., 2024b) as
its prompts set composed of general human instructions. The model responses and the reference response generated by
GPT-4-Turbo are fed into a GPT-4-Turbo-based annotator to be judged. We follow the standard approach and report the
win rate over the reference responses.

• MT-Bench (Zheng et al., 2024) is a collection of 80 high-quality multi-turn open-ended questions. The questions cover
topics like writing, role-playing, math, coding, etc.. The generated answer is judged by GPT-4 and given a score directly
without pairwise comparison.

• Open LLM Leaderboard (Beeching et al., 2023b) consists of six datasets, each of which focuses on a facet of language
model evaluation. In detail, the evaluation rubric includes math problem-solving, language understanding, human
falsehood mimicking, and reasoning. We follow the standard evaluation process and use in-context learning to prompt the
language model and compute the average score over six datasets to measure the performance.

D Additional Results

D.1 MT-Bench results

We also provide a radar chart analyzing the MT-Bench results in Figure 1 (right). We found that the performance of SPPO
models consistently improve along with the iterative alignment iterations.
In Figure 1 (left), we evaluate the performance of SPPO on MT-Bench. We can see that SPPO Iter3 outperforms all
baseline models, achieving an average score of 7.59. While we are not certain why the MT-Bench performance drops
at the first two iterations, the performance of SPPO at the final iteration still improves over the base model. Since the
length-controlled AlpacaEval 2.0 has a 98% Pearson correlation with human evaluations and 10× more evaluation prompts,
it likely provides a more reliable evaluation than MT-Bench. To gain deeper understanding on MT-Bench performance, we
plot the improvement in Figure 1 (right), broken down by question prompt category. SPPO Iter3 demonstrates notable gains
in RolePlay, Reasoning, Math, and Coding tasks.

7https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Self-Play Preference Optimization for Language Model Alignment

Model MT-Bench
1st Turn 2nd Turn Average

Mistral-7B-Instruct-v0.2 7.78 7.25 7.51
Snorkel (Mistral-PairRM-DPO) 7.83 7.33 7.58

DPO Iter1 7.45 6.58 7.02
DPO Iter2 7.57 6.56 7.06
DPO Iter3 7.49 6.69 7.09

SPPO Iter1 7.63 6.79 7.21
SPPO Iter2 7.90 7.08 7.49
SPPO Iter3 7.84 7.34 7.59

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

model
Mistral-7B-Instruct-v0.2
SPPO Iter1
SPPO Iter2
SPPO Iter3

Figure 1: MT-Bench Evaluation. Left: SPPO Iter3 outperforms all baseline models by achieving an average score of
7.59. Despite initial drops in performance in the first two iterations, SPPO Iter3 improves upon the base model by the final
iteration. Right: Radar chart of MT-Bench results. SPPO Iter3’s improves across different MT-Bench categories, showing
significant gains in RolePlay, Reasoning, Math, and Coding tasks.

D.2 Open LLM Leaderboard results

Table 3: Open LLM Leaderboard Evaluation. SPPO fine-tuning improves the base model’s performance on Arc,
TruthfulQA, and GSM8k, reaching a state-of-the-art average score of 66.75. However, subsequent iterations of DPO, IPO,
and SPPO see a decline in performance. It is possible that aligning with human preferences (simulated by the PairRM
preference model in our study) may not always enhance, and can even detract from, overall performance.

Models Arc TruthfulQA WinoGrande GSM8k HellaSwag MMLU Average

Mistral-7B-Instruct-v0.2 63.65 66.85 77.98 41.93 84.89 59.15 65.74

Snorkel 66.04 70.86 77.74 36.77 85.64 60.83 66.31

DPO Iter1 63.14 68.39 77.19 40.33 85.25 59.41 65.62
DPO Iter2 64.16 67.84 76.09 39.95 85.23 59.03 65.38
DPO Iter3 65.19 67.89 77.27 32.30 85.49 59.00 64.52

IPO Iter1 64.68 68.60 77.98 43.75 85.08 59.04 66.52
IPO Iter2 62.12 66.30 77.51 39.20 83.15 59.70 64.66
IPO Iter3 62.97 67.12 77.51 37.45 83.69 59.57 64.72

SPPO Iter1 65.02 69.40 77.82 43.82 85.11 58.84 66.67
SPPO Iter2 65.53 69.55 77.03 44.35 85.29 58.72 66.75
SPPO Iter3 65.36 69.97 76.80 42.68 85.16 58.45 66.40

Open LLM Leaderboard We further evaluate the capabilities of SPPO models using Huggingface Open LLM Leader-
board (Beeching et al., 2023a). This leaderboard encompasses 6 different datasets, each focusing on a a specific capability of
LLMs: Arc (Clark et al., 2018), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021), MMLU (Hendrycks
et al., 2020), TruthfulQA (Lin et al., 2021), and GSM8k (Cobbe et al., 2021). The models are prompted with zero or few-shot
exemplars. The results, presented in Table 3, demonstrate that SPPO can enhance the performance of the base model on Arc,
TruthfulQA, and GSM8k, and achieve the state-of-the-art performance with an averagte score of 66.75. However, these
improvements do not hold in subsequent alignment iterations: DPO, IPO, and SPPO’s performance declines after the first
or second iterations. This limitation may be attributed to the “alignment tax” phenomenon (Askell et al., 2021), which
suggests that aligning with human preferences (simulated by PairRM preference in our study) might not improve or even
hurt the general performance. Improving language model capabilities through alignment iterations remains a topic for future
research, and we posit that incorporating high-quality SFT annotations (Chen et al., 2024) could play a significant role in
this endeavor.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Self-Play Preference Optimization for Language Model Alignment

D.3 Comparing RLHF algorithms over iterations

In Figure 2, we plot the win rate against GPT-4-Turbo on AlpacaEval 2.0 of different RLHF algorithms. We can see that the
performance gains of SPPO over previous iterations are 7.69% (Mistral-7B-Instruct→ Iter1), 2.10% (Iter1→ Iter2), and
1.64% (Iter2→ Iter3), respectively, indicating steady improvements across iterations.

Iter1 Iter2 Iter3

20

25

30

35

LC
. W

in
 R

at
e

(%
)

GPT-4 0314
Snorkel (Mistral-PairRM-DPO)
Mistral-7B-Instruct-v0.2
DPO
IPO
SPPO

(a)
Iter1 Iter2 Iter3

10

15

20

25

30

W
in

 R
at

e
(%

)

GPT-4 0314
Snorkel (Mistral-PairRM-DPO)
Mistral-7B-Instruct-v0.2
Self-Rewarding 70B
DPO
IPO
SPPO

(b)

Figure 2: Win Rate against GPT-4-Turbo with (a) and without (b) Length Controlling (LC) on AlpacaEval 2.0. SPPO
demonstrates steady improvements on both LC and raw win rates.

D.4 Evaluation using PairRM as a judge

As SPPO identifies the von Neumann winner (see (2.1)) in a two-player constant-sum game, we examine the pairwise
preferences among SPPO models and other baselines. The pairwise win rates, measured by PairRM, are depicted in Figure 3.
We observe that in all algorithms—namely DPO, IPO, and SPPO—the newer model iterations surpass the previous ones.
For example, SPPO Iteration 3 outperforms SPPO Iteration 2. Both SPPO and IPO consistently outperform DPO across
all iterations. While SPPO is superior to IPO in the first two iterations, IPO exceeds SPPO in performance during the
final iteration. Considering the superior performance of SPPO in standard benchmarks evaluated by GPT-4 or against
ground-truth answers (e.g., AlpacaEval 2.0, MT-Bench, and Open LLM Leaderboard), along with IPO’s tendency to produce
longer sequence outputs (see Avg. Len in Table 1), we believe this is due to IPO exploiting the length bias in PairRM that
favors longer sequences. Conversely, SPPO models benefit from a more robust regularization within a multiplicative weight
update framework.

D.5 Ablation Study

We study the effect of mini-batch size when estimating the win rate P(y ≻ πt|x). Specifically, for each prompt, we still
generate 5 responses and choose the winner yw and loser yl according to the PairRM score. When estimating the probability,
we varies the batch size to be K = 2, 3, 5. For K = 2, we estimate P(y ≻ πt|x) with only 2 samples yw and yl:

P̂ (yw ≻ πt|x) =
P(yw ≻ yw|x) + P(yw ≻ yl|x)

2
=

1/2 + P(yw ≻ yl|x)
2

,

and P̂ (yl ≻ πt|x) similarly. K = 5 indicates the original setting we use.
We compare the results on AlpacaEval 2.0, as shown in Figure 4. We find that the performance of SPPO is robust to the
noise in estimating P(y ≻ πt|x). While K = 5 initially outperforms K = 2 in the first iteration, the difference in their
performance diminishes in subsequent iterations. Additionally, we observe that K = 2 exhibits a reduced tendency to
increase output length.

E Proof of Theorem 3.1
Proof of Theorem 3.1. Suppose the optimization problem is realizable, we have exactly that

πt+1(y|x) ∝ πt(y|x) exp(ηP(y ≻ πt|x)), for t = 1, 2, (E.1)

To prove that the exponential weight update can induce the optimal policy, we directly invoke a restated version of Theorem
1 in Freund & Schapire (1999):

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Self-Play Preference Optimization for Language Model Alignment

0.500 0.552 0.572 0.577 0.631 0.656 0.664 0.719 0.713 0.741 0.809

0.448 0.500 0.520 0.523 0.577 0.601 0.627 0.676 0.682 0.706 0.781

0.428 0.480 0.500 0.496 0.568 0.580 0.609 0.659 0.652 0.673 0.758

0.423 0.477 0.504 0.500 0.552 0.577 0.608 0.636 0.631 0.667 0.750

0.369 0.423 0.432 0.448 0.500 0.517 0.551 0.595 0.598 0.631 0.722

0.344 0.399 0.420 0.423 0.483 0.500 0.530 0.574 0.577 0.613 0.707

0.336 0.373 0.391 0.392 0.449 0.470 0.500 0.550 0.562 0.587 0.670

0.281 0.324 0.341 0.364 0.405 0.426 0.450 0.500 0.514 0.540 0.651

0.287 0.318 0.348 0.369 0.402 0.423 0.438 0.486 0.500 0.526 0.633

0.259 0.294 0.327 0.333 0.369 0.387 0.413 0.460 0.474 0.500 0.613

0.191 0.219 0.242 0.250 0.278 0.293 0.330 0.349 0.367 0.387 0.500

IPO
 Iter3

SPPO
 Iter3

Snorkel (M
istral-PairRM

-D
PO

)

D
PO

 Iter3

SPPO
 Iter2

IPO
 Iter2

D
PO

 Iter2

SPPO
 Iter1

D
PO

 Iter1

IPO
 Iter1

M
istral-7B-Instruct-v0.2

IPO Iter3

SPPO Iter3

Snorkel (Mistral-PairRM-DPO)

DPO Iter3

SPPO Iter2

IPO Iter2

DPO Iter2

SPPO Iter1

DPO Iter1

IPO Iter1

Mistral-7B-Instruct-v0.2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: Pairwise win rates among base model (Mistral-7B-Instruct-v0.2), DPO models, IPO models, and SPPO models
using PairRM-0.4B as a judge, which may favor models with longer outputs. On benchmarks with more powerful judge
models (e.g., GPT-4), such as AlpacaEval 2.0 and MT-Bench, SPPO outperforms other baseline algorithms by a large
margin.

Mini-Batch
Size Iteration

AlpacaEval 2.0
Win Rate Avg. Len

(chars)LC. Raw

K = 2
Iter1 23.85 23.53 1948
Iter2 26.91 27.24 1999
Iter3 28.26 28.22 1961

Iter1 24.79 23.51 1855
Iter2 26.89 27.62 2019K = 5
Iter3 28.53 31.02 2163

Iter1 Iter2 Iter3

18

20

22

24

26

28

LC
. W

in
 R

at
e

(%
)

Snorkel (Mistral-PairRM-DPO)
Mistral-7B-Instruct-v0.2
SPPO (K=2)
SPPO (K=5)

Figure 4: AlpacaEval 2.0 evaluation on SPPO of different mini-batch size in terms of both normal and length-controlled
(LC) win rates in percentage (%). K = 2, 5 denote different mini-batch sizes when estimating the win rate P(y ≻ πt|x).

Lemma E.1 (Theorem 1 in Freund & Schapire (1999), restated). For any oracle P and for any sequence of mixed policies
µ1, µ2, . . . , µT , the sequence of policies π1, π2, . . . , πT produced by (E.1) satisfies:

T∑
t=1

P(πt ≺ µt) ≤ min
π

[
η

1− e−η

T∑
t=1

P(π ≺ µt) +
KL(π∥π0)

1− e−η

]
.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Self-Play Preference Optimization for Language Model Alignment

By setting µt = πt, we have that

T

2
≤ min

π

[
ηT

1− e−η
P(π ≺ π̄T) +

KL(π∥π0)

1− e−η

]
,

where the LHS comes from that P(πt ≺ πt) = 1/2 and the RHS comes from that 1
T

∑T
t=1 P(π ≺ πt) = P(π ≺ π̄t). Now

rearranging terms gives

1− e−η

2η
≤ min

π

[
P(π ≺ π̄T) +

KL(π∥π0)

ηT

]
.

We can naively bound the KL-divergence KL(π∥π0) ≤ ∥ log π0(·)∥∞, which can be seen as a (large) constant.
By choosing η = ∥ log π0(·)∥∞√

T
, we have

1

2
− ∥ log π0(·)∥∞

4
√
T

+O(T−1) ≤ min
π

[
P(π ≺ π̄T)

]
+

√
∥ log π0(·)∥∞

T
,

where the LHS comes from Taylor’s expansion 1−e−η

2η = 1
2 −

η
4 +O(η2). Notice that 1/2 at the LHS is already the value of

the symmetric two-player constant-sum game. This shows that for appropriately chosen η and T , the mixture policy π̄T is
close to the minimax optimal policy (Nash equilibrium).
The optimality gap is thus bounded by

max
π

[
P(π ≻ π̄T)

]
−min

π

[
P(π ≺ π̄T)

]
= max

π

[
1− P(π ≺ π̄T)

]
−min

π

[
P(π ≺ π̄T)

]
= 2

(
1

2
−min

π

[
P(π ≺ π̄T)

])
= O

(
1√
T

)
.

F Response Examples in Different Iterations

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Self-Play Preference Optimization for Language Model Alignment

Table 4: Generation example of our fine-tuned model by SPPO at different iterations.

Prompt You will be given a definition of a task first, then some input of the task. You are given a dialog
between 2 or more individuals. The dialog will include information as to the relationship between 2
of the participants. At the end, you will be asked to provide an answer as to the relationship of those
2 participants. In this scenario, ’0’ will represent a spousal relationship, ’1’ will represent siblings,
and ’2’ will represent a child/parent relationship. Speaker 1: I’ll be right with you. Okay? Thanks,
Wendy. Speaker 2: Oh my God! How cute is the on-call doctor? Speaker 3: Ooh, so cute, that I’m
thinking about jamming this pen in my eye. Speaker 4: Dr. Burke will see you know. Speaker 2: Oh
no-no-no, not Dr. Burke. Dr. Burke is out of town. The-the on-call doctor will see me now. Speaker 4:
Dr. Richard Burke is out of town. Dr. Timothy Burke, his son, will see you now. Speaker 5: Ready?
What is the relationship between Speaker 5 and Richard Burke? Output:

Mistral-7B The relationship between Speaker 5 and Richard Burke is that of a parent and child, as Richard Burke
is identified as the son of another character in the dialog.

Iteration 1 The relationship between Speaker 5 and Richard Burke is that of a father and child. Based on the
dialogue, it was revealed that Dr. Timothy Burke is the on-call doctor and the son of Dr. Richard
Burke.

Iteration 2 The relationship between Speaker 5 and Richard Burke is that of a father and child. The conversation
reveals that Dr. Timothy Burke is the on-call doctor and he is identified as the son of Dr. Richard
Burke.

Iteration 3 Speaker 5 is the individual asking about the relationship, so they are not directly related to Dr. Richard
Burke. The information provided in the dialog reveals that Dr. Timothy Burke is the on-call doctor
and the son of Dr. Richard Burke. Therefore, the answer is: The relationship between Speaker 5 and
Dr. Richard Burke is that of a child (Dr. Timothy Burke) and parent. Speaker 5 is inquiring about the
relationship, but they are not themselves a part of it. The specified relationship codes (0 for spousal, 1
for sibling, 2 for child/parent) align with this description: Speaker 5 (0, 1, or 2) and Dr. Richard Burke
(2) connect as a parent-child duo. Output: 2 (child/parent relationship) In this scenario, Speaker 5’s
role is to determine the relationship between herself and Dr. Richard Burke, but since they are not
related (she is an outside inquirer), the correct answer pertains only to the relationship identified within
the dialog: Dr. Richard Burke (father) and Dr. Timothy Burke (son).

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Self-Play Preference Optimization for Language Model Alignment

Table 5: Another generation example of our fine-tuned model by SPPO at different iterations.

Prompt Q: Context: Roman Brady is a fictional character from the long running NBC soap opera, Days of Our
Lives. The role was originated in 1981 by Wayne Northrop who played the role until 1984, was filled
by Drake Hogestyn from 1986 – 1991, again by Northrop from 1991 – 1994, and is currently being
portrayed by series veteran Josh Taylor, who stepped into the role in 1997. Question: who is roman
brady on days of our lives? Let’s give stream of consciousness below

Mistral-7B Roman Brady is a fictional character on the NBC soap opera ”Days of Our Lives.” He was first
portrayed by Wayne Northrop from 1981 to 1984. Later, Drake Hogestyn took over the role from 1986
to 1991. Northrop returned to the role from 1991 to 1994. Since 1997, the character is being portrayed
by Josh Taylor. Roman Brady is a significant character in the show’s long-running storylines.

Iteration 1 Roman Brady is a fictional character on the NBC soap opera ”Days of Our Lives.” He was first
portrayed by Wayne Northrop from 1981 to 1984. Drake Hogestyn took over the role from 1986 to
1991. Northrop returned to play Roman again from 1991 to 1994. Since 1997, the character has been
portrayed by Josh Taylor. So, in summary, Roman Brady is a long-standing character on ”Days of Our
Lives” who has been played by three different actors over the years: Wayne Northrop (1981-1984,
1991-1994), Drake Hogestyn (1986-1991), and currently by Josh Taylor (1997-present).

Iteration 2 Roman Brady is a fictional character on the NBC soap opera ”Days of Our Lives.” He was first
portrayed by Wayne Northrop from 1981 to 1984. Drake Hogestyn took over the role from 1986 to
1991. Northrop returned to play Roman again from 1991 to 1994. Since 1997, the character has been
portrayed by Josh Taylor. Overall, Roman Brady is a long-standing and complex figure in the show’s
history, with multiple actors bringing their unique interpretations to the role.

Iteration 3 Roman Brady is a fictional character on the NBC soap opera ”Days of Our Lives.” He was originally
played by Wayne Northrop from 1981 to 1984. Drake Hogestyn took over the role from 1986 to 1991.
Northrop returned to portray Roman once more from 1991 to 1994. Since 1997, the character has been
portrayed by Josh Taylor.Roman Brady is a complex and prominent figure in the long-running daytime
drama. Initially played by Northrop in the early 1980s, his tenure included involvement in various
storylines, such as romantic relationships and business dealings. Hogestyn’s portrayal during the late
1980s and early 1990s introduced new dimensions to the character. Northrop’s second stint, from
1991 to 1994, further developed Roman’s narrative. Since 1997, Josh Taylor has assumed the role,
continuing to contribute to the evolving story of Roman Brady on ”Days of Our Lives.” Throughout
these different portrayals, Roman has remained a central character, known for his intricate relationships,
business ventures, and personal struggles.

16

