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Abstract
Traditional reinforcement learning from human
feedback (RLHF) approaches relying on paramet-
ric models like the Bradley-Terry model fall short
in capturing the intransitivity and irrationality in
human preferences. Recent advancements sug-
gest that directly working with preference prob-
abilities can yield a more accurate reflection of
human preferences, enabling more flexible and
accurate language model alignment. In this pa-
per, we propose a self-play-based method for lan-
guage model alignment, which treats the prob-
lem as a constant-sum two-player game aimed
at identifying the Nash equilibrium policy. Our
approach, dubbed Self-Play Preference Optimiza-
tion (SPPO), approximates the Nash equilibrium
through iterative policy updates and enjoys a the-
oretical convergence guarantee. Our method can
effectively increase the log-likelihood of the cho-
sen response and decrease that of the rejected
response, which cannot be trivially achieved by
symmetric pairwise loss such as Direct Prefer-
ence Optimization (DPO) and Identity Preference
Optimization (IPO). In our experiments, using
only 60k prompts (without responses) from the
UltraFeedback dataset and without any prompt
augmentation, by leveraging a pre-trained pref-
erence model PairRM with only 0.4B parame-
ters, SPPO can obtain a model from fine-tuning
Mistral-7B-Instruct-v0.2 that achieves the state-
of-the-art length-controlled win-rate of 28.53%
against GPT-4-Turbo on AlpacaEval 2.0. It also
outperforms the (iterative) DPO and IPO on MT-
Bench and the Open LLM Leaderboard. No-
tably, the strong performance of SPPO is achieved
without additional external supervision (e.g., re-
sponses, preferences, etc.) from GPT-4 or other
stronger language models.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
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1 Introduction
Large Language Models (LLMs) have demonstrated im-
pressive capabilities, yet they face challenges in ensuring
reliability, safety, and ethical alignment. Reinforcement
Learning from Human Feedback (RLHF) offers a solution
by fine-tuning models to align with human preferences. Tra-
ditional RLHF methods (Christiano et al., 2017; Ouyang
et al., 2022) rely on reward models to guide this process, but
they often fall short of capturing the complexities of human
behavior.
Recent research highlights the limitations of parametric pref-
erence models like Bradley & Terry (1952), which assume
consistent and transitive human preferences. Instead, stud-
ies suggest that human preferences can be inconsistent and
influenced by various factors, challenging the effectiveness
of these models(Tversky, 1969).
To address these issues, researchers have begun exploring
more flexible algorithms that directly handle preference
probabilities. Emerging approaches, such as Self-play Pref-
erence Optimization (SPO, Swamy et al., 2024), aim to iden-
tify optimal policies through self-play mechanisms. These
methods offer potential improvements but require significant
adaptation for large-scale LLM fine-tuning.
In this paper, we introduce Self-Play Preference Optimiza-
tion (SPPO), a new self-play algorithm designed to solve the
two-player constant-sum game for LLM alignment. SPPO
utilizes an exponential weight update algorithm within a self-
play framework, where policies are fine-tuned on synthetic
data generated by the model itself. Our contributions in-
clude a provably convergent SPPO algorithm for LLM align-
ment, optimizing a simple loss function. Comparisons with
state-of-the-art methods like DPO, IPO, and KTO, demon-
strate SPPO’s superior performance on various benchmarks.
Empirical evidence shows that SPPO enhances the Mistral-
7B-Instruct-v0.2 model, achieving significant improvements
without external supervision from stronger models like GPT-
4. Our findings suggest that SPPO provides a robust and
scalable solution for aligning large language models with
human preferences.

2 Preliminaries
We consider the preference learning scenario as follows.
Given a text sequence (commonly referred to as prompt)
x = [x1, x2, . . . ], two text sequences y = [y1, y2, . . . ] and
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y′ are generated as responses to the prompt x. An autore-
gressive language model π given the prompt x can generate
responses y following the probability decomposition

π(y|x) =
N∏
i=1

π(yi|x,y<i).

Given the prompt x and two responses y and y′, a prefer-
ence oracle (either a human annotator or a language model)
will provide preference feedback o(y ≻ y′|x) ∈ {0, 1}
indicating whether y is preferred over y′. We denote
P(y ≻ y′|x) = E[o(y ≻ y′|x)] as the probability of y
“winning the duel” over y′. The KL divergence of two
probability distributions of density p and q is defined as
KL(p∥q) = Ey∼p(y)

[
log p(y)

q(y)

]
.

2.1 RLHF with General Preference

Following Wang et al. (2024); Munos et al. (2023), we aim
to establish RLHF methods without a reward model, as the
human preference can be non-transitive (Tversky, 1969).
Under a general preference oracle P(y ≻ y′|x), we follow
Dudı́k et al. (2015) and aim to identify the von Neumann
winner. More specifically, the von Neumann winner π∗

is the (symmetric) Nash equilibrium of the following two-
player constant-sum game:

(π∗, π∗) = argmax
π

min
π′

Ex∼X

[
Ey∼π(·|x),y′∼π′(·|x)

[
P(y ≻ y′|x)

]]
. (2.1)

In addition, we define the winning probability of one re-
sponse y against a distribution of responses π as

P(y ≻ π|x) = Ey′∼π(·|x)[P(y ≻ y′|x)],

and the winning probability of one policy π against another
policy π′ as

P(π ≻ π′|x) = Ey∼π(·|x)Ey′∼π′(·|x)[P(y ≻ y′|x)].

Furthermore, we define P(π ≻ π′) = Ex∼X [P(π ≻ π′|x)],
where x is a prompt drawn from the prompt distribution X .
The two-player constant-sum game (2.1) can be simplified
as

(π∗, π∗) = argmax
π

min
π′

P(π ≻ π′).

3 Self-Play Preference Optimization (SPPO)
In this section, we introduce the Self-Play Preference Op-
timization (SPPO) algorithm, derived from the following
theoretical framework.

3.1 Theoretical Framework

There are well-known algorithms to approximately solve
the Nash equilibrium in a constant-sum two-player game. In

this work, we follow Freund & Schapire (1999) to establish
an iterative framework that can asymptotically converge to
the optimal policy on average. We start with a theoretical
framework that conceptually solves the two-player game for
t = 1, 2, . . . as follows:

πt+1(y|x) ∝ πt(y|x) exp(ηP(y ≻ πt|x)). (3.2)

(3.2) is an iterative framework that relies on the multiplica-
tive weight update in each round t and enjoys a clear struc-
ture. Initially, we have a base policy π1 usually from some
supervised fine-tuned model. In each round, the updated
policy πt+1 is obtained from the reference policy πt follow-
ing the multiplicative weight update. More specifically, a
response y should have a higher probability weight if it has
a higher average advantage over the current policy πt.
Equivalently, (3.2) can be written as

πt+1(y|x) =
πt(y|x) exp

(
ηP(y ≻ πt|x)

)
Zπt(x)

, (3.3)

where Zπt(x) =
∑

y πt(y|x) exp
(
ηP(y ≻ πt|x)

)
is the

normalizing factor (a.k.a., the partition function). For any
fixed x and y, the ideal update policy πt+1 should satisfy
the following equation:

log

(
πt+1(y|x)
πt(y|x)

)
= η · P(y ≻ πt|x)− logZπt

(x).

(3.4)

Unlike the pair-wise design in DPO or IPO that cancels the
log normalizing factor logZπt(x) by differentiating (3.4)
between y and y′, we choose to approximate (3.4) directly
in terms of L2 distance:

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)(
log

(
π(y|x)
πt(y|x)

)
−

(
ηP(y ≻ πt|x)− logZπt

(x)
))2

.

(3.5)

Estimation of the Probability The optimization objective
(3.5) can be approximated with finite samples. We choose
to sample K responses y1,y2, . . . ,yK ∼ πt(·|x) for each
prompt x, and denote the empirical distribution by π̂K

t . The
finite-sample optimization problem can be approximated as

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)

(
log

(
π(y|x)
πt(y|x)

)
−
(
ηP(y ≻ π̂K

t |x)− logZπ̂K
t
(x)

))2

. (3.6)

Specifically, P(y ≻ π̂K
t |x) =

∑K
k=1 P(y ≻ yk|x)/K

and Zπ̂K
t
(x) = Ey∼πt(·|x)[exp(ηP(y ≻ π̂K

t |x))]. Zπ̂K
t
(x),

treated as an expectation, can be further estimated by B
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Algorithm 1 Self-Play Preference Optimization (SPPO)

1: input: base policy πθ1
, preference oracle P, learning rate η, number of generated samples K.

2: for t = 1, 2, . . . do
3: Generate synthetic responses by sampling x ∼ X and y1:K ∼ πt(·|x).
4: Annotate the win-rate P(yk ≻ yk′ |x),∀k, k′ ∈ [K].
5: Select responses from y1:K to form dataset Dt = {(xi,yi, P̂ (yi ≻ πt|xi))}i∈[N ].
6: Optimize πθt+1

according to (3.7):

θt+1 ← argmin
θ

E(x,y,P̂ (y≻πt|x))∼Dt

(
log

(
πθ(y|x)
πt(y|x)

)
− η

(
P̂ (y ≻ πt|x)−

1

2

))2

. (3.1)

7: end for

new samples with in total O(KB) queries of the preference
oracle P. (3.6) is an efficiently tractable optimization prob-
lem. Informally speaking, when K →∞, (3.6) will recover
(3.5). We have the following guarantee on the convergence
of (3.5):
Theorem 3.1. Assume the optimization problem (3.5) is re-
alizable. Denote πt as the policy obtained via (3.5) and the
mixture policy π̄T = 1

T

∑T
t=1 πt. By setting η = Θ(1/

√
T ),

we have that

max
π

[
P(π ≻ π̄T )

]
−min

π

[
P(π ≺ π̄T )

]
= O(1/

√
T ).

Theorem 3.1 characterizes the convergence rate of the av-
erage policy across the time horizon T towards the Nash
equilibrium, in terms of the duality gap. The proof is based
on Theorem 1 in Freund & Schapire (1999) with slight
modification. For completeness, we include the proof in
Appendix E.
Alternatively, we can avoid estimating logZπ̂K

t
(x) by re-

placing it simply with η/21 in (3.6) to obtain a more clear
objective:

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)(
log

(
π(y|x)
πt(y|x)

)
− η

(
P(y ≻ π̂K

t |x)−
1

2

))2

.

(3.7)

Intuitively, if a tie occurs (i.e., P(y ≻ π̂K
t |x) = 1/2), we

prefer the model does not update weight at y. If y wins
over π̂K

t on average (i.e., P(y ≻ π̂K
t |x) > 1/2), then we

increase the probability density at y to employ the advantage
of y over π̂K

t . In our experiments, we choose to minimize
the objective (3.7).

3.2 The SPPO Algorithm

Based on the aforementioned theoretical framework, we
propose the Self-Play Preference Optimization algorithm in

1Assuming the winning probability between any pair is a fair
coin toss, when K → ∞, we can show that indeed Zπ̂K

t
(x) →

eη/2.

Algorithm 1.
In each round t, Algorithm 1 will first generate K responses
y1,y2, . . . ,yK according to πt(·|x) for each prompt x
(Line 3). Then, the preference oracle P will be queried
to calculate the win rate among the K responses (Line 4).
At Line 5, certain criteria can be applied to determine
which response should be kept in the constructed dataset
Dt and construct the prompt-response-probability triplet
(x,y, P̂ (y ≻ πt|x)). We will discuss the design choices
later in Section 4. One straightforward design choice is to
include all K responses into Dt and each P̂ (yi ≻ πt|x)
is estimated by comparing yi to all K responses. In to-
tal, O(K2) queries will be made. Then the algorithm will
optimize (3.7) on the dataset Dt (Line 6).

4 Experiments
We conduct extensive experiments to show the performance
of our method and compare it with other baselines.

4.1 Experiment Setup

We briefly summarize our experiment setup as below. For a
full description of our experiment setup, see Section C.
Base Model and Datasets: We follow Snorkel’s experimen-
tal setup, using Mistral-7B-Instruct-v0.2 as our base model
and Ultrafeedback for prompts. We split the dataset into
three portions to avoid overfitting and ensure fair compari-
son with Snorkel.
Preference Model: We use PairRM, a 0.4B pair-wise pref-
erence model based on DeBERTA-V3, trained on high-
quality human-preference datasets. PairRM outputs a ”rela-
tive reward” to balance accuracy and efficiency, following
Snorkel’s methodology.
Response Generation and Selection: We sample K = 5
responses per prompt with top p = 1.0 and temperature 1.0.
We select the responses with the highest and lowest PairRM
scores as the winning and losing responses respectively.
Baselines and Benchmarks: We evaluate Mistral-7B-
Instruct-v0.2, Snorkel, iterative DPO and IPO, and Self-
rewarding LM. Benchmarks include AlpacaEval 2.0, MT-
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Table 1: AlpacaEval 2.0 evaluation of various models (de-
tailed in Baselines) in terms of both normal and length-
controlled (LC) win rates in percentage (%). Mistral-
7B stands for Mistral-7B-instruct-v0.2; Snorkel stands for
Snorkel (Mistral-PairRM-DPO); bo16 stands for best-of-
16. SPPO demonstrates steady performance gains across
iterations and outperforms other baselines which show a ten-
dency to produce longer responses. Additionally, re-ranking
with the PairRM reward model (best-of-16) at test time con-
sistently enhances the performance across all models.

Model AlpacaEval 2.0
LC Win Rate Win Rate Avg. Len

Mistral-7B 17.11 14.72 1676
Mistral-7B (bo16) 22.45 17.94 1529

Snorkel 26.39 30.22 2736
Snorkel (bo16) 29.97 34.86 2616

Self-Rewarding Iter1 - 9.94 1092
Self-Rewarding Iter2 - 15.38 1552
Self-Rewarding Iter3 - 20.44 2552

DPO Iter1 23.81 20.44 1723
DPO Iter2 24.23 24.46 2028
DPO Iter3 22.30 23.39 2189

IPO Iter1 23.78 20.77 1693
IPO Iter2 21.08 23.38 2660
IPO Iter3 20.06 22.47 2760

SPPO Iter1 24.79(+7.69) 23.51(+8.79) 1855
SPPO Iter2 26.89(+2.10) 27.62(+4.11) 2019
SPPO Iter3 28.53(+1.64) 31.02(+3.40) 2163

SPPO Iter1 (bo16) 28.71(+6.26) 27.77(+9.83) 1901
SPPO Iter2 (bo16) 31.23(+2.52) 32.12(+4.35) 2035
SPPO Iter3 (bo16) 32.13(+0.9) 34.94(+2.82) 2174

Bench, and the Open LLM Leaderboard, covering various
aspects of language model evaluation.

4.2 Experimental Results

In the assessment of AI chatbots, human evaluation remains
the benchmark for quality and accuracy (Askell et al., 2021;
Ouyang et al., 2022). However, due to its limitations in
scalability and reproducibility, we explore the alternative ap-
proach of using the advanced capabilities of GPT-4 (OpenAI
et al., 2023) as an automatic evaluation tool. We conduct
GPT-4-based automatic evaluation on AlpacaEval 2.0 (Li
et al., 2023b) and MT-Bench (Zheng et al., 2023) to measure
the chatbot capability of our model. Due to the space limit,
we only report the results on AlpacaEval 2.0 in the follow-
ing and postpone other results including ablation studies to
the appendix.
Table 1 (AlpacaEval 2.0) shows the win rate over the GPT-
4-Turbo baseline of different models on 805 prompts. We
also include one column indicating the length-controlled
win rate, and one column on the average length of each
model, to account for the tendency of the LLM-based judge
to favor longer sequence outputs — an issue colloquially

Table 2: AlpacaEval 2.0 leaderboard results of both normal
and length-controlled (LC) win rates in percentage (%).
Snorkel stands for Snorkel (Mistral-PairRM-DPO). Our
SPPO model outperforms many competing models trained
on proprietary alignment data (e.g., Claude 2, Gemini Pro,
& Llama 3 8B Instruct). With test-time reranking, SPPO
Iter3 (best-of-16) is even competitive to GPT-4 0613 and
Llama 3 70B Instruct.

Model AlpacaEval 2.0
LC. Win Rate Win Rate

GPT-4 Turbo 50.0 50.0
Claude 3 Opus 40.5 29.1
GPT-4 0314 35.3 22.1
Llama 3 70B Instruct 34.4 33.2
SPPO Iter3 (best-of-16) 32.1 34.9
GPT-4 0613 30.2 15.8
Snorkel (best-of-16) 30.0 34.9
Mistral Medium 28.6 21.9
SPPO Iter3 28.5 31.0
Claude 2 28.2 17.2
Snorkel 26.4 30.2
Gemini Pro 24.4 18.2
Mistral 8×7B v0.1 23.7 18.1
Llama 3 8B Instruct 22.9 22.6
GPT-3.5 Turbo 0613 22.7 14.1
Vicuna 33B v1.3 17.6 12.7

termed the ”reward hacking” phenomenon. According to
the table, SPPO Iter3 has the highest win rate, 28.52% for
the length-controlled version, and 31.02% for the overall
win rate. The performance gains over previous iterations
are 7.69% (Mistral-7B-Instruct→ Iter1), 2.10% (Iter1→
Iter2), and 1.64% (Iter2→ Iter3), respectively, indicating
steady improvements across iterations. Additionally, the
data indicates that SPPO achieves superior performance
compared to the iterative variants of DPO and IPO. The
length-controlled win rate for SPPO reaches 28.53%, out-
performing the DPO’s best rate of 26.39% (by Snorkel)
and IPO’s rate of 25.45% . Notably, while DPO and IPO
training tend to significantly increase the average output
length—2736 and 2654, respectively—SPPO shows a more
moderate length increase, moving from 1676 in the base
model to 2163 at the third iteration. We find that re-ranking
with the preference model at test time can consistently im-
prove the performance of base models (Mistral-7B-Instruct-
v0.2), DPO (Snorkel), and SPPO (Iter3) by 5.34%, 3.57%,
and 3.6%, respectively. Notably, this shows that while SPPO
significantly enhances model alignment using PairRM-0.4B
as the sole external supervision, it has not resulted in over-
optimization against the preference model (Gao et al., 2023).
Future work will explore further improvements in model
alignment, potentially through additional iterations beyond
the current three (following Snorkel’s methodology).
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A Related Work
RLHF with Explicit/Implicit Reward Model Originally, reinforcement learning from human feedback (RLHF) was
proposed by Christiano et al. (2017) as a methodology that first learns a reward model reflecting human preferences and
then uses reinforcement learning algorithms to maximize the reward. This methodology is applied by Ouyang et al. (2022)
to fine-tune instruction-following large language models and leads to the popular ChatGPT.
The reward model in the works mentioned above assumes a parametric model such as the Bradley-Terry model (Bradley &
Terry, 1952), which assigns a “score” representing how preferred a given response is. More recently, Rafailov et al. (2024)
proposed to instead directly solve the closed-form solution of such a score implied by the Bradley-Terry model. The Direct
Policy Optimization (DPO) method is claimed to be more efficient and stable, yet, still implicitly assumes such a reward
model that specifies the “score”. In a similar spirit, Zhao et al. (2023) proposed to calibrate the score so that the score of the
winner in comparison has a margin over the score of the loser, and induces a different SLic loss. Similarly, Ethayarajh et al.
(2024) derived a different loss function (called KTO) from the Kahneman-Tversky human utility function, which implicitly
denotes a score of the given response. Liu et al. (2023) proposed Rejection Sampling Optimization (RSO) which utilizes a
preference model to generate preference pairs with candidates sampled from the optimal policy; then preference optimization
is applied on the sampled preference pairs. Hong et al. (2024) proposed Odds Ratio Preference Optimization (ORPO)
algorithm that can perform supervised fine-tuning and preference alignment in one training session without maintaining an
intermediate reference policy.

RLHF with General Preference Model Often, the human preference is not strictly transitive, and cannot be sufficiently
represented by a single numerical score. Azar et al. (2023) proposed a general preference optimization objective based
on the preference probability between a pair of responses instead of a score of a single response. They further propose a
learning objective based on identity mapping of the preference probability called IPO (Preference Optimization with Identity
mapping), which aims to maximize the current policy’s expected winning probability over a given reference policy. Munos
et al. (2023) formulated the RLHF problem with general preference as a two-player, constant-sum game, where each player
is one policy that aims to maximize the probability of its response being preferred against its opponent. They aim to identify
the Nash equilibrium policy of this game and propose a mirror-descent algorithm that guarantees the last-iterate convergence
of a policy with tabular representations2. Wang et al. (2024) proposed to identify the Nash equilibrium policy for multi-step
MDPs when a general preference model is present and shows that the problem can be reduced to a two-player zero-sum
Markov game.

Theory of RLHF There is also a line of research to analyze RLHF and provide its theoretical guarantees. Zhu et al. (2023)
studied the standard RLHF with separate reward-learning and model-tuning and proposed a pessimistic reward-learning
process that provably learns a linear reward model. Wang et al. (2024) proposed a framework to reduce any RLHF problem
with a reward model to a reward-based standard RL problem. Additionally, they proposed to identify the Nash equilibrium
policy when a general preference model is present and show that the problem can be reduced to a two-player zero-sum
Markov game. Xiong et al. (2023) studied the reverse-KL regularized contextual bandit for RLHF in different settings and
proposed efficient algorithms with finite-sample theoretical guarantees. Ye et al. (2024) studied the theoretical learnability
of the KL-regularized Nash-Learning from Human Feedback (NLHF) by considering both offline and online settings
and proposed provably efficient algorithms. Ji et al. (2024) proposed an active-query-based proximal policy optimization
algorithm with regret bounds and query complexity based on the problem dimension and the sub-optimality gap.

Self-Play Fine-Tuning Most works mentioned above (Rafailov et al., 2024; Zhao et al., 2023; Azar et al., 2023; Ethayarajh
et al., 2024) consider one single optimization procedure starting from some reference policy. The same procedure may be
applied repeatedly for multiple rounds in a self-play manner. In each round, new data are generated by the policy obtained
in the last round; these new data are then used for training a new policy that can outperform the old policy.
The self-play fine-tuning can be applied to both scenarios with or without human preference data. For example, Singh
et al. (2023) proposed an Expectation-Maximization (EM) framework where in each round, new data are generated and
annotated with a reward score; the new policy is obtained by fine-tuning the policy on the data with a high reward. Chen
et al. (2024) proposed a self-play framework to fine-tune the model in a supervised way. In each round, new preference
pairs are synthesized by labeling the policy-generated responses as losers and the human-generated responses as winners.
Then DPO is applied in each round to fine-tune another policy based on these synthesized preference data. Yuan et al.
(2024) proposed Self-Rewarding Language Models, where the language model itself is used to annotate preference on its

2Due to the tabular representation, computing the normalizing factor is prohibitive and the algorithm is approximately executed by
sampling one token instead of a full response.
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own responses. Iterative DPO is applied to fine-tune language models on these annotated data. These works show iterative
fine-tuning can significantly improve the performance.
Swamy et al. (2024) considered a more general multi-step Markov Decision Process (MDP) setting and proposed Self-play
Preference Optimization (SPO), an RLHF framework that can utilize any no-regret online learning algorithm for preference-
based policy optimization. They then instantiated their framework with the Soft Policy Iteration as an idealized variant of
their algorithm, which reduces to the exponential weight update rule (3.2) when constrained to the bandit setting. The main
difference is that they focus on the multi-round Markov decision process (MDP) in robotic or game tasks rather than on
fine-tuning large language models and approximating the update using policy optimization methods such as PPO.
Concurrent to our work, Rosset et al. (2024) proposed the Direct Nash Optimization (DNO) algorithm based on the
cross-entropy between true and predicted win rate gaps, and provided theoretical guarantees on the error of finite-sample
approximations. However, their practical version still utilizes the iterative-DPO framework as in Xu et al. (2023) with the
DPO loss instead of their own DNO loss. Notably, in their experiments, they added the GPT-4 generated responses as
their “gold sample” into their fine-tuning data, and used GPT-4 as a judge to assign a numerical score to each response for
preference pair construction. In sharp contrast, our work does not require use any strong external supervision besides a
small-sized reward model. Another concurrent work (Gao et al., 2024) proposed REBEL, an iterative self-play framework
via regressing the relative reward. When applied to the preference setting, it results a similar algorithm to our algorithm
SPPO, except that SPPO approximate the log-partition factor logZπt

(x) with η/2 while REBEL regresses on the win rate
difference (so that logZπt(x) is cancelled). Additionally, Calandriello et al. (2024) pointed out that optimising the IPO loss
(Azar et al., 2023) iteratively with self-play generated data is equivalent to finding the Nash equilibrium of the two-player
game, and they proposed the IPO-MD algorithm based on this observation which generates data with a mixture policy
similarly as the Nash-MD algorithm.

B Comparison with DPO, IPO, and KTO
In practice, we utilize mini-batches of more than 2 responses to estimate the win rate of a given response, while the DPO and
IPO loss focus on a single pair of responses. When only a pair of responses yw and yl is available, we have the pair-wise
symmetric loss based on the preference triplet (x,yw,yl) defined as:

ℓSPPO(x,yw,yl;θ;πref) :=

(
log

(
πθ(yw|x)
πref(yw|x)

)
− η

(
P(yw ≻ yl|x)−

1

2

))2

+

(
log

(
πθ(yl|x)
πref(yl|x)

)
− η

(
P(yw ≺ yl|x)−

1

2

))2

, (B.1)

where P(yw ≻ yl|x) can be either a soft probability within [0, 1] or a hard label 1 indicating yw ≻ yl.
We now compare the SPPO loss to other baselines assuming a hard label yw ≻ yl is given. For the ease of comparison, let

a = β log

(
πθ(yw|x)
πref(yw|x)

)
, b = β log

(
πθ(yl|x)
πref(yl|x)

)
, c = βKL(πθ∥πref),

then we have

ℓDPO(yw,yl,x) = − log σ(a− b), (B.2)

ℓIPO(yw,yl,x) = [(a− b)− 1]2, (B.3)
ℓKTO(yw,yl,x) = σ(−a+ c) + σ(b− c) (simplified), (B.4)

where σ(x) = ex/(ex + 1) and the SPPO loss can be written as

ℓSPPO(yw,yl,x) = (a− 1/2)2 + (b+ 1/2)2.

It can be seen that SPPO not only pushes the gap between a and b to be 1, but also attempts to push value of a to be close to
1/2 and the value of b to be close to −1/2 such that πθ(yw|x) > πref(yw|x) and πθ(yl|x) < πref(yl|x). We believe this is
particularly important: when there are plenty of preference pairs, DPO and IPO can ensure the policy will converge to the
target policy, but when the preference pairs are scarce (e.g., one pair for each prompt), there is no guarantee that the estimated
reward of the winner a will increase and the estimated reward of the loser b will decrease. Instead, only the reward gap
between the winner and the loser (i.e., a− b) will increase. This phenomenon is observed by Pal et al. (2024) that DPO only
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drives the loser’s likelihood to be small, but the winner’s likelihood barely changes. We believe that fitting β log
(

πt+1(y|x)
πt(y|x)

)
directly to P(y ≻ πt|x)− 1/2 is more effective than IPO which attempts to fit β log

(
πt+1(yw|x)
πt(yw|x)

)
− β log

(
πt+1(yl|x)
πt(yl|x)

)
to

P(yw ≻ πt|x)− P(yl ≻ πt|x). In addition, SPPO shares a similar spirit as KTO. The KTO loss pushes a to be large by
minimizing σ(−a+ c) and pushes b to be small by minimizing σ(b− c). In contrast, SPPO pushes a to be as large as 1/2
and b to be as small as −1/2.
On the other hand, we would like to comment that although DPO and KTO can be extended to their iterative variants, they
are not by nature iterative algorithms and do not have provable guarantees that they can reach the Nash equilibrium. In
contrast, SPPO and IPO are by design capable to solve the Nash equilibrium iteratively. SPPO is superior to IPO because its
design explicitly alleviates the data sparsity issue, as discussed above and detailed in Pal et al. (2024).

C Experiment Setup

Base Model and Datasets We follow the experimental setup of Snorkel3, a model that utilizes iterative DPO to achieve
state-of-the-art performance on AlpacaEval benchmarks. Specifically, we use Mistral-7B-Instruct-v0.2 as our base model4.
Mistral-7B-Instruct-v0.2 is an instruction fine-tuned version of Mistral-7B-v0.2 model (Jiang et al., 2023a). We also adopt
Ultrafeedback (Cui et al., 2023) as our source of prompts which includes around 60k prompts from diverse resources. During
generation, we follow the standard chat template of Mistral-7B. In order to avoid overfitting during the fine-tuning, we split
the dataset into three portions and use only one portion per iteration. These settings were also adopted by training the model
Snorkel-Mistral-PairRM-DPO5 (Snorkel). We follow the splitting in Snorkel for a fair comparison.

Preference Model We employ PairRM (Jiang et al., 2023b), an efficient pair-wise preference model of size 0.4B. PairRM
is based on DeBERTA-V3 (He et al., 2021) and trained on high-quality human-preference datasets. Results on benchmarks
like Auto-J Pairwise dataset (Li et al., 2023a) show that it outperforms most of the language-model-based reward models and
performs comparably with larger reward models like UltraRM-13B (Cui et al., 2023). We refer the readers to the homepage
on Huggingface6 for detailed benchmark results. We therefore keep PairRM as our ranking model following Snorkel for a
balance between accuracy and efficiency.
Specifically, PairRM will output a “relative reward” s(y,y′;x) that reflects the strength difference between y and y′, i.e.,
P(y ≻ y′|x) = exp(s(y,y′;x))

1+exp(s(y,y′;x)) . Unlike the Bradley-Terry-based reward model, PairRM only assigns the relative reward
which is not guaranteed to be transitive (i.e., s(y1,y2;x) + s(y2,y3;x) ̸= s(y1,y3;x)). So it indeed models the general
preference.

Response Generation and Selection During the generation phase in each iteration, we use top p = 1.0 and temperature
1.0 to sample from the current policy. We sample with different random seeds to get K = 5 different responses for each
prompt. Previous works utilizing Iterative DPO choose 2 responses to form a pair for each prompt. For a fair comparison,
we do not include all K = 5 responses in the preference data but choose two responses among them. Following Snorkel, we
choose the winner yw and loser yl to be the response with the highest and lowest PairRM score, which is defined for each
response yi as:

sPairRM(yi;x) :=
1

K

K∑
k=1

s(yi,yk;x).

Probability Estimation We then estimate the win rate over the distribution by the average win rate over all the sampled
responses as explained in (3.6):

P̂ (yi ≻ πt|xi) =
1

K

K∑
k=1

P(yi ≻ yk|x),∀i ∈ [K].

Hyperparameter Tuning The experiments are conducted on 8 × Nvidia A100 GPUs. For SPPO, we trained three
iterations in total. In each iteration, we selected the model that was trained on the first epoch of the 20k prompts from
UltraFeedback to proceed to the next iteration. The global training batch size is set to 64 and η is set to 1e3. The learning

3https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
4https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
5https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
6https://huggingface.co/llm-blender/PairRM
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rate schedule is determined by the following hyperparameters: learning rate=5.0e-7, number of total training epochs=18,
warmup ratio=0.1, linear schedule. The best hyper-parameters for each model is selected by the average win-rate (judged
by PairRM-0.4B) on a hold-out subset of Ultrafeedback as the metric. For more details on the win-rate comparison using
PairRM as a judge, please refer to Section 4.2 and Figure 3.

Baselines We evaluate the following base models as well as baseline methods for fine-tuning LLMs:

• Mistral-7B-Instruct-v0.2: Mistral-7B-Instruct-v0.2 is an instruction fine-tuned version of Mistral-7B-v0.2 model (Jiang
et al., 2023a). It is the starting point of our algorithm.

• Snorkel (Mistral-PairRM-DPO): We directly evaluate the uploaded checkpoint on HuggingFace7. This model is obtained
by three rounds of iterative DPO from Mistral-7B-Instruct-v0.2.

• (Iterative) DPO: We also implement the iterative DPO algorithm by ourselves. The experimental settings and model
selection schemes align with those used for SPPO, except for the adoption of the DPO loss function as defined in (B.2).
Hyperparameters are optimized to maximize the average win-rate assessed by PairRM at each iteration. Note that the
practical algorithm in Rosset et al. (2024) is essentially the same as iterative DPO.

• (Iterative) IPO: We implement the iterative IPO algorithm by ourselves. The experimental setting and the model
selection scheme is the same as iterative DPO, except that the loss function is the IPO loss (B.3). For fair comparison,
hyperparameters for IPO is also selected by evaluation using the average PairRM win-rate on the hold-out subset of
Ultrafeedback.

• Self-rewarding LM: Yuan et al. (2024) proposed to prompt the LLM itself as a preference judge to construct new preference
pairs and iteratively fine-tune the LLM with the DPO algorithm. We use the AlpacaEval 2.0 win rate reported by Yuan
et al. (2024) for comparison. Note that Self-rewarding LM is a trained from Llama 2 70B.

Benchmarks Following previous works, we use AlpacaEval 2.0 (Dubois et al., 2024a), MT-Bench (Zheng et al., 2024),
and Open LLM Leaderboard (Beeching et al., 2023b) as our evaluation benchmarks.

• AlpacaEval 2.0 is an LLM-based automatic evaluation benchmark. It employs AlpacaFarm (Dubois et al., 2024b) as
its prompts set composed of general human instructions. The model responses and the reference response generated by
GPT-4-Turbo are fed into a GPT-4-Turbo-based annotator to be judged. We follow the standard approach and report the
win rate over the reference responses.

• MT-Bench (Zheng et al., 2024) is a collection of 80 high-quality multi-turn open-ended questions. The questions cover
topics like writing, role-playing, math, coding, etc.. The generated answer is judged by GPT-4 and given a score directly
without pairwise comparison.

• Open LLM Leaderboard (Beeching et al., 2023b) consists of six datasets, each of which focuses on a facet of language
model evaluation. In detail, the evaluation rubric includes math problem-solving, language understanding, human
falsehood mimicking, and reasoning. We follow the standard evaluation process and use in-context learning to prompt the
language model and compute the average score over six datasets to measure the performance.

D Additional Results

D.1 MT-Bench results

We also provide a radar chart analyzing the MT-Bench results in Figure 1 (right). We found that the performance of SPPO
models consistently improve along with the iterative alignment iterations.
In Figure 1 (left), we evaluate the performance of SPPO on MT-Bench. We can see that SPPO Iter3 outperforms all
baseline models, achieving an average score of 7.59. While we are not certain why the MT-Bench performance drops
at the first two iterations, the performance of SPPO at the final iteration still improves over the base model. Since the
length-controlled AlpacaEval 2.0 has a 98% Pearson correlation with human evaluations and 10× more evaluation prompts,
it likely provides a more reliable evaluation than MT-Bench. To gain deeper understanding on MT-Bench performance, we
plot the improvement in Figure 1 (right), broken down by question prompt category. SPPO Iter3 demonstrates notable gains
in RolePlay, Reasoning, Math, and Coding tasks.

7https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
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Model MT-Bench
1st Turn 2nd Turn Average

Mistral-7B-Instruct-v0.2 7.78 7.25 7.51
Snorkel (Mistral-PairRM-DPO) 7.83 7.33 7.58

DPO Iter1 7.45 6.58 7.02
DPO Iter2 7.57 6.56 7.06
DPO Iter3 7.49 6.69 7.09

SPPO Iter1 7.63 6.79 7.21
SPPO Iter2 7.90 7.08 7.49
SPPO Iter3 7.84 7.34 7.59

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

model
Mistral-7B-Instruct-v0.2
SPPO Iter1
SPPO Iter2
SPPO Iter3

Figure 1: MT-Bench Evaluation. Left: SPPO Iter3 outperforms all baseline models by achieving an average score of
7.59. Despite initial drops in performance in the first two iterations, SPPO Iter3 improves upon the base model by the final
iteration. Right: Radar chart of MT-Bench results. SPPO Iter3’s improves across different MT-Bench categories, showing
significant gains in RolePlay, Reasoning, Math, and Coding tasks.

D.2 Open LLM Leaderboard results

Table 3: Open LLM Leaderboard Evaluation. SPPO fine-tuning improves the base model’s performance on Arc,
TruthfulQA, and GSM8k, reaching a state-of-the-art average score of 66.75. However, subsequent iterations of DPO, IPO,
and SPPO see a decline in performance. It is possible that aligning with human preferences (simulated by the PairRM
preference model in our study) may not always enhance, and can even detract from, overall performance.

Models Arc TruthfulQA WinoGrande GSM8k HellaSwag MMLU Average

Mistral-7B-Instruct-v0.2 63.65 66.85 77.98 41.93 84.89 59.15 65.74

Snorkel 66.04 70.86 77.74 36.77 85.64 60.83 66.31

DPO Iter1 63.14 68.39 77.19 40.33 85.25 59.41 65.62
DPO Iter2 64.16 67.84 76.09 39.95 85.23 59.03 65.38
DPO Iter3 65.19 67.89 77.27 32.30 85.49 59.00 64.52

IPO Iter1 64.68 68.60 77.98 43.75 85.08 59.04 66.52
IPO Iter2 62.12 66.30 77.51 39.20 83.15 59.70 64.66
IPO Iter3 62.97 67.12 77.51 37.45 83.69 59.57 64.72

SPPO Iter1 65.02 69.40 77.82 43.82 85.11 58.84 66.67
SPPO Iter2 65.53 69.55 77.03 44.35 85.29 58.72 66.75
SPPO Iter3 65.36 69.97 76.80 42.68 85.16 58.45 66.40

Open LLM Leaderboard We further evaluate the capabilities of SPPO models using Huggingface Open LLM Leader-
board (Beeching et al., 2023a). This leaderboard encompasses 6 different datasets, each focusing on a a specific capability of
LLMs: Arc (Clark et al., 2018), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021), MMLU (Hendrycks
et al., 2020), TruthfulQA (Lin et al., 2021), and GSM8k (Cobbe et al., 2021). The models are prompted with zero or few-shot
exemplars. The results, presented in Table 3, demonstrate that SPPO can enhance the performance of the base model on Arc,
TruthfulQA, and GSM8k, and achieve the state-of-the-art performance with an averagte score of 66.75. However, these
improvements do not hold in subsequent alignment iterations: DPO, IPO, and SPPO’s performance declines after the first
or second iterations. This limitation may be attributed to the “alignment tax” phenomenon (Askell et al., 2021), which
suggests that aligning with human preferences (simulated by PairRM preference in our study) might not improve or even
hurt the general performance. Improving language model capabilities through alignment iterations remains a topic for future
research, and we posit that incorporating high-quality SFT annotations (Chen et al., 2024) could play a significant role in
this endeavor.
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D.3 Comparing RLHF algorithms over iterations

In Figure 2, we plot the win rate against GPT-4-Turbo on AlpacaEval 2.0 of different RLHF algorithms. We can see that the
performance gains of SPPO over previous iterations are 7.69% (Mistral-7B-Instruct→ Iter1), 2.10% (Iter1→ Iter2), and
1.64% (Iter2→ Iter3), respectively, indicating steady improvements across iterations.
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Figure 2: Win Rate against GPT-4-Turbo with (a) and without (b) Length Controlling (LC) on AlpacaEval 2.0. SPPO
demonstrates steady improvements on both LC and raw win rates.

D.4 Evaluation using PairRM as a judge

As SPPO identifies the von Neumann winner (see (2.1)) in a two-player constant-sum game, we examine the pairwise
preferences among SPPO models and other baselines. The pairwise win rates, measured by PairRM, are depicted in Figure 3.
We observe that in all algorithms—namely DPO, IPO, and SPPO—the newer model iterations surpass the previous ones.
For example, SPPO Iteration 3 outperforms SPPO Iteration 2. Both SPPO and IPO consistently outperform DPO across
all iterations. While SPPO is superior to IPO in the first two iterations, IPO exceeds SPPO in performance during the
final iteration. Considering the superior performance of SPPO in standard benchmarks evaluated by GPT-4 or against
ground-truth answers (e.g., AlpacaEval 2.0, MT-Bench, and Open LLM Leaderboard), along with IPO’s tendency to produce
longer sequence outputs (see Avg. Len in Table 1), we believe this is due to IPO exploiting the length bias in PairRM that
favors longer sequences. Conversely, SPPO models benefit from a more robust regularization within a multiplicative weight
update framework.

D.5 Ablation Study

We study the effect of mini-batch size when estimating the win rate P(y ≻ πt|x). Specifically, for each prompt, we still
generate 5 responses and choose the winner yw and loser yl according to the PairRM score. When estimating the probability,
we varies the batch size to be K = 2, 3, 5. For K = 2, we estimate P(y ≻ πt|x) with only 2 samples yw and yl:

P̂ (yw ≻ πt|x) =
P(yw ≻ yw|x) + P(yw ≻ yl|x)

2
=

1/2 + P(yw ≻ yl|x)
2

,

and P̂ (yl ≻ πt|x) similarly. K = 5 indicates the original setting we use.
We compare the results on AlpacaEval 2.0, as shown in Figure 4. We find that the performance of SPPO is robust to the
noise in estimating P(y ≻ πt|x). While K = 5 initially outperforms K = 2 in the first iteration, the difference in their
performance diminishes in subsequent iterations. Additionally, we observe that K = 2 exhibits a reduced tendency to
increase output length.

E Proof of Theorem 3.1
Proof of Theorem 3.1. Suppose the optimization problem is realizable, we have exactly that

πt+1(y|x) ∝ πt(y|x) exp(ηP(y ≻ πt|x)), for t = 1, 2, . . . . (E.1)

To prove that the exponential weight update can induce the optimal policy, we directly invoke a restated version of Theorem
1 in Freund & Schapire (1999):
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Figure 3: Pairwise win rates among base model (Mistral-7B-Instruct-v0.2), DPO models, IPO models, and SPPO models
using PairRM-0.4B as a judge, which may favor models with longer outputs. On benchmarks with more powerful judge
models (e.g., GPT-4), such as AlpacaEval 2.0 and MT-Bench, SPPO outperforms other baseline algorithms by a large
margin.

Mini-Batch
Size Iteration

AlpacaEval 2.0
Win Rate Avg. Len

(chars)LC. Raw

K = 2
Iter1 23.85 23.53 1948
Iter2 26.91 27.24 1999
Iter3 28.26 28.22 1961

Iter1 24.79 23.51 1855
Iter2 26.89 27.62 2019K = 5
Iter3 28.53 31.02 2163
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Figure 4: AlpacaEval 2.0 evaluation on SPPO of different mini-batch size in terms of both normal and length-controlled
(LC) win rates in percentage (%). K = 2, 5 denote different mini-batch sizes when estimating the win rate P(y ≻ πt|x).

Lemma E.1 (Theorem 1 in Freund & Schapire (1999), restated). For any oracle P and for any sequence of mixed policies
µ1, µ2, . . . , µT , the sequence of policies π1, π2, . . . , πT produced by (E.1) satisfies:

T∑
t=1

P(πt ≺ µt) ≤ min
π

[
η

1− e−η

T∑
t=1

P(π ≺ µt) +
KL(π∥π0)

1− e−η

]
.
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By setting µt = πt, we have that

T

2
≤ min

π

[
ηT

1− e−η
P(π ≺ π̄T ) +

KL(π∥π0)

1− e−η

]
,

where the LHS comes from that P(πt ≺ πt) = 1/2 and the RHS comes from that 1
T

∑T
t=1 P(π ≺ πt) = P(π ≺ π̄t). Now

rearranging terms gives

1− e−η

2η
≤ min

π

[
P(π ≺ π̄T ) +

KL(π∥π0)

ηT

]
.

We can naively bound the KL-divergence KL(π∥π0) ≤ ∥ log π0(·)∥∞, which can be seen as a (large) constant.
By choosing η = ∥ log π0(·)∥∞√

T
, we have

1

2
− ∥ log π0(·)∥∞

4
√
T

+O(T−1) ≤ min
π

[
P(π ≺ π̄T )

]
+

√
∥ log π0(·)∥∞

T
,

where the LHS comes from Taylor’s expansion 1−e−η

2η = 1
2 −

η
4 +O(η2). Notice that 1/2 at the LHS is already the value of

the symmetric two-player constant-sum game. This shows that for appropriately chosen η and T , the mixture policy π̄T is
close to the minimax optimal policy (Nash equilibrium).
The optimality gap is thus bounded by

max
π

[
P(π ≻ π̄T )

]
−min

π

[
P(π ≺ π̄T )

]
= max

π

[
1− P(π ≺ π̄T )

]
−min

π

[
P(π ≺ π̄T )

]
= 2

(
1

2
−min

π

[
P(π ≺ π̄T )

])
= O

(
1√
T

)
.

F Response Examples in Different Iterations
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Table 4: Generation example of our fine-tuned model by SPPO at different iterations.

Prompt You will be given a definition of a task first, then some input of the task. You are given a dialog
between 2 or more individuals. The dialog will include information as to the relationship between 2
of the participants. At the end, you will be asked to provide an answer as to the relationship of those
2 participants. In this scenario, ’0’ will represent a spousal relationship, ’1’ will represent siblings,
and ’2’ will represent a child/parent relationship. Speaker 1: I’ll be right with you. Okay? Thanks,
Wendy. Speaker 2: Oh my God! How cute is the on-call doctor? Speaker 3: Ooh, so cute, that I’m
thinking about jamming this pen in my eye. Speaker 4: Dr. Burke will see you know. Speaker 2: Oh
no-no-no, not Dr. Burke. Dr. Burke is out of town. The-the on-call doctor will see me now. Speaker 4:
Dr. Richard Burke is out of town. Dr. Timothy Burke, his son, will see you now. Speaker 5: Ready?
What is the relationship between Speaker 5 and Richard Burke? Output:

Mistral-7B The relationship between Speaker 5 and Richard Burke is that of a parent and child, as Richard Burke
is identified as the son of another character in the dialog.

Iteration 1 The relationship between Speaker 5 and Richard Burke is that of a father and child. Based on the
dialogue, it was revealed that Dr. Timothy Burke is the on-call doctor and the son of Dr. Richard
Burke.

Iteration 2 The relationship between Speaker 5 and Richard Burke is that of a father and child. The conversation
reveals that Dr. Timothy Burke is the on-call doctor and he is identified as the son of Dr. Richard
Burke.

Iteration 3 Speaker 5 is the individual asking about the relationship, so they are not directly related to Dr. Richard
Burke. The information provided in the dialog reveals that Dr. Timothy Burke is the on-call doctor
and the son of Dr. Richard Burke. Therefore, the answer is: The relationship between Speaker 5 and
Dr. Richard Burke is that of a child (Dr. Timothy Burke) and parent. Speaker 5 is inquiring about the
relationship, but they are not themselves a part of it. The specified relationship codes (0 for spousal, 1
for sibling, 2 for child/parent) align with this description: Speaker 5 (0, 1, or 2) and Dr. Richard Burke
(2) connect as a parent-child duo. Output: 2 (child/parent relationship) In this scenario, Speaker 5’s
role is to determine the relationship between herself and Dr. Richard Burke, but since they are not
related (she is an outside inquirer), the correct answer pertains only to the relationship identified within
the dialog: Dr. Richard Burke (father) and Dr. Timothy Burke (son).
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Table 5: Another generation example of our fine-tuned model by SPPO at different iterations.

Prompt Q: Context: Roman Brady is a fictional character from the long running NBC soap opera, Days of Our
Lives. The role was originated in 1981 by Wayne Northrop who played the role until 1984, was filled
by Drake Hogestyn from 1986 – 1991, again by Northrop from 1991 – 1994, and is currently being
portrayed by series veteran Josh Taylor, who stepped into the role in 1997. Question: who is roman
brady on days of our lives? Let’s give stream of consciousness below

Mistral-7B Roman Brady is a fictional character on the NBC soap opera ”Days of Our Lives.” He was first
portrayed by Wayne Northrop from 1981 to 1984. Later, Drake Hogestyn took over the role from 1986
to 1991. Northrop returned to the role from 1991 to 1994. Since 1997, the character is being portrayed
by Josh Taylor. Roman Brady is a significant character in the show’s long-running storylines.

Iteration 1 Roman Brady is a fictional character on the NBC soap opera ”Days of Our Lives.” He was first
portrayed by Wayne Northrop from 1981 to 1984. Drake Hogestyn took over the role from 1986 to
1991. Northrop returned to play Roman again from 1991 to 1994. Since 1997, the character has been
portrayed by Josh Taylor. So, in summary, Roman Brady is a long-standing character on ”Days of Our
Lives” who has been played by three different actors over the years: Wayne Northrop (1981-1984,
1991-1994), Drake Hogestyn (1986-1991), and currently by Josh Taylor (1997-present).

Iteration 2 Roman Brady is a fictional character on the NBC soap opera ”Days of Our Lives.” He was first
portrayed by Wayne Northrop from 1981 to 1984. Drake Hogestyn took over the role from 1986 to
1991. Northrop returned to play Roman again from 1991 to 1994. Since 1997, the character has been
portrayed by Josh Taylor. Overall, Roman Brady is a long-standing and complex figure in the show’s
history, with multiple actors bringing their unique interpretations to the role.

Iteration 3 Roman Brady is a fictional character on the NBC soap opera ”Days of Our Lives.” He was originally
played by Wayne Northrop from 1981 to 1984. Drake Hogestyn took over the role from 1986 to 1991.
Northrop returned to portray Roman once more from 1991 to 1994. Since 1997, the character has been
portrayed by Josh Taylor.Roman Brady is a complex and prominent figure in the long-running daytime
drama. Initially played by Northrop in the early 1980s, his tenure included involvement in various
storylines, such as romantic relationships and business dealings. Hogestyn’s portrayal during the late
1980s and early 1990s introduced new dimensions to the character. Northrop’s second stint, from
1991 to 1994, further developed Roman’s narrative. Since 1997, Josh Taylor has assumed the role,
continuing to contribute to the evolving story of Roman Brady on ”Days of Our Lives.” Throughout
these different portrayals, Roman has remained a central character, known for his intricate relationships,
business ventures, and personal struggles.
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