ROBOMONSTER: COMPOSITIONAL GENERALIZATION OF HETEROGENEOUS EMBODIED AGENTS

Anonymous authors

000

001

002003004

006

008

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

031

032

034

037

040

041

042

043

044

045

047

048

051

052

Paper under double-blind review

ABSTRACT

Despite rapid progress in robot hardware and algorithms, a persistent gap remains between flexible decision-making in simulation and the embodiment constraints of real robots, often leading to suboptimal execution on deceptively simple tasks. We posit that, rather than emulating human morphology, robots should *compose* heterogeneous embodied agents whose capabilities extend beyond human-like end effectors. We introduce *RoboMonster*, a paradigm and system that reasons over and coordinates multiple, diverse agents to execute tasks more effectively. At the planning level, RoboMonster uses a multimodal large language model to perform chain-of-thought selection over a Robot Manual describing each agent's skills and limits; a Planner proposes a composition and a Verifier checks feasibility and efficiency. We benchmark this process with *RoboMonster-P* for robot-selection tasks. At the execution level, we implement interaction logic for four end-effector types in the ManiSkill environment, collect data, train downstream policies, and evaluate on RoboMonster-E. Experiments and ablations show that heterogeneous compositions exhibit strong compositional generalization and successfully solve tasks that defeat single-agent or single-effector baselines, including cases requiring precision or cooperative manipulation. These results suggest that capability-driven composition is a viable route to closing the embodiment gap and scaling robotic competence.

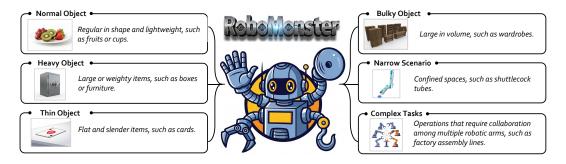


Figure 1: Current general-purpose hardware structures (e.g., grippers) may only be able to handle tasks involving interaction with conventional objects in specific scenarios (e.g., a gripper may fail to pick up a card lying flat on a table). We introduce *RoboMonster*, a novel paradigm for robotics that combines heterogeneous embodied agents to bridge the gap between hardware and algorithms through compositional generalization.

1 Introduction

The rapid advancement of robotics has been fueled by significant progress in both hardware and algorithmic capabilities. On the hardware front, the development of diverse robotic embodiments, ranging from humanoid robots with dexterous hands to quadrupedal robots, has paved the way for versatile robotic systems. Simultaneously, algorithmic advancements—such as open-loop models Fang et al. (2023) and closed-loop frameworks Chi et al. (2023); Zhao et al. (2023); Brohan et al. (2023); Black et al. (2024); Kim et al. —have led to substantial improvements in robot perception, decision-making,

and action execution. These strides have allowed robots to perform increasingly complex tasks with greater autonomy and precision, pushing the boundaries of what was once considered possible.

Despite these advancements, the gap between decision-making in virtual environments and the real world remains a significant challenge in embodied intelligence. In virtual simulations, execution interfaces are highly flexible, enabling quick adaptation to various scenarios. However, in the real world, decision-making is constrained by the physical properties of the robot and its pre-configured embodiment. This discrepancy often prevents algorithms from fully exploiting hardware capabilities, and vice versa, leading to suboptimal performance. A clear example of this is the task of picking up a simple card from a flat surface: while humans can achieve this with subtle skill, robotic grippers and claws, even with tactile sensors, often fail to execute the task effectively, highlighting the mismatch between algorithmic potential and hardware limitations.

One potential solution to this issue is the continuous upgrading of robotic hardware. However, this approach comes with significant costs in terms of design, manufacturing, and data collection, as new hardware requires retraining strategy models and possibly iterating algorithms to adapt to the new setup. Another direction, proposed by some researchers, is the deployment of dual-arm systems or multi-arm robots to handle tasks that a single robotic arm cannot accomplish. While this method improves task performance, it still faces limitations. For instance, even with two or more robotic arms, tasks such as picking up a card from a table remain challenging, as coordination and precision are still lacking.

In light of these challenges, we pose a fundamental question: **Do we need to design robots to resemble humans, or can we create robotic systems with capabilities that extend beyond human limitations?** For example, end-effectors such as suction cups could effectively lift cards with relatively simple mechanical structures, while multi-arm systems could lift heavy objects that would be impossible for two arms alone. Based on this concept, we introduce *RoboMonster*—a novel robotic system paradigm that combines heterogeneous embodied agents. This system enables the robot to reason and select the optimal combination of embodied agents based on visual inputs, task instructions, and the properties of its own embodied agents. Additionally, it can plan the sub-tasks for multiple agents to collaborate, enabling the system to generalize to new or more difficult tasks.

To validate *RoboMonster*, we constructed a heterogeneous multi-agent system that leverages multi-modal large language models (MLLM) for high-level planning and employs four specially designed end-effectors to perform diverse tasks. At the high-level planning stage, we present a system for planning with compositional heterogeneous embodied agents, leveraging the *RoboMonster-P* benchmark for robot selection tasks. The system selects agents based on task requirements and agent capabilities, using a Robot Manual that outlines each agent's skills and limitations. The planning framework consists of a Planner that performs chain-of-thought reasoning to choose agents, and a Verifier that ensures task feasibility and efficiency.

At the execution level, we modeled the interactions between four types of end-effectors within the ManiSkill Gu et al. (2023) simulation environment. We then collected data, trained downstream policies, and tested our system through various tasks. This approach allows us to validate the compositional generalization of heterogeneous agents in real-world scenarios, demonstrating that such systems can outperform single-gripper arms in solving tasks that require coordination among different agents. Through this validation, we highlight the superior execution capabilities of heterogeneous end-effectors, as seen in tasks where multi-agent collaboration is essential for success.

Our main contributions are as follows:

- Concept & Paradigm. We introduce RoboMonster, a novel paradigm for robotics that combines heterogeneous embodied agents to bridge the gap between hardware and algorithms through compositional generalization.
- *Planning Verification*. We propose a simple and efficient MAS planning system for selecting heterogeneous embodied agents based on task requirements and capabilities, and demonstrate its feasibility and efficiency using the *RoboMonster-P* benchmark.
- Execution Verification. We implement interaction logic for four types of end-effectors, construct RoboMonster-E benchmark, collect data, and train corresponding policy models to demonstrate the execution advantages of heterogeneous end-effectors.

• Experimental Results. Extensive experiments and ablation studies demonstrate that RoboMonster can efficiently schedule and execute tasks that a single embodied agent or single end-effector cannot accomplish, both at the planning and execution levels.

2 RELATED WORK

2.1 EMBODIED MULTI-AGENT COOPERATION

Real-world embodied environments often demand collaboration among heterogeneous robots. Prior studies have investigated this challenge through task allocation Obata et al. (2024); Wang et al. (2024b); Liu et al. (2025) and high-level multi-agent decision making Zhang et al. (2023); Wang et al. (2025a). More recently, large language models (LLMs) have been introduced to enhance multi-agent coordination, showing notable progress in distributed planning and communication Bo et al. (2024a); Guo et al. (2024b); Nasiriany et al. (2024); Zhou et al. (2023). Vision-language models (VLMs) have begun to extend these capabilities to embodied multi-agent contexts Wang et al. (2025b); Zhang et al. (2024), but they generally assume homogeneous capabilities or treat each agent independently, without mechanisms for integrating complementary skills across heterogeneous agent. VIKI Kang et al. (2025) explicitly consider heterogeneous robots, but their focus remains at the high-level planning stage without addressing the deployment of fine-grained low-level control strategies. In contrast, our work focuses on enabling collaborative control among diverse embodiments, demonstrating how heterogeneous end-effectors can be jointly orchestrated to accomplish complex tasks that exceed the ability of single agent type.

2.2 ROBOT LEARNING IN MANIPULATION

Task-specific policy architectures Chi et al. (2023); Ke et al. (2024); Liang et al. (2023; 2024; 2025); Wang et al. (2024a); Wen et al. (2025); Ze et al. (2024) often achieve strong results in controlled settings, but their designs are tightly coupled to particular tasks or morphologies, which makes transferring them to new embodiments difficult. In contrast, large-scale foundation models trained on diverse multi-robot datasets—such as RT-1 Brohan et al. (2022) for real-time manipulation, RT-2 Brohan et al. (2023) for semantic planning, and diffusion-based models like RDT-1B Liu et al. (2024) and π Black et al. (2024)—show more promising generalization across tasks. Building on this trend, vision—language—action systems including OpenVLA Kim et al., CogACT [26], Octo Octo Model Team et al. (2024), LAPA Ye et al., and OpenVLA-OFT Kim et al. (2025) highlight how pretrained representations can be efficiently adapted to different robots and sensing modalities. However, these approaches typically presuppose homogeneous agents and uniform capabilities. Our work explicitly explores this dimension, showing how heterogeneous embodiments can be organized into a coherent control framework that leverages their complementary skills to solve more complex tasks.

2.3 Multi-Agent System for Robot Planning

Large language model based multi-agent systems (MAS) provide general infrastructures for role-specialized collaboration and tool use Li et al. (2023); Wu et al. (2023); Chen et al. (2023); Hong et al. (2024); Qian et al. (2024). Building on these infrastructures, a growing line of work treats *planning* itself as a multi-agent process—either by decomposing tasks into sub-plans, coordinating expert agents, or reflecting over intermediate results to improve plan quality Guo et al. (2024a); Wei et al. (2025); Li et al. (2025); Tao et al. (2024b); Bo et al. (2024b). Closer to robotics, recent efforts couple MAS with embodied planning and execution: RoCo coordinates multi-robot dialogue for sub-tasking and motion-waypoint generation Mandi et al. (2024), MALMM Singh et al. distributes high-level planning and low-level control across specialized agents with feedback-driven re-planning, and SMART-LLM SMART Lab (2023) converts high-level instructions into multi-robot task plans. In our work, we instantiate an MAS specifically to plan for heterogeneous robots with diverse end-effectors, enabling coordinated high-level assignment across embodiments.

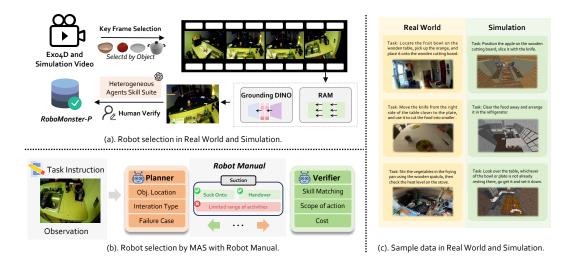


Figure 2: **Planning for Compositional Heterogeneous Embodied Agents.** (a) Data collection and curation process of *RoboMonster-P*. (b) Construction of the multi-agent system, which analyzes input images and instructions to select appropriate heterogeneous embodied agents. (c) *RoboMonster-P* includes a diverse set of real-world and simulated environments and tasks.

3 SPECTRUM OF REAL-WORLD ROBOTIC TASKS

Real-world tasks span a broad and diverse distribution, while only a small portion can be addressed by current robotic hardware and mechanical structures. We categorize tasks according to the properties of their interactive objects and environments, aiming to leverage compositional generalization to build heterogeneous embodied-agent systems capable of handling a wider range of tasks.

Normal Objects: These objects have regular shapes, moderate weight, and standard volume. Tasks involving them can be effectively addressed by training policy models for grippers or dexterous hands. *e.g.*, *picking up fruits*, *cups*.

Heavy Objects: These items exceed the payload limits of conventional manipulators or grippers and may require the collaboration of multiple robotic arms. *e.g.*, *transporting a safe*.

Thin Objects: Characterized by very small thickness or volume, these objects demand higher precision than current grippers or dexterous hands can provide. Specialized end-effectors are necessary. *e.g.*, *picking up a playing card from a table*.

Bulky Objects: Large in volume, these objects cannot be stably manipulated by a single arm alone, requiring multiple embodied agents for safe interaction. *e.g.*, *moving a wardrobe*.

Narrow Scenarios: Confined spaces where grippers, dexterous hands, or even human hands cannot pass through, necessitating special end-effectors. *e.g.*, *placing a shuttlecock into a shuttlecock tube*.

Complex Tasks: Tasks that are inherently difficult or require high efficiency, often demanding collaboration among multiple heterogeneous embodied agents. *e.g.*, *factory production line*.

Designing universal end-effectors (*e.g.*, dexterous hands) entails continuous iterations of mechanical structures. Instead, we explore compositional generalization through heterogeneous embodied agents, aiming to build an embodied system that can cover the entire distribution of real-world tasks.

4 ROBOMONSTER

Compositional generalization in heterogeneous multi-agent systems can be achieved in two distinct stages: (1) a high-level planning phase that selects the appropriate agents, and (2) a low-level control phase where the selected embodied agents execute the task using their individual policies. Designing heterogeneous embodied agents typically involves defining interaction logic in either simulations or real-world setups. In contrast, the planning phase is primarily focused on selecting from a predefined

set of heterogeneous agents based on the task requirements. Therefore, we decouple the high-level planning from the low-level execution to facilitate effective validation.

In the high-level phase (Sec. 4.1), we develop an embodied planning system that schedules the appropriate heterogeneous agents to enable compositional generalization, allowing the completion of tasks that homogeneous agents alone cannot solve. In the low-level phase (Sec. 4.2), we instantiate robotic arms with four distinct end-effectors within the ManiSkill Tao et al. (2024a) environment, collect demonstrations, and train the corresponding policies. This stage validates that heterogeneous agents, during execution, can leverage compositional generalization to solve tasks that a single-gripper arm would not be capable of completing.

4.1 PLANNING FOR COMPOSITIONAL HETEROGENEOUS EMBODIED AGENTS

Data Collection and Curation Process. We reformulate the robot selection task as a visual reasoning problem, as illustrated in Fig. 2(a), where the task allocator selects a set of robots from a predefined set of embodied agents $\mathcal{A}_{\text{embodied}}$, considering task requirements and agent capabilities. Each instance consists of a keyframe observation O, selected from real-world and simulation data, and a task instruction I, generated based on the objects present in O. The output is a set of selected robots $R = \{r_j\}, j \in [1, M]$.

Ground truth labels are created using task-specific templates that specify which robot types are necessary or unnecessary, based on the task goal and contextual factors, and grounded in embodiment rules. For reasoning, we employ a chain-of-thought approach, where the model first analyzes task requirements, identifies available robots from the embodied agent set, evaluates their suitability, and then selects the appropriate robots. The task allocator $g_{\rm act}$, powered by GPT-40 OpenAI et al. (2024), generates the robot selection $R = g_{\rm act}(I,O)$. A verification module $C_{\rm act}$ ensures that the generated labels adhere to task constraints, with human oversight for error correction and label quality assurance. The dataset we construct for robot selection task is called RoboMonster-P.

Brain of RoboMonster. We build a multi-agent decision system that selects one or more embodied agents based on the task instruction and the current observation. The objective is to demonstrate that heterogeneous multi-agent collaboration can yield compositional generalization, and that this effect is particularly effective for high-level embodied planning. To ensure the validity of this conclusion, we deliberately avoid introducing complex designs into the decision system. Instead, the overall MAS framework is constructed by following the principles of ReAct Yao et al. (2023) and Reflection Shinn et al. (2023).

Before decision-making, we compile a *Robot Manual* from the URDF and parameter files of all available embodied agents. The manual specifies, for each type of agent, its skills, action range, and execution cost. This serves as the knowledge base for reasoning about heterogeneous capabilities.

As shown in Fig. 2(b), the first component, the MLLM-based **Planner**, performs chain-of-thought reasoning to summarize object locations, interaction logic, and potential failure cases (e.g., spatial constraints). Based on this reasoning, it selects the candidate embodied agents required for the task. The second component, the LLM-based **Verifier**, validates these selections against the Robot Manual, checking multiple aspects to ensure that the chosen agents can accomplish the task with minimal cost.

We validate our system on the *RoboMonster-P* benchmark and show that, even without a carefully engineered decision pipeline or domain-specific fine-tuning, heterogeneous multi-agent systems are still able to generalize compositionally across diverse tasks.

4.2 EXECUTION WITH COMPOSITIONAL HETEROGENEOUS AGENTS

To verify that heterogeneous embodied agents can achieve scene- and task-level generalization through compositionality during execution, we build a set of heterogeneous agents and a broad distribution of manipulation tasks on top of the ManiSkill Gu et al. (2023) simulation platform. Using an automated MLLM-based data-collection pipeline, we gather training data and then train and evaluate a heterogeneous multi-agent system based on imitation learning.

Heterogeneous Effector Embodied Agents. We first modify both the control logic and visual appearance of the robot end-effectors to implement four types of heterogeneous grippers, as illustrated in Fig. 3(a). The logic of the four end-effectors is as follows:

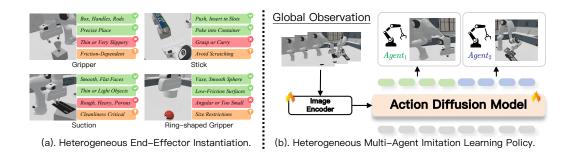


Figure 3: **Execution with Compositional Heterogeneous Agents.** (a) Instantiation of diverse end-effectors in ManiSkill, each designed with unique structures that provide distinct capabilities. (b) Construction of heterogeneous multi-agent imitation learning policies, enabling collaboration among different embodied agents to accomplish complex tasks.

- 1. [Gripper] General and precise gripping works well for most rigid or graspable objects and shows some tolerance to size variation. However, it tends to be unstable for objects that are excessively thin or very slippery.
- [Stick] Applicable for pushing, inserting or clearing in narrow cavities or channels (e.g., pushing a shuttlecock into a bucket, unblocking a small tube); unsuited for transporting or grasping.
- 3. [Suction] Suitable for objects with smooth, relatively flat surfaces (e.g., thin cards on a table, smooth spheres or cubes), and most stable when there is good sealing with the contact surface. It is not suitable or performs poorly for porous or rough surfaces, high curvature, heavy objects, or when there are insufficient contact or sealed points.
- 4. [Ring-shaped Gripper] This end-effector is an annular gripper whose inner diameter can be freely varied to accommodate objects of different sizes. Caging-style constraint provides stable support for large round or cylindrical objects, such as vases or smooth sphere, which are difficult to grasp securely with fingered grippers or suction-based methods. By surrounding the object, the executor forms a boundary that prevents slipping or rolling and thus improves stability.

Details of these modifications can be found in the supplementary material (Section. D).

Data Collection and Curation Process. Next, we design an automated data-collection pipeline powered by a multimodal large language model (MLLM). The pipeline collects trajectory data for all heterogeneous agents within each task category, enabling *low-level policy* training. Inspired by RoboFactory, the pipeline consists of two components: *RoboBrain*, which decomposes tasks and schedules primitive functions; and *RoboChecker*, which verifies whether the generated trajectories are reasonable and free of anomalies. When scheduling primitive functions, we additionally include the end-effector type as an input variable so that each heterogeneous gripper can produce its own unique action sequence.

Based on the above methodology, we introduce the *RoboMonster-E* benchmark, built on the ManiSkill simulator. *RoboMonster-E* aims to instantiate manipulation tasks with diverse distributions, detailed described in Sec. 5.2. It includes **5 tasks** across environments with varying numbers of agents, constructed around the Franka Emika Panda arm—a 7-DoF robotic manipulator equipped with interchangeable end-effectors that enable flexible manipulation.

Compositional Agents Trajectory Execution. Finally, we adapt the single-agent imitation-learning framework to a multi-agent system, where each agent learns an independent policy from its own egocentric view. We employ a *Global-View + Shared-Policy* paradigm (Fig. 3(b): all agents share the same global observation and use a single shared policy to generate a joint action sequence, which is then assigned to the corresponding agents. Compared with approaches that use only a single gripper, employing an optimal combination of end-effectors yields better generalization and performance. Notably, since *RoboMonster-E* is designed to validate the execution-level advantages of heterogeneous embodied agents, we adopt the optimal end-effector combination by default.

5 EXPERIMENTS

5.1 PLANNING WITH COMPOSITIONAL HETEROGENEOUS EMBODIED AGENTS

Experiments Setting. We cast planning as *agent selection* from a small library of heterogeneous end-effectors. Given a single RGB scene image and a natural-language instruction, the model must output exactly one or multiple embodied agents from the label set which is described in detail in the Sup. C.2. We evaluate on a 200-example test set *sampled from RoboMonster-P* (More detial about sampling protocol and distribution is in Sup. C). We apply the same instruction-following template that (i) lists \mathcal{E} , (ii) asks for a *single* choice, and (iii) forbids extraneous text. We canonicalize predictions to the four labels via simple string matching and report **top-1 accuracy** over these 200 items.

Baselines. We compare against strong openand closed-source VLMs as well as our modular agentic system: *Qwen2.5-VL-32B-Instruct* (open), *GLM-4.5V* (open), *GPT-5* (closed), *Gemini-2.5-Pro* (closed), *Claude Sonnet 4* (2025-05-14) (closed), and **MAS** (**ours**), which couples a planner (MLLM reasoning) with a verifier (LLM rule/constraint checker) operating over a robot manual that encodes capability and feasibility constraints. For a fair comparison, all single-pass VLMs share the same prompt schema and are restricted to one-shot selection; *MAS* may internally perform at most one planner–verifier iteration but still outputs a single final label.

Table 1: **Agent selection accuracy** on *RoboMonster-P* (200 examples). No finetuning; temperature = 0.0.

Model	Accuracy
Gripper Only	0.120
Qwen2.5-VL-32B-Instruct	0.235
GLM-4.5V	0.260
GPT-5	0.440
Gemini-2.5-Pro	0.425
Claude Sonnet 4 (2025-05-14)	0.415
MAS (Planner+Verifier, ours)	0.450

Generalization via Agent Selection. Tab. 1 sum-

marizes top-1 accuracy on *RoboMonster-P*. Policies based on a traditional single gripper are limited by their mechanical structure, achieving only a 10% task completion rate, show that heterogeneous multi-agent collaboration enables compositional generalization. While closed-source models generally outperform open-source ones, our proposed *MAS* achieves the best overall accuracy. This suggests that lightweight verification against the robot manual is effective for correcting choices that appear plausible but are infeasible in practice.

5.2 EXECUTION WITH COMPOSITIONAL HETEROGENEOUS EMBODIED AGENTS

Experiments Setting. With the advancement in simulator realism, numerous outstanding simulation environment frameworks have arisen, for example, *RoboTwin* Mu et al. (2024) and *RoboFactory* Qin et al. (2025), which are built on ManiSkill Tao et al. (2024a). Taking into account usability and other relevant factors, we utilize the *RoboFactory* framework to collect expert demonstration data. In order to compare the effect of using heterogeneous end-effectors versus gripper-only under different policies and varying amounts of expert data, we collect 25, 50, and 75 trajectories for DP Chi et al. (2023). Since each trajectory under DP3 Ze et al. (2024) contains relatively less information (due to sparse point cloud sampling from raw data), we instead use 50, 100, and 150 expert demonstration trajectories in this paper.

We designed five challenging tasks involving both single-agent and dual-agent settings to validate the execution performance advantages of our specialized heterogeneous end-effectors (gripper, suction, stick, and ring-shaped gripper). For clarify, the following task descriptions are provided under the assumption that *RoboMonster* brain has already filtered out inappropriate end-effectors. Therefore, our discussion is limited to the **optimal end-effector combinations** and the gripper-only setting. The specific tasks are as follows:

- 1. Suction-lift Card: The agent A_1 uses suction or gripper end-effector to lift the credit card placed on the cube.
- 2. **Pick Pokéball:** The agent A_1 uses ring-shaped gripper or normal gripper end-effector to pick up the Pokéball (a smooth sphere).

3. **Pick Vase:** The agent A_1 uses ring-shaped gripper or normal gripper end-effector to pick up the vase.

- 4. **Place Shuttlecock:** The agent A_1 grasps the shuttlecock and positions it in the opening of the shuttlecock barrel by using gripper end-effector. The agent A_2 then uses stick end-effector to push the shuttlecock into the barrel, or A_2 uses the closed gripper end-effector pushes the shuttlecock in.
- 5. **Swipe Card:** The agent A_1 lifts the credit card (via suction or gripper end-effector) from the cube and moves it to a position convenient for hand-off to A_2 . Then, A_2 uses gripper to align the card with the slot in the POS terminal and insert it into the POS terminal.

Baseline. Imitation learning methods (DP, DP3) remain popular policies. Therefore, we used these two approaches as baselines to validate the effectiveness and performance of heterogeneous end-effectors. Specifically, there are two paradigms are considered in this work.

Table 2: Performance comparison across various paradigms.

		Swipe Card (Diffusion Policy)		
Paradigm	E-e. Setup	25 Demo	50 Demo	75 Demo
Global-View	Gripper Only	17%	23%	25%
+ Shared-Policy	Heterogeneous E-e.	60%	67%	77%
Local-View	Gripper Only	0%	0%	0%
+ Separate-Policy	Heterogeneous E-e.	0%	2%	8%

Global-View + *Shared-Policy.* All agents share the same global observation and use a single policy to produce an action sequence, which is then assigned to the corresponding agents. The observation can be presented as $O_{global} = \text{concat}([A_0, A_1, \dots, A_N, \mathcal{E}(\mathbf{X}_{global})])$.

Local-View + Separate-Policy. Each agent has its own independent observation, and each agent uses its own separate policy to generate individualized action sequences, where the individual observation can be formulated as $O_i = \text{concat}([A_i, \mathcal{E}(X_i)])$.

Where \mathbf{A}_i is the joint action of the *i*-th agent, N represents the number of agents, $\mathcal{E}(\cdot)$ is the encoder, \mathbf{X}_{global} and \mathbf{X}_i are the global view and the *i*-th agent view respectively (which is the RGB image in DP, and point cloud in DP3). In addition, we evaluated the performance of the two paradigms of DP under different end-effector setups and varying numbers of demonstrations on the **Swipe** Card task. The detailed success rates are reported in Tab. 2. The results show that the *Global-View* + *Shared-Policy* paradigm holds a significant advantage in complex, long-horizon, collaborative tasks. We believe this is because such tasks demand extremely strict temporal constraints, which the *Local-View* + *Separate-Policy* paradigm finds difficult to learn from the individual datasets. Based on above findings, we subsequently employed the *Global-View* + *Shared-Policy* paradigm as the training strategy for DP and DP3. More details of DP and DP3 training (e.g., hyperparameters) are reported in supplementary material (Sec. A).

Table 3: Performance of different end-effector setup. We report the success rates of heterogeneous end-effectors and gripper-only across five tasks and two policies with six demonstration settings. (Abbr.: E-e. = End-effector, R-s. = Ring-shaped, Gri. = Gripper, Sti. = Stick, Suc. = Suction)

		Diffusion Policy		3D Diffusion Policy				
Task Name	E-e. Setup	25 Demo	50 Demo	75 Demo	50 Demo	100 Demo	150 Demo	Average
Suction-lift Card	Gripper Only	7%	14%	15%	21%	20%	23%	16.7%
	Ours (Suction)	100%	100 %	100%	100%	100%	93%	98.8%
Pick Pokéball	Gripper Only	37%	69%	64%	54%	75%	73%	62%
	Ours (R-s. Gri.)	78%	100%	100%	88%	100%	100%	94.3%
Pick Vase	Gripper Only	28%	41%	37%	14%	52%	54%	37.7%
	Ours (R-s. Gri.)	100%	100%	100%	100%	100%	100%	100%
Place Shuttlecock	Gripper Only Ours (Gri. & Sti.)	46% 37%	43% 51%	48% 54%	42% 67%	45% 76%	46 % 75%	45% 60%
Swipe Card	Gripper Only	17%	23%	25%	2%	19%	31%	19.5%
	Ours (Suc. & Gri.)	60%	67%	77%	5%	62%	71%	57%

Compositional Generalization. The heterogeneous multi-end effector defined in this work (which comprises four specialized end-effectors) is described in detail in Sec. 4.2. Moreover, we illustrate the workflows of three representative tasks (see Fig. 4), these tasks exemplifies the usage and distinctions among the four end-effectors.

We extensively evaluate our proposed heterogeneous multi-end effector paradigm under both DP and DP3 policies, including both single-agent and dual-agent configurations. Each policy is tested on five tasks, with three different numbers of demonstrations. As shown in Tab. 3, in the three single-agent tasks, the average success rate using the heterogeneous multi-end effector exceeds 94%, which is a marked improvement over the gripper-only setup $(16.7\% \rightarrow 98.8\%, 62\% \rightarrow 94.3\%, 37.7\% \rightarrow 100\%)$. In the long-horizon tasks with dual-agent, the average success rate drops substantially compared to the single-agent setting, reaching only about 60% or 57%. However, it still shows a clear improvement over the gripper-only configuration (45%, 19.5%).

We also found that in simple single-agent tasks, a moderate number of demonstrations (**50 Demo** for DP, **100 Demo** for DP3) is often sufficient to achieve good performance (in fact, the best performance in the **Pick Pokéball** task occurs at these levels). However, for complex long-horizon dual-agent tasks (with the exception of the **Place Shuttlecock** task under DP3), peak performance is attained only when using large numbers of demonstrations (**75 Demo** for DP, **150 Demo** for DP3).

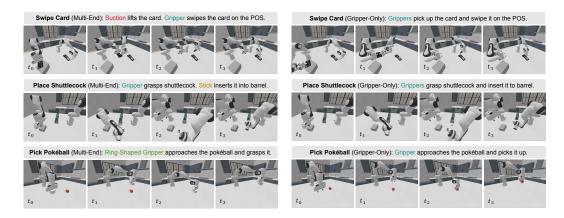


Figure 4: Demonstrations of the tasks. Three representative tasks, namely **Swipe Card**, **Place Shuttlecock**, **Pick Pokéball**, are selected to cover four different types of end-effectors. The left side illustrates the heterogeneous end-effector setup proposed in this work, while the right side presents the gripper-only counterpart for the tasks.

6 Conclusion

We introduced *RoboMonster*, a paradigm that leverages heterogeneous embodied agents to overcome the embodiment gap between simulation and real-world robots. By combining multimodal planning with a Planner–Verifier framework and executing through diverse end-effectors, *RoboMonster* enables capability-driven composition that outperforms single-agent or single-effector baselines. Experiments on *RoboMonster-P* and *RoboMonster-E* demonstrate strong compositional generalization, improved precision, and effective cooperative manipulation. These results suggest that heterogeneous composition is a scalable route to enhancing robotic competence.

Limitation and Future Work. At the *Execution with Compositional Heterogeneous Agents* level, we adopt a purely vision-based imitation learning scheme in simulation. Exploring additional modalities—for example, employing VLA models—to further examine compositional generalization at the execution level is a worthwhile direction. Moreover, validating these capabilities on physical robots represents another meaningful avenue. In future work, we plan to extend *RoboMonster* to more complex embodiments, richer sensory inputs, and broader real-world tasks, further advancing the pursuit of general-purpose embodied intelligence.

ETHICS STATEMENT

We confirm that this work does not involve human subjects, personal or sensitive data, or ethical content of concern. There are no foreseeable risks to privacy, safety, or societal harm associated with our methods and results. We commit to full transparency, and will provide open-source code and documentation in accordance with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To facilitate full reproducibility, we provide:

- 1. We will release the complete source code of *RoboMonster* (including *RoboMonster Brain*, *RoboMonster-P*, *RoboMonster-E*, and all components used in the paper) upon acceptance of the manuscript, to support data collection, model training, and evaluation. e key code for heterogeneous end-effectors in the ManiSkill simulator has been provided in the supplementary material (Section D).
- 2. Detailed hyper-parameters and network architectures in supplementary material (Section A).

All experiments were carried out in open-source simulation environments, and we will release the corresponding documentation alongside the code to support researchers in reproducing our results.

REFERENCES

- Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. *pi*_0: A vision-language-action flow model for general robot control. *arXiv* preprint arXiv:2410.24164, 2024.
- Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong Wen. Reflective multi-agent collaboration based on large language models. *Advances in Neural Information Processing Systems*, 37:138595–138631, 2024a.
- Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong Wen. Reflective multi-agent collaboration based on large language models. *Advances in Neural Information Processing Systems*, 37:138595–138631, 2024b.
- Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. *arXiv* preprint arXiv:2212.06817, 2022.
- Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. *arXiv preprint arXiv:2307.15818*, 2023.
- Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu, Yi-Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration and exploring emergent behaviors. *arXiv preprint arXiv:2308.10848*, 2023.
- Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The International Journal of Robotics Research*, pp. 02783649241273668, 2023.
- Hao-Shu Fang, Chenxi Wang, Hongjie Fang, Minghao Gou, Jirong Liu, Hengxu Yan, Wenhai Liu, Yichen Xie, and Cewu Lu. Anygrasp: Robust and efficient grasp perception in spatial and temporal domains. *IEEE Transactions on Robotics*, 39(5):3929–3945, 2023.
- Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao, Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manipulation skills. In *The Eleventh International Conference on Learning Representations*, 2023.

- Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and challenges, 2024a. URL https://arxiv.org/abs/2402.01680.
 - Xudong Guo, Kaixuan Huang, Jiale Liu, Wenhui Fan, Natalia Vélez, Qingyun Wu, Huazheng Wang, Thomas L Griffiths, and Mengdi Wang. Embodied llm agents learn to cooperate in organized teams. *arXiv preprint arXiv:2403.12482*, 2024b.
 - Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent collaborative framework. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=VtmBAGCN7o.
 - Li Kang, Xiufeng Song, Heng Zhou, Yiran Qin, Jie Yang, Xiaohong Liu, Philip Torr, Lei Bai, and Zhenfei Yin. Viki-r: Coordinating embodied multi-agent cooperation via reinforcement learning. *arXiv* preprint arXiv:2506.09049, 2025.
 - Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion with 3d scene representations. *arXiv preprint arXiv:2402.10885*, 2024.
 - Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al. Openvla: An open-source vision-language-action model. In 8th Annual Conference on Robot Learning.
 - Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing speed and success. *arXiv preprint arXiv:2502.19645*, 2025.
 - Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, and Yaliang Li. Agent-oriented planning in multi-agent systems, 2025. URL https://arxiv.org/abs/2410.02189.
 - Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Communicative agents for "mind" exploration of large language model society. *arXiv* preprint arXiv:2303.17760, 2023.
 - Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser: Diffusion models as adaptive self-evolving planners. In *International Conference on Machine Learning*, pp. 20725–20745. PMLR, 2023.
 - Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo. Skilldiffuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task execution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16467–16476, 2024.
 - Zhixuan Liang, Yao Mu, Yixiao Wang, Tianxing Chen, Wenqi Shao, Wei Zhan, Masayoshi Tomizuka, Ping Luo, and Mingyu Ding. Dexhanddiff: Interaction-aware diffusion planning for adaptive dexterous manipulation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 1745–1755, 2025.
 - Jiaqi Liu, Chengkai Xu, Peng Hang, Jian Sun, Mingyu Ding, Wei Zhan, and Masayoshi Tomizuka. Language-driven policy distillation for cooperative driving in multi-agent reinforcement learning. *IEEE Robotics and Automation Letters*, 2025.
 - Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. *arXiv preprint arXiv:2410.07864*, 2024.
 - Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large language models. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 286–299. IEEE, 2024.
 - Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhiqiang Xie, and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital twins (early version). arXiv preprint arXiv:2409.02920, 2024.

595

596

597

598

600 601

602

603

604

605

607

608

609

610

612

613

614

615

616

617

618

619

620

621

622

623

625

627

629

630

631

632

633

634

635

636

637

638

639

640

641

642

644

645

646

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi, Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist robots. *arXiv preprint arXiv:2406.02523*, 2024.

Kazuma Obata, Tatsuya Aoki, Takato Horii, Tadahiro Taniguchi, and Takayuki Nagai. Lip-llm: Integrating linear programming and dependency graph with large language models for multi-robot task planning. *IEEE Robotics and Automation Letters*, 2024.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine. Octo: An open-source generalist robot policy. In *Proceedings of Robotics: Science and Systems*, Delft, Netherlands, 2024.

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki, Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay, Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung, Ian Kivlichan, Ian O'Connell, Ian O'Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho

Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chat-Dev: Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15174–15186, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.810. URL https://aclanthology.org/2024.acl-long.810/.

- Yiran Qin, Li Kang, Xiufeng Song, Zhenfei Yin, Xiaohong Liu, Xihui Liu, Ruimao Zhang, and Lei Bai. Robofactory: Exploring embodied agent collaboration with compositional constraints. *arXiv* preprint arXiv:2503.16408, 2025.
- Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. *Advances in Neural Information Processing Systems*, 36:8634–8652, 2023.
- H Singh, RJ Das, M Han, P Nakov, and I Laptev. Malmm: Multi-agent large language models for zero-shot robotics manipulation. arxiv 2024. *arXiv preprint arXiv:2411.17636*.
- Purdue University SMART Lab. SMART-LLM: Smart multi-agent robot task planning using large language models. https://github.com/SMARTlab-Purdue/SMART-LLM, 2023.
- Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao, Xinsong Lin, Yulin Liu, Tse-kai Chan, et al. Maniskill3: Gpu parallelized robotics simulation and rendering for generalizable embodied ai. *arXiv preprint arXiv:2410.00425*, 2024a.
- Wei Tao, Yucheng Zhou, Yanlin Wang, Wenqiang Zhang, Hongyu Zhang, and Yu Cheng. Magis: Llm-based multi-agent framework for github issue resolution. *Advances in Neural Information Processing Systems*, 37:51963–51993, 2024b.
- Chenxi Wang, Hongjie Fang, Hao-Shu Fang, and Cewu Lu. Rise: 3d perception makes real-world robot imitation simple and effective. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2870–2877. IEEE, 2024a.
- Weizheng Wang, Ike Obi, and Byung-Cheol Min. Multi-agent llm actor-critic framework for social robot navigation. *arXiv preprint arXiv:2503.09758*, 2025a.
- Yongdong Wang, Runze Xiao, Jun Younes Louhi Kasahara, Ryosuke Yajima, Keiji Nagatani, Atsushi Yamashita, and Hajime Asama. Dart-llm: Dependency-aware multi-robot task decomposition and execution using large language models. *arXiv preprint arXiv:2411.09022*, 2024b.

- Yujin Wang, Quanfeng Liu, Zhengxin Jiang, Tianyi Wang, Junfeng Jiao, Hongqing Chu, Bingzhao Gao, and Hong Chen. Rad: Retrieval-augmented decision-making of meta-actions with vision-language models in autonomous driving. *arXiv preprint arXiv:2503.13861*, 2025b.
- Han Wei et al. A modern survey of llm planning capabilities. In *Proceedings of ACL*, 2025.
- Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla: Vision-language model with plug-in diffusion expert for general robot control. *arXiv preprint arXiv:2502.05855*, 2025.
- Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W. White, Doug Burger, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation. *arXiv* preprint arXiv:2308.08155, 2023.
- Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *International Conference on Learning Representations (ICLR)*, 2023.
- Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Se June Joo, Jianwei Yang, Baolin Peng, Ajay Mandlekar, Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from videos. In *CoRL 2024 Workshop on Whole-body Control and Bimanual Manipulation: Applications in Humanoids and Beyond*.
- Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion policy: Generalizable visuomotor policy learning via simple 3d representations. In *Proceedings of Robotics: Science and Systems (RSS)*, 2024.
- Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tianmin Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language models. arXiv preprint arXiv:2307.02485, 2023.
- Hongxin Zhang, Zeyuan Wang, Qiushi Lyu, Zheyuan Zhang, Sunli Chen, Tianmin Shu, Behzad Dariush, Kwonjoon Lee, Yilun Du, and Chuang Gan. Combo: compositional world models for embodied multi-agent cooperation. *arXiv preprint arXiv:2404.10775*, 2024.
- Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual manipulation with low-cost hardware. *arXiv preprint arXiv:2304.13705*, 2023.
- Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, et al. Sotopia: Interactive evaluation for social intelligence in language agents. *arXiv preprint arXiv:2310.11667*, 2023.

RoboMonster Supplementary Material

USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) only for language polishing and minor editing of our manuscript (e.g. improving grammar, clarity, phrasing). All the text was reviewed, corrected, and verified by the authors. We take full responsibility for the final content of the paper, including any portions influenced by LLM assistance.

A TRAINING DETAILS

In this section, we present the training details, covering the hyperparameter configurations of the two baselines as well as representative training times.

Table 4: Hyperparameters for *Diffusion Policy* training. (Abbr.: H-Paras = Hyperparameters, Pre. = Prediction, Obs. = observation, Act. = Action, BS = Batch Size)

	Diffusion Policy				
H-Paras	Suction-lift Card	Pick Pokéball	Pick Vase	Place Shuttlecock	Swipe Card
Pre. Horizon	32	32	32	32	32
Obs. Horizon	20	20	20	20	20
Act. Horizon	8	8	8	8	8
Image Shape	$3 \times 256 \times 256$	$3\times256\times256$	$3\times256\times256$	$3 \times 256 \times 256$	$3 \times 256 \times 256$
Action Shape	8	8	8	15	16
4060 BS	N/A	N/A	N/A	N/A	N/A
$2 \times 4090 \text{ BS}$	32	32	32	32	32
$2 \times H800 BS$	64	64	64	64	64
Learning Rate	1.0e-4	1.0e-4	1.0e-4	1.0e-4	1.0e-4
Warm-up Steps	500	500	500	500	500
Betas	[0.95, 0.999]	[0.95, 0.999]	[0.95, 0.999]	[0.95, 0.999]	[0.95, 0.999]
Weight Decay	1.0e-6	1.0e-6	1.0e-6	1.0e-6	1.0e-6
Epsilon	1.0e-8	1.0e-8	1.0e-8	1.0e-8	1.0e-8
Epochs	300	300	300	300	300

Table 5: Hyperparameters for 3D Diffusion Policy training.

	3D Diffusion Policy				
Hyperparameters	Suction-lift Card	Pick Pokéball	Pick Vase	Place Shuttlecock	Swipe Card
Prediction Horizon	32	32	32	32	32
Observation Horizon	20	20	20	20	20
Action Horizon	8	8	8	8	8
Point Cloud Shape	3×1024	3×1024	3×1024	3×1024	3×1024
Action Shape	8	8	8	15	16
4060 Batch Size	32	32	32	32	32
2×4090 Batch Size	128	128	128	128	128
$2 \times H800$ Batch Size	256	256	256	256	256
Learning Rate	1.0e-4	1.0e-4	1.0e-4	1.0e-4	1.0e-4
Warm-Up Steps	500	500	500	500	500
Betas	[0.95, 0.999]	[0.95, 0.999]	[0.95, 0.999]	[0.95, 0.999]	[0.95, 0.999]
Weight Decay	1.0e-6	1.0e-6	1.0e-6	1.0e-6	1.0e-6
Epsilon	1.0e-8	1.0e-8	1.0e-8	1.0e-8	1.0e-8
Epochs	300	300	300	300	300

Table 6: Task Descriptions for the RoboMonster-E Benchmark

Task	Description	Target Condition
Suction-lift Card	A credit card is placed at the edge of a cube, and a robotic arm must choose an appropriate end-effector to grasp the card and lift it to a specified height.	The height of the credit card reaches a predefined threshold.
Pick Pokéball	A Pokéball is placed on the table, and a robotic arm must choose an appropriate end-effector to grasp it and lift it to a specified height.	The height of the Pokéball reaches a predefined threshold.
Pick Vase	A vase is placed on the table, and a robotic arm must choose an appropriate end-effector to grasp it and lift it to a specified height.	The height of the vase reaches a predefined threshold.
Place Shuttlecock	A shuttlecock and a barrel are placed on the table. Two robotic arms should each choose an appropriate end-effector: one to place the shuttlecock at the rim of the barrel, and the other to insert it inside.	We assume that the number of shuttle-cocks already inside the barrel follows a 50% probability of being six and a 50% probability of being seven. The task requires pushing the shuttlecock into a position adjacent to the outermost shuttlecock.
Swipe Card	A credit card is placed on top of a cube, while a POS terminal is located on the table. Two robotic arms should each choose an appropriate end-effector: one to lift the credit card and hand it over to the other arm, and the other to insert the card into the slot of the POS terminal.	The distance between the credit card and the slot of the POS terminal is smaller than a predefined threshold.

Diffusion Policy. We employ a **CNN-based** *Diffusion Policy* and evaluate its training performance across representative resource-constrained (NVIDIA RTX 4060 GPU), moderate-resource ($2 \times NVIDIA RTX 4090 GPU$), and high-resource ($2 \times NVIDIA H800 GPU$) computing platforms. The corresponding hyperparameter settings are summarized in Tab. 4. On the resource-constrained platform, the training could not be completed due to the large data volume. For researchers limited to low-resource platforms, one may attempt to simultaneously reduce the Horizon, Image Shape, and Batch Size during training (though we do not recommend this as a preferred strategy).

It is worth noting that we adopted the torch.optim.AdamW optimizer. The hyperparameter values for the Learning Rate, Warm-up Steps, Betas, Weight Decay, and Epsilon are all specified in the corresponding Tab. 4. We report several representative training times as follows:

- 1. On 2×4090 GPU: with 75 demos and 300 epochs for the **Swipe Card** task, approximately **20 hours**.
- On 2 × H800 GPU: with 75 demos and 300 epochs for the Swipe Card task, approximately 13 hours.
- 3. On $2 \times H800$ GPU: with 75 demos and 300 epochs for the **Suction-lift Card** task, approximately **6 hours**.

3D Diffusion Policy. For 3D Diffusion Policy, we adopt an almost identical training strategy. The specific training configurations are listed in Tab. 5. A notable distinction compared to Diffusion Policy is that 3D Diffusion Policy achieves much shorter training times, and is considerably more friendly for researchers with low-resource platforms. We report several representative training times as follows:

- 1. On 1×4060 GPU: with 150 demos and 300 epochs for the **Swipe Card** task, approximately **23 hours**.
- 2. On 2×4090 GPU: with 150 demos and 300 epochs for the **Swipe Card** task, approximately **7 hours**.

3. On $2 \times H800$ GPU: with 150 demos and 300 epochs for the **Swipe Card** task, approximately **2.5 hours**.

B EVALUATION DETAILS

Tasks Evaluation. We interpolated the action sequences generated by the model to make the motion trajectories smoother. For each task, we evaluated it across 100 seeds, varying the initial object positions and environmental conditions. We introduced a maximum action step limit for each task to assess the success rate. If the task was not completed within this limit, it was considered a failure. To set a reasonable threshold, we conducted warm-up tests on 20 samples to estimate the average number of steps required to complete the task. The maximum action step limit was set to 2 times this average value. The success criteria for each task, including target conditions, are detailed in Tab. 6.

We provide a detailed illustration of the overall evaluation pipeline of **RoboMonster** (see Fig. 5). The system first extracts information from the image, and then, through planning in **RoboMonster Brain**, selects suitable end-effectors for the agents A_1 and A_2 . The selected end-effectors are employed to execute the tasks using either DP or DP3.

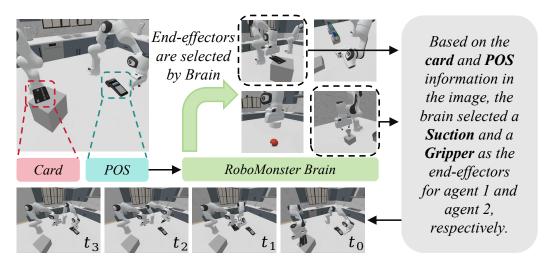


Figure 5: Flowchart of the complete evaluation process, including both planning and execution.

C DETAILS OF ROBOMONSTER BRAIN

C.1 IMPLEMENTATION DETAILS

Single-Agent Pipeline. We implement a single-agent pipeline. Images are provided as base64 data URLs when available. End-effector options are strictly derived from the provided robots of the current sample.

Multi-Agent System. We also define a conceptual MAS consisting of Analyzer, Planner, Selector, and Validator. Each agent consumes the task context and passes structured intermediate outputs to the next stage. The Validator enforces format and option constraints and triggers retries when confidence is low.

For Single-Agent Pipeline and Multi-Agent System, our relevant call site is:

C.2 PROMPT DESIGN

C.2.1 END-EFFECTOR AVAILABILITY

We construct heterogeneous embodied agent options.

robot_to_end_effector_desc = {
 'stompy': 'Claw hand on Stompy: Stompy is a bipedal robot
designed for dynamic walking and stomping tasks, featuring
articulated arms. Color: Light blue body with yellow and orange
accents. Equipped with a claw hand for grasping objects.',

'fetch': 'Gripper on Fetch: Fetch is a wheeled robot with a flexible arm for object manipulation, designed for mobility and dexterity. Color: White with blue and black accents. Uses a gripper end-effector: two symmetric \'fingers/plates\' that open and close in parallel along the same line. From the front, it looks like two parallel small flat plates with a gap in the middle; from the side, you can see the \'top/bottom or left/right clamping\' shape. Versatile and precise, suitable for most regular or rigid objects that can be gripped; adapts to some size variation. May be unstable for very thin, slippery, or objects with insufficient gripping surfaces.',

'unitree_h1': 'Dexterous hands on Unitree_H1: Unitree_H1 is a humanoid robot with arms and legs designed for human-like movements and tasks. Color: Black. Equipped with dexterous hands for complex manipulation tasks requiring fine motor control. Best for delicate operations and complex assembly tasks. Excellent for precise manipulation of various objects.',

'panda': 'Gripper on Panda: Panda is a fixed robotic arm designed for precise and delicate manipulation tasks. Color: White with black accents. Uses a gripper end-effector: two symmetric \'fingers/plates \' that open and close in parallel along the same line. From the front, it looks like two parallel small flat plates with a gap in the middle; from the side, you can see the \'top/bottom or left/right clamping\' shape. Versatile and precise, suitable for most regular or rigid objects that can be gripped; adapts to some size variation. May be unstable for very thin, slippery, or objects with insufficient gripping surfaces.',

'unitree_go2': 'Claw hand on Unitree_Go2: Unitree_Go2 is a compact quadrupedal robot optimized for agile movement and stability with four legs for efficient locomotion. Color: White. Equipped with a claw hand for grasping objects.',

'anymal_c': 'Claw hand on Anymal_C: Anymal_C is a quadrupedal robot built for navigating rough terrains and performing complex tasks with four articulated legs. Color: Red and black with some accents. Equipped with a claw hand for grasping objects.',

'Suction': 'The end looks like a small round contact pad (not two clearly separated jaws). In simulation, it is always closed, without a real vacuum mechanism; it \'simulates suction\' by pressing the small round pad (actually a closed gripper) normally against the object\'s surface. Suitable for smooth, relatively flat targets (such as thin cards or flat blocks on a table), most stable when a good sealing surface is available. Not suitable for porous/rough/high curvature or overly heavy objects, or when there are insufficient suction points.',

 'Circle': 'A short cylindrical tube with an opening. No obvious jaws or rod-like actuators. The opening cannot be seen from top or side views, only from below. SPECIFICALLY DESIGNED for round/ spherical objects of all sizes including balls. Provides stable constraint by \'caging\' round targets like balls, spheres, vases or buckets that are hard to grip with gripper jaws and not suitable for suction. IDEAL CHOICE for any ball-related tasks.',

'Stick': 'A thin, smooth rod with no jaws or suction pad at the end. Used for pushing, inserting, or clearing in narrow cavities/ channels (e.g., pushing a shuttlecock into a bucket, clearing a thin pipe); not suitable for carrying or holding objects.'

C.2.2 System Instruction

972

973

974

975

976

977

978 979

980

981

982 983 984

985 986

987 988

989

990

991

992

993

994

995

996

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014 1015 1016

1017 1018

1019

1020

1021

1022

1023 1024

1025

The system message enumerates the available end-effectors and hard-constrains the answer space:

```
instruction_following = (
    r'Available end-effectors in this scenario: {robot_set} '
    r'Available end-effector options: {available_end_effectors} '
    r'CRITICAL: You can ONLY choose from the end-effector options
listed above! These are the ONLY available options for this specific
scenario. '
    r'Task: Analyze the given task and select the appropriate end-
effector(s) in the correct execution order.
    r'IMPORTANT RULES: '
    r'1. You MUST select ONLY from the available end-effector options
listed above - no exceptions! '
    r'2. If an end-effector is not in the available options list, you
CANNOT use it, even if it might seem suitable for the task. '
    r'3. For single-step tasks, choose one end-effector. For multi-
step tasks, list multiple end-effectors in execution order. '
   r'4. Consider object properties (size, shape, weight, material)
when selecting from the available options. '
    r'5. Consider manipulation requirements (precision, force,
dexterity) when choosing from available options. '
    r'6. Use the exact end-effector names as shown in the available
options list.
    r'Reasoning process: Think through the task step-by-step,
considering object properties, manipulation requirements, and
execution sequence, while staying within the constraints of available
options. '
    r'Response format: Provide your reasoning in <think> </think>
tags, followed by your final answer in <answer> </answer> tags. '
    r'The answer must be a Python list of end-effector names in
execution order, using the EXACT names from the available options.
    r'Example formats: ["claw hand on stompy"] or ["gripper on fetch",
"dexterous hands on unitree_h1"] for multi-step tasks.'
```

C.2.3 USER MESSAGE

The user content contains an optional image (base64 data URL) and a text line "Task Description: \dots ".

MAS Prompt. Our Multi-Agent System employs a sequential four-stage pipeline where each agent has specialized prompts:

Analyzer Agent. Extracts task components using pattern-based fallback methods:

```
system_prompt = """You are a task analysis expert specializing in
robotic manipulation tasks.
```

1059

```
Your role is to analyze the given task description and identify:

1. What objects are involved in the task

2. What actions need to be performed

3. Important properties of the objects (shape, surface, size)

1030

Keep your response simple and clear. Focus on the key information needed for tool selection."""
```

Planner Agent. Creates execution plans with tool requirement analysis:

```
1034
          system_prompt = """You are an execution planning expert for robotic
1035
          manipulation tasks.
1036
1037
          Based on the task analysis, create a detailed execution plan.
1038
          PLANNING GUIDELINES:
1039
          1. TASK COMPLEXITY ANALYSIS:
1040
           - Single-step tasks: One main action (e.g., "move spoon")
1041
          - Multi-step tasks: Multiple distinct actions (e.g., "insert bread,
1042
          activate toaster, place bowl")
1043
          2. STEP IDENTIFICATION:
1044
           - Break down the task into atomic actions
1045
          - Identify if different actions require different tools
1046
          - Note sequence dependencies (what must happen first)
1047
1048
          3. TOOL REQUIREMENTS:
1049
            Consider if each step needs a different end-effector
          - Flag when precision vs. power tools are needed
1050
           - Identify if specialized tools are required (e.g., 'circle' for
1051
          balls, 'suction' for cards)
1052
1053
          4. OUTPUT FORMAT:
1054
          - Clearly state if this is a SINGLE-STEP or MULTI-STEP task
           - List each step with its tool requirements
1055
           - Highlight any special considerations
1056
1057
          Focus on step-by-step breakdown and tool requirement analysis."""
1058
```

Selector Agent. Makes final tool selections with enhanced decision logic:

```
1060
           system_prompt = """Available end-effectors:
1061
1062
           {ROBOT_SET}
1063
1064
           CRITICAL TASK ANALYSIS FRAMEWORK:
1065
           1. PRECISE TASK TYPE CLASSIFICATION:
1066
           a) Simple single-action tasks: "place apple on table", "pick up
1067
          banana"
1068

ightarrow Use EXACTLY ONE tool best suited for the primary object
1069
           b) Multi-action same-capability tasks: "place banana and apple in
1070
          bowl"
1071

ightarrow Use ONE versatile tool that can handle all objects
1072
1073
           c) Multi-action different-capability tasks: "insert bread, activate
1074
          toaster, place bowl"
           → Use MULTIPLE tools: each action needs different capabilities
1075
           → Bread insertion: delicate manipulation (dexterous hands)
1076
           → Toaster activation: button/lever pressing (gripper/hands)
1077

ightarrow Bowl placement: general manipulation (gripper/hands)
1078
1079
           2. ENHANCED OBJECT-TOOL MATCHING RULES:
           a) OBJECT-SPECIFIC tools (use ONLY when object demands it):
```

```
1080
          - Spherical objects (balls, oranges): 'circle' IF no other tool can
1081
          handle safely
1082
          - Flat rigid items (cards, plates): 'suction' IF precision placement
1083
           - Delicate/soft items (bread, fruit): 'dexterous hands' IF crushing
1084
          is a risk
1085
1086
          b) VERSATILE tools (prefer when possible):
1087
            'gripper on fetch': Mobile platform, good for most pick/place tasks
           - 'dexterous hands on unitree_h1': Complex manipulation, fine motor
1088
          control
1089
           - 'claw hand on stompy/anymal_c': Power tasks, robust grasping
1090
1091
           3. TOOL SELECTION DECISION TREE:
1092
           Step 1: Count distinct action types needed
           Step 2: For each action, determine minimum capability required
1093
           Step 3: Find tools that can handle each capability
1094
           Step 4: Minimize tool count while meeting all requirements
1095
1096
          Example: "Insert bread, activate toaster, place bowl"
1097
           - Action 1: Insert bread \rightarrow needs delicate manipulation \rightarrow dexterous
          hands
1098
           - Action 2: Activate toaster → needs precise button press → gripper
1099
          or hands
1100
           - Action 3: Place bowl \rightarrow needs general manipulation \rightarrow gripper or
1101
          hands
1102
           - Decision: Since actions 2&3 need similar capability but action 1 is
1103
           unique
           - Result: ['dexterous hands on unitree_h1', 'gripper on fetch']
1104
1105
          4. COMMON ERRORS TO AVOID:
1106
           - DON'T use multiple tools when one versatile tool can handle
1107
          everything
          - DON'T use single tool when actions need genuinely different
1108
          capabilities
1109
           - DON'T default to 'gripper on fetch' without considering object
1110
          properties
1111
          - DON'T use specialized tools (circle, suction) unless truly
1112
          necessarv
1113
          5. PLATFORM CONSIDERATIONS:
1114
           - Mobile platforms (fetch, stompy, anymal_c, unitree_h1): Kitchen
1115
          navigation
1116
           - Fixed platform (panda): Limited workspace, high precision
1117
           - Choose platform based on workspace requirements, not just tool type
1118
          VALIDATION CHECKLIST BEFORE SELECTION:
1119
           - Have I identified all distinct actions required?
1120
           - Does each action need different tool capabilities?
1121
          - Can a single versatile tool handle all requirements safely?
1122
          - Are specialized tools only used when objects demand them?
           - Is the total tool count justified by genuine capability differences
1123
1124
1125
          IMPORTANT: You must provide your final selection in the following
1126
          format:
1127
           <answer>['tool1', 'tool2']</answer>
          Where 'tool1', 'tool2' are the exact names of the selected end-
1128
          effectors.
1129
          For single tool selection, use: <answer>['tool1']</answer>
1130
1131
          CRITICAL: For this task, you can ONLY choose from the following end-
1132
          effectors: {allowed}. Do NOT select any other tools, even if they
          seem suitable."""
1133
```

1134 *Validator Agent.* Provides quality control with retry mechanism: 1135 1136 system_prompt = """Available end-effectors: 1137 {ROBOT_SET} 1138 1139 ENHANCED VALIDATION CRITERIA: 1140 1141 1. TOOL COUNT APPROPRIATENESS: 1142 a) Single-action tasks: Should use EXACTLY ONE tool - "place apple" ightarrow ONE tool only 1143 - RED FLAG: Multiple tools for simple placement 1145 b) Multi-action same-capability tasks: Should use ONE versatile tool 1146 - "place banana and apple" o ONE versatile tool - RED FLAG: Multiple tools when one can handle all objects 1147 1148 c) Multi-action different-capability tasks: Should use MULTIPLE tools 1149 - "insert bread, activate toaster, place bowl" ightarrow TWO tools minimum 1150 - Bread needs delicate manipulation, toaster needs button press 1151 - RED FLAG: Single tool for genuinely different capabilities 1152 2. OBJECT-TOOL MATCHING VALIDATION: 1153 a) Specialized tool usage CHECK: 1154 - 'circle' used ONLY for spherical objects that require it 1155 - 'suction' used ONLY for flat items requiring precision 1156 - 'dexterous hands' used for delicate/complex manipulation 1157 - RED FLAG: Specialized tools used unnecessarily 1158 b) Versatile tool preference CHECK: - When objects can be handled by general tools, prefer them 1160 - 'gripper on fetch' for mobile pick/place tasks 1161 - RED FLAG: Over-specialization when not needed 1162 3. CAPABILITY-REQUIREMENT MATCHING: 1163 a) Action analysis: 1164 - Delicate manipulation \rightarrow dexterous hands required 1165 - Button/lever activation \rightarrow precise gripper or hands 1166 - General pick/place \rightarrow any gripper suitable - Heavy lifting \rightarrow robust claw hands 1167 1168 b) Platform requirements: 1169 - Kitchen navigation \rightarrow mobile platforms (fetch, stompy, unitree_h1) 1170 - Fixed workspace \rightarrow panda acceptable 1171 - RED FLAG: Platform mismatch with workspace needs 1172 4. CRITICAL ERROR PATTERNS TO FLAG: 1173 a) Tool quantity errors: 1174 - Multiple tools for single-capability tasks (OVERUSE) 1175 - Single tool for multi-capability tasks (UNDERUSE) 1176 b) Object mismatch errors: 1177 - Hard grippers for soft objects when gentle options available 1178 - Specialized tools when general tools suffice 1179 - Missing specialized tools when objects demand them 1180 1181 c) Platform selection errors: 1182 - Fixed platforms for tasks requiring mobility - Wrong capability level for task complexity 1183 1184 5. SCORING GUIDELINES (STRICTER CRITERIA): 1185 - 0.9-1.0: Perfect tool count + perfect object matching + optimal 1186 plat.form 1187 - 0.7-0.8: Correct tool count + good matching + appropriate platform - 0.5-0.6: Minor count/matching issues + acceptable platform choice

```
1188
          - 0.3-0.4: Major count errors OR poor matching + suboptimal platform
1189
          - 0.0-0.2: Wrong tool count AND poor matching AND inappropriate
1190
          platform
1191
           6. VALIDATION DECISION TREE:
1192
          Step 1: Count distinct capabilities needed \rightarrow Expected tool count
1193
          Step 2: Check if each selected tool matches required capability
1194
           Step 3: Verify no over-specialization or under-specialization
1195
           Step 4: Confirm platform choice matches workspace requirements
          Step 5: Score based on how well selection meets all criteria
1196
1197
          COMMON FAILURE PATTERNS TO DETECT:
1198
           - Using 2+ tools when 1 versatile tool can handle everything
1199
          - Using 1 tool when actions genuinely need different capabilities
1200
          - Choosing specialized tools without clear object-specific need
          - Missing mobile platform for kitchen navigation tasks
1201
1202
          Format: <answer>['tool1', 'tool2']</answer>
1203
          Where 'tool1', 'tool2' are the exact names of the selected end-
1204
          effectors.
1205
          CRITICAL: For this task, you can ONLY choose from the following end-
1206
          effectors: {allowed}. Do NOT select any other tools, even if they
1207
          seem suitable.
1208
1209
          After your reasoning, please rate the appropriateness of your
1210
          selected end-effectors for this specific task on a scale from 0.0 (
          completely unreasonable) to 1.0 (perfectly reasonable). Return your
1211
          score in the format <score>0.85</score>.
1212
1213
```

INTER-AGENT COMMUNICATION Agents pass structured context through a TaskContext dataclass containing analysis results, execution steps, tool selections, and validation feedback. The system supports automatic retry when validation confidence falls below 0.6.

C.3 SCORING AND VALIDATION

1214

1215

1216

1217 1218

1219 1220

1221 1222

1223

1225

1226

1227

1228 1229

1230

1231

1232

1233

12341235

1236 1237

1238 1239

1240

1241

We use a task-specific metric viki_1 that combines accuracy and format compliance:

- Base Metric: score = 0.9 * acc_reward + 0.1 * format_reward
- Smart Matching: We use smart_compute_score, which first evaluates viki_1. If not perfect, it parses the <answer> list and applies a normalization (e.g., mapping "gripper on panda" and "gripper on fetch" to "gripper") before re-checking sequence equality.

Relevant implementation excerpts:

```
original_score = viki_1.compute_score(predict_str, ground_truth_str)
# If not perfect, normalize and compare element-wise in order
if all(normalize(pred) == normalize(gt) for pred, gt in zip(pred_list, gt_list)):
format_score = viki_1.format_reward(predict_str)
return 0.9 * 1.0 + 0.1 * format_score
```

C.4 MODEL LIST

Tested models include:

- gpt-5 accuracy: 0.4400
- gemini-2.5-pro accuracy: 0.4250
- Qwen/Qwen2.5-VL-32B-Instruct accuracy: 0.2350

```
1242

1243

1244

1245

• Pro/Qwen/Qwen2.5-VL-7B-Instruct accuracy: 0.2900

• claude-sonnet-4-20250514 accuracy: 0.4150

• glm-4.5v accuracy: 0.2600
```

C.5 DATASET SCHEMA

Each sample provides the following fields used by our runner:

- prompt: an array of chat messages; index 1 contains the user message text (prefixed by "Task Description:")
- images: optional list with binary bytes; the first item is written to a temporary PNG file for base64 encoding
- robot: list of available robots for this scenario; only these determine the end-effector options
- reward_model.ground_truth: a stringified Python list (e.g., "['gripper on panda']") representing the reference sequence

The runner maps robots to end-effector option names and builds the system message accordingly. Independent tools (suction, circle, stick) are only included if explicitly present in robot.

D HETEROGENEOUS EFFECTOR AGENTS

In this section, we provide a detailed report on the code implementation and other technical details of heterogeneous multi-end effector embodied agents in the ManiSkill simulator Tao et al. (2024a).

The specific implementation of heterogeneous multi-end effector agents in the simulator is as follows:

- 1. Gripper: We directly load the panda.urdf file integrated into ManiSkill.
- 2. Suction: Since accurately modelling the pressure of a suction cup in simulation remains challenging, we maintain the panda model with its right and left fingers permanently closed. Upon invocation of the open_suction() interface, if a finger is detected in contact with another object, the contacted object is switched from a dynamic to a kinematic state and is constrained to follow the finger. When the close_suction() interface is called, the object's dynamic properties are restored.
- 3. Stick: We directly load the panda_stick.urdf file integrated into ManiSkill.
- 4. *Ring-shaped Gripper:* First, we designed panda_circle.urdf, adapted for ManiSkill, as the URDF model of a ring-shaped gripper. At the same time, the ring-shaped gripper's wrapper inherits from the suction wrapper: the interface methods are replaced by open_circle() and close_circle(), while the rest of the logic remains unchanged.

D.1 SIMULATOR AGENT WRAPPER

Each sim step, if any finger link touches a valid dynamic rigid body, this function performs a one-shot "attach." It flips the target to kinematic, stores the parent-to-target relative pose via self._relative_pose = fcomp.pose.inv() * tcomp.pose, and records internal state; returns True on success, False otherwise.

```
1287
1288
       def grab_once(self) -> bool:
          """Attach_a_valid_dynamic_target_if_any_finger_link_is_in_contact."""
1290
          if self.is_attached():
             return True
1291
          if not self._finger_links:
1292
             return False
1293
1294
          finger_names = {self._pretty_name(1) for 1 in self._finger_links}
1295
          for c in self.scene.get_contacts(): # contacts available after each
              \hookrightarrow simulation step
```

```
1296
             side0, side1 = self._collect_side(c, 0), self._collect_side(c, 1)
1297
             for s_touch, s_other in ((side0, side1), (side1, side0)):
1298
                finger_entity = self._pick_by_name(s_touch, finger_names)
1299
                if not finger_entity:
                   continue
1300
                target_entity = self._pick_valid_target(s_other) # dynamic, not
1301
                    \hookrightarrow an articulation link
1302
                if not target_entity:
1303
                   continue
1304
                fcomp = finger_entity.find_component_by_type(physx.
1305
                    → PhysxArticulationLinkComponent)
1306
                tcomp = target_entity.find_component_by_type(physx.
1307
                    → PhysxRigidDynamicComponent)
1308
                if not (fcomp and tcomp):
                   continue
1309
1310
                # Switch to kinematic and record relative pose (parent^-1 *
1311
1312
                tcomp.set_kinematic(True)
1313
                self._attached_comp = tcomp
1314
                self._parent_link_comp = fcomp
                self._relative_pose = fcomp.pose.inv() * tcomp.pose
1315
                return True
1316
          return False
1317
```

Call every step while attached. It drives the target using the stored relation target_world = parent_world * relative_pose; writes new_pose to the kinematic body.

Detach. Switch the target back to dynamic, zero its linear/angular velocities to prevent bursts, and clear internal state

```
1332
       def release (self):
1333
          """Restore_dynamic_state_and_zero_velocities_to_avoid_bursts_on_
1334

    release."""

          if not self.is_attached():
1335
             return
1336
          try:
1337
             self._attached_comp.set_kinematic(False) # back to dynamic
             self._attached_comp.linear_velocity = np.zeros(3)
1339
             self._attached_comp.angular_velocity = np.zeros(3)
          finally:
1340
             self._attached_comp = None
1341
             self._parent_link_comp = None
1342
             self._relative_pose = None
1343
```

D.2 SIMULATOR RECORD WRAPPER

1318

1319

1320 1321

1322

1323

1324

1325

1326

1327

1328 1329

1330

1331

1344

1345 1346

1347

1348

1349

On each env step, coerce per-agent action vectors to fixed target dims (stick = 7, circle/suction/gripper = 8) by truncating/padding, then forward the normalized action to the base recorder; this keeps dataset shapes consistent without changing environment execution.

```
def step(self, action):
```

1380

1381

1382

1383

```
1350
          """Normalize per-agent action dims for recording without altering env.
1351

→ behavior: _-_stick: _7D_-_circle/suction/gripper: _8D"""

1352
         dim_map = self._target_action_dim_map()
1353
          def _fix_vec(vec: np.ndarray, want: int) -> np.ndarray:
1354
             v = np.asarray(vec).reshape(-1).astype(np.float32)
1355
             if v.size == want:
1356
                return v
1357
             if v.size > want:
1358
                return v[:want]
             out = np.zeros((want,), dtype=np.float32)
1359
             out[: v.size] = v
1360
             return out
1361
1362
          if isinstance(self.env.action_space, gym_utils.spaces.Dict):
             # Multi-agent dict: normalize each agent vector to its target dim
1363
             assert isinstance(action, dict), "Expect_dict_action_for_multi-
1364

→ agent_env"

1365
             norm = {}
1366
             keys = (list(self.env.action_space.spaces.keys())
1367
                   if hasattr(self.env.action_space, "spaces")
                   else list(action.keys()))
1368
             for k in keys:
1369
                want = dim_map.get(k, int(np.prod(np.asarray(action[k]).shape)))
1370
                norm[k] = _fix_vec(action[k], want)
1371
          else:
1372
1373
             want = dim_map.get("__single__", int(np.prod(np.asarray(action).

    shape)))
1374
             norm = _fix_vec(action, want)
1376
          # Delegate to base recorder (records + steps env)
1377
         return super().step(norm)
```

When flushing, write a complete episode slice into an HDF5 group "traj_N": skip the initial dummy frame, dump observations (gzip for rgb/depth/seg), write per-agent actions (with optional key renaming), flags, states, and rewards; also append JSON episode metadata. Inputs: internal trajectory buffer; output: files on disk plus updated episode index.

```
def flush_trajectory(self,
1384
                        verbose=False,
1385
                        ignore_empty_transition=True,
1386
                        env_idxs_to_flush=None,
1387
                        save: bool = True):
1388
          """Flush_a_trajectory_slice_to_disk_as_HDF5_+_JSON_metadata.Skips__

→ first_dummy_frame; _compresses_images; _preserves_fixed_action_
1389
              \hookrightarrow dims."""
1390
          flush\_count = 0
1391
          if env_idxs_to_flush is None:
1392
             env_idxs_to_flush = np.arange(0, self.num_envs)
1393
          for env_idx in env_idxs_to_flush:
1394
             start_ptr = self._trajectory_buffer.env_episode_ptr[env_idx]
1395
             end_ptr = len(self._trajectory_buffer.done)
1396
             if ignore_empty_transition and end_ptr - start_ptr <= 1:</pre>
1397
                continue
1398
             flush_count += 1
1399
             if save:
1400
                # Create /traj_N
1401
                self._episode_id += 1
1402
                traj_id = f"traj_{self._episode_id}"
1403
                group = self._h5_file.create_group(traj_id, track_order=True)
```

```
1404
                 # Minimal recursive writer (dicts + arrays), with special
1405
                     \hookrightarrow handling for vision & actions
1406
                def recursive_add_to_h5py(group: h5py.Group, data: Union[dict,
1407
                     \hookrightarrow Array], key):
                    if isinstance(data, dict):
1408
                       subgrp = group.create_group(key, track_order=True)
1409
                       for k in data.keys():
1410
                          recursive_add_to_h5py(subgrp, data[k], k)
1411
1412
                       if key in ("rgb", "depth", "seg"):
                          group.create_dataset(
1413
                             key,
1414
                              data=data[start_ptr:end_ptr, env_idx],
1415
                              dtype=data.dtype,
1416
                              compression="gzip",
                              compression_opts=5,
1417
1418
                       elif group.name.endswith("/actions"):
1419
                            actions already sliced to (T, D) per-agent below
1420
                          group.create_dataset(key, data=data[start_ptr+1:end_ptr
1421

→ ], dtype=data.dtype)
1422
                          group.create_dataset(
1423
1424
                              data=data[start_ptr:end_ptr, env_idx],
1425
                              dtype=data.dtype,
1426
1427
                 # Observations
1428
                if self.record observation:
1429
                    obs_buf = self._trajectory_buffer.observation
1430
                    if isinstance(obs_buf, dict):
1431
                       recursive_add_to_h5py(group, obs_buf, "obs")
1432
                    elif isinstance(obs_buf, np.ndarray):
                       if self.cpu_wrapped_env:
1433
                          group.create_dataset("obs",
1434
                                            data=obs_buf[start_ptr:end_ptr],
1435
                                            dtype=obs_buf.dtype)
1436
                       else:
                          group.create_dataset("obs",
1437
                                            data=obs_buf[start_ptr:end_ptr, env_idx
1438
                                               \hookrightarrow ],
1439
                                           dtype=obs_buf.dtype)
1440
                    else:
1441
                       raise NotImplementedError(f"Unsupported_obs_type:_{type(
1442
                           \hookrightarrow obs_buf)}")
1443
                 # Episode metadata (JSON sidecar is updated later)
1444
                episode_info = dict(
1445
                    episode_id=self._episode_id,
1446
                    episode_seed=self.base_env._episode_seed[env_idx],
                    control_mode=self.base_env.control_mode,
1447
                    elapsed_steps=end_ptr - start_ptr - 1,
1448
1449
                if self.num_envs == 1:
1450
                    episode_info.update(reset_kwargs=self.last_reset_kwargs)
1451
                else:
                    episode_info.update(reset_kwargs=dict())
1452
1453
                 # Slice runtime tensors (skip first dummy frame)
1454
                actions = common.index_dict_array(
1455
                    self._trajectory_buffer.action,
1456
                    (slice(start_ptr + 1, end_ptr), env_idx),
1457
```

```
1458
                 terminated = self._trajectory_buffer.terminated[start_ptr+1:
1459
                     \hookrightarrow end_ptr, env_idx]
1460
                 truncated = self._trajectory_buffer.truncated [start_ptr+1:
1461
                     1462
                 # Optional agent key normalization (example: rename stick agent
1463
                     \hookrightarrow key)
1464
                 def _rename_agent_key_for_write(k: str) -> str:
1465
                    if isinstance(k, str) and k.startswith("panda_stick"):
                        return "panda" if "-" not in k else "panda-" + k.split("-",
1466
                           \hookrightarrow 1)[1]
1467
                    return k
1468
1469
                 # Actions
1470
                 if isinstance(self._trajectory_buffer.action, dict):
                    actions_to_write = {}
1471
                    for k, v in actions.items():
1472
                       new_k = _rename_agent_key_for_write(k)
1473
                        if (new_k in actions_to_write) and (new_k != k):
1474
                           new_k = k
1475
                       actions_to_write[new_k] = v
1476
                    recursive_add_to_h5py(group, actions_to_write, "actions")
1477
                    group.create_dataset("actions", data=actions, dtype=np.
1478
                        \hookrightarrow float 32)
1479
1480
                 # Flags
                 group.create_dataset("terminated", data=terminated, dtype=bool)
1481
                 group.create_dataset("truncated", data=truncated, dtype=bool)
1482
1483
                 # Success / fail (optional)
1484
                 if self._trajectory_buffer.success is not None:
1485
                    end_ptr2 = len(self._trajectory_buffer.success)
1486
                    group.create_dataset(
                        "success",
1487
                       data=self._trajectory_buffer.success[start_ptr+1:end_ptr2,
1488
                            \hookrightarrow env_idx],
1489
                       dtype=bool,
1490
1491
                    episode_info.update(success=self._trajectory_buffer.success[
                        \hookrightarrow end_ptr2 - 1, env_idx])
1492
                 if self._trajectory_buffer.fail is not None:
1493
                    group.create_dataset(
1494
                        "fail",
1495
                        data=self._trajectory_buffer.fail[start_ptr+1:end_ptr,
1496
                            \hookrightarrow env_idx],
                       dtype=bool,
1497
                    )
1498
                    episode_info.update(fail=self._trajectory_buffer.fail[end_ptr
1499
                        \hookrightarrow - 1, env_idx])
                 # Environment states (if enabled)
1501
                 if self.record_env_state:
1502
                    recursive_add_to_h5py(group, self._trajectory_buffer.state, "
1503
                        \hookrightarrow env_states")
1504
1505
                 # Rewards (if enabled)
                 if self.record_reward:
1506
                    group.create_dataset(
1507
                        "rewards",
1508
                       data=self._trajectory_buffer.reward[start_ptr+1:end_ptr,
1509
                            \hookrightarrow env_idx],
1510
                       dtype=np.float32,
1511
                    )
```

```
1512
              # Update manifest JSON
1513
              self._json_data["episodes"].append(episode_info)
1514
              dump_json(self._json_path, self._json_data, indent=2)
1515
              if verbose:
1516
                 print (f"Recorded_episode_{self._episode_id}")
1517
1518
         # Truncate in-memory buffer to save RAM and advance per-env pointers
1519
         if flush_count > 0:
           self._trajectory_buffer.env_episode_ptr[env_idxs_to_flush] = len(
1520
               1521
           min_env_ptr = self._trajectory_buffer.env_episode_ptr.min()
1522
           N = len(self._trajectory_buffer.done)
1523
1524
           if self.record_env_state:
              self._trajectory_buffer.state = common.index_dict_array(self.
1525
                  1526
           self._trajectory_buffer.observation = common.index_dict_array(self.
1527

    _trajectory_buffer.observation, slice(min_env_ptr, N))

1528
            self._trajectory_buffer.action = common.index_dict_array(self.
1529
               if self.record_reward:
1530
              self._trajectory_buffer.reward = common.index_dict_array(self.
1531
                  → _trajectory_buffer.reward, slice(min_env_ptr, N))
1532
           self._trajectory_buffer.terminated = common.index_dict_array(self.
1533
               \hookrightarrow _trajectory_buffer.terminated, slice(min_env_ptr, N))
1534
            self._trajectory_buffer.truncated = common.index_dict_array(self.
               \hookrightarrow _trajectory_buffer.truncated, slice(min_env_ptr, N))
1535
            self._trajectory_buffer.done = common.index_dict_array(self.
1536

    _trajectory_buffer.done, slice(min_env_ptr, N))
1537
           if self._trajectory_buffer.success is not None:
1538
              self._trajectory_buffer.success = common.index_dict_array(self.
1539
                  if self._trajectory_buffer.fail is not None:
1540
              self._trajectory_buffer.fail = common.index_dict_array(self.
1541

→ _trajectory_buffer.fail, slice(min_env_ptr, N))
1542
           self._trajectory_buffer.env_episode_ptr -= min_env_ptr
1543
1544
```