
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ROBOMONSTER: COMPOSITIONAL GENERALIZATION
OF HETEROGENEOUS EMBODIED AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite rapid progress in robot hardware and algorithms, a persistent gap remains
between flexible decision-making in simulation and the embodiment constraints
of real robots, often leading to suboptimal execution on deceptively simple tasks.
We posit that, rather than emulating human morphology, robots should compose
heterogeneous embodied agents whose capabilities extend beyond human-like end
effectors. We introduce RoboMonster, a paradigm and system that reasons over
and coordinates multiple, diverse agents to execute tasks more effectively. At the
planning level, RoboMonster uses a multimodal large language model to perform
chain-of-thought selection over a Robot Manual describing each agent’s skills
and limits; a Planner proposes a composition and a Verifier checks feasibility and
efficiency. We benchmark this process with RoboMonster-P for robot-selection
tasks. At the execution level, we implement interaction logic for four end-effector
types in the ManiSkill environment, collect data, train downstream policies, and
evaluate on RoboMonster-E. Experiments and ablations show that heterogeneous
compositions exhibit strong compositional generalization and successfully solve
tasks that defeat single-agent or single-effector baselines, including cases requiring
precision or cooperative manipulation. These results suggest that capability-driven
composition is a viable route to closing the embodiment gap and scaling robotic
competence.

Regular in shape and lightweight, such
as fruits or cups.

Large or weighty items, such as boxes
or furniture.

Flat and slender items, such as cards.

Large in volume, such as wardrobes.

Confined spaces, such as shuttlecock
tubes.

Operations that require collaboration
among multiple robotic arms, such as
factory assembly lines.

Normal Object

Heavy Object

Thin Object

Bulky Object

Narrow Scenario

Complex Tasks

Figure 1: Current general-purpose hardware structures (e.g., grippers) may only be able to handle
tasks involving interaction with conventional objects in specific scenarios (e.g., a gripper may fail
to pick up a card lying flat on a table). We introduce RoboMonster, a novel paradigm for robotics
that combines heterogeneous embodied agents to bridge the gap between hardware and algorithms
through compositional generalization.

1 INTRODUCTION

The rapid advancement of robotics has been fueled by significant progress in both hardware and algo-
rithmic capabilities. On the hardware front, the development of diverse robotic embodiments, ranging
from humanoid robots with dexterous hands to quadrupedal robots, has paved the way for versatile
robotic systems. Simultaneously, algorithmic advancements—such as open-loop models Fang et al.
(2023) and closed-loop frameworks Chi et al. (2023); Zhao et al. (2023); Brohan et al. (2023); Black
et al. (2024); Kim et al. —have led to substantial improvements in robot perception, decision-making,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and action execution. These strides have allowed robots to perform increasingly complex tasks with
greater autonomy and precision, pushing the boundaries of what was once considered possible.

Despite these advancements, the gap between decision-making in virtual environments and the real
world remains a significant challenge in embodied intelligence. In virtual simulations, execution
interfaces are highly flexible, enabling quick adaptation to various scenarios. However, in the real
world, decision-making is constrained by the physical properties of the robot and its pre-configured
embodiment. This discrepancy often prevents algorithms from fully exploiting hardware capabilities,
and vice versa, leading to suboptimal performance. A clear example of this is the task of picking up a
simple card from a flat surface: while humans can achieve this with subtle skill, robotic grippers and
claws, even with tactile sensors, often fail to execute the task effectively, highlighting the mismatch
between algorithmic potential and hardware limitations.

One potential solution to this issue is the continuous upgrading of robotic hardware. However, this
approach comes with significant costs in terms of design, manufacturing, and data collection, as new
hardware requires retraining strategy models and possibly iterating algorithms to adapt to the new
setup. Another direction, proposed by some researchers, is the deployment of dual-arm systems or
multi-arm robots to handle tasks that a single robotic arm cannot accomplish. While this method
improves task performance, it still faces limitations. For instance, even with two or more robotic
arms, tasks such as picking up a card from a table remain challenging, as coordination and precision
are still lacking.

In light of these challenges, we pose a fundamental question: Do we need to design robots to
resemble humans, or can we create robotic systems with capabilities that extend beyond human
limitations? For example, end-effectors such as suction cups could effectively lift cards with
relatively simple mechanical structures, while multi-arm systems could lift heavy objects that would
be impossible for two arms alone. Based on this concept, we introduce RoboMonster—a novel
robotic system paradigm that combines heterogeneous embodied agents. This system enables the
robot to reason and select the optimal combination of embodied agents based on visual inputs, task
instructions, and the properties of its own embodied agents. Additionally, it can plan the sub-tasks for
multiple agents to collaborate, enabling the system to generalize to new or more difficult tasks.

To validate RoboMonster, we constructed a heterogeneous multi-agent system that leverages multi-
modal large language models (MLLM) for high-level planning and employs four specially designed
end-effectors to perform diverse tasks. At the high-level planning stage, we present a system for plan-
ning with compositional heterogeneous embodied agents, leveraging the RoboMonster-P benchmark
for robot selection tasks. The system selects agents based on task requirements and agent capabilities,
using a Robot Manual that outlines each agent’s skills and limitations. The planning framework
consists of a Planner that performs chain-of-thought reasoning to choose agents, and a Verifier that
ensures task feasibility and efficiency.

At the execution level, we modeled the interactions between four types of end-effectors within the
ManiSkill Gu et al. (2023) simulation environment. We then collected data, trained downstream
policies, and tested our system through various tasks. This approach allows us to validate the
compositional generalization of heterogeneous agents in real-world scenarios, demonstrating that such
systems can outperform single-gripper arms in solving tasks that require coordination among different
agents. Through this validation, we highlight the superior execution capabilities of heterogeneous
end-effectors, as seen in tasks where multi-agent collaboration is essential for success.

Our main contributions are as follows:

• Concept & Paradigm. We introduce RoboMonster, a novel paradigm for robotics that com-
bines heterogeneous embodied agents to bridge the gap between hardware and algorithms
through compositional generalization.

• Planning Verification. We propose a simple and efficient MAS planning system for se-
lecting heterogeneous embodied agents based on task requirements and capabilities, and
demonstrate its feasibility and efficiency using the RoboMonster-P benchmark.

• Execution Verification. We implement interaction logic for four types of end-effectors,
construct RoboMonster-E benchmark, collect data, and train corresponding policy models
to demonstrate the execution advantages of heterogeneous end-effectors.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Experimental Results. Extensive experiments and ablation studies demonstrate that
RoboMonster can efficiently schedule and execute tasks that a single embodied agent
or single end-effector cannot accomplish, both at the planning and execution levels.

2 RELATED WORK

2.1 EMBODIED MULTI-AGENT COOPERATION

Real-world embodied environments often demand collaboration among heterogeneous robots. Prior
studies have investigated this challenge through task allocation Obata et al. (2024); Wang et al.
(2024b); Liu et al. (2025) and high-level multi-agent decision making Zhang et al. (2023); Wang et al.
(2025a). More recently, large language models (LLMs) have been introduced to enhance multi-agent
coordination, showing notable progress in distributed planning and communication Bo et al. (2024a);
Guo et al. (2024b); Nasiriany et al. (2024); Zhou et al. (2023). Vision-language models (VLMs) have
begun to extend these capabilities to embodied multi-agent contexts Wang et al. (2025b); Zhang et al.
(2024), but they generally assume homogeneous capabilities or treat each agent independently, without
mechanisms for integrating complementary skills across heterogeneous agent. VIKI Kang et al. (2025)
explicitly consider heterogeneous robots, but their focus remains at the high-level planning stage
without addressing the deployment of fine-grained low-level control strategies. In contrast, our
work focuses on enabling collaborative control among diverse embodiments, demonstrating how
heterogeneous end-effectors can be jointly orchestrated to accomplish complex tasks that exceed the
ability of single agent type.

2.2 ROBOT LEARNING IN MANIPULATION

Task-specific policy architectures Chi et al. (2023); Ke et al. (2024); Liang et al. (2023; 2024; 2025);
Wang et al. (2024a); Wen et al. (2025); Ze et al. (2024) often achieve strong results in controlled
settings, but their designs are tightly coupled to particular tasks or morphologies, which makes
transferring them to new embodiments difficult. In contrast, large-scale foundation models trained
on diverse multi-robot datasets—such as RT-1 Brohan et al. (2022) for real-time manipulation, RT-
2 Brohan et al. (2023) for semantic planning, and diffusion-based models like RDT-1B Liu et al.
(2024) and π Black et al. (2024)—show more promising generalization across tasks. Building on this
trend, vision–language–action systems including OpenVLA Kim et al., CogACT [26], Octo Octo
Model Team et al. (2024), LAPA Ye et al., and OpenVLA-OFT Kim et al. (2025) highlight how
pretrained representations can be efficiently adapted to different robots and sensing modalities.
However, these approaches typically presuppose homogeneous agents and uniform capabilities. Our
work explicitly explores this dimension, showing how heterogeneous embodiments can be organized
into a coherent control framework that leverages their complementary skills to solve more complex
tasks.

2.3 MULTI-AGENT SYSTEM FOR ROBOT PLANNING

Large language model based multi-agent systems (MAS) provide general infrastructures for role-
specialized collaboration and tool use Li et al. (2023); Wu et al. (2023); Chen et al. (2023); Hong et al.
(2024); Qian et al. (2024). Building on these infrastructures, a growing line of work treats planning
itself as a multi-agent process—either by decomposing tasks into sub-plans, coordinating expert
agents, or reflecting over intermediate results to improve plan quality Guo et al. (2024a); Wei et al.
(2025); Li et al. (2025); Tao et al. (2024b); Bo et al. (2024b). Closer to robotics, recent efforts couple
MAS with embodied planning and execution: RoCo coordinates multi-robot dialogue for sub-tasking
and motion-waypoint generation Mandi et al. (2024), MALMM Singh et al. distributes high-level
planning and low-level control across specialized agents with feedback-driven re-planning, and
SMART-LLM SMART Lab (2023) converts high-level instructions into multi-robot task plans. In our
work, we instantiate an MAS specifically to plan for heterogeneous robots with diverse end-effectors,
enabling coordinated high-level assignment across embodiments.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Key Frame Selection

Grounding DINO RAM

Heterogeneous
Agents Skill Suite

Human Verify

Exo4D and
Simulation Video

RoboMonster-P

Selectd by Object

 Planner
Task Instruction

Observation

 Verifier

Obj. Location

Interation Type

Failure Case

Suck Onto Handover

Limited range of activities

Robot Manual
Suction

...

Skill Matching

Scope of action

Cost

Task: Move the knife from the right
side of the table closer to the plate,
and use it to cut the food into smaller .

Task: Stir the vegetables in the frying
pan using the wooden spatula, then
check the heat level on the stove.

Task: Position the apple on the wooden
cutting board; slice it with the knife.

Task: Clear the food away and arrange
it in the refrigerator.

Task: Look over the table; whichever
of the bowl or plate is not already
resting there, go get it and set it down.

Task: Locate the fruit bowl on the
wooden table, pick up the orange, and
place it onto the wooden cutting board.

Real World Simulation

(c). Sample data in Real World and Simulation.

(a). Robot selection in Real World and Simulation.

(b). Robot selection by MAS with Robot Manual.

Figure 2: Planning for Compositional Heterogeneous Embodied Agents. (a) Data collection and
curation process of RoboMonster-P. (b) Construction of the multi-agent system, which analyzes input
images and instructions to select appropriate heterogeneous embodied agents. (c) RoboMonster-P
includes a diverse set of real-world and simulated environments and tasks.

3 SPECTRUM OF REAL-WORLD ROBOTIC TASKS

Real-world tasks span a broad and diverse distribution, while only a small portion can be addressed by
current robotic hardware and mechanical structures. We categorize tasks according to the properties
of their interactive objects and environments, aiming to leverage compositional generalization to
build heterogeneous embodied-agent systems capable of handling a wider range of tasks.

Normal Objects: These objects have regular shapes, moderate weight, and standard volume. Tasks
involving them can be effectively addressed by training policy models for grippers or dexterous hands.
e.g., picking up fruits, cups.

Heavy Objects: These items exceed the payload limits of conventional manipulators or grippers and
may require the collaboration of multiple robotic arms. e.g., transporting a safe.

Thin Objects: Characterized by very small thickness or volume, these objects demand higher preci-
sion than current grippers or dexterous hands can provide. Specialized end-effectors are necessary.
e.g., picking up a playing card from a table.

Bulky Objects: Large in volume, these objects cannot be stably manipulated by a single arm alone,
requiring multiple embodied agents for safe interaction. e.g., moving a wardrobe.

Narrow Scenarios: Confined spaces where grippers, dexterous hands, or even human hands cannot
pass through, necessitating special end-effectors. e.g., placing a shuttlecock into a shuttlecock tube.

Complex Tasks: Tasks that are inherently difficult or require high efficiency, often demanding
collaboration among multiple heterogeneous embodied agents. e.g., factory production line.

Designing universal end-effectors (e.g., dexterous hands) entails continuous iterations of mechanical
structures. Instead, we explore compositional generalization through heterogeneous embodied agents,
aiming to build an embodied system that can cover the entire distribution of real-world tasks.

4 ROBOMONSTER

Compositional generalization in heterogeneous multi-agent systems can be achieved in two distinct
stages: (1) a high-level planning phase that selects the appropriate agents, and (2) a low-level control
phase where the selected embodied agents execute the task using their individual policies. Designing
heterogeneous embodied agents typically involves defining interaction logic in either simulations or
real-world setups. In contrast, the planning phase is primarily focused on selecting from a predefined

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

set of heterogeneous agents based on the task requirements. Therefore, we decouple the high-level
planning from the low-level execution to facilitate effective validation.

In the high-level phase (Sec. 4.1), we develop an embodied planning system that schedules the
appropriate heterogeneous agents to enable compositional generalization, allowing the completion of
tasks that homogeneous agents alone cannot solve. In the low-level phase (Sec. 4.2), we instantiate
robotic arms with four distinct end-effectors within the ManiSkill Tao et al. (2024a) environment,
collect demonstrations, and train the corresponding policies. This stage validates that heterogeneous
agents, during execution, can leverage compositional generalization to solve tasks that a single-gripper
arm would not be capable of completing.

4.1 PLANNING FOR COMPOSITIONAL HETEROGENEOUS EMBODIED AGENTS

Data Collection and Curation Process. We reformulate the robot selection task as a visual reasoning
problem, as illustrated in Fig. 2(a), where the task allocator selects a set of robots from a predefined
set of embodied agents Aembodied, considering task requirements and agent capabilities. Each instance
consists of a keyframe observation O, selected from real-world and simulation data, and a task
instruction I , generated based on the objects present in O. The output is a set of selected robots
R = {rj}, j ∈ [1,M].

Ground truth labels are created using task-specific templates that specify which robot types are
necessary or unnecessary, based on the task goal and contextual factors, and grounded in embodiment
rules. For reasoning, we employ a chain-of-thought approach, where the model first analyzes task
requirements, identifies available robots from the embodied agent set, evaluates their suitability, and
then selects the appropriate robots. The task allocator gact, powered by GPT-4o OpenAI et al. (2024),
generates the robot selection R = gact(I,O). A verification module Cact ensures that the generated
labels adhere to task constraints, with human oversight for error correction and label quality assurance.
The dataset we construct for robot selection task is called RoboMonster-P.

Brain of RoboMonster . We build a multi-agent decision system that selects one or more embodied
agents based on the task instruction and the current observation. The objective is to demonstrate that
heterogeneous multi-agent collaboration can yield compositional generalization, and that this effect is
particularly effective for high-level embodied planning. To ensure the validity of this conclusion, we
deliberately avoid introducing complex designs into the decision system. Instead, the overall MAS
framework is constructed by following the principles of ReAct Yao et al. (2023) and Reflection Shinn
et al. (2023).

Before decision-making, we compile a Robot Manual from the URDF and parameter files of all
available embodied agents. The manual specifies, for each type of agent, its skills, action range, and
execution cost. This serves as the knowledge base for reasoning about heterogeneous capabilities.

As shown in Fig. 2(b), the first component, the MLLM-based Planner, performs chain-of-thought
reasoning to summarize object locations, interaction logic, and potential failure cases (e.g., spatial
constraints). Based on this reasoning, it selects the candidate embodied agents required for the task.
The second component, the LLM-based Verifier, validates these selections against the Robot Manual,
checking multiple aspects to ensure that the chosen agents can accomplish the task with minimal cost.

We validate our system on the RoboMonster-P benchmark and show that, even without a carefully
engineered decision pipeline or domain-specific fine-tuning, heterogeneous multi-agent systems are
still able to generalize compositionally across diverse tasks.

4.2 EXECUTION WITH COMPOSITIONAL HETEROGENEOUS AGENTS

To verify that heterogeneous embodied agents can achieve scene- and task-level generalization
through compositionality during execution, we build a set of heterogeneous agents and a broad
distribution of manipulation tasks on top of the ManiSkill Gu et al. (2023) simulation platform.
Using an automated MLLM-based data-collection pipeline, we gather training data and then train
and evaluate a heterogeneous multi-agent system based on imitation learning.

Heterogeneous Effector Embodied Agents. We first modify both the control logic and visual
appearance of the robot end-effectors to implement four types of heterogeneous grippers, as illustrated
in Fig. 3(a). The logic of the four end-effectors is as follows:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Action Diffusion Model Image
Encoder

Global Observation Box, Handles, Rods

Precise Place

Thin or Very Slippery

Friction-Dependent

Smooth, Flat Faces

Thin or Light Objects

Rough, Heavy, Porous

Cleanliness Critical

Vase, Smooth Sphere

Low-Friction Surfaces

Angular or Too Small

Size Restrictions

Push, Insert in Slots

Poke into Container

Grasp or Carry

Avoid Scratching

Gripper

Suction Ring-shaped Gripper

(a). Heterogeneous End-Effector Instantiation. (b). Heterogeneous Multi-Agent Imitation Learning Policy.

Stick

Figure 3: Execution with Compositional Heterogeneous Agents. (a) Instantiation of diverse
end-effectors in ManiSkill, each designed with unique structures that provide distinct capabilities. (b)
Construction of heterogeneous multi-agent imitation learning policies, enabling collaboration among
different embodied agents to accomplish complex tasks.

1. [Gripper] General and precise gripping works well for most rigid or graspable objects and
shows some tolerance to size variation. However, it tends to be unstable for objects that are
excessively thin or very slippery.

2. [Stick] Applicable for pushing, inserting or clearing in narrow cavities or channels (e.g..
pushing a shuttlecock into a bucket, unblocking a small tube); unsuited for transporting or
grasping.

3. [Suction] Suitable for objects with smooth, relatively flat surfaces (e.g., thin cards on a
table, smooth spheres or cubes), and most stable when there is good sealing with the contact
surface. It is not suitable or performs poorly for porous or rough surfaces, high curvature,
heavy objects, or when there are insufficient contact or sealed points.

4. [Ring-shaped Gripper] This end-effector is an annular gripper whose inner diameter can be
freely varied to accommodate objects of different sizes. Caging-style constraint provides
stable support for large round or cylindrical objects, such as vases or smooth sphere,
which are difficult to grasp securely with fingered grippers or suction-based methods. By
surrounding the object, the executor forms a boundary that prevents slipping or rolling and
thus improves stability.

Details of these modifications can be found in the supplementary material (Section. D).

Data Collection and Curation Process. Next, we design an automated data-collection pipeline
powered by a multimodal large language model (MLLM). The pipeline collects trajectory data for
all heterogeneous agents within each task category, enabling low-level policy training. Inspired by
RoboFactory , the pipeline consists of two components: RoboBrain, which decomposes tasks and
schedules primitive functions; and RoboChecker, which verifies whether the generated trajectories
are reasonable and free of anomalies. When scheduling primitive functions, we additionally include
the end-effector type as an input variable so that each heterogeneous gripper can produce its own
unique action sequence.

Based on the above methodology, we introduce the RoboMonster-E benchmark, built on the ManiSkill
simulator. RoboMonster-E aims to instantiate manipulation tasks with diverse distributions, detailed
described in Sec. 5.2. It includes 5 tasks across environments with varying numbers of agents,
constructed around the Franka Emika Panda arm—a 7-DoF robotic manipulator equipped with
interchangeable end-effectors that enable flexible manipulation.

Compositional Agents Trajectory Execution. Finally, we adapt the single-agent imitation-learning
framework to a multi-agent system, where each agent learns an independent policy from its own
egocentric view. We employ a Global-View + Shared-Policy paradigm (Fig. 3(b): all agents share
the same global observation and use a single shared policy to generate a joint action sequence,
which is then assigned to the corresponding agents. Compared with approaches that use only a
single gripper, employing an optimal combination of end-effectors yields better generalization and
performance. Notably, since RoboMonster-E is designed to validate the execution-level advantages
of heterogeneous embodied agents, we adopt the optimal end-effector combination by default.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

5.1 PLANNING WITH COMPOSITIONAL HETEROGENEOUS EMBODIED AGENTS

Experiments Setting. We cast planning as agent selection from a small library of heterogeneous
end-effectors. Given a single RGB scene image and a natural-language instruction, the model must
output exactly one or multiple embodied agents from the label set which is described in detail in
the Sup. C.2. We evaluate on a 200-example test set sampled from RoboMonster-P (More detial
about sampling protocol and distribution is in Sup. C). We apply the same instruction-following
template that (i) lists E , (ii) asks for a single choice, and (iii) forbids extraneous text. We canonicalize
predictions to the four labels via simple string matching and report top-1 accuracy over these 200
items.

Table 1: Agent selection accuracy on
RoboMonster-P (200 examples). No finetuning;
temperature = 0.0.

Model Accuracy

Gripper Only 0.120

Qwen2.5-VL-32B-Instruct 0.235
GLM-4.5V 0.260
GPT-5 0.440
Gemini-2.5-Pro 0.425
Claude Sonnet 4 (2025-05-14) 0.415
MAS (Planner+Verifier, ours) 0.450

Baselines. We compare against strong open-
and closed-source VLMs as well as our modular
agentic system: Qwen2.5-VL-32B-Instruct (open),
GLM-4.5V (open), GPT-5 (closed), Gemini-2.5-
Pro (closed), Claude Sonnet 4 (2025-05-14)
(closed), and MAS (ours), which couples a plan-
ner (MLLM reasoning) with a verifier (LLM rule/-
constraint checker) operating over a robot manual
that encodes capability and feasibility constraints.
For a fair comparison, all single-pass VLMs share
the same prompt schema and are restricted to one-
shot selection; MAS may internally perform at
most one planner–verifier iteration but still out-
puts a single final label.

Generalization via Agent Selection. Tab. 1 sum-
marizes top-1 accuracy on RoboMonster-P. Policies based on a traditional single gripper are limited
by their mechanical structure, achieving only a 10% task completion rate, show that heterogeneous
multi-agent collaboration enables compositional generalization. While closed-source models gen-
erally outperform open-source ones, our proposed MAS achieves the best overall accuracy. This
suggests that lightweight verification against the robot manual is effective for correcting choices that
appear plausible but are infeasible in practice.

5.2 EXECUTION WITH COMPOSITIONAL HETEROGENEOUS EMBODIED AGENTS

Experiments Setting. With the advancement in simulator realism, numerous outstanding simulation
environment frameworks have arisen, for example, RoboTwin Mu et al. (2024) and RoboFactory Qin
et al. (2025), which are built on ManiSkill Tao et al. (2024a). Taking into account usability and
other relevant factors, we utilize the RoboFactory framework to collect expert demonstration data. In
order to compare the effect of using heterogeneous end-effectors versus gripper-only under different
policies and varying amounts of expert data, we collect 25, 50, and 75 trajectories for DP Chi et al.
(2023). Since each trajectory under DP3 Ze et al. (2024) contains relatively less information (due to
sparse point cloud sampling from raw data), we instead use 50, 100, and 150 expert demonstration
trajectories in this paper.

We designed five challenging tasks involving both single-agent and dual-agent settings to validate the
execution performance advantages of our specialized heterogeneous end-effectors (gripper, suction,
stick, and ring-shaped gripper). For clarify, the following task descriptions are provided under the
assumption that RoboMonster brain has already filtered out inappropriate end-effectors. Therefore,
our discussion is limited to the optimal end-effector combinations and the gripper-only setting. The
specific tasks are as follows:

1. Suction-lift Card: The agent A1 uses suction or gripper end-effector to lift the credit card
placed on the cube.

2. Pick Pokéball: The agent A1 uses ring-shaped gripper or normal gripper end-effector to
pick up the Pokéball (a smooth sphere).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3. Pick Vase: The agent A1 uses ring-shaped gripper or normal gripper end-effector to pick
up the vase.

4. Place Shuttlecock: The agent A1 grasps the shuttlecock and positions it in the opening
of the shuttlecock barrel by using gripper end-effector. The agent A2 then uses stick end-
effector to push the shuttlecock into the barrel, or A2 uses the closed gripper end-effector
pushes the shuttlecock in.

5. Swipe Card: The agent A1 lifts the credit card (via suction or gripper end-effector) from
the cube and moves it to a position convenient for hand-off to A2. Then, A2 uses gripper to
align the card with the slot in the POS terminal and insert it into the POS terminal.

Table 2: Performance comparison across various paradigms.

Swipe Card (Diffusion Policy)

Paradigm E-e. Setup 25 Demo 50 Demo 75 Demo

Global-View
+ Shared-Policy

Gripper Only 17% 23% 25%
Heterogeneous E-e. 60% 67% 77%

Local-View
+ Separate-Policy

Gripper Only 0% 0% 0%
Heterogeneous E-e. 0% 2% 8%

Baseline. Imitation learning meth-
ods (DP, DP3) remain popular poli-
cies. Therefore, we used these two
approaches as baselines to validate
the effectiveness and performance of
heterogeneous end-effectors. Specifi-
cally, there are two paradigms are con-
sidered in this work.

Global-View + Shared-Policy. All agents share the same global observation and use a single policy
to produce an action sequence, which is then assigned to the corresponding agents. The observation
can be presented as Oglobal = concat([A0,A1, . . . ,AN ,E (Xglobal)]).

Local-View + Separate-Policy. Each agent has its own independent observation, and each agent uses
its own separate policy to generate individualized action sequences, where the individual observation
can be formulated as Oi = concat([Ai,E (Xi)]).

Where Ai is the joint action of the i-th agent, N represents the number of agents, E (·) is the encoder,
Xglobal and Xi are the global view and the i-th agent view respectively (which is the RGB image
in DP, and point cloud in DP3). In addition, we evaluated the performance of the two paradigms
of DP under different end-effector setups and varying numbers of demonstrations on the Swipe
Card task. The detailed success rates are reported in Tab. 2. The results show that the Global-View
+ Shared-Policy paradigm holds a significant advantage in complex, long-horizon, collaborative
tasks. We believe this is because such tasks demand extremely strict temporal constraints, which the
Local-View + Separate-Policy paradigm finds difficult to learn from the individual datasets. Based on
above findings, we subsequently employed the Global-View + Shared-Policy paradigm as the training
strategy for DP and DP3. More details of DP and DP3 training (e.g., hyperparameters) are reported
in supplementary material (Sec. A).

Table 3: Performance of different end-effector setup. We report the success rates of heterogeneous
end-effectors and gripper-only across five tasks and two policies with six demonstration settings.
(Abbr.: E-e. = End-effector, R-s. = Ring-shaped, Gri. = Gripper, Sti. = Stick, Suc. = Suction)

Diffusion Policy 3D Diffusion Policy

Task Name E-e. Setup 25 Demo 50 Demo 75 Demo 50 Demo 100 Demo 150 Demo Average

Suction-lift Card
Gripper Only 7% 14% 15% 21% 20% 23% 16.7%

Ours (Suction) 100% 100% 100% 100% 100% 93% 98.8%

Pick Pokéball
Gripper Only 37% 69% 64% 54% 75% 73% 62%

Ours (R-s. Gri.) 78% 100% 100% 88% 100% 100% 94.3%

Pick Vase
Gripper Only 28% 41% 37% 14% 52% 54% 37.7%

Ours (R-s. Gri.) 100% 100% 100% 100% 100% 100% 100%

Place Shuttlecock
Gripper Only 46% 43% 48% 42% 45% 46% 45%

Ours (Gri. & Sti.) 37% 51% 54% 67% 76% 75% 60%

Swipe Card
Gripper Only 17% 23% 25% 2% 19% 31% 19.5%

Ours (Suc. & Gri.) 60% 67% 77% 5% 62% 71% 57%

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Compositional Generalization. The heterogeneous multi-end effector defined in this work (which
comprises four specialized end-effectors) is described in detail in Sec. 4.2. Moreover, we illustrate the
workflows of three representative tasks (see Fig. 4), these tasks exemplifies the usage and distinctions
among the four end-effectors.

We extensively evaluate our proposed heterogeneous multi-end effector paradigm under both DP
and DP3 policies, including both single-agent and dual-agent configurations. Each policy is tested
on five tasks, with three different numbers of demonstrations. As shown in Tab. 3, in the three
single-agent tasks, the average success rate using the heterogeneous multi-end effector exceeds 94%,
which is a marked improvement over the gripper-only setup (16.7% → 98.8%, 62% → 94.3%, 37.7%
→ 100%). In the long-horizon tasks with dual-agent, the average success rate drops substantially
compared to the single-agent setting, reaching only about 60% or 57%. However, it still shows a
clear improvement over the gripper-only configuration (45%, 19.5%).

We also found that in simple single-agent tasks, a moderate number of demonstrations (50 Demo for
DP, 100 Demo for DP3) is often sufficient to achieve good performance (in fact, the best performance
in the Pick Pokéball task occurs at these levels). However, for complex long-horizon dual-agent
tasks (with the exception of the Place Shuttlecock task under DP3), peak performance is attained
only when using large numbers of demonstrations (75 Demo for DP, 150 Demo for DP3).

Swipe Card (Multi-End): Suction lifts the card. Gripper swipes the card on the POS.

Place Shuttlecock (Multi-End): Gripper grasps shuttlecock. Stick inserts it into barrel.

Pick Pokéball (Multi-End): Ring-Shaped Gripper approaches the pokéball and grasps it.

Swipe Card (Gripper-Only): Grippers pick up the card and swipe it on the POS.

Place Shuttlecock (Gripper-Only): Grippers grasp shuttlecock and insert it to barrel.

Pick Pokéball (Gripper-Only): Gripper approaches the pokéball and picks it up.

�0 �1 �2 �3 �0 �1 �2 �3

�3�2�1�0�3�2�1�0

�0 �1 �2 �3 �0 �1 �2 �3

Figure 4: Demonstrations of the tasks. Three representative tasks, namely Swipe Card, Place
Shuttlecock, Pick Pokéball, are selected to cover four different types of end-effectors. The left side
illustrates the heterogeneous end-effector setup proposed in this work, while the right side presents
the gripper-only counterpart for the tasks.

6 CONCLUSION

We introduced RoboMonster, a paradigm that leverages heterogeneous embodied agents to overcome
the embodiment gap between simulation and real-world robots. By combining multimodal planning
with a Planner–Verifier framework and executing through diverse end-effectors, RoboMonster enables
capability-driven composition that outperforms single-agent or single-effector baselines. Experi-
ments on RoboMonster-P and RoboMonster-E demonstrate strong compositional generalization,
improved precision, and effective cooperative manipulation. These results suggest that heterogeneous
composition is a scalable route to enhancing robotic competence.

Limitation and Future Work. At the Execution with Compositional Heterogeneous Agents level,
we adopt a purely vision-based imitation learning scheme in simulation. Exploring additional
modalities—for example, employing VLA models—to further examine compositional generalization
at the execution level is a worthwhile direction. Moreover, validating these capabilities on physical
robots represents another meaningful avenue. In future work, we plan to extend RoboMonster to
more complex embodiments, richer sensory inputs, and broader real-world tasks, further advancing
the pursuit of general-purpose embodied intelligence.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We confirm that this work does not involve human subjects, personal or sensitive data, or ethical
content of concern. There are no foreseeable risks to privacy, safety, or societal harm associated with
our methods and results. We commit to full transparency, and will provide open-source code and
documentation in accordance with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To facilitate full reproducibility, we provide:

1. We will release the complete source code of RoboMonster (including RoboMonster Brain,
RoboMonster-P, RoboMonster-E, and all components used in the paper) upon acceptance of
the manuscript, to support data collection, model training, and evaluation. e key code for het-
erogeneous end-effectors in the ManiSkill simulator has been provided in the supplementary
material (Section D).

2. Detailed hyper-parameters and network architectures in supplementary material (Section A).

All experiments were carried out in open-source simulation environments, and we will release the
corresponding documentation alongside the code to support researchers in reproducing our results.

REFERENCES

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, et al. pi_0: A vision-language-action flow model for
general robot control. arXiv preprint arXiv:2410.24164, 2024.

Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong
Wen. Reflective multi-agent collaboration based on large language models. Advances in Neural
Information Processing Systems, 37:138595–138631, 2024a.

Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong
Wen. Reflective multi-agent collaboration based on large language models. Advances in Neural
Information Processing Systems, 37:138595–138631, 2024b.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors. arXiv preprint arXiv:2308.10848, 2023.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, pp. 02783649241273668, 2023.

Hao-Shu Fang, Chenxi Wang, Hongjie Fang, Minghao Gou, Jirong Liu, Hengxu Yan, Wenhai Liu,
Yichen Xie, and Cewu Lu. Anygrasp: Robust and efficient grasp perception in spatial and temporal
domains. IEEE Transactions on Robotics, 39(5):3929–3945, 2023.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao,
Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manipulation
skills. In The Eleventh International Conference on Learning Representations, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges, 2024a. URL https://arxiv.org/abs/2402.01680.

Xudong Guo, Kaixuan Huang, Jiale Liu, Wenhui Fan, Natalia Vélez, Qingyun Wu, Huazheng Wang,
Thomas L Griffiths, and Mengdi Wang. Embodied llm agents learn to cooperate in organized
teams. arXiv preprint arXiv:2403.12482, 2024b.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=VtmBAGCN7o.

Li Kang, Xiufeng Song, Heng Zhou, Yiran Qin, Jie Yang, Xiaohong Liu, Philip Torr, Lei Bai, and
Zhenfei Yin. Viki-r: Coordinating embodied multi-agent cooperation via reinforcement learning.
arXiv preprint arXiv:2506.09049, 2025.

Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion
with 3d scene representations. arXiv preprint arXiv:2402.10885, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al. Openvla: An open-source
vision-language-action model. In 8th Annual Conference on Robot Learning.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing
speed and success. arXiv preprint arXiv:2502.19645, 2025.

Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, and Yaliang Li. Agent-oriented planning
in multi-agent systems, 2025. URL https://arxiv.org/abs/2410.02189.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for "mind" exploration of large language model society. arXiv
preprint arXiv:2303.17760, 2023.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. In International Conference on Machine
Learning, pp. 20725–20745. PMLR, 2023.

Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo. Skilldif-
fuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task execution.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16467–16476, 2024.

Zhixuan Liang, Yao Mu, Yixiao Wang, Tianxing Chen, Wenqi Shao, Wei Zhan, Masayoshi Tomizuka,
Ping Luo, and Mingyu Ding. Dexhanddiff: Interaction-aware diffusion planning for adaptive dex-
terous manipulation. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pp. 1745–1755, 2025.

Jiaqi Liu, Chengkai Xu, Peng Hang, Jian Sun, Mingyu Ding, Wei Zhan, and Masayoshi Tomizuka.
Language-driven policy distillation for cooperative driving in multi-agent reinforcement learning.
IEEE Robotics and Automation Letters, 2025.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. arXiv preprint
arXiv:2410.07864, 2024.

Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large
language models. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp.
286–299. IEEE, 2024.

Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhiqiang Xie,
and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital twins (early version).
arXiv preprint arXiv:2409.02920, 2024.

11

https://arxiv.org/abs/2402.01680
https://openreview.net/forum?id=VtmBAGCN7o
https://arxiv.org/abs/2410.02189

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
robots. arXiv preprint arXiv:2406.02523, 2024.

Kazuma Obata, Tatsuya Aoki, Takato Horii, Tadahiro Taniguchi, and Takayuki Nagai. Lip-llm:
Integrating linear programming and dependency graph with large language models for multi-robot
task planning. IEEE Robotics and Automation Letters, 2024.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, 2024.

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-
Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex
Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau,
Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,
Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein,
Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey
Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,
Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben
Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake
Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo
Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,
Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric
Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh,
Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik
Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung,
Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu,
Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon,
Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie
Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe,
Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi
Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers,
Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan
Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh
Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn
Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra
Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe,
Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman,
Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng,
Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk,
Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin
Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank
Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna
Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle
Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles
Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine,
Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige,
Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko,
Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal,
Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo
Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob
Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory
Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi
Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara
Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer
Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal
Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas
Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao
Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan,
Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie
Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang,
Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card, 2024.
URL https://arxiv.org/abs/2410.21276.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chat-
Dev: Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 15174–15186, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.810. URL
https://aclanthology.org/2024.acl-long.810/.

Yiran Qin, Li Kang, Xiufeng Song, Zhenfei Yin, Xiaohong Liu, Xihui Liu, Ruimao Zhang, and Lei
Bai. Robofactory: Exploring embodied agent collaboration with compositional constraints. arXiv
preprint arXiv:2503.16408, 2025.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

H Singh, RJ Das, M Han, P Nakov, and I Laptev. Malmm: Multi-agent large language models for
zero-shot robotics manipulation. arxiv 2024. arXiv preprint arXiv:2411.17636.

Purdue University SMART Lab. SMART-LLM: Smart multi-agent robot task planning using large
language models. https://github.com/SMARTlab-Purdue/SMART-LLM, 2023.

Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao,
Xinsong Lin, Yulin Liu, Tse-kai Chan, et al. Maniskill3: Gpu parallelized robotics simulation and
rendering for generalizable embodied ai. arXiv preprint arXiv:2410.00425, 2024a.

Wei Tao, Yucheng Zhou, Yanlin Wang, Wenqiang Zhang, Hongyu Zhang, and Yu Cheng. Magis:
Llm-based multi-agent framework for github issue resolution. Advances in Neural Information
Processing Systems, 37:51963–51993, 2024b.

Chenxi Wang, Hongjie Fang, Hao-Shu Fang, and Cewu Lu. Rise: 3d perception makes real-world
robot imitation simple and effective. In 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2870–2877. IEEE, 2024a.

Weizheng Wang, Ike Obi, and Byung-Cheol Min. Multi-agent llm actor-critic framework for social
robot navigation. arXiv preprint arXiv:2503.09758, 2025a.

Yongdong Wang, Runze Xiao, Jun Younes Louhi Kasahara, Ryosuke Yajima, Keiji Nagatani, Atsushi
Yamashita, and Hajime Asama. Dart-llm: Dependency-aware multi-robot task decomposition and
execution using large language models. arXiv preprint arXiv:2411.09022, 2024b.

13

https://arxiv.org/abs/2410.21276
https://aclanthology.org/2024.acl-long.810/
https://github.com/SMARTlab-Purdue/SMART-LLM

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yujin Wang, Quanfeng Liu, Zhengxin Jiang, Tianyi Wang, Junfeng Jiao, Hongqing Chu, Bingzhao
Gao, and Hong Chen. Rad: Retrieval-augmented decision-making of meta-actions with vision-
language models in autonomous driving. arXiv preprint arXiv:2503.13861, 2025b.

Han Wei et al. A modern survey of llm planning capabilities. In Proceedings of ACL, 2025.

Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla:
Vision-language model with plug-in diffusion expert for general robot control. arXiv preprint
arXiv:2502.05855, 2025.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W. White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation. arXiv
preprint arXiv:2308.08155, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Se June Joo, Jianwei Yang, Baolin Peng, Ajay Mandlekar,
Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from videos. In CoRL
2024 Workshop on Whole-body Control and Bimanual Manipulation: Applications in Humanoids
and Beyond.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations. In Proceedings of
Robotics: Science and Systems (RSS), 2024.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tianmin
Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. arXiv preprint arXiv:2307.02485, 2023.

Hongxin Zhang, Zeyuan Wang, Qiushi Lyu, Zheyuan Zhang, Sunli Chen, Tianmin Shu, Behzad
Dariush, Kwonjoon Lee, Yilun Du, and Chuang Gan. Combo: compositional world models for
embodied multi-agent cooperation. arXiv preprint arXiv:2404.10775, 2024.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe
Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, et al. Sotopia: Interactive evaluation for
social intelligence in language agents. arXiv preprint arXiv:2310.11667, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

RoboMonster Supplementary Material

USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) only for language polishing and minor editing of our
manuscript (e.g. improving grammar, clarity, phrasing). All the text was reviewed, corrected, and
verified by the authors. We take full responsibility for the final content of the paper, including any
portions influenced by LLM assistance.

A TRAINING DETAILS

In this section, we present the training details, covering the hyperparameter configurations of the two
baselines as well as representative training times.

Table 4: Hyperparameters for Diffusion Policy training. (Abbr.: H-Paras = Hyperparameters, Pre. =
Prediction, Obs. = observation, Act. = Action, BS = Batch Size)

Diffusion Policy

H-Paras Suction-lift Card Pick Pokéball Pick Vase Place Shuttlecock Swipe Card

Pre. Horizon 32 32 32 32 32
Obs. Horizon 20 20 20 20 20
Act. Horizon 8 8 8 8 8
Image Shape 3 × 256 × 256 3 × 256 × 256 3 × 256 × 256 3 × 256 × 256 3 × 256 × 256
Action Shape 8 8 8 15 16

4060 BS N/A N/A N/A N/A N/A
2 × 4090 BS 32 32 32 32 32
2 × H800 BS 64 64 64 64 64
Learning Rate 1.0e-4 1.0e-4 1.0e-4 1.0e-4 1.0e-4
Warm-up Steps 500 500 500 500 500

Betas [0.95, 0.999] [0.95, 0.999] [0.95, 0.999] [0.95, 0.999] [0.95, 0.999]
Weight Decay 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6

Epsilon 1.0e-8 1.0e-8 1.0e-8 1.0e-8 1.0e-8
Epochs 300 300 300 300 300

Table 5: Hyperparameters for 3D Diffusion Policy training.

3D Diffusion Policy

Hyperparameters Suction-lift Card Pick Pokéball Pick Vase Place Shuttlecock Swipe Card

Prediction Horizon 32 32 32 32 32
Observation Horizon 20 20 20 20 20

Action Horizon 8 8 8 8 8
Point Cloud Shape 3 × 1024 3 × 1024 3 × 1024 3 × 1024 3 × 1024

Action Shape 8 8 8 15 16
4060 Batch Size 32 32 32 32 32

2 × 4090 Batch Size 128 128 128 128 128
2 × H800 Batch Size 256 256 256 256 256

Learning Rate 1.0e-4 1.0e-4 1.0e-4 1.0e-4 1.0e-4
Warm-Up Steps 500 500 500 500 500

Betas [0.95, 0.999] [0.95, 0.999] [0.95, 0.999] [0.95, 0.999] [0.95, 0.999]
Weight Decay 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6

Epsilon 1.0e-8 1.0e-8 1.0e-8 1.0e-8 1.0e-8
Epochs 300 300 300 300 300

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Task Descriptions for the RoboMonster-E Benchmark

Task Description Target Condition

Suction-lift
Card

A credit card is placed at the edge of a
cube, and a robotic arm must choose an
appropriate end-effector to grasp the card
and lift it to a specified height.

The height of the credit card reaches a
predefined threshold.

Pick
Pokéball

A Pokéball is placed on the table, and a
robotic arm must choose an appropriate
end-effector to grasp it and lift it to a spec-
ified height.

The height of the Pokéball reaches a pre-
defined threshold.

Pick Vase

A vase is placed on the table, and a
robotic arm must choose an appropriate
end-effector to grasp it and lift it to a spec-
ified height.

The height of the vase reaches a prede-
fined threshold.

Place
Shuttlecock

A shuttlecock and a barrel are placed on
the table. Two robotic arms should each
choose an appropriate end-effector: one
to place the shuttlecock at the rim of the
barrel, and the other to insert it inside.

We assume that the number of shuttle-
cocks already inside the barrel follows a
50% probability of being six and a 50%
probability of being seven. The task re-
quires pushing the shuttlecock into a po-
sition adjacent to the outermost shuttle-
cock.

Swipe Card

A credit card is placed on top of a cube,
while a POS terminal is located on the ta-
ble. Two robotic arms should each choose
an appropriate end-effector: one to lift the
credit card and hand it over to the other
arm, and the other to insert the card into
the slot of the POS terminal.

The distance between the credit card and
the slot of the POS terminal is smaller
than a predefined threshold.

Diffusion Policy. We employ a CNN-based Diffusion Policy and evaluate its training performance
across representative resource-constrained (NVIDIA RTX 4060 GPU), moderate-resource (2 ×
NVIDIA RTX 4090 GPU), and high-resource (2 × NVIDIA H800 GPU) computing platforms.
The corresponding hyperparameter settings are summarized in Tab. 4. On the resource-constrained
platform, the training could not be completed due to the large data volume. For researchers limited to
low-resource platforms, one may attempt to simultaneously reduce the Horizon, Image Shape, and
Batch Size during training (though we do not recommend this as a preferred strategy).

It is worth noting that we adopted the torch.optim.AdamW optimizer. The hyperparameter
values for the Learning Rate, Warm-up Steps, Betas, Weight Decay, and Epsilon are all specified in
the corresponding Tab. 4. We report several representative training times as follows:

1. On 2 × 4090 GPU: with 75 demos and 300 epochs for the Swipe Card task, approximately
20 hours.

2. On 2 × H800 GPU: with 75 demos and 300 epochs for the Swipe Card task, approximately
13 hours.

3. On 2 × H800 GPU: with 75 demos and 300 epochs for the Suction-lift Card task, approxi-
mately 6 hours.

3D Diffusion Policy. For 3D Diffusion Policy, we adopt an almost identical training strategy. The
specific training configurations are listed in Tab. 5. A notable distinction compared to Diffusion
Policy is that 3D Diffusion Policy achieves much shorter training times, and is considerably more
friendly for researchers with low-resource platforms. We report several representative training times
as follows:

1. On 1 × 4060 GPU: with 150 demos and 300 epochs for the Swipe Card task, approximately
23 hours.

2. On 2 × 4090 GPU: with 150 demos and 300 epochs for the Swipe Card task, approximately
7 hours.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

3. On 2 × H800 GPU: with 150 demos and 300 epochs for the Swipe Card task, approximately
2.5 hours.

B EVALUATION DETAILS

Tasks Evaluation. We interpolated the action sequences generated by the model to make the motion
trajectories smoother. For each task, we evaluated it across 100 seeds, varying the initial object
positions and environmental conditions. We introduced a maximum action step limit for each task to
assess the success rate. If the task was not completed within this limit, it was considered a failure.
To set a reasonable threshold, we conducted warm-up tests on 20 samples to estimate the average
number of steps required to complete the task. The maximum action step limit was set to 2 times this
average value. The success criteria for each task, including target conditions, are detailed in Tab. 6.

We provide a detailed illustration of the overall evaluation pipeline of RoboMonster (see Fig. 5). The
system first extracts information from the image, and then, through planning in RoboMonster Brain,
selects suitable end-effectors for the agents A1 and A2. The selected end-effectors are employed to
execute the tasks using either DP or DP3.

Card POS RoboMonster Brain

End-effectors
are selected

by Brain

�0�1�2�3

Based on the
card and POS
information in
the image, the

brain selected a
Suction and a
Gripper as the
end-effectors

for agent 1 and
agent 2,

respectively.

Figure 5: Flowchart of the complete evaluation process, including both planning and execution.

C DETAILS OF ROBOMONSTER BRAIN

C.1 IMPLEMENTATION DETAILS

Single-Agent Pipeline. We implement a single-agent pipeline. Images are provided as base64 data
URLs when available. End-effector options are strictly derived from the provided robots of the
current sample.

Multi-Agent System. We also define a conceptual MAS consisting of Analyzer, Planner, Selector,
and Validator. Each agent consumes the task context and passes structured intermediate outputs to the
next stage. The Validator enforces format and option constraints and triggers retries when confidence
is low.

For Single-Agent Pipeline and Multi-Agent System, our relevant call site is:

@backoff.on_exception(backoff.expo, Exception, max_tries=5, max_time=60)
def api_call_with_retry(messages, model_name):

return client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0,
max_tokens=2000,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

)

C.2 PROMPT DESIGN

C.2.1 END-EFFECTOR AVAILABILITY

We construct heterogeneous embodied agent options.

robot_to_end_effector_desc = {
'stompy': 'Claw hand on Stompy: Stompy is a bipedal robot

designed for dynamic walking and stomping tasks, featuring
articulated arms. Color: Light blue body with yellow and orange
accents. Equipped with a claw hand for grasping objects.',

'fetch': 'Gripper on Fetch: Fetch is a wheeled robot with a
flexible arm for object manipulation, designed for mobility and
dexterity. Color: White with blue and black accents. Uses a gripper
end-effector: two symmetric \'fingers/plates\' that open and close in
parallel along the same line. From the front, it looks like two

parallel small flat plates with a gap in the middle; from the side,
you can see the \'top/bottom or left/right clamping\' shape.
Versatile and precise, suitable for most regular or rigid objects
that can be gripped; adapts to some size variation. May be unstable
for very thin, slippery, or objects with insufficient gripping
surfaces.',

'unitree_h1': 'Dexterous hands on Unitree_H1: Unitree_H1 is a
humanoid robot with arms and legs designed for human-like movements
and tasks. Color: Black. Equipped with dexterous hands for complex
manipulation tasks requiring fine motor control. Best for delicate
operations and complex assembly tasks. Excellent for precise
manipulation of various objects.',

'panda': 'Gripper on Panda: Panda is a fixed robotic arm designed
for precise and delicate manipulation tasks. Color: White with black
accents. Uses a gripper end-effector: two symmetric \'fingers/plates

\' that open and close in parallel along the same line. From the
front, it looks like two parallel small flat plates with a gap in the
middle; from the side, you can see the \'top/bottom or left/right

clamping\' shape. Versatile and precise, suitable for most regular or
rigid objects that can be gripped; adapts to some size variation.

May be unstable for very thin, slippery, or objects with insufficient
gripping surfaces.',

'unitree_go2': 'Claw hand on Unitree_Go2: Unitree_Go2 is a
compact quadrupedal robot optimized for agile movement and stability
with four legs for efficient locomotion. Color: White. Equipped with
a claw hand for grasping objects.',

'anymal_c': 'Claw hand on Anymal_C: Anymal_C is a quadrupedal
robot built for navigating rough terrains and performing complex
tasks with four articulated legs. Color: Red and black with some
accents. Equipped with a claw hand for grasping objects.',

'Suction': 'The end looks like a small round contact pad (not two
clearly separated jaws). In simulation, it is always closed, without
a real vacuum mechanism; it \'simulates suction\' by pressing the

small round pad (actually a closed gripper) normally against the
object\'s surface. Suitable for smooth, relatively flat targets (such
as thin cards or flat blocks on a table), most stable when a good

sealing surface is available. Not suitable for porous/rough/high
curvature or overly heavy objects, or when there are insufficient
suction points.',

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

'Circle': 'A short cylindrical tube with an opening. No obvious
jaws or rod-like actuators. The opening cannot be seen from top or
side views, only from below. SPECIFICALLY DESIGNED for round/
spherical objects of all sizes including balls. Provides stable
constraint by \'caging\' round targets like balls, spheres, vases or
buckets that are hard to grip with gripper jaws and not suitable for
suction. IDEAL CHOICE for any ball-related tasks.',

'Stick': 'A thin, smooth rod with no jaws or suction pad at the
end. Used for pushing, inserting, or clearing in narrow cavities/
channels (e.g., pushing a shuttlecock into a bucket, clearing a thin
pipe); not suitable for carrying or holding objects.'
}

C.2.2 SYSTEM INSTRUCTION

The system message enumerates the available end-effectors and hard-constrains the answer space:

instruction_following = (
r'Available end-effectors in this scenario: {robot_set} '
r'Available end-effector options: {available_end_effectors} '
r'CRITICAL: You can ONLY choose from the end-effector options

listed above! These are the ONLY available options for this specific
scenario. '

r'Task: Analyze the given task and select the appropriate end-
effector(s) in the correct execution order. '

r'IMPORTANT RULES: '
r'1. You MUST select ONLY from the available end-effector options

listed above - no exceptions! '
r'2. If an end-effector is not in the available options list, you

CANNOT use it, even if it might seem suitable for the task. '
r'3. For single-step tasks, choose one end-effector. For multi-

step tasks, list multiple end-effectors in execution order. '
r'4. Consider object properties (size, shape, weight, material)

when selecting from the available options. '
r'5. Consider manipulation requirements (precision, force,

dexterity) when choosing from available options. '
r'6. Use the exact end-effector names as shown in the available

options list. '
r'Reasoning process: Think through the task step-by-step,

considering object properties, manipulation requirements, and
execution sequence, while staying within the constraints of available
options. '

r'Response format: Provide your reasoning in <think> </think>
tags, followed by your final answer in <answer> </answer> tags. '

r'The answer must be a Python list of end-effector names in
execution order, using the EXACT names from the available options. '

r'Example formats: ["claw hand on stompy"] or ["gripper on fetch",
"dexterous hands on unitree_h1"] for multi-step tasks.'
)

C.2.3 USER MESSAGE

The user content contains an optional image (base64 data URL) and a text line "Task
Description: ...".

MAS Prompt. Our Multi-Agent System employs a sequential four-stage pipeline where each agent
has specialized prompts:

Analyzer Agent. Extracts task components using pattern-based fallback methods:

system_prompt = """You are a task analysis expert specializing in
robotic manipulation tasks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Your role is to analyze the given task description and identify:
1. What objects are involved in the task
2. What actions need to be performed
3. Important properties of the objects (shape, surface, size)

Keep your response simple and clear. Focus on the key information
needed for tool selection."""

Planner Agent. Creates execution plans with tool requirement analysis:

system_prompt = """You are an execution planning expert for robotic
manipulation tasks.

Based on the task analysis, create a detailed execution plan.

PLANNING GUIDELINES:
1. TASK COMPLEXITY ANALYSIS:
- Single-step tasks: One main action (e.g., "move spoon")
- Multi-step tasks: Multiple distinct actions (e.g., "insert bread,
activate toaster, place bowl")

2. STEP IDENTIFICATION:
- Break down the task into atomic actions
- Identify if different actions require different tools
- Note sequence dependencies (what must happen first)

3. TOOL REQUIREMENTS:
- Consider if each step needs a different end-effector
- Flag when precision vs. power tools are needed
- Identify if specialized tools are required (e.g., 'circle' for
balls, 'suction' for cards)

4. OUTPUT FORMAT:
- Clearly state if this is a SINGLE-STEP or MULTI-STEP task
- List each step with its tool requirements
- Highlight any special considerations

Focus on step-by-step breakdown and tool requirement analysis."""

Selector Agent. Makes final tool selections with enhanced decision logic:

system_prompt = """Available end-effectors:

{ROBOT_SET}

CRITICAL TASK ANALYSIS FRAMEWORK:

1. PRECISE TASK TYPE CLASSIFICATION:
a) Simple single-action tasks: "place apple on table", "pick up
banana"
→ Use EXACTLY ONE tool best suited for the primary object

b) Multi-action same-capability tasks: "place banana and apple in
bowl"
→ Use ONE versatile tool that can handle all objects

c) Multi-action different-capability tasks: "insert bread, activate
toaster, place bowl"
→ Use MULTIPLE tools: each action needs different capabilities
→ Bread insertion: delicate manipulation (dexterous hands)
→ Toaster activation: button/lever pressing (gripper/hands)
→ Bowl placement: general manipulation (gripper/hands)

2. ENHANCED OBJECT-TOOL MATCHING RULES:
a) OBJECT-SPECIFIC tools (use ONLY when object demands it):

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

- Spherical objects (balls, oranges): 'circle' IF no other tool can
handle safely
- Flat rigid items (cards, plates): 'suction' IF precision placement
needed
- Delicate/soft items (bread, fruit): 'dexterous hands' IF crushing
is a risk

b) VERSATILE tools (prefer when possible):
- 'gripper on fetch': Mobile platform, good for most pick/place tasks
- 'dexterous hands on unitree_h1': Complex manipulation, fine motor
control
- 'claw hand on stompy/anymal_c': Power tasks, robust grasping

3. TOOL SELECTION DECISION TREE:
Step 1: Count distinct action types needed
Step 2: For each action, determine minimum capability required
Step 3: Find tools that can handle each capability
Step 4: Minimize tool count while meeting all requirements

Example: "Insert bread, activate toaster, place bowl"
- Action 1: Insert bread → needs delicate manipulation → dexterous
hands
- Action 2: Activate toaster → needs precise button press → gripper
or hands
- Action 3: Place bowl → needs general manipulation → gripper or
hands
- Decision: Since actions 2&3 need similar capability but action 1 is
unique
- Result: ['dexterous hands on unitree_h1', 'gripper on fetch']

4. COMMON ERRORS TO AVOID:
- DON'T use multiple tools when one versatile tool can handle
everything
- DON'T use single tool when actions need genuinely different
capabilities
- DON'T default to 'gripper on fetch' without considering object
properties
- DON'T use specialized tools (circle, suction) unless truly
necessary

5. PLATFORM CONSIDERATIONS:
- Mobile platforms (fetch, stompy, anymal_c, unitree_h1): Kitchen
navigation
- Fixed platform (panda): Limited workspace, high precision
- Choose platform based on workspace requirements, not just tool type

VALIDATION CHECKLIST BEFORE SELECTION:
- Have I identified all distinct actions required?
- Does each action need different tool capabilities?
- Can a single versatile tool handle all requirements safely?
- Are specialized tools only used when objects demand them?
- Is the total tool count justified by genuine capability differences
?

IMPORTANT: You must provide your final selection in the following
format:
<answer>['tool1', 'tool2']</answer>
Where 'tool1', 'tool2' are the exact names of the selected end-
effectors.
For single tool selection, use: <answer>['tool1']</answer>

CRITICAL: For this task, you can ONLY choose from the following end-
effectors: {allowed}. Do NOT select any other tools, even if they
seem suitable."""

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Validator Agent. Provides quality control with retry mechanism:

system_prompt = """Available end-effectors:

{ROBOT_SET}

ENHANCED VALIDATION CRITERIA:

1. TOOL COUNT APPROPRIATENESS:
a) Single-action tasks: Should use EXACTLY ONE tool
- "place apple" → ONE tool only
- RED FLAG: Multiple tools for simple placement

b) Multi-action same-capability tasks: Should use ONE versatile tool
- "place banana and apple" → ONE versatile tool
- RED FLAG: Multiple tools when one can handle all objects

c) Multi-action different-capability tasks: Should use MULTIPLE tools
- "insert bread, activate toaster, place bowl" → TWO tools minimum
- Bread needs delicate manipulation, toaster needs button press
- RED FLAG: Single tool for genuinely different capabilities

2. OBJECT-TOOL MATCHING VALIDATION:
a) Specialized tool usage CHECK:
- 'circle' used ONLY for spherical objects that require it
- 'suction' used ONLY for flat items requiring precision
- 'dexterous hands' used for delicate/complex manipulation
- RED FLAG: Specialized tools used unnecessarily

b) Versatile tool preference CHECK:
- When objects can be handled by general tools, prefer them
- 'gripper on fetch' for mobile pick/place tasks
- RED FLAG: Over-specialization when not needed

3. CAPABILITY-REQUIREMENT MATCHING:
a) Action analysis:
- Delicate manipulation → dexterous hands required
- Button/lever activation → precise gripper or hands
- General pick/place → any gripper suitable
- Heavy lifting → robust claw hands

b) Platform requirements:
- Kitchen navigation → mobile platforms (fetch, stompy, unitree_h1)
- Fixed workspace → panda acceptable
- RED FLAG: Platform mismatch with workspace needs

4. CRITICAL ERROR PATTERNS TO FLAG:
a) Tool quantity errors:
- Multiple tools for single-capability tasks (OVERUSE)
- Single tool for multi-capability tasks (UNDERUSE)

b) Object mismatch errors:
- Hard grippers for soft objects when gentle options available
- Specialized tools when general tools suffice
- Missing specialized tools when objects demand them

c) Platform selection errors:
- Fixed platforms for tasks requiring mobility
- Wrong capability level for task complexity

5. SCORING GUIDELINES (STRICTER CRITERIA):
- 0.9-1.0: Perfect tool count + perfect object matching + optimal
platform
- 0.7-0.8: Correct tool count + good matching + appropriate platform
- 0.5-0.6: Minor count/matching issues + acceptable platform choice

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

- 0.3-0.4: Major count errors OR poor matching + suboptimal platform
- 0.0-0.2: Wrong tool count AND poor matching AND inappropriate
platform

6. VALIDATION DECISION TREE:
Step 1: Count distinct capabilities needed → Expected tool count
Step 2: Check if each selected tool matches required capability
Step 3: Verify no over-specialization or under-specialization
Step 4: Confirm platform choice matches workspace requirements
Step 5: Score based on how well selection meets all criteria

COMMON FAILURE PATTERNS TO DETECT:
- Using 2+ tools when 1 versatile tool can handle everything
- Using 1 tool when actions genuinely need different capabilities
- Choosing specialized tools without clear object-specific need
- Missing mobile platform for kitchen navigation tasks

Format: <answer>['tool1', 'tool2']</answer>
Where 'tool1', 'tool2' are the exact names of the selected end-
effectors.

CRITICAL: For this task, you can ONLY choose from the following end-
effectors: {allowed}. Do NOT select any other tools, even if they
seem suitable.

After your reasoning, please rate the appropriateness of your
selected end-effectors for this specific task on a scale from 0.0 (
completely unreasonable) to 1.0 (perfectly reasonable). Return your
score in the format <score>0.85</score>.
"""

INTER-AGENT COMMUNICATION Agents pass structured context through a TaskContext
dataclass containing analysis results, execution steps, tool selections, and validation feedback. The
system supports automatic retry when validation confidence falls below 0.6.

C.3 SCORING AND VALIDATION

We use a task-specific metric viki_1 that combines accuracy and format compliance:

• Base Metric: score = 0.9 * acc_reward + 0.1 * format_reward

• Smart Matching: We use smart_compute_score, which first evaluates viki_1.
If not perfect, it parses the <answer> list and applies a normalization (e.g., map-
ping "gripper on panda" and "gripper on fetch" to "gripper") before
re-checking sequence equality.

Relevant implementation excerpts:

original_score = viki_1.compute_score(predict_str, ground_truth_str)
If not perfect, normalize and compare element-wise in order
if all(normalize(pred) == normalize(gt) for pred, gt in zip(pred_list,
gt_list)):
format_score = viki_1.format_reward(predict_str)
return 0.9 * 1.0 + 0.1 * format_score

C.4 MODEL LIST

Tested models include:

• gpt-5 accuracy: 0.4400
• gemini-2.5-pro accuracy: 0.4250
• Qwen/Qwen2.5-VL-32B-Instruct accuracy: 0.2350

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• Pro/Qwen/Qwen2.5-VL-7B-Instruct accuracy: 0.2900
• claude-sonnet-4-20250514 accuracy: 0.4150
• glm-4.5v accuracy: 0.2600

C.5 DATASET SCHEMA

Each sample provides the following fields used by our runner:

• prompt: an array of chat messages; index 1 contains the user message text (prefixed by
"Task Description:")

• images: optional list with binary bytes; the first item is written to a temporary PNG file
for base64 encoding

• robot: list of available robots for this scenario; only these determine the end-effector
options

• reward_model.ground_truth: a stringified Python list (e.g., "[’gripper on
panda’]") representing the reference sequence

The runner maps robots to end-effector option names and builds the system message accordingly.
Independent tools (suction, circle, stick) are only included if explicitly present in robot.

D HETEROGENEOUS EFFECTOR AGENTS

In this section, we provide a detailed report on the code implementation and other technical details of
heterogeneous multi-end effector embodied agents in the ManiSkill simulator Tao et al. (2024a).

The specific implementation of heterogeneous multi–end effector agents in the simulator is as follows:

1. Gripper: We directly load the panda.urdf file integrated into ManiSkill.
2. Suction: Since accurately modelling the pressure of a suction cup in simulation remains

challenging, we maintain the pandamodel with its right and left fingers permanently closed.
Upon invocation of the open_suction() interface, if a finger is detected in contact with
another object, the contacted object is switched from a dynamic to a kinematic state and
is constrained to follow the finger. When the close_suction() interface is called, the
object’s dynamic properties are restored.

3. Stick: We directly load the panda_stick.urdf file integrated into ManiSkill.
4. Ring-shaped Gripper: First, we designed panda_circle.urdf, adapted for ManiSkill,

as the URDF model of a ring-shaped gripper. At the same time, the ring-shaped grip-
per’s wrapper inherits from the suction wrapper: the interface methods are replaced by
open_circle() and close_circle(), while the rest of the logic remains unchanged.

D.1 SIMULATOR AGENT WRAPPER

Each sim step, if any finger link touches a valid dynamic rigid body, this function performs a
one-shot “attach.” It flips the target to kinematic, stores the parent-to-target relative pose via
self._relative_pose = fcomp.pose.inv() * tcomp.pose, and records internal
state; returns True on success, False otherwise.

def grab_once(self) -> bool:
"""Attach a valid dynamic target if any finger link is in contact."""
if self.is_attached():

return True
if not self._finger_links:

return False

finger_names = {self._pretty_name(l) for l in self._finger_links}
for c in self.scene.get_contacts(): # contacts available after each

↪→ simulation step

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

side0, side1 = self._collect_side(c, 0), self._collect_side(c, 1)
for s_touch, s_other in ((side0, side1), (side1, side0)):

finger_entity = self._pick_by_name(s_touch, finger_names)
if not finger_entity:

continue
target_entity = self._pick_valid_target(s_other) # dynamic, not

↪→ an articulation link
if not target_entity:

continue

fcomp = finger_entity.find_component_by_type(physx.
↪→ PhysxArticulationLinkComponent)

tcomp = target_entity.find_component_by_type(physx.
↪→ PhysxRigidDynamicComponent)

if not (fcomp and tcomp):
continue

Switch to kinematic and record relative pose (parent^-1 *
↪→ target)

tcomp.set_kinematic(True)
self._attached_comp = tcomp
self._parent_link_comp = fcomp
self._relative_pose = fcomp.pose.inv() * tcomp.pose
return True

return False

Call every step while attached. It drives the target using the stored relation target_world =
parent_world * relative_pose; writes new_pose to the kinematic body.

def update_attachment(self):
"""Force target pose = parent_pose * relative_pose (per-step follow)."

↪→ ""
if not self.is_attached():

return
new_pose = self._parent_link_comp.pose * self._relative_pose
self._attached_comp.entity.set_pose(new_pose) # kinematic body is

↪→ driven externally

Detach. Switch the target back to dynamic, zero its linear/angular velocities to prevent bursts, and
clear internal state

def release(self):
"""Restore dynamic state and zero velocities to avoid bursts on

↪→ release."""
if not self.is_attached():

return
try:

self._attached_comp.set_kinematic(False) # back to dynamic
self._attached_comp.linear_velocity = np.zeros(3)
self._attached_comp.angular_velocity = np.zeros(3)

finally:
self._attached_comp = None
self._parent_link_comp = None
self._relative_pose = None

D.2 SIMULATOR RECORD WRAPPER

On each env step, coerce per-agent action vectors to fixed target dims (stick = 7, circle/suction/gripper
= 8) by truncating/padding, then forward the normalized action to the base recorder; this keeps dataset
shapes consistent without changing environment execution.

def step(self, action):

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

"""Normalize per-agent action dims for recording without altering env
↪→ behavior: - stick: 7D - circle/suction/gripper: 8D"""

dim_map = self._target_action_dim_map()

def _fix_vec(vec: np.ndarray, want: int) -> np.ndarray:
v = np.asarray(vec).reshape(-1).astype(np.float32)
if v.size == want:

return v
if v.size > want:

return v[:want]
out = np.zeros((want,), dtype=np.float32)
out[: v.size] = v
return out

if isinstance(self.env.action_space, gym_utils.spaces.Dict):
Multi-agent dict: normalize each agent vector to its target dim
assert isinstance(action, dict), "Expect dict action for multi-

↪→ agent env"
norm = {}
keys = (list(self.env.action_space.spaces.keys())

if hasattr(self.env.action_space, "spaces")
else list(action.keys()))

for k in keys:
want = dim_map.get(k, int(np.prod(np.asarray(action[k]).shape)))
norm[k] = _fix_vec(action[k], want)

else:
Single agent
want = dim_map.get("__single__", int(np.prod(np.asarray(action).

↪→ shape)))
norm = _fix_vec(action, want)

Delegate to base recorder (records + steps env)
return super().step(norm)

When flushing, write a complete episode slice into an HDF5 group "traj_N": skip the initial
dummy frame, dump observations (gzip for rgb/depth/seg), write per-agent actions (with optional
key renaming), flags, states, and rewards; also append JSON episode metadata. Inputs: internal
trajectory buffer; output: files on disk plus updated episode index.

def flush_trajectory(self,
verbose=False,
ignore_empty_transition=True,
env_idxs_to_flush=None,
save: bool = True):

"""Flush a trajectory slice to disk as HDF5 + JSON metadata.Skips
↪→ first dummy frame; compresses images; preserves fixed action
↪→ dims."""

flush_count = 0
if env_idxs_to_flush is None:

env_idxs_to_flush = np.arange(0, self.num_envs)

for env_idx in env_idxs_to_flush:
start_ptr = self._trajectory_buffer.env_episode_ptr[env_idx]
end_ptr = len(self._trajectory_buffer.done)
if ignore_empty_transition and end_ptr - start_ptr <= 1:

continue
flush_count += 1

if save:
Create /traj_N
self._episode_id += 1
traj_id = f"traj_{self._episode_id}"
group = self._h5_file.create_group(traj_id, track_order=True)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Minimal recursive writer (dicts + arrays), with special
↪→ handling for vision & actions

def recursive_add_to_h5py(group: h5py.Group, data: Union[dict,
↪→ Array], key):
if isinstance(data, dict):

subgrp = group.create_group(key, track_order=True)
for k in data.keys():

recursive_add_to_h5py(subgrp, data[k], k)
else:

if key in ("rgb", "depth", "seg"):
group.create_dataset(

key,
data=data[start_ptr:end_ptr, env_idx],
dtype=data.dtype,
compression="gzip",
compression_opts=5,

)
elif group.name.endswith("/actions"):

actions already sliced to (T, D) per-agent below
group.create_dataset(key, data=data[start_ptr+1:end_ptr

↪→], dtype=data.dtype)
else:

group.create_dataset(
key,
data=data[start_ptr:end_ptr, env_idx],
dtype=data.dtype,

)

Observations
if self.record_observation:

obs_buf = self._trajectory_buffer.observation
if isinstance(obs_buf, dict):

recursive_add_to_h5py(group, obs_buf, "obs")
elif isinstance(obs_buf, np.ndarray):

if self.cpu_wrapped_env:
group.create_dataset("obs",

data=obs_buf[start_ptr:end_ptr],
dtype=obs_buf.dtype)

else:
group.create_dataset("obs",

data=obs_buf[start_ptr:end_ptr, env_idx
↪→],

dtype=obs_buf.dtype)
else:

raise NotImplementedError(f"Unsupported obs type: {type(
↪→ obs_buf)}")

Episode metadata (JSON sidecar is updated later)
episode_info = dict(

episode_id=self._episode_id,
episode_seed=self.base_env._episode_seed[env_idx],
control_mode=self.base_env.control_mode,
elapsed_steps=end_ptr - start_ptr - 1,

)
if self.num_envs == 1:

episode_info.update(reset_kwargs=self.last_reset_kwargs)
else:

episode_info.update(reset_kwargs=dict())

Slice runtime tensors (skip first dummy frame)
actions = common.index_dict_array(

self._trajectory_buffer.action,
(slice(start_ptr + 1, end_ptr), env_idx),

)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

terminated = self._trajectory_buffer.terminated[start_ptr+1:
↪→ end_ptr, env_idx]

truncated = self._trajectory_buffer.truncated [start_ptr+1:
↪→ end_ptr, env_idx]

Optional agent key normalization (example: rename stick agent
↪→ key)

def _rename_agent_key_for_write(k: str) -> str:
if isinstance(k, str) and k.startswith("panda_stick"):

return "panda" if "-" not in k else "panda-" + k.split("-",
↪→ 1)[1]

return k

Actions
if isinstance(self._trajectory_buffer.action, dict):

actions_to_write = {}
for k, v in actions.items():

new_k = _rename_agent_key_for_write(k)
if (new_k in actions_to_write) and (new_k != k):

new_k = k
actions_to_write[new_k] = v

recursive_add_to_h5py(group, actions_to_write, "actions")
else:

group.create_dataset("actions", data=actions, dtype=np.
↪→ float32)

Flags
group.create_dataset("terminated", data=terminated, dtype=bool)
group.create_dataset("truncated", data=truncated, dtype=bool)

Success / fail (optional)
if self._trajectory_buffer.success is not None:

end_ptr2 = len(self._trajectory_buffer.success)
group.create_dataset(

"success",
data=self._trajectory_buffer.success[start_ptr+1:end_ptr2,

↪→ env_idx],
dtype=bool,

)
episode_info.update(success=self._trajectory_buffer.success[

↪→ end_ptr2 - 1, env_idx])
if self._trajectory_buffer.fail is not None:

group.create_dataset(
"fail",
data=self._trajectory_buffer.fail[start_ptr+1:end_ptr,

↪→ env_idx],
dtype=bool,

)
episode_info.update(fail=self._trajectory_buffer.fail[end_ptr

↪→ - 1, env_idx])

Environment states (if enabled)
if self.record_env_state:

recursive_add_to_h5py(group, self._trajectory_buffer.state, "
↪→ env_states")

Rewards (if enabled)
if self.record_reward:

group.create_dataset(
"rewards",
data=self._trajectory_buffer.reward[start_ptr+1:end_ptr,

↪→ env_idx],
dtype=np.float32,

)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Update manifest JSON
self._json_data["episodes"].append(episode_info)
dump_json(self._json_path, self._json_data, indent=2)

if verbose:
print(f"Recorded episode {self._episode_id}")

Truncate in-memory buffer to save RAM and advance per-env pointers
if flush_count > 0:

self._trajectory_buffer.env_episode_ptr[env_idxs_to_flush] = len(
↪→ self._trajectory_buffer.done) - 1

min_env_ptr = self._trajectory_buffer.env_episode_ptr.min()
N = len(self._trajectory_buffer.done)

if self.record_env_state:
self._trajectory_buffer.state = common.index_dict_array(self.

↪→ _trajectory_buffer.state, slice(min_env_ptr, N))
self._trajectory_buffer.observation = common.index_dict_array(self.

↪→ _trajectory_buffer.observation, slice(min_env_ptr, N))
self._trajectory_buffer.action = common.index_dict_array(self.

↪→ _trajectory_buffer.action, slice(min_env_ptr, N))
if self.record_reward:

self._trajectory_buffer.reward = common.index_dict_array(self.
↪→ _trajectory_buffer.reward, slice(min_env_ptr, N))

self._trajectory_buffer.terminated = common.index_dict_array(self.
↪→ _trajectory_buffer.terminated, slice(min_env_ptr, N))

self._trajectory_buffer.truncated = common.index_dict_array(self.
↪→ _trajectory_buffer.truncated, slice(min_env_ptr, N))

self._trajectory_buffer.done = common.index_dict_array(self.
↪→ _trajectory_buffer.done, slice(min_env_ptr, N))

if self._trajectory_buffer.success is not None:
self._trajectory_buffer.success = common.index_dict_array(self.

↪→ _trajectory_buffer.success, slice(min_env_ptr, N))
if self._trajectory_buffer.fail is not None:

self._trajectory_buffer.fail = common.index_dict_array(self.
↪→ _trajectory_buffer.fail, slice(min_env_ptr, N))

self._trajectory_buffer.env_episode_ptr -= min_env_ptr

29

	Introduction
	Related Work
	Embodied Multi-Agent Cooperation
	Robot Learning in Manipulation
	Multi-Agent System for Robot Planning

	Spectrum of Real-World Robotic Tasks
	RoboMonster
	Planning for Compositional Heterogeneous Embodied Agents
	Execution with Compositional Heterogeneous Agents

	Experiments
	Planning with Compositional Heterogeneous Embodied Agents
	Execution with Compositional Heterogeneous Embodied Agents

	Conclusion
	Training Details
	Evaluation Details
	Details of RoboMonster Brain
	Implementation Details
	Prompt Design
	End-Effector Availability
	System Instruction
	User Message

	Scoring and Validation
	Model List
	Dataset Schema

	Heterogeneous Effector Agents
	Simulator Agent Wrapper
	Simulator Record Wrapper

