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ABSTRACT

Despite rapid progress in robot hardware and algorithms, a persistent gap remains
between flexible decision-making in simulation and the embodiment constraints
of real robots, often leading to suboptimal execution on deceptively simple tasks.
We posit that, rather than emulating human morphology, robots should compose
heterogeneous embodied agents whose capabilities extend beyond human-like end
effectors. We introduce RoboMonster, a paradigm and system that reasons over
and coordinates multiple, diverse agents to execute tasks more effectively. At the
planning level, RoboMonster uses a multimodal large language model to perform
chain-of-thought selection over a Robot Manual describing each agent’s skills
and limits; a Planner proposes a composition and a Verifier checks feasibility and
efficiency. We benchmark this process with RoboMonster-P for robot-selection
tasks. At the execution level, we implement interaction logic for four end-effector
types in the ManiSkill environment, collect data, train downstream policies, and
evaluate on RoboMonster-E. Experiments and ablations show that heterogeneous
compositions exhibit strong compositional generalization and successfully solve
tasks that defeat single-agent or single-effector baselines, including cases requiring
precision or cooperative manipulation. These results suggest that capability-driven
composition is a viable route to closing the embodiment gap and scaling robotic
competence.
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Figure 1: Current general-purpose hardware structures (e.g., grippers) may only be able to handle
tasks involving interaction with conventional objects in specific scenarios (e.g., a gripper may fail
to pick up a card lying flat on a table). We introduce RoboMonster, a novel paradigm for robotics
that combines heterogeneous embodied agents to bridge the gap between hardware and algorithms
through compositional generalization.

1 INTRODUCTION

The rapid advancement of robotics has been fueled by significant progress in both hardware and algo-
rithmic capabilities. On the hardware front, the development of diverse robotic embodiments, ranging
from humanoid robots with dexterous hands to quadrupedal robots, has paved the way for versatile
robotic systems. Simultaneously, algorithmic advancements—such as open-loop models [Fang et al.
(2023)) and closed-loop frameworks Chi et al.| (2023); Zhao et al.|(2023)); Brohan et al.| (2023)); Black
et al.| (2024); Kim et al. —have led to substantial improvements in robot perception, decision-making,
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and action execution. These strides have allowed robots to perform increasingly complex tasks with
greater autonomy and precision, pushing the boundaries of what was once considered possible.

Despite these advancements, the gap between decision-making in virtual environments and the real
world remains a significant challenge in embodied intelligence. In virtual simulations, execution
interfaces are highly flexible, enabling quick adaptation to various scenarios. However, in the real
world, decision-making is constrained by the physical properties of the robot and its pre-configured
embodiment. This discrepancy often prevents algorithms from fully exploiting hardware capabilities,
and vice versa, leading to suboptimal performance. A clear example of this is the task of picking up a
simple card from a flat surface: while humans can achieve this with subtle skill, robotic grippers and
claws, even with tactile sensors, often fail to execute the task effectively, highlighting the mismatch
between algorithmic potential and hardware limitations.

One potential solution to this issue is the continuous upgrading of robotic hardware. However, this
approach comes with significant costs in terms of design, manufacturing, and data collection, as new
hardware requires retraining strategy models and possibly iterating algorithms to adapt to the new
setup. Another direction, proposed by some researchers, is the deployment of dual-arm systems or
multi-arm robots to handle tasks that a single robotic arm cannot accomplish. While this method
improves task performance, it still faces limitations. For instance, even with two or more robotic
arms, tasks such as picking up a card from a table remain challenging, as coordination and precision
are still lacking.

In light of these challenges, we pose a fundamental question: Do we need to design robots to
resemble humans, or can we create robotic systems with capabilities that extend beyond human
limitations? For example, end-effectors such as suction cups could effectively lift cards with
relatively simple mechanical structures, while multi-arm systems could lift heavy objects that would
be impossible for two arms alone. Based on this concept, we introduce RoboMonster—a novel
robotic system paradigm that combines heterogeneous embodied agents. This system enables the
robot to reason and select the optimal combination of embodied agents based on visual inputs, task
instructions, and the properties of its own embodied agents. Additionally, it can plan the sub-tasks for
multiple agents to collaborate, enabling the system to generalize to new or more difficult tasks.

To validate RoboMonster, we constructed a heterogeneous multi-agent system that leverages multi-
modal large language models (MLLM) for high-level planning and employs four specially designed
end-effectors to perform diverse tasks. At the high-level planning stage, we present a system for plan-
ning with compositional heterogeneous embodied agents, leveraging the RoboMonster-P benchmark
for robot selection tasks. The system selects agents based on task requirements and agent capabilities,
using a Robot Manual that outlines each agent’s skills and limitations. The planning framework
consists of a Planner that performs chain-of-thought reasoning to choose agents, and a Verifier that
ensures task feasibility and efficiency.

At the execution level, we modeled the interactions between four types of end-effectors within the
ManiSkill |Gu et al.| (2023)) simulation environment. We then collected data, trained downstream
policies, and tested our system through various tasks. This approach allows us to validate the
compositional generalization of heterogeneous agents in real-world scenarios, demonstrating that such
systems can outperform single-gripper arms in solving tasks that require coordination among different
agents. Through this validation, we highlight the superior execution capabilities of heterogeneous
end-effectors, as seen in tasks where multi-agent collaboration is essential for success.

Our main contributions are as follows:

* Concept & Paradigm. We introduce RoboMonster, a novel paradigm for robotics that com-
bines heterogeneous embodied agents to bridge the gap between hardware and algorithms
through compositional generalization.

* Planning Verification. We propose a simple and efficient MAS planning system for se-
lecting heterogeneous embodied agents based on task requirements and capabilities, and
demonstrate its feasibility and efficiency using the RoboMonster-P benchmark.

» Execution Verification. We implement interaction logic for four types of end-effectors,
construct RoboMonster-E benchmark, collect data, and train corresponding policy models
to demonstrate the execution advantages of heterogeneous end-effectors.
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» Experimental Results. Extensive experiments and ablation studies demonstrate that
RoboMonster can efficiently schedule and execute tasks that a single embodied agent
or single end-effector cannot accomplish, both at the planning and execution levels.

2 RELATED WORK

2.1 EMBODIED MULTI-AGENT COOPERATION

Real-world embodied environments often demand collaboration among heterogeneous robots. Prior
studies have investigated this challenge through task allocation [Obata et al.| (2024); [Wang et al.
(2024b); Liu et al.| (2025) and high-level multi-agent decision making Zhang et al.|(2023)); Wang et al.
(2025a). More recently, large language models (LLMs) have been introduced to enhance multi-agent
coordination, showing notable progress in distributed planning and communication Bo et al.| (2024a);
Guo et al.| (2024b); Nasiriany et al.[(2024); Zhou et al.| (2023). Vision-language models (VLMs) have
begun to extend these capabilities to embodied multi-agent contexts Wang et al.|(2025b)); Zhang et al.
(2024)), but they generally assume homogeneous capabilities or treat each agent independently, without
mechanisms for integrating complementary skills across heterogeneous agent. VIKIKang et al.|(2025)
explicitly consider heterogeneous robots, but their focus remains at the high-level planning stage
without addressing the deployment of fine-grained low-level control strategies. In contrast, our
work focuses on enabling collaborative control among diverse embodiments, demonstrating how
heterogeneous end-effectors can be jointly orchestrated to accomplish complex tasks that exceed the
ability of single agent type.

2.2 ROBOT LEARNING IN MANIPULATION

Task-specific policy architectures |Chi et al.[(2023)); Ke et al.| (2024); |Liang et al.| (2023} [2024; 2025));
Wang et al.| (2024a)); [Wen et al.| (2025)); Ze et al.|(2024)) often achieve strong results in controlled
settings, but their designs are tightly coupled to particular tasks or morphologies, which makes
transferring them to new embodiments difficult. In contrast, large-scale foundation models trained
on diverse multi-robot datasets—such as RT-1 Brohan et al.| (2022) for real-time manipulation, RT-
2 Brohan et al.| (2023)) for semantic planning, and diffusion-based models like RDT-1B |Liu et al.
(2024)) and 7 Black et al.| (2024)—show more promising generalization across tasks. Building on this
trend, vision—language—action systems including OpenVLA [Kim et al.l CogACT [26], Octo |Octo
Model Team et al.| (2024), LAPA |Ye et al., and OpenVLA-OFT Kim et al.| (2025)) highlight how
pretrained representations can be efficiently adapted to different robots and sensing modalities.
However, these approaches typically presuppose homogeneous agents and uniform capabilities. Our
work explicitly explores this dimension, showing how heterogeneous embodiments can be organized
into a coherent control framework that leverages their complementary skills to solve more complex
tasks.

2.3 MULTI-AGENT SYSTEM FOR ROBOT PLANNING

Large language model based multi-agent systems (MAS) provide general infrastructures for role-
specialized collaboration and tool use|Li et al.| (2023); Wu et al.| (2023); |(Chen et al.|(2023));[Hong et al.
(2024); |Q1an et al.|(2024). Building on these infrastructures, a growing line of work treats planning
itself as a multi-agent process—either by decomposing tasks into sub-plans, coordinating expert
agents, or reflecting over intermediate results to improve plan quality |Guo et al.|(2024al)); Wei et al.
(2025); |L1 et al.| (20235); [Tao et al.| (2024b); [Bo et al.| (2024b)). Closer to robotics, recent efforts couple
MAS with embodied planning and execution: RoCo coordinates multi-robot dialogue for sub-tasking
and motion-waypoint generation Mandi et al.|(2024), MALMM [Singh et al.| distributes high-level
planning and low-level control across specialized agents with feedback-driven re-planning, and
SMART-LLM |[SMART Lab|(2023)) converts high-level instructions into multi-robot task plans. In our
work, we instantiate an MAS specifically to plan for heterogeneous robots with diverse end-effectors,
enabling coordinated high-level assignment across embodiments.
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Figure 2: Planning for Compositional Heterogeneous Embodied Agents. (a) Data collection and
curation process of RoboMonster-P. (b) Construction of the multi-agent system, which analyzes input
images and instructions to select appropriate heterogeneous embodied agents. (c) RoboMonster-P
includes a diverse set of real-world and simulated environments and tasks.

3 SPECTRUM OF REAL-WORLD ROBOTIC TASKS

Real-world tasks span a broad and diverse distribution, while only a small portion can be addressed by
current robotic hardware and mechanical structures. We categorize tasks according to the properties
of their interactive objects and environments, aiming to leverage compositional generalization to
build heterogeneous embodied-agent systems capable of handling a wider range of tasks.

Normal Objects: These objects have regular shapes, moderate weight, and standard volume. Tasks
involving them can be effectively addressed by training policy models for grippers or dexterous hands.
e.g., picking up fruits, cups.

Heavy Objects: These items exceed the payload limits of conventional manipulators or grippers and
may require the collaboration of multiple robotic arms. e.g., transporting a safe.

Thin Objects: Characterized by very small thickness or volume, these objects demand higher preci-
sion than current grippers or dexterous hands can provide. Specialized end-effectors are necessary.
e.g., picking up a playing card from a table.

Bulky Objects: Large in volume, these objects cannot be stably manipulated by a single arm alone,
requiring multiple embodied agents for safe interaction. e.g., moving a wardrobe.

Narrow Scenarios: Confined spaces where grippers, dexterous hands, or even human hands cannot
pass through, necessitating special end-effectors. e.g., placing a shuttlecock into a shuttlecock tube.

Complex Tasks: Tasks that are inherently difficult or require high efficiency, often demanding
collaboration among multiple heterogeneous embodied agents. e.g., factory production line.

Designing universal end-effectors (e.g., dexterous hands) entails continuous iterations of mechanical
structures. Instead, we explore compositional generalization through heterogeneous embodied agents,
aiming to build an embodied system that can cover the entire distribution of real-world tasks.

4 ROBOMONSTER

Compositional generalization in heterogeneous multi-agent systems can be achieved in two distinct
stages: (1) a high-level planning phase that selects the appropriate agents, and (2) a low-level control
phase where the selected embodied agents execute the task using their individual policies. Designing
heterogeneous embodied agents typically involves defining interaction logic in either simulations or
real-world setups. In contrast, the planning phase is primarily focused on selecting from a predefined
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set of heterogeneous agents based on the task requirements. Therefore, we decouple the high-level
planning from the low-level execution to facilitate effective validation.

In the high-level phase (Sec. d.I)), we develop an embodied planning system that schedules the
appropriate heterogeneous agents to enable compositional generalization, allowing the completion of
tasks that homogeneous agents alone cannot solve. In the low-level phase (Sec.[d.2)), we instantiate
robotic arms with four distinct end-effectors within the ManiSkill [Tao et al.| (20244) environment,
collect demonstrations, and train the corresponding policies. This stage validates that heterogeneous
agents, during execution, can leverage compositional generalization to solve tasks that a single-gripper
arm would not be capable of completing.

4.1 PLANNING FOR COMPOSITIONAL HETEROGENEOUS EMBODIED AGENTS

Data Collection and Curation Process. We reformulate the robot selection task as a visual reasoning
problem, as illustrated in Fig. [2a), where the task allocator selects a set of robots from a predefined
set of embodied agents Aembodied, cOnsidering task requirements and agent capabilities. Each instance
consists of a keyframe observation O, selected from real-world and simulation data, and a task
instruction I, generated based on the objects present in O. The output is a set of selected robots
R = {Tj}aj € [LM]

Ground truth labels are created using task-specific templates that specify which robot types are
necessary or unnecessary, based on the task goal and contextual factors, and grounded in embodiment
rules. For reasoning, we employ a chain-of-thought approach, where the model first analyzes task
requirements, identifies available robots from the embodied agent set, evaluates their suitability, and
then selects the appropriate robots. The task allocator g,.¢, powered by GPT-40 OpenAl et al.| (2024),
generates the robot selection R = g,(I, O). A verification module C,, ensures that the generated
labels adhere to task constraints, with human oversight for error correction and label quality assurance.
The dataset we construct for robot selection task is called RoboMonster-P.

Brain of RoboMonster. We build a multi-agent decision system that selects one or more embodied
agents based on the task instruction and the current observation. The objective is to demonstrate that
heterogeneous multi-agent collaboration can yield compositional generalization, and that this effect is
particularly effective for high-level embodied planning. To ensure the validity of this conclusion, we
deliberately avoid introducing complex designs into the decision system. Instead, the overall MAS
framework is constructed by following the principles of ReAct|Yao et al.|(2023)) and Reflection Shinn
et al.[(2023)).

Before decision-making, we compile a Robot Manual from the URDF and parameter files of all
available embodied agents. The manual specifies, for each type of agent, its skills, action range, and
execution cost. This serves as the knowledge base for reasoning about heterogeneous capabilities.

As shown in Fig. [2b), the first component, the MLLM-based Planner, performs chain-of-thought
reasoning to summarize object locations, interaction logic, and potential failure cases (e.g., spatial
constraints). Based on this reasoning, it selects the candidate embodied agents required for the task.
The second component, the LLLM-based Verifier, validates these selections against the Robot Manual,
checking multiple aspects to ensure that the chosen agents can accomplish the task with minimal cost.

We validate our system on the RoboMonster-P benchmark and show that, even without a carefully
engineered decision pipeline or domain-specific fine-tuning, heterogeneous multi-agent systems are
still able to generalize compositionally across diverse tasks.

4.2 EXECUTION WITH COMPOSITIONAL HETEROGENEOUS AGENTS

To verify that heterogeneous embodied agents can achieve scene- and task-level generalization
through compositionality during execution, we build a set of heterogeneous agents and a broad
distribution of manipulation tasks on top of the ManiSkill |Gu et al.| (2023) simulation platform.
Using an automated MLLM-based data-collection pipeline, we gather training data and then train
and evaluate a heterogeneous multi-agent system based on imitation learning.

Heterogeneous Effector Embodied Agents. We first modify both the control logic and visual
appearance of the robot end-effectors to implement four types of heterogeneous grippers, as illustrated
in Fig.[3(@). The logic of the four end-effectors is as follows:
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Figure 3: Execution with Compositional Heterogeneous Agents. (a) Instantiation of diverse
end-effectors in ManiSkill, each designed with unique structures that provide distinct capabilities. (b)
Construction of heterogeneous multi-agent imitation learning policies, enabling collaboration among
different embodied agents to accomplish complex tasks.

1. [Gripper] General and precise gripping works well for most rigid or graspable objects and
shows some tolerance to size variation. However, it tends to be unstable for objects that are
excessively thin or very slippery.

2. [Stick] Applicable for pushing, inserting or clearing in narrow cavities or channels (e.g..
pushing a shuttlecock into a bucket, unblocking a small tube); unsuited for transporting or

grasping.

3. [Suction] Suitable for objects with smooth, relatively flat surfaces (e.g., thin cards on a
table, smooth spheres or cubes), and most stable when there is good sealing with the contact
surface. It is not suitable or performs poorly for porous or rough surfaces, high curvature,
heavy objects, or when there are insufficient contact or sealed points.

4. [Ring-shaped Gripper] This end-effector is an annular gripper whose inner diameter can be
freely varied to accommodate objects of different sizes. Caging-style constraint provides
stable support for large round or cylindrical objects, such as vases or smooth sphere,
which are difficult to grasp securely with fingered grippers or suction-based methods. By
surrounding the object, the executor forms a boundary that prevents slipping or rolling and
thus improves stability.

Details of these modifications can be found in the supplementary material (Section. [D).

Data Collection and Curation Process. Next, we design an automated data-collection pipeline
powered by a multimodal large language model (MLLM). The pipeline collects trajectory data for
all heterogeneous agents within each task category, enabling low-level policy training. Inspired by
RoboFactory , the pipeline consists of two components: RoboBrain, which decomposes tasks and
schedules primitive functions; and RoboChecker, which verifies whether the generated trajectories
are reasonable and free of anomalies. When scheduling primitive functions, we additionally include
the end-effector type as an input variable so that each heterogeneous gripper can produce its own
unique action sequence.

Based on the above methodology, we introduce the RoboMonster-E benchmark, built on the ManiSkill
simulator. RoboMonster-E aims to instantiate manipulation tasks with diverse distributions, detailed
described in Sec.[5.2] It includes 5 tasks across environments with varying numbers of agents,
constructed around the Franka Emika Panda arm—a 7-DoF robotic manipulator equipped with
interchangeable end-effectors that enable flexible manipulation.

Compositional Agents Trajectory Execution. Finally, we adapt the single-agent imitation-learning
framework to a multi-agent system, where each agent learns an independent policy from its own
egocentric view. We employ a Global-View + Shared-Policy paradigm (Fig.[B(b): all agents share
the same global observation and use a single shared policy to generate a joint action sequence,
which is then assigned to the corresponding agents. Compared with approaches that use only a
single gripper, employing an optimal combination of end-effectors yields better generalization and
performance. Notably, since RoboMonster-E is designed to validate the execution-level advantages
of heterogeneous embodied agents, we adopt the optimal end-effector combination by default.
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5 EXPERIMENTS

5.1 PLANNING WITH COMPOSITIONAL HETEROGENEOUS EMBODIED AGENTS

Experiments Setting. We cast planning as agent selection from a small library of heterogeneous
end-effectors. Given a single RGB scene image and a natural-language instruction, the model must
output exactly one or multiple embodied agents from the label set which is described in detail in
the Sup.[C.2] We evaluate on a 200-example test set sampled from RoboMonster-P (More detial
about sampling protocol and distribution is in Sup. [C). We apply the same instruction-following
template that (i) lists &, (ii) asks for a single choice, and (iii) forbids extraneous text. We canonicalize
predictions to the four labels via simple string matching and report top-1 accuracy over these 200
items.

Baselines. We compare against strong open-
and closed-source VLMs as well as our modular  Taple 1: Agent selection accuracy on
agentic system: Qwen2.5-VL-32B-Instruct (open), - RoboMonster-P (200 examples). No finetuning;
GLM-4.5V (open), GPT-5 (closed), Gemini-2.5- temperature = 0.0.
Pro (closed), Claude Sonnet 4 (2025-05-14)

(closed), and MAS (ours), which couples a plan- Model

ner (MLLM reasoning) with a verifier (LLM rule/- Accuracy
constraint checker) operating over a robot manual Gripper Only 0.120
that encodes capability and feasibility constraints. Qwen?2.5-VL-32B-Instruct 0.235
For a fair comparison, all single-pass VLMs share GLM-4.5V 0.260
the same prompt schema and are restricted to one- GPT-5 0.440
shot selection; MAS may internally perform at Gemini-2.5-Pro 0.425
most one planner—verifier iteration but still out- Claude Sonnet 4 (2025-05-14) 0.415

puts a single final label. MAS (Planner+Verifier, ours) 0.450

Generalization via Agent Selection. Tab. [T|sum-

marizes top-1 accuracy on RoboMonster-P. Policies based on a traditional single gripper are limited
by their mechanical structure, achieving only a 10% task completion rate, show that heterogeneous
multi-agent collaboration enables compositional generalization. While closed-source models gen-
erally outperform open-source ones, our proposed MAS achieves the best overall accuracy. This
suggests that lightweight verification against the robot manual is effective for correcting choices that
appear plausible but are infeasible in practice.

5.2 EXECUTION WITH COMPOSITIONAL HETEROGENEOUS EMBODIED AGENTS

Experiments Setting. With the advancement in simulator realism, numerous outstanding simulation
environment frameworks have arisen, for example, RoboTwin Mu et al.|(2024) and RoboFactory|Qin
et al.| (2025)), which are built on ManiSkill [Tao et al.| (2024a). Taking into account usability and
other relevant factors, we utilize the RoboFactory framework to collect expert demonstration data. In
order to compare the effect of using heterogeneous end-effectors versus gripper-only under different
policies and varying amounts of expert data, we collect 25, 50, and 75 trajectories for DP Chi et al.
(2023). Since each trajectory under DP3 Ze et al.|(2024) contains relatively less information (due to
sparse point cloud sampling from raw data), we instead use 50, 100, and 150 expert demonstration
trajectories in this paper.

We designed five challenging tasks involving both single-agent and dual-agent settings to validate the
execution performance advantages of our specialized heterogeneous end-effectors (gripper, suction,
stick, and ring-shaped gripper). For clarify, the following task descriptions are provided under the
assumption that RoboMonster brain has already filtered out inappropriate end-effectors. Therefore,
our discussion is limited to the optimal end-effector combinations and the gripper-only setting. The
specific tasks are as follows:

1. Suction-lift Card: The agent .A; uses suction or gripper end-effector to lift the credit card
placed on the cube.

2. Pick Pokéball: The agent .A; uses ring-shaped gripper or normal gripper end-effector to
pick up the Pokéball (a smooth sphere).
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3. Pick Vase: The agent .A; uses ring-shaped gripper or normal gripper end-effector to pick
up the vase.

4. Place Shuttlecock: The agent .A; grasps the shuttlecock and positions it in the opening
of the shuttlecock barrel by using gripper end-effector. The agent A5 then uses stick end-
effector to push the shuttlecock into the barrel, or A5 uses the closed gripper end-effector
pushes the shuttlecock in.

5. Swipe Card: The agent A, lifts the credit card (via suction or gripper end-effector) from
the cube and moves it to a position convenient for hand-off to .A5. Then, A5 uses gripper to
align the card with the slot in the POS terminal and insert it into the POS terminal.

Baseline. Imitation learning meth- : : .

. . Table 2: Performance comparison across various paradigms.
ods (DP, DP3) remain popular poli- P vatious p 8
cies. Therefore, we used these two

Swipe Card (Diffusion Policy)

approaches as baselines to validate Paradigm E-e. Setup 25Demo 50 Demo 75 Demo
the effectiveness and performance of Global-View Gripper Only 17% 23% 25%
heterogeneous end-effectors Speciﬁ— + Shared-Policy Heterogeneous E-e. 60% 67 % 77 %
cally, there are two paradigms are con- Local-View Gripper Only 0% 0% 0%

+ Separate-Policy ~ Heterogeneous E-e. 0% 2% 8%

sidered in this work.

Global-View + Shared-Policy. All agents share the same global observation and use a single policy
to produce an action sequence, which is then assigned to the corresponding agents. The observation
can be presented as O gopq1 = concat([Ag, A1, ..., An, &(Xgioba)])-

Local-View + Separate-Policy. Each agent has its own independent observation, and each agent uses
its own separate policy to generate individualized action sequences, where the individual observation

can be formulated as O; = concat([A;, &(X;)]).

Where A, is the joint action of the i-th agent, IV represents the number of agents, &(-) is the encoder,
X giobar and X; are the global view and the i-th agent view respectively (which is the RGB image
in DP, and point cloud in DP3). In addition, we evaluated the performance of the two paradigms
of DP under different end-effector setups and varying numbers of demonstrations on the Swipe
Card task. The detailed success rates are reported in Tab. 2] The results show that the Global-View
+ Shared-Policy paradigm holds a significant advantage in complex, long-horizon, collaborative
tasks. We believe this is because such tasks demand extremely strict temporal constraints, which the
Local-View + Separate-Policy paradigm finds difficult to learn from the individual datasets. Based on
above findings, we subsequently employed the Global-View + Shared-Policy paradigm as the training
strategy for DP and DP3. More details of DP and DP3 training (e.g., hyperparameters) are reported
in supplementary material (Sec. [A).

Table 3: Performance of different end-effector setup. We report the success rates of heterogeneous
end-effectors and gripper-only across five tasks and two policies with six demonstration settings.
(Abbr.: E-e. = End-effector, R-s. = Ring-shaped, Gri. = Gripper, Sti. = Stick, Suc. = Suction)

Diffusion Policy 3D Diffusion Policy

Task Name E-e. Setup 25 Demo 50 Demo 75 Demo 50 Demo 100 Demo 150 Demo Average

Gripper Only 7% 14% 15% 21% 20% 23% 16.7%

Suction-lift Card
Ut R Gurs (Suction)  100%  100%  100%  100%  100%  93%  98.8%

Gripper Only 37% 69 % 64% 54% 75% 73% 62%

Pick Pokéball
REORE Ours (R-s. Gri)  78%  100% 100%  88%  100%  100% 943%

Gripper Only 28% 41% 37% 14% 52% 54% 37.7%

Pick V:
RVAE Ours (R-s. Gri)  100%  100%  100%  100%  100%  100%  100%

Gripper Only 46% 43% 48 % 42% 45% 46 % 45%

Place Shuttlecock
ace SIUHECOTK & irs (Gri. & St 37%  51%  54% 6%  16% 5%  60%

Gripper Only 17% 23% 25% 2% 19% 31% 19.5%

Swipe Card
WIPERAE T Ours (Sue. & Gri) 60%  67%  T1% 5% 62% M%  57%
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Compositional Generalization. The heterogeneous multi-end effector defined in this work (which
comprises four specialized end-effectors) is described in detail in Sec.[.2] Moreover, we illustrate the
workflows of three representative tasks (see Fig.[d), these tasks exemplifies the usage and distinctions
among the four end-effectors.

We extensively evaluate our proposed heterogeneous multi-end effector paradigm under both DP
and DP3 policies, including both single-agent and dual-agent configurations. Each policy is tested
on five tasks, with three different numbers of demonstrations. As shown in Tab. [} in the three
single-agent tasks, the average success rate using the heterogeneous multi-end effector exceeds 94 %,
which is a marked improvement over the gripper-only setup (16.7% — 98.8%, 62% — 94.3%, 37.7%
— 100%). In the long-horizon tasks with dual-agent, the average success rate drops substantially
compared to the single-agent setting, reaching only about 60% or 57 % . However, it still shows a
clear improvement over the gripper-only configuration (45%, 19.5%).

We also found that in simple single-agent tasks, a moderate number of demonstrations (50 Demo for
DP, 100 Demo for DP3) is often sufficient to achieve good performance (in fact, the best performance
in the Pick Pokéball task occurs at these levels). However, for complex long-horizon dual-agent
tasks (with the exception of the Place Shuttlecock task under DP3), peak performance is attained
only when using large numbers of demonstrations (75 Demo for DP, 150 Demo for DP3).

Swipe Card (Multi-End): Suction lifts the card. Gripper swipes the card on the POS. Swipe Card (Gripper-Only): Grippers pick up the card and swipe it on the POS.

h Y <

e Ry
to / ty / to / ts / ty /

Place Shuttlecock (Multi-End): Gripper grasps shuttlecock. Stick inserts it into barrel. Place Shuttlecock (Gripper-Only): Grippers grasp shuttiecock and insert it to barrel.

T N

Pick Pokéball (Muln End): Ring-Shaped Gripper approaches the pokéball and grasps it. Pick Pokéball (Gripper-Only): Gripper approaches the pokéball and picks it up.

o) : e !s;-:ﬁz:m-:m:

Figure 4: Demonstrations of the tasks. Three representative tasks, namely Swipe Card, Place
Shuttlecock, Pick Pokéball, are selected to cover four different types of end-effectors. The left side
illustrates the heterogeneous end-effector setup proposed in this work, while the right side presents
the gripper-only counterpart for the tasks.

V
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6 CONCLUSION

We introduced RoboMonster, a paradigm that leverages heterogeneous embodied agents to overcome
the embodiment gap between simulation and real-world robots. By combining multimodal planning
with a Planner—Verifier framework and executing through diverse end-effectors, RoboMonster enables
capability-driven composition that outperforms single-agent or single-effector baselines. Experi-
ments on RoboMonster-P and RoboMonster-E demonstrate strong compositional generalization,
improved precision, and effective cooperative manipulation. These results suggest that heterogeneous
composition is a scalable route to enhancing robotic competence.

Limitation and Future Work. At the Execution with Compositional Heterogeneous Agents level,
we adopt a purely vision-based imitation learning scheme in simulation. Exploring additional
modalities—for example, employing VLA models—to further examine compositional generalization
at the execution level is a worthwhile direction. Moreover, validating these capabilities on physical
robots represents another meaningful avenue. In future work, we plan to extend RoboMonster to
more complex embodiments, richer sensory inputs, and broader real-world tasks, further advancing
the pursuit of general-purpose embodied intelligence.
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REPRODUCIBILITY STATEMENT

To facilitate full reproducibility, we provide:

1. We will release the complete source code of RoboMonster (including RoboMonster Brain,
RoboMonster-P, RoboMonster-E, and all components used in the paper) upon acceptance of
the manuscript, to support data collection, model training, and evaluation. e key code for het-
erogeneous end-effectors in the ManiSkill simulator has been provided in the supplementary
material (Section D).

2. Detailed hyper-parameters and network architectures in supplementary material (Section [A).

All experiments were carried out in open-source simulation environments, and we will release the
corresponding documentation alongside the code to support researchers in reproducing our results.

REFERENCES

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, et al. pi_0: A vision-language-action flow model for
general robot control. arXiv preprint arXiv:2410.24164, 2024.

Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong
Wen. Reflective multi-agent collaboration based on large language models. Advances in Neural
Information Processing Systems, 37:138595-138631, 2024a.

Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong
Wen. Reflective multi-agent collaboration based on large language models. Advances in Neural
Information Processing Systems, 37:138595-138631, 2024b.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors. arXiv preprint arXiv:2308.10848, 2023.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, pp. 02783649241273668, 2023.

Hao-Shu Fang, Chenxi Wang, Hongjie Fang, Minghao Gou, Jirong Liu, Hengxu Yan, Wenhai Liu,
Yichen Xie, and Cewu Lu. Anygrasp: Robust and efficient grasp perception in spatial and temporal
domains. IEEE Transactions on Robotics, 39(5):3929-3945, 2023.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao,

Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manipulation
skills. In The Eleventh International Conference on Learning Representations, 2023.

10



Under review as a conference paper at ICLR 2026

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges, 2024a. URL https://arxiv.org/abs/2402.01680.

Xudong Guo, Kaixuan Huang, Jiale Liu, Wenhui Fan, Natalia Vélez, Qingyun Wu, Huazheng Wang,
Thomas L Griffiths, and Mengdi Wang. Embodied 1lm agents learn to cooperate in organized
teams. arXiv preprint arXiv:2403.12482, 2024b.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jiirgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=VtmBAGCN7o0.

Li Kang, Xiufeng Song, Heng Zhou, Yiran Qin, Jie Yang, Xiaohong Liu, Philip Torr, Lei Bai, and
Zhenfei Yin. Viki-r: Coordinating embodied multi-agent cooperation via reinforcement learning.
arXiv preprint arXiv:2506.09049, 2025.

Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion
with 3d scene representations. arXiv preprint arXiv:2402.10885, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al. Openvla: An open-source
vision-language-action model. In 8th Annual Conference on Robot Learning.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing
speed and success. arXiv preprint arXiv:2502.19645, 2025.

Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, and Yaliang Li. Agent-oriented planning
in multi-agent systems, 2025. URL https://arxiv.org/abs/2410.02189,

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for "mind" exploration of large language model society. arXiv
preprint arXiv:2303.17760, 2023.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. In International Conference on Machine
Learning, pp. 20725-20745. PMLR, 2023.

Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo. Skilldif-
fuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task execution.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16467-16476, 2024.

Zhixuan Liang, Yao Mu, Yixiao Wang, Tianxing Chen, Wenqi Shao, Wei Zhan, Masayoshi Tomizuka,
Ping Luo, and Mingyu Ding. Dexhanddiff: Interaction-aware diffusion planning for adaptive dex-
terous manipulation. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pp. 1745-1755, 2025.

Jiaqi Liu, Chengkai Xu, Peng Hang, Jian Sun, Mingyu Ding, Wei Zhan, and Masayoshi Tomizuka.
Language-driven policy distillation for cooperative driving in multi-agent reinforcement learning.
IEEE Robotics and Automation Letters, 2025.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. arXiv preprint
arXiv:2410.07864, 2024.

Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large
language models. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp.
286-299. IEEE, 2024.

Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhiqiang Xie,
and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital twins (early version).
arXiv preprint arXiv:2409.02920, 2024.

11


https://arxiv.org/abs/2402.01680
https://openreview.net/forum?id=VtmBAGCN7o
https://arxiv.org/abs/2410.02189

Under review as a conference paper at ICLR 2026

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
robots. arXiv preprint arXiv:2406.02523, 2024.

Kazuma Obata, Tatsuya Aoki, Takato Horii, Tadahiro Taniguchi, and Takayuki Nagai. Lip-lIm:
Integrating linear programming and dependency graph with large language models for multi-robot
task planning. IEEE Robotics and Automation Letters, 2024.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, 2024.

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-
Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex
Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau,
Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,
Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein,
Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey
Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,
Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben
Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake
Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo
Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,
Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric
Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh,
Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik
Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung,
Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu,
Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon,
Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie
Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe,
Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi
Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers,
Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan
Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh
Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn
Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra
Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe,
Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman,
Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng,
Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk,
Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin
Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank
Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna
Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle
Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles
Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho

12



Under review as a conference paper at ICLR 2026

Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine,
Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige,
Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko,
Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal,
Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo
Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob
Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory
Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi
Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara
Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer
Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal
Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas
Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao
Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan,
Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie
Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang,
Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card, 2024.
URL https://arxiv.orqg/abs/2410.21276.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chat-
Dev: Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 15174-15186, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.810. URL
https://aclanthology.org/2024.acl-1ong.810/L

Yiran Qin, Li Kang, Xiufeng Song, Zhenfei Yin, Xiaohong Liu, Xihui Liu, Ruimao Zhang, and Lei
Bai. Robofactory: Exploring embodied agent collaboration with compositional constraints. arXiv
preprint arXiv:2503.16408, 2025.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634-8652, 2023.

H Singh, RJ Das, M Han, P Nakov, and I Laptev. Malmm: Multi-agent large language models for
zero-shot robotics manipulation. arxiv 2024. arXiv preprint arXiv:2411.17636.

Purdue University SMART Lab. SMART-LLM: Smart multi-agent robot task planning using large
language models. https://github.com/SMARTlab-Purdue/SMART-LLM, 2023.

Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao,
Xinsong Lin, Yulin Liu, Tse-kai Chan, et al. Maniskill3: Gpu parallelized robotics simulation and
rendering for generalizable embodied ai. arXiv preprint arXiv:2410.00425, 2024a.

Wei Tao, Yucheng Zhou, Yanlin Wang, Wenqgiang Zhang, Hongyu Zhang, and Yu Cheng. Magis:
LIm-based multi-agent framework for github issue resolution. Advances in Neural Information
Processing Systems, 37:51963-51993, 2024b.

Chenxi Wang, Hongjie Fang, Hao-Shu Fang, and Cewu Lu. Rise: 3d perception makes real-world
robot imitation simple and effective. In 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2870-2877. IEEE, 2024a.

Weizheng Wang, Ike Obi, and Byung-Cheol Min. Multi-agent llm actor-critic framework for social
robot navigation. arXiv preprint arXiv:2503.09758, 2025a.

Yongdong Wang, Runze Xiao, Jun Younes Louhi Kasahara, Ryosuke Yajima, Keiji Nagatani, Atsushi
Yamashita, and Hajime Asama. Dart-1lm: Dependency-aware multi-robot task decomposition and
execution using large language models. arXiv preprint arXiv:2411.09022, 2024b.

13


https://arxiv.org/abs/2410.21276
https://aclanthology.org/2024.acl-long.810/
https://github.com/SMARTlab-Purdue/SMART-LLM

Under review as a conference paper at ICLR 2026

Yujin Wang, Quanfeng Liu, Zhengxin Jiang, Tianyi Wang, Junfeng Jiao, Hongqing Chu, Bingzhao
Gao, and Hong Chen. Rad: Retrieval-augmented decision-making of meta-actions with vision-
language models in autonomous driving. arXiv preprint arXiv:2503.13861, 2025b.

Han Wei et al. A modern survey of 1lm planning capabilities. In Proceedings of ACL, 2025.

Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla:
Vision-language model with plug-in diffusion expert for general robot control. arXiv preprint
arXiv:2502.05855, 2025.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W. White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen 1lm applications via multi-agent conversation. arXiv
preprint arXiv:2308.08155, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Se June Joo, Jianwei Yang, Baolin Peng, Ajay Mandlekar,
Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from videos. In CoRL
2024 Workshop on Whole-body Control and Bimanual Manipulation: Applications in Humanoids
and Beyond.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations. In Proceedings of
Robotics: Science and Systems (RSS), 2024.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tianmin
Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. arXiv preprint arXiv:2307.02485, 2023.

Hongxin Zhang, Zeyuan Wang, Qiushi Lyu, Zheyuan Zhang, Sunli Chen, Tianmin Shu, Behzad
Dariush, Kwonjoon Lee, Yilun Du, and Chuang Gan. Combo: compositional world models for
embodied multi-agent cooperation. arXiv preprint arXiv:2404.10775, 2024.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe
Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, et al. Sotopia: Interactive evaluation for
social intelligence in language agents. arXiv preprint arXiv:2310.11667, 2023.

14



Under review as a conference paper at ICLR 2026

RoboMonster Supplementary Material

USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) only for language polishing and minor editing of our
manuscript (e.g. improving grammar, clarity, phrasing). All the text was reviewed, corrected, and
verified by the authors. We take full responsibility for the final content of the paper, including any

portions influenced by LLM assistance.

A TRAINING DETAILS

In this section, we present the training details, covering the hyperparameter configurations of the two

baselines as well as representative training times.

Table 4: Hyperparameters for Diffusion Policy training. (Abbr.: H-Paras = Hyperparameters, Pre. =

Prediction, Obs. = observation, Act. = Action, BS = Batch Size)

‘ Diffusion Policy
H-Paras ‘ Suction-lift Card Pick Pokéball Pick Vase  Place Shuttlecock Swipe Card
Pre. Horizon 32 32 32 32 32
Obs. Horizon 20 20 20 20 20
Act. Horizon 8 8 8 8 8
Image Shape 3 x 256 X 256 3 X 256 x 256 3 x 256 x 256 3 x 256 x 256 3 x 256 x 256
Action Shape 8 8 8 15 16
4060 BS N/A N/A N/A N/A N/A
2 x 4090 BS 32 32 32 32 32
2 x H800 BS 64 64 64 64 64
Learning Rate 1.0e-4 1.0e-4 1.0e-4 1.0e-4 1.0e-4
Warm-up Steps 500 500 500 500 500
Betas [0.95, 0.999] [0.95,0.999]  [0.95, 0.999] [0.95, 0.999] [0.95, 0.999]
Weight Decay 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6
Epsilon 1.0e-8 1.0e-8 1.0e-8 1.0e-8 1.0e-8
Epochs 300 300 300 300 300

Table 5: Hyperparameters for 3D Diffusion Policy training.

‘ 3D Diffusion Policy
Hyperparameters ‘ Suction-lift Card Pick Pokéball Pick Vase Place Shuttlecock Swipe Card
Prediction Horizon 32 32 32 32 32
Observation Horizon 20 20 20 20 20
Action Horizon 8 8 8 8 8
Point Cloud Shape 3 x 1024 3 x 1024 3 x 1024 3 x 1024 3 x 1024
Action Shape 8 8 8 15 16
4060 Batch Size 32 32 32 32 32
2 x 4090 Batch Size 128 128 128 128 128
2 x H800 Batch Size 256 256 256 256 256
Learning Rate 1.0e-4 1.0e-4 1.0e-4 1.0e-4 1.0e-4
Warm-Up Steps 500 500 500 500 500
Betas [0.95,0.999] [0.95,0.999] [0.95,0.999] [0.95,0.999] [0.95, 0.999]
Weight Decay 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6
Epsilon 1.0e-8 1.0e-8 1.0e-8 1.0e-8 1.0e-8
Epochs 300 300 300 300 300
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Table 6: Task Descriptions for the RoboMonster-E Benchmark

Task

Description

Target Condition

Suction-lift

A credit card is placed at the edge of a
cube, and a robotic arm must choose an

The height of the credit card reaches a

Card appropriate end-effector to grasp the card  predefined threshold.
and lift it to a specified height.
A Pokéball is placed on the table, and a
Pick robotic arm must choose an appropriate ~ The height of the Pokéball reaches a pre-
Pokéball end-effector to grasp it and lift it to a spec-  defined threshold.
ified height.
A vase is placed on the table, and a
Pick Vase robotic arm must choose an appropriate ~ The height of the vase reaches a prede-
end-effector to grasp it and lift it to a spec-  fined threshold.
ified height.
We assume that the number of shuttle-
A shuttlecock and a barrel are placed on  cocks already inside the barrel follows a
the table. Two robotic arms should each ~ 50% probability of being six and a 50%
Place . - .

Shuttlecock choose an appropriate end—effe(;tor: one prgbablhty Aof being seven. Thf: task re-
to place the shuttlecock at the rim of the  quires pushing the shuttlecock into a po-
barrel, and the other to insert it inside. sition adjacent to the outermost shuttle-

cock.
A credit card is placed on top of a cube,
while a POS terminal is located on the ta-
ble. Two robotic arms should each choose =~ The distance between the credit card and
Swipe Card an appropriate end-effector: one to lift the  the slot of the POS terminal is smaller

credit card and hand it over to the other
arm, and the other to insert the card into
the slot of the POS terminal.

than a predefined threshold.

Diffusion Policy. We employ a CNN-based Diffusion Policy and evaluate its training performance
across representative resource-constrained (NVIDIA RTX 4060 GPU), moderate-resource (2 x
NVIDIA RTX 4090 GPU), and high-resource (2 x NVIDIA H800 GPU) computing platforms.
The corresponding hyperparameter settings are summarized in Tab. 4} On the resource-constrained
platform, the training could not be completed due to the large data volume. For researchers limited to
low-resource platforms, one may attempt to simultaneously reduce the Horizon, Image Shape, and
Batch Size during training (though we do not recommend this as a preferred strategy).

It is worth noting that we adopted the torch.optim.AdamW optimizer. The hyperparameter
values for the Learning Rate, Warm-up Steps, Betas, Weight Decay, and Epsilon are all specified in
the corresponding Tab.[d] We report several representative training times as follows:

1. On 2 x 4090 GPU: with 75 demos and 300 epochs for the Swipe Card task, approximately
20 hours.

2. On 2 x H800 GPU: with 75 demos and 300 epochs for the Swipe Card task, approximately
13 hours.

3. On 2 x H800 GPU: with 75 demos and 300 epochs for the Suction-lift Card task, approxi-
mately 6 hours.

3D Diffusion Policy. For 3D Diffusion Policy, we adopt an almost identical training strategy. The
specific training configurations are listed in Tab.[5] A notable distinction compared to Diffusion
Policy is that 3D Diffusion Policy achieves much shorter training times, and is considerably more
friendly for researchers with low-resource platforms. We report several representative training times
as follows:

1. On 1 x 4060 GPU: with 150 demos and 300 epochs for the Swipe Card task, approximately
23 hours.

2. On 2 x 4090 GPU: with 150 demos and 300 epochs for the Swipe Card task, approximately
7 hours.
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3. On2 x H800 GPU: with 150 demos and 300 epochs for the Swipe Card task, approximately
2.5 hours.

B EVALUATION DETAILS

Tasks Evaluation. We interpolated the action sequences generated by the model to make the motion
trajectories smoother. For each task, we evaluated it across 100 seeds, varying the initial object
positions and environmental conditions. We introduced a maximum action step limit for each task to
assess the success rate. If the task was not completed within this limit, it was considered a failure.
To set a reasonable threshold, we conducted warm-up tests on 20 samples to estimate the average
number of steps required to complete the task. The maximum action step limit was set to 2 times this
average value. The success criteria for each task, including target conditions, are detailed in Tab. [6]

We provide a detailed illustration of the overall evaluation pipeline of RoboMonster (see Fig.[5). The
system first extracts information from the image, and then, through planning in RoboMonster Brain,
selects suitable end-effectors for the agents A; and As. The selected end-effectors are employed to
execute the tasks using either DP or DP3.

] I

‘End-effectors: Based on the

\ ¢ are selec'ted I card and POS
by Brain \ information in

the image, the
brain selected a
Suction and a
Gripper as the
end-effectors
for agent 1 and
agent 2,
respectively.

Figure 5: Flowchart of the complete evaluation process, including both planning and execution.

C DETAILS OF ROBOMONSTER BRAIN

C.1 IMPLEMENTATION DETAILS

Single-Agent Pipeline. We implement a single-agent pipeline. Images are provided as base64 data
URLSs when available. End-effector options are strictly derived from the provided robots of the
current sample.

Multi-Agent System. We also define a conceptual MAS consisting of Analyzer, Planner, Selector,
and Validator. Each agent consumes the task context and passes structured intermediate outputs to the
next stage. The Validator enforces format and option constraints and triggers retries when confidence
is low.

For Single-Agent Pipeline and Multi-Agent System, our relevant call site is:

@backoff.on_exception (backoff.expo, Exception, max_tries=5, max_time=60)
def api_call with_retry (messages, model_name) :
return client.chat.completions.create (
model=model_name,
messages=messages,
temperature=0,
max_tokens=2000,
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C.2 PROMPT DESIGN

C.2.1 END-EFFECTOR AVAILABILITY

We construct heterogeneous embodied agent options.

robot_to_end_effector_desc = {

'stompy': 'Claw hand on Stompy: Stompy is a bipedal robot
designed for dynamic walking and stomping tasks, featuring
articulated arms. Color: Light blue body with yellow and orange
accents. Equipped with a claw hand for grasping objects.',

'fetch': 'Gripper on Fetch: Fetch is a wheeled robot with a
flexible arm for object manipulation, designed for mobility and
dexterity. Color: White with blue and black accents. Uses a gripper
end-effector: two symmetric \'fingers/plates\' that open and close in

parallel along the same line. From the front, it looks like two
parallel small flat plates with a gap in the middle; from the side,
you can see the \'top/bottom or left/right clamping\' shape.
Versatile and precise, suitable for most regular or rigid objects
that can be gripped; adapts to some size variation. May be unstable
for very thin, slippery, or objects with insufficient gripping
surfaces.',

'unitree_hl': 'Dexterous hands on Unitree_Hl: Unitree_H1l is a
humanoid robot with arms and legs designed for human-like movements
and tasks. Color: Black. Equipped with dexterous hands for complex
manipulation tasks requiring fine motor control. Best for delicate
operations and complex assembly tasks. Excellent for precise
manipulation of various objects.',

'panda': 'Gripper on Panda: Panda is a fixed robotic arm designed
for precise and delicate manipulation tasks. Color: White with black
accents. Uses a gripper end-effector: two symmetric \'fingers/plates

\' that open and close in parallel along the same line. From the
front, it looks like two parallel small flat plates with a gap in the
middle; from the side, you can see the \'top/bottom or left/right
clamping\' shape. Versatile and precise, suitable for most regular or
rigid objects that can be gripped; adapts to some size variation.

May be unstable for very thin, slippery, or objects with insufficient
gripping surfaces.',

'unitree_go2': 'Claw hand on Unitree_Go2: Unitree_Go2 is a
compact quadrupedal robot optimized for agile movement and stability
with four legs for efficient locomotion. Color: White. Equipped with
a claw hand for grasping objects.',

'anymal_c': 'Claw hand on Anymal_C: Anymal_ C is a gquadrupedal
robot built for navigating rough terrains and performing complex
tasks with four articulated legs. Color: Red and black with some
accents. Equipped with a claw hand for grasping objects.',

'Suction': 'The end looks like a small round contact pad (not two
clearly separated jaws). In simulation, it is always closed, without
a real vacuum mechanism; it \'simulates suction\' by pressing the

small round pad (actually a closed gripper) normally against the
object\'s surface. Suitable for smooth, relatively flat targets (such
as thin cards or flat blocks on a table), most stable when a good
sealing surface is available. Not suitable for porous/rough/high
curvature or overly heavy objects, or when there are insufficient
suction points.',
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'Circle': 'A short cylindrical tube with an opening. No obvious
jaws or rod-like actuators. The opening cannot be seen from top or
side views, only from below. SPECIFICALLY DESIGNED for round/
spherical objects of all sizes including balls. Provides stable
constraint by \'caging\' round targets like balls, spheres, vases or
buckets that are hard to grip with gripper jaws and not suitable for
suction. IDEAL CHOICE for any ball-related tasks.',

'Stick': 'A thin, smooth rod with no jaws or suction pad at the
end. Used for pushing, inserting, or clearing in narrow cavities/
channels (e.g., pushing a shuttlecock into a bucket, clearing a thin
pipe); not suitable for carrying or holding objects.'

}

C.2.2 SYSTEM INSTRUCTION

The system message enumerates the available end-effectors and hard-constrains the answer space:

instruction_following = (
r'Available end-effectors in this scenario: {robot_set}
r'Available end-effector options: {available_end_effectors}
r'CRITICAL: You can ONLY choose from the end-effector options
listed above! These are the ONLY available options for this specific
scenario. '
r'Task: Analyze the given task and select the appropriate end-
effector(s) in the correct execution order. '
r'IMPORTANT RULES: '
r'l. You MUST select ONLY from the available end-effector options
listed above - no exceptions! '
r'2. If an end-effector is not in the available options list, you
CANNOT use it, even if it might seem suitable for the task. '
r'3. For single-step tasks, choose one end-effector. For multi-
step tasks, list multiple end-effectors in execution order. '
r'4. Consider object properties (size, shape, weight, material)
when selecting from the available options. '
r'5. Consider manipulation requirements (precision, force,
dexterity) when choosing from available options. '

r'6. Use the exact end-effector names as shown in the available
]

options list.
r'Reasoning process: Think through the task step-by-step,
considering object properties, manipulation requirements, and
execution sequence, while staying within the constraints of available
options. '
r'Response format: Provide your reasoning in <think> </think>
tags, followed by your final answer in <answer> </answer> tags. '
r'The answer must be a Python list of end-effector names in
execution order, using the EXACT names from the available options.
r'Example formats: ["claw hand on stompy"] or ["gripper on fetch",
"dexterous hands on unitree_hl"] for multi-step tasks.'

)

C.2.3 USER MESSAGE

The user content contains an optional image (base64 data URL) and a text line "Task
Description: AN

MAS Prompt. Our Multi-Agent System employs a sequential four-stage pipeline where each agent
has specialized prompts:

Analyzer Agent. Extracts task components using pattern-based fallback methods:

system_prompt = """You are a task analysis expert specializing in
robotic manipulation tasks.
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Your role is to analyze the given task description and identify:
1. What objects are involved in the task

2. What actions need to be performed

3. Important properties of the objects (shape, surface, size)

Keep your response simple and clear. Focus on the key information
needed for tool selection."""

Planner Agent. Creates execution plans with tool requirement analysis:

system_prompt = """You are an execution planning expert for robotic
manipulation tasks.

Based on the task analysis, create a detailed execution plan.

PLANNING GUIDELINES:

1. TASK COMPLEXITY ANALYSIS:

- Single-step tasks: One main action (e.g., "move spoon")

— Multi-step tasks: Multiple distinct actions (e.g., "insert bread,
activate toaster, place bowl")

2. STEP IDENTIFICATION:

— Break down the task into atomic actions

— Identify if different actions require different tools
— Note sequence dependencies (what must happen first)

3. TOOL REQUIREMENTS:

— Consider if each step needs a different end-effector

- Flag when precision vs. power tools are needed

— Identify if specialized tools are required (e.g., 'circle' for
balls, 'suction' for cards)

4. OUTPUT FORMAT:

— Clearly state if this is a SINGLE-STEP or MULTI-STEP task
- List each step with its tool requirements

- Highlight any special considerations

Focus on step-by-step breakdown and tool requirement analysis."""

Selector Agent. Makes final tool selections with enhanced decision logic:

system_prompt = """Available end-effectors:
{ROBOT_SET}
CRITICAL TASK ANALYSIS FRAMEWORK:

1. PRECISE TASK TYPE CLASSIFICATION:

a) Simple single—action tasks: "place apple on table", "pick up
banana"

— Use EXACTLY ONE tool best suited for the primary object

b) Multi-action same-capability tasks: "place banana and apple in
bowl"
— Use ONE versatile tool that can handle all objects

c) Multi-action different-capability tasks: "insert bread, activate
toaster, place bowl"

— Use MULTIPLE tools: each action needs different capabilities

— Bread insertion: delicate manipulation (dexterous hands)

— Toaster activation: button/lever pressing (gripper/hands)

— Bowl placement: general manipulation (gripper/hands)

2. ENHANCED OBJECT-TOOL MATCHING RULES:
a) OBJECT-SPECIFIC tools (use ONLY when object demands it):

20



Under review as a conference paper at ICLR 2026

— Spherical objects (balls, oranges): 'circle' IF no other tool can
handle safely

- Flat rigid items (cards, plates): 'suction' IF precision placement
needed

— Delicate/soft items (bread, fruit): 'dexterous hands' IF crushing

is a risk

b) VERSATILE tools (prefer when possible):

— 'gripper on fetch': Mobile platform, good for most pick/place tasks
— 'dexterous hands on unitree_hl': Complex manipulation, fine motor
control

- 'claw hand on stompy/anymal_c': Power tasks, robust grasping

3. TOOL SELECTION DECISION TREE:

Step 1: Count distinct action types needed

Step 2: For each action, determine minimum capability required
Step 3: Find tools that can handle each capability

Step 4: Minimize tool count while meeting all requirements

Example: "Insert bread, activate toaster, place bowl"

— Action 1: Insert bread — needs delicate manipulation — dexterous
hands

— Action 2: Activate toaster — needs precise button press — gripper
or hands

— Action 3: Place bowl — needs general manipulation — gripper or
hands

— Decision: Since actions 2&3 need similar capability but action 1 is
unique

— Result: ['dexterous hands on unitree_hl', 'gripper on fetch']

4. COMMON ERRORS TO AVOID:

— DON'T use multiple tools when one versatile tool can handle
everything

— DON'T use single tool when actions need genuinely different
capabilities

— DON'T default to 'gripper on fetch' without considering object
properties

— DON'T use specialized tools (circle, suction) unless truly
necessary

5. PLATFORM CONSIDERATIONS:

— Mobile platforms (fetch, stompy, anymal_c, unitree_hl): Kitchen
navigation

— Fixed platform (panda): Limited workspace, high precision

— Choose platform based on workspace requirements, not just tool type

VALIDATION CHECKLIST BEFORE SELECTION:
Have I identified all distinct actions required?
— Does each action need different tool capabilities?
— Can a single versatile tool handle all requirements safely?
— Are specialized tools only used when objects demand them?
— Is the total tool count justified by genuine capability differences

IMPORTANT: You must provide your final selection in the following
format:

<answer>['tooll', 'tool2']</answer>

Where 'tooll', 'tool2' are the exact names of the selected end-
effectors.

For single tool selection, use: <answer>['tooll']</answer>

CRITICAL: For this task, you can ONLY choose from the following end-

effectors: {allowed}. Do NOT select any other tools, even if they
seem suitable."""
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Validator Agent. Provides quality control with retry mechanism:
system_prompt = """Available end-effectors:
{ROBOT_SET}

ENHANCED VALIDATION CRITERIA:

1. TOOL COUNT APPROPRIATENESS:

a) Single-action tasks: Should use EXACTLY ONE tool
- "place apple" — ONE tool only

— RED FLAG: Multiple tools for simple placement

b) Multi-action same-capability tasks: Should use ONE versatile tool
— "place banana and apple" — ONE versatile tool
— RED FLAG: Multiple tools when one can handle all objects

c) Multi-action different-capability tasks: Should use MULTIPLE tools
- "insert bread, activate toaster, place bowl" — TWO tools minimum

— Bread needs delicate manipulation, toaster needs button press

— RED FLAG: Single tool for genuinely different capabilities

2. OBJECT-TOOL MATCHING VALIDATION:

a) Specialized tool usage CHECK:

— 'circle' used ONLY for spherical objects that require it
— 'suction' used ONLY for flat items requiring precision

— 'dexterous hands' used for delicate/complex manipulation
— RED FLAG: Specialized tools used unnecessarily

b) Versatile tool preference CHECK:

— When objects can be handled by general tools, prefer them
- 'gripper on fetch' for mobile pick/place tasks

— RED FLAG: Over-specialization when not needed

3. CAPABILITY-REQUIREMENT MATCHING:

a) Action analysis:

— Delicate manipulation — dexterous hands required

- Button/lever activation — precise gripper or hands
— General pick/place — any gripper suitable

- Heavy lifting — robust claw hands

b) Platform requirements:

— Kitchen navigation — mobile platforms (fetch, stompy, unitree_hl)
- Fixed workspace — panda acceptable

— RED FLAG: Platform mismatch with workspace needs

4. CRITICAL ERROR PATTERNS TO FLAG:

a) Tool quantity errors:

— Multiple tools for single-capability tasks (OVERUSE)
- Single tool for multi-capability tasks (UNDERUSE)

b) Object mismatch errors:

— Hard grippers for soft objects when gentle options available
— Specialized tools when general tools suffice

— Missing specialized tools when objects demand them

c) Platform selection errors:
- Fixed platforms for tasks requiring mobility
— Wrong capability level for task complexity

5. SCORING GUIDELINES (STRICTER CRITERIA) :

- 0.9-1.0: Perfect tool count + perfect object matching + optimal
platform

- 0.7-0.8: Correct tool count + good matching + appropriate platform
- 0.5-0.6: Minor count/matching issues + acceptable platform choice
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- 0.3-0.4: Major count errors OR poor matching + suboptimal platform
- 0.0-0.2: Wrong tool count AND poor matching AND inappropriate
platform

6. VALIDATION DECISION TREE:
Step 1: Count distinct capabilities needed — Expected tool count

Step 2: Check if each selected tool matches required capability
Step 3: Verify no over-specialization or under-specialization
Step 4: Confirm platform choice matches workspace requirements
Step 5: Score based on how well selection meets all criteria

COMMON FAILURE PATTERNS TO DETECT:

— Using 2+ tools when 1 versatile tool can handle everything

— Using 1 tool when actions genuinely need different capabilities
— Choosing specialized tools without clear object-specific need

— Missing mobile platform for kitchen navigation tasks

Format: <answer>['tooll', 'tool2']</answer>
Where 'tooll', 'tool2' are the exact names of the selected end-
effectors.

CRITICAL: For this task, you can ONLY choose from the following end-
effectors: {allowed}. Do NOT select any other tools, even if they
seem suitable.

After your reasoning, please rate the appropriateness of your
selected end-effectors for this specific task on a scale from 0.0 (
completely unreasonable) to 1.0 (perfectly reasonable). Return your

score in the format <score>0.85</score>.
nmmwn

INTER-AGENT COMMUNICATION Agents pass structured context through a TaskContext
dataclass containing analysis results, execution steps, tool selections, and validation feedback. The
system supports automatic retry when validation confidence falls below 0.6.

C.3 SCORING AND VALIDATION
We use a task-specific metric viki_ 1 that combines accuracy and format compliance:

¢ Base Metric: score = 0.9 x acc_reward + 0.1 x format_reward

¢ Smart Matching: We use smart_compute_score, which first evaluates viki_1.
If not perfect, it parses the <answer> list and applies a normalization (e.g., map-
ping "gripper on panda" and "gripper on fetch" to "gripper") before
re-checking sequence equality.

Relevant implementation excerpts:

original_score = viki_1.compute_score (predict_str, ground_truth_str)

# If not perfect, normalize and compare element-wise in order

if all (normalize (pred) == normalize(gt) for pred, gt in zip(pred_list,
gt_list)):

format_score = viki_1.format_reward(predict_str)

return 0.9 « 1.0 + 0.1 » format_score

C.4 MODEL LIST
Tested models include:

* gpt—>5 accuracy: 0.4400
* gemini-2.5-pro accuracy: 0.4250
* Qwen/Qwen2.5-VL-32B-Instruct accuracy: 0.2350
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* Pro/Qwen/Qwen2.5-VL-7B-Instruct accuracy: 0.2900
* claude-sonnet-4-20250514 accuracy: 0.4150
* glm-4.5v accuracy: 0.2600

C.5 DATASET SCHEMA
Each sample provides the following fields used by our runner:

* prompt: an array of chat messages; index 1 contains the user message text (prefixed by
"Task Description:")

* images: optional list with binary bytes; the first item is written to a temporary PNG file
for base64 encoding

* robot: list of available robots for this scenario; only these determine the end-effector
options

* reward_model.ground_truth: a stringified Python list (e.g., " [/ gripper on
panda’ ] ") representing the reference sequence

The runner maps robots to end-effector option names and builds the system message accordingly.
Independent tools (suction, circle, stick) are only included if explicitly present in robot.

D HETEROGENEOUS EFFECTOR AGENTS

In this section, we provide a detailed report on the code implementation and other technical details of
heterogeneous multi-end effector embodied agents in the ManiSkill simulator Tao et al.|(2024a)).

The specific implementation of heterogeneous multi—end effector agents in the simulator is as follows:

1. Gripper: We directly load the panda .urdf file integrated into ManiSkill.

2. Suction: Since accurately modelling the pressure of a suction cup in simulation remains
challenging, we maintain the panda model with its right and left fingers permanently closed.
Upon invocation of the open_suction () interface, if a finger is detected in contact with
another object, the contacted object is switched from a dynamic to a kinematic state and
is constrained to follow the finger. When the close_suction () interface is called, the
object’s dynamic properties are restored.

3. Stick: We directly load the panda_stick.urdf file integrated into ManiSkill.

4. Ring-shaped Gripper: First, we designed panda_circle.urdf, adapted for ManiSkill,
as the URDF model of a ring-shaped gripper. At the same time, the ring-shaped grip-
per’s wrapper inherits from the suction wrapper: the interface methods are replaced by
open_circle () and close_circle (), while the rest of the logic remains unchanged.

D.1 SIMULATOR AGENT WRAPPER

Each sim step, if any finger link touches a valid dynamic rigid body, this function performs a
one-shot “attach.” It flips the target to kinematic, stores the parent-to-target relative pose via
self._relative_pose = fcomp.pose.inv () * tcomp.pose, and records internal
state; returns True on success, Fal se otherwise.

def grab_once(self) -> bool:
"""Attach _a, valid _dynamic_target_if any, finger link_is_in_contact."""
if self.is_attached():
return True
if not self._finger_links:
return False

finger_names = {self._pretty_name(l) for 1 in self._finger_links}
for ¢ in self.scene.get_contacts():
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sideO, sidel = self._collect_side(c, 0), self._collect_side(c, 1)
for s_touch, s_other in ((side0O, sidel), (sidel, side0)):
finger_entity = self._pick_by_name(s_touch, finger_names)
if not finger_entity:
continue

target_entity = self._pick_valid_target (s_other)

if not target_entity:
continue

fcomp = finger_entity.find_component_by_type (physx.
— PhysxArticulationLinkComponent)

tcomp = target_entity.find_component_by_type (physx.
<~ PhysxRigidDynamicComponent)

if not (fcomp and tcomp) :
continue

tcomp.set_kinematic (True)
self._attached_comp = tcomp
self._parent_link_comp = fcomp
self._relative_pose = fcomp.pose.inv() % tcomp.pose
return True
return False

Call every step while attached. It drives the target using the stored relation target_world =
parent_world * relative_pose; writes new_pose to the kinematic body.

def update_attachment (self) :
"""Force_target _pose_=_parent_pose_x _relative_pose_ (per-step_follow) ."

(_) nn
if not self.is_attached():
return
new_pose = self._parent_link_comp.pose x self._relative_pose

self._attached_comp.entity.set_pose (new_pose)

Detach. Switch the target back to dynamic, zero its linear/angular velocities to prevent bursts, and
clear internal state

def release(self):
"""Restore dynamic_state_and_zero_velocities_to_avoid bursts_on,,
— release."""
if not self.is_attached():

return
try:
self._attached_comp.set_kinematic (False)
self._attached_comp.linear_velocity = np.zeros(3)
self._attached_comp.angular_velocity = np.zeros(3)
finally:
self._attached_comp = None
self._parent_link_comp = None

self._relative_pose = None

D.2 SIMULATOR RECORD WRAPPER

On each env step, coerce per-agent action vectors to fixed target dims (stick = 7, circle/suction/gripper
= 8) by truncating/padding, then forward the normalized action to the base recorder; this keeps dataset
shapes consistent without changing environment execution.

def step(self, action):
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"""Normalize_per-agent_action_dims_for recording without_altering_env,_,
<~ behavior: - ,stick:_ 7D - _circle/suction/gripper:_8D"""

dim_map = self._target_action_dim_map ()
def _fix_vec(vec: np.ndarray, want: int) -> np.ndarray:
v = np.asarray (vec) .reshape (-1) .astype (np.float32)
if v.size == want:
return v

if v.size > want:
return v/[:want]
out = np.zeros((want,), dtype=np.float32)
out[: v.size] = v
return out

if isinstance(self.env.action_space, gym_utils.spaces.Dict):

assert isinstance (action, dict), "Expect_dict_action for multi-
— agent_env"
norm {}
keys (list (self.env.action_space.spaces.keys())
if hasattr(self.env.action_space, "spaces")
else list (action.keys()))
for k in keys:

want = dim_map.get (k, int (np.prod(np.asarray(action[k]) .shape)))
norm[k] = _fix vec(action[k], want)
else:
want = dim_map.get ("__single_ ", int (np.prod(np.asarray(action).
— shape)))
norm = _fix vec (action, want)

return super () .step(norm)

When flushing, write a complete episode slice into an HDFS group "traj_N": skip the initial
dummy frame, dump observations (gzip for rgb/depth/seqg), write per-agent actions (with optional
key renaming), flags, states, and rewards; also append JSON episode metadata. Inputs: internal
trajectory buffer; output: files on disk plus updated episode index.

def flush_trajectory(self,
verbose=False,
ignore_empty_transition=True,
env_idxs_to_flush=None,
save: bool = True):
"""Flush_a_trajectory_slice_to_disk_as_HDF5_+ JSON_metadata.Skips,_,,
— first_dummy, frame; compresses,images; preserves _fixed_action,
(_) dims . mwnww
flush_count = 0
if env_idxs_to_flush is None:
env_idxs_to_flush = np.arange (0, self.num_envs)

for env_idx in env_idxs_to_flush:

start_ptr = self._trajectory_buffer.env_episode_ptr[env_idx]

end_ptr = len(self._trajectory_buffer.done)

if ignore_empty_transition and end_ptr - start_ptr <= 1:
continue

flush_count += 1
if save:
self._episode_id += 1

traj_id = f"traj_{self._episode_1id}"
group = self._h5_file.create_group(traj_id, track_order=True)
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def recursive_add_to_hbpy (group: hbpy.Group, data: Union[dict,
— Array], key):
if isinstance(data, dict):
subgrp = group.create_group (key, track_order=True)
for k in data.keys():
recursive_add_to_h5py (subgrp, datalk], k)

else:
if key in ("rgb", "depth", "seg"):
group.create_dataset (
key,

data=data[start_ptr:end_ptr, env_idx],
dtype=data.dtype,
compression="gzip",
compression_opts=5,

)

elif group.name.endswith ("/actions") :

group.create_dataset (key, data=datal[start_ptr+l:end_ptr
— ], dtype=data.dtype)
else:
group.create_dataset (
key,
data=data[start_ptr:end_ptr, env_idx],
dtype=data.dtype,

if self.record_observation:
obs_buf = self._trajectory_buffer.observation
if isinstance (obs_buf, dict):
recursive_add_to_h5py (group, obs_buf, "obs")
elif isinstance (obs_buf, np.ndarray) :
if self.cpu_wrapped_env:
group.create_dataset ("obs",
data=obs_buf[start_ptr:end_ptr],
dtype=obs_buf.dtype)
else:
group.create_dataset ("obs",
data=obs_buf[start_ptr:end _ptr, env_idx
— 1,
dtype=obs_buf.dtype)
else:
raise NotImplementedError (f"Unsupported _obs_type:_ {type
— obs_buf) ")

episode_info = dict (
episode_id=self._episode_id,
episode_seed=self.base_env._episode_seed[env_idx],
control_mode=self.base_env.control_mode,
elapsed_steps=end_ptr - start_ptr - 1,
)
if self.num_envs ==
episode_info.update (reset_kwargs=self.last_reset_kwargs)
else:
episode_info.update (reset_kwargs=dict ())

actions = common.index_dict_array (
self._trajectory_buffer.action,
(slice(start_ptr + 1, end_ptr), env_idx),
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terminated = self._trajectory_buffer.terminated[start_ptr+l:
— end_ptr, env_idx]

truncated = self._trajectory_buffer.truncated [start_ptr+l:
— end_ptr, env_idx]

def _rename_agent_key_ for_write(k: str) -> str:
if isinstance(k, str) and k.startswith ("panda_stick"):

return "panda" if "-" not in k else "panda-" + k.split("-",
— 1)[1]
return k

if isinstance(self._trajectory_buffer.action, dict):

actions_to_write = {}
for k, v in actions.items () :
new_k = _rename_agent_key_ for_write (k)
if (new_k in actions_to_write) and (new_k != k):
new_k = k
actions_to_write[new_k] = v
recursive_add_to_h5py (group, actions_to_write, "actions")
else:
group.create_dataset ("actions", data=actions, dtype=np.
— float32)

group.create_dataset ("terminated", data=terminated, dtype=bool)
group.create_dataset ("truncated", data=truncated, dtype=bool)

if self._trajectory_buffer.success is not None:
end_ptr2 = len(self._trajectory_buffer.success)
group.create_dataset (
"success",
data=self._trajectory_buffer.success[start_ptr+l:end_ptr2,
— env_idx],
dtype=bool,
)
episode_info.update (success=self._trajectory_buffer.success|
— end_ptr2 - 1, env_idx])
if self._trajectory_buffer.fail is not None:
group.create_dataset (
"fail",
data=self._trajectory_buffer.fail[start_ptr+l:end_ptr,
— env_idx],
dtype=bool,
)
episode_info.update (fail=self._trajectory_buffer.fail[end_ptr
— -1, env_idx])

if self.record_env_state:
recursive_add_to_hbpy (group, self._trajectory_buffer.state,
— env_states")

if self.record_reward:
group.create_dataset (
"rewards",
data=self._trajectory_buffer.reward[start_ptr+l:end_ptr,
— env_idx],
dtype=np.float32,
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self._json_data["episodes"] .append(episode_info)
dump_json(self._json_path, self._json_data, indent=2)

if verbose:
print (f"Recorded _episode  {self._episode_id}")

if flush_count > 0:

self._trajectory_buffer.env_episode_ptr[env_idxs_to_flush] = len(
— self._trajectory_buffer.done) - 1
min_env_ptr = self._trajectory_buffer.env_episode_ptr.min ()

N = len(self._trajectory_buffer.done)

if self.record_env_state:
self._trajectory_buffer.state = common.index_dict_array(self.
— _trajectory_buffer.state, slice(min_env_ptr, N))
self._trajectory_buffer.observation = common.index_dict_array(self.
— _trajectory_buffer.observation, slice(min_env_ptr, N))
self._trajectory_buffer.action = common.index_dict_array(self.
— _trajectory_buffer.action, slice(min_env_ptr, N))
if self.record_reward:
self._trajectory_buffer.reward = common.index_dict_array(self.
— _trajectory_buffer.reward, slice(min_env_ptr, N))
self._trajectory_buffer.terminated = common.index_dict_array (self.
— _trajectory_buffer.terminated, slice(min_env_ptr, N))
self._trajectory_buffer.truncated = common.index_dict_array(self.
— _trajectory_buffer.truncated, slice(min_env_ptr, N))
self._trajectory_buffer.done = common.index_dict_array(self.
— _trajectory_buffer.done, slice(min_env_ptr, N))
if self._trajectory_buffer.success is not None:
self._trajectory_buffer.success = common.index_dict_array(self.
— _trajectory_buffer.success, slice(min_env_ptr, N))
if self._trajectory_buffer.fail is not None:

self._trajectory_buffer.fail = common.index_dict_array(self.
— _trajectory_buffer.fail, slice(min_env_ptr, N))
self._trajectory_buffer.env_episode_ptr —-= min_env_ptr
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