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ABSTRACT

Multi-task learning enables the acquisition of task-generic knowledge by training
multiple tasks within a unified architecture. However, training all tasks together
in a single architecture can lead to performance degradation, known as negative
transfer, which is a main concern in multi-task learning. Previous works have
addressed this issue by optimizing the multi-task network through gradient ma-
nipulation or weighted loss adjustments. However, their optimization strategy
focuses on addressing task imbalance in shared parameters, neglecting the learn-
ing of task-specific parameters. As a result, they show limitations in mitigating
negative transfer, since the learning of shared space and task-specific information
influences each other during optimization. To address this, we propose a different
approach to enhance multi-task performance by selectively grouping tasks and
updating them for each batch during optimization. We introduce an algorithm that
adaptively determines how to effectively group tasks and update them during the
learning process. To track inter-task relations and optimize multi-task networks
simultaneously, we propose proximal inter-task affinity, which can be measured
during the optimization process. We provide a theoretical analysis on how dividing
tasks into multiple groups and updating them sequentially significantly affects
multi-task performance by enhancing the learning of task-specific parameters. Our
methods substantially outperform previous multi-task optimization approaches and
are scalable to different architectures and various numbers of tasks.

1 INTRODUCTION

Multi-task learning (MTL) stands out as a key approach for crafting efficient and robust deep learning
models that can adeptly manage numerous tasks within a unified architecture (Caruana, 1997). By
training related tasks within a single network, MTL facilitates the acquisition of universal knowledge
spanning multiple tasks, thereby enhancing generalization and accelerating convergence. Additionally,
MTL reduces the need for expensive computing and storage resources by employing a shared network
across tasks, making it a favorable choice for future generalized networks across many applications.

The goal of MTL is to mitigate negative transfer (Crawshaw, 2020) between tasks. Since each task
possesses its own distinct objective function, improving performance in one task can potentially
impede the performance of others. This phenomenon, characterized by a trade-off among tasks’
performances, is referred to as negative transfer. To mitigate negative transfer during optimization,
task-specific gradients are manipulated (Désidéri, 2012; Sener & Koltun, 2018; Yu et al., 2020; Liu
et al., 2021a;b; Navon et al., 2022; Senushkin et al., 2023), tasks’ losses are adaptively weighted
(Kendall et al., 2018; Guo et al., 2018; Liu et al., 2019; 2024), or a combination of both approaches
is used (Liu et al., 2021b). Previous research focused on balancing the influence of different tasks
by considering unbalance in gradients of shared parameters. However, these analyses overlooked
the role of task-specific parameters. Since the learning of shared space and task-specific information
influence each other during optimization, a balanced shared space across tasks cannot be achieved
without learning task-specific information in the task-specific parameters.

Therefore, we take a fundamentally different approach to mitigate negative transfer in MTL (see
Figure 1). Our experiments reveal a notable difference in multi-task performance depending on
whether task losses are updated collectively or sequentially. By grouping tasks and updating them
sequentially, the network can focus on specific task groups in turn, facilitating the learning of task-
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Figure 1: Comparison of multi-task optimization methods. Θ represents the network parameters,
and {L}Ki=1 denotes the task-specific losses for K tasks. (a) Loss-based approaches balance the loss
by adjusting the weights {wi}Ki=1 during optimization. (b) Gradient-based approaches modify the
task-specific gradients {gi}Ki=1 with respect to Θ. (c) Our method divides the tasks into M groups
(in this case, M = 2) and updates them sequentially for each batch during optimization.

specific parameters. Thus, our main objective is to identify optimal strategies for grouping and
updating tasks during optimization. Inter-task affinity (Fifty et al., 2021), which evaluates the loss
change of one task when updating another task’s gradients in the shared parameters, is a useful metric
for understanding task relations. However, directly incorporating inter-task affinity into optimization
presents several challenges: (i) It only considers updates to shared parameters, ignoring the influence
of task-specific parameter updates. (ii) Inter-task affinity varies significantly throughout optimization,
so relying on the average across time steps may not fully capture task relations. (iii) Measuring
inter-task affinity is computationally intensive because it involves recursive gradient updates, tracking
changes in loss, and reverting to previous parameter states. To address these issues, we introduce
proximal inter-task affinity (Section 3.1), which concurrently explains the updates of shared and
task-specific parameters. This metric can be tracked over time to approximate inter-task relations
during optimization without significant computational overhead.

By capturing task relations, we introduce an algorithm that dynamically updates task groups using
proximal inter-task affinity to effectively mitigate negative transfer between tasks (Section 3.2).
Additionally, we present practical methods for inferring proximal inter-task affinity during task
group updates. In the theoretical analysis (Section 4), we explain how this sequential update
strategy can improve multi-task performance from an optimization standpoint. Previous approaches
have demonstrated convergence to Pareto-stationary points, where the sum of all task-specific
gradients equals zero (Désidéri, 2012; Sener & Koltun, 2018; Yu et al., 2020; Liu et al., 2021a;b;
Navon et al., 2022; Senushkin et al., 2023). However, conventional convergence analysis cannot
explain why sequential updates yield better multi-task performance with comparable stability, as
they handle the learning of shared and task-specific parameters separately. Instead, we provide a
theoretical explanation of the relations between the updates of shared and task-specific parameters
and how the update sequence affects this. This perspective is not addressed in traditional multi-
task optimization, which typically deals with the learning of shared and task-specific parameters
independently. As a result, our approach facilitates the learning of task-specific parameters with
stability similar to other optimization methods, while achieving faster convergence compared to
previous gradient-based approaches. Experimental results demonstrate that adaptively partitioning
the task set and sequentially updating them during the optimization process significantly enhances
multi-task performance compared to previous works. In summary, our main contributions are
threefold:

• We propose an algorithm that dynamically groups tasks for updating each batch during multi-task
optimization. To do this, we introduce proximal inter-task affinity, which we can track throughout
the optimization process to group tasks accordingly.

• We provide a theoretical explanation of the advantages of sequentially updating task groups based
on proximal inter-task affinity. We discuss how sequential updates can enhance the learning of
task-specific parameters and improve multi-task performance, a result that traditional multi-task
optimization analyses do not explain.

• Our methods demonstrate superior performance across various benchmarks when compared to pre-
vious multi-task optimization techniques, including both loss-based and gradient-based approaches.
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2 RELATED WORK

Optimization methods in MTL can be broadly categorized into those that manipulate task-specific
gradients (Chen et al., 2018; 2020; Javaloy & Valera, 2021; Désidéri, 2012; Sener & Koltun, 2018; Yu
et al., 2020; Liu et al., 2021a;b; Phan et al., 2022; Navon et al., 2022; Senushkin et al., 2023; Jeong &
Yoon, 2024) and those that adjust the weighting of task-specific losses (Kendall et al., 2018; Guo
et al., 2018; Liu et al., 2019; 2024). Addressing the imbalance in task influence, normalized gradients
are utilized (Chen et al., 2018) to prevent task spillover. Introducing stochasticity to the network’s
parameters based on gradient consistency, GradDrop (Chen et al., 2020) drops gradients. RotoGrad
(Javaloy & Valera, 2021) rotates the network’s feature space to align tasks. MGDA (Sener & Koltun,
2018) treats MTL as a multi-objective problem, minimizing the norm point in the convex hull.
CAGrad (Liu et al., 2021a) minimizes multiple loss functions and regulates trajectory using worst
local improvements of individual tasks. Aligned-MTL (Senushkin et al., 2023) stabilizes optimization
by aligning principal components of gradient matrix . The weighting of losses significantly impacts
multi-task performance as tasks with higher losses can dominate training. Addressing this, tasks’
losses are weighted based on task-dependent uncertainty (Kendall et al., 2018). Prioritizing tasks
according to difficulty by evaluating validation results (Guo et al., 2018), or balancing multi-task
loss reflecting loss descent rates (Liu et al., 2019), are also proposed strategies. Previous works on
multi-task optimization that directly modify task-specific gradients Chen et al. (2018; 2020); Javaloy
& Valera (2021); Désidéri (2012); Sener & Koltun (2018); Yu et al. (2020); Liu et al. (2021a;b); Phan
et al. (2022); Navon et al. (2022); Senushkin et al. (2023); Jeong & Yoon (2024) focus on learning the
shared parameters of the network without considering their interaction with task-specific parameters
during the optimization step. In contrast, we propose fundamentally different strategies to mitigate
negative transfer by sequentially updating task groups which lead to better multi-task performance, a
phenomenon not explained by conventional multi-task optimization analysis.

3 SELECTIVE TASK GROUP UPDATES FOR MULTI-TASK OPTIMIZATION

3.1 THE GOAL OF MULTI-TASK LEARNING AND INTER-TASK AFFINITY

In the context of MTL, we deal with multiple tasks with its own objective function denoted as
{Li}Ki=1, where K represents the number of tasks. The network parameters Θ are partitioned into
{Θs,Θ1,Θ2, . . . ,ΘK}, where Θs refers to the shared parameters while Θi represents the task-
specific parameters for the task i. To simplify the discussion, we assumed that Θs is shared across
all tasks. However, the following discussion can still apply even when it is only partially shared for
specific task sets. The goal of MTL is to find Pareto-optimal parameters (Sener & Koltun, 2018),
denoted as Θ∗, that minimize the weighted sum of task-specific losses. This can be expressed as
Θ∗ = argminΘ

∑K
i=1 wiLi(Θs,Θi), where wi represents the weight for the loss of task i.

The concept of inter-task affinity (Fifty et al., 2021) aims to identify tasks that enhance each other’s
performance when learned together on shared networks. It measures the extent to which the gradient
of a specific task with respect to the shared parameters Θs, affects the loss of other tasks.
Definition 1 (Inter-Task Affinity). Consider a multi-task network shared by tasks i and k. For a data
sample zt and a learning rate η, the task-specific gradients from Li are applied to update the shared
parameters of the network as follows: Θt+1

s|i = Θt
s − η∇Θt

s
Li(z

t,Θt
s,Θ

t
i). The inter-task affinity

from task i to task k at time step t is then defined as:

At
i→k = 1−

Lk(z
t,Θt+1

s|i ,Θt
k)

Lk(zt,Θt
s,Θ

t
k)

(1)

In the context of task grouping (Fifty et al., 2021), task affinity is computed and utilized in two stages.
Initially, task affinity within a shared network is assessed by monitoring how the loss for each task
changes when updating the loss of the other task at each step. Subsequently, using the averaged
task affinity, task groups are organized, and each group is trained in separate networks. However,
directly incorporating inter-task affinity for multi-task optimization presents several challenges. First,
it only tracks the learning of shared parameters, Θs, and their influence on task losses, without
considering task-specific parameters, {Θi}Ki=1. In practice, both shared and task-specific parameters
need to be optimized simultaneously. Second, since inter-task affinity fluctuates significantly during
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optimization, it must be tracked continuously to capture evolving task relations. This process
is computationally expensive, requiring recursive gradient updates, monitoring loss changes, and
reverting to previous parameter states.

3.2 PROXIMAL INTER-TASK AFFINITY FOR MULTI-TASK OPTIMIZATION

To address the issues mentioned above, we propose practical methods based on the concept of
proximal inter-task affinity to track task relations and use this information for concurrent multi-task
optimization. Firstly, we integrate the learning of task-specific parameters into the estimation of inter-
task affinity to incorporate this affinity into ongoing optimization. Secondly, we extend the concept of
inter-task affinity to elucidate relations between task groups rather than individual pairs of tasks. This
allows us to monitor these affinities when a set of tasks is collectively backpropagated. Practically,
proximal inter-task affinity serves as an approximation of inter-task affinity; however, it also plays a
crucial role in theoretical analysis, as discussed in Section 4, explaining why updating task groups
sequentially yields distinct multi-task performance. To be specific, we lay out guidelines for updating
proximal inter-task affinity by distinguishing between inter-group relations and intra-group relations.
We then incorporate the concept of proximal inter-task affinity to explore the task update strategy,
grouping tasks based on their affinity, which has a significant impact on multi-task performance.

Before delving into the algorithm, let’s establish some notations building upon those introduced in
Section 3.1. Our objective is to partition tasks into several groups, denoted as {G1, G2, ..., GM},
where M is the number of task groups. Each group set contains tasks’ indices as their components,
for example, Gk = {i, j}. When selecting tasks to form these groups, we require the task groups to
be mutually exclusive, meaning that Gi ∩Gj = ∅ for any i and j (i ̸= j).

Tracking inter-task affinity during optimization, as defined in eq. (1), is impractical. This is because
it is difficult to assess the influence of individual tasks on shared network parameters when multiple
tasks are updated simultaneously. Additionally, task-specific parameters {Θi}Ki=1 must also be
updated concurrently, which is essential for MTL settings. Therefore, we practically approximate
inter-task affinity by utilizing proximal inter-task affinity, taking into account updates of multiple
tasks with task-specific parameters. The difference between inter-task affinity and proximal inter-task
affinity is difficult to detect, so we provide a more detailed discussion in Appendix A.1.

Definition 2 (Proximal Inter-Task Affinity). Consider a multi-task network shared by the task
set G, with their respective losses defined as LG. For a data sample zt and a learning rate η,
the gradients of task set G are updated to the parameters of the network as follows: Θt+1

s|G =

Θt
s− η∇Θt

s
LG(z

t,Θt
s,Θ

t
G) and Θt+1

k = Θt
k − η∇Θt

k
Lk(z

t,Θt
s,Θ

t
k) for k ∈ G. Then, the proximal

inter-task affinity from the task set G to τk at time step t is defined as:

Bt
G→k = 1−

Lk(z
t,Θt+1

s|G ,Θt+1
k )

Lk(zt,Θt
s,Θ

t
k)

(2)

As it’s not feasible to simultaneously track inter-task affinity and optimize networks, we instead track
the proximal inter-task affinity and utilize it for multi-task optimization. We explain the benefits of
integrating inter-task affinity into optimization in the view of conventional multi-task optimization.
Theorem 1 suggests that grouping tasks with high inter-task affinity leads to better alignment of their
gradients compared to grouping tasks with lower affinity. In analysis, we use the extended version of
A for multiple tasks (e.g., AG→k) for ease of notation.

Theorem 1. Let gk denote the task-specific gradients backpropagated from the loss function Lk with
respect to the parameters Θt

s. At a given time step t, if the inter-task affinity from task group {i, k}
to task k is greater than or equal to the inter-task affinity from group {j, k} to task k, denoted as
At

i,k→k ≥ At
j,k→k. Then for a sufficiently small learning rate η ≪ 1, it follows that gi · gk ≥ gj · gk.

The results also apply to proximal inter-task affinity B instead of A, as the only difference is the
inclusion of task-specific parameters for task k.

We analyze how this alignment in task-specific gradients reduces the loss of task k in Theorem 2.

Theorem 2. Let gk denote the task-specific gradients backpropagated from the loss function Lk

with respect to the parameters Θt
s. Let Θt+1

s|k represent the updated parameters after applying the
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gradients. Assume that for tasks i, j, and k, the inequality gi · gk ≥ gj · gk holds. Then, for a
sufficiently small learning rate η ≪ 1, the inequality Lk(z

t,Θt+1
s|i,k,Θ

t
k) ≤ Lk(z

t,Θt+1
s|j,k,Θ

t
k) holds.

The result indicates that when the gradients gi align better with gk than with gj , the loss on the
reference task k using the updated gradients gi + gk is lower than that using the updated gradients
gj + gk. Theorems 1 and 2 suggest that updating tasks jointly with high proximal inter-task affinity
at each optimization step is a reasonable approach.

3.3 TRACKING PROXIMAL INTER-TASK AFFINITY IN SELECTIVE GROUP UPDATES

From now on, we’ll explain how we track proximal inter-task affinity in the sequential updates of task
groups. For ease of explanation, we start with an already clustered (or initialized) task set {Gi}Mi=1
obtained from the tracked proximal inter-task affinity in the previous time step. M is the number of
task groups. We’ll provide more explanation at the end of this section on how the tracked proximal
inter-task affinity is utilized in clustering the task set.

Inter-Group Relations. We begin by forwarding the sample zt to the shared multi-task network,
from which we obtain the multi-task loss {Li(z

t,Θt
s,Θ

t
i)}Ki=1. Based on the task grouping {Gi}Mi=1,

we divide each time step into M steps to update each task set. For simplicity of discussion, we update
the first group G1 in steps from t to t+ 1/M, but the following discussion can be extended to all
sequential updates between t and t+ 1.

Θ
t+1/M
s|G1

= Θt
s − η

∑
i∈G1

wi∇Θt
s
Li(z

t,Θt
s,Θ

t
i) (3)

Θ
t+1/M
s|G1

represents the resulting parameter after updating the gradient from task group G1 to the

parameter Θt
s. Upon forwarding zt once more, we can access {Li(z

t,Θ
t+1/M
s|G1

,Θ
t+1/M
i )}Ki=1.

For tasks that do not belong to G1, their task-specific parameters remain unchanged, satisfying
Θ

t+1/M
i = Θt

i. Consequently, we can assess the proximal inter-task affinity from group G1 to other
tasks. In case where target task τj does not belong to G1, we refer to this as inter-group relations as
follows:

Bt
G1→j ≃ Bt

i→j = At
i→j = 1−

Lj(z
t,Θ

t+1/M
s|G1

,Θt
j)

Lj(zt,Θt
s,Θ

t
j)

where τi ∈ G1 and τj /∈ G1 (4)

To be precise, eq. (4) represents the proximal inter-task affinity from G1 to τj . However, since τi
belongs to G1, which is a group of tasks similar to τi, we approximate the relations between τi and
τj using G1 and τj . We explain how approximation Bt

G1→j ≃ Bt
i→j can be justified in task group

updates from the results of Theorem 3. We can repeat this process iteratively M times, with each
step updating each task group in {Gi}Mi=1.

Intra-Group Relations. Inter-group relation addresses inter-task relations where the source task
τi and the target task τj do not belong to the same group. Conversely, intra-group relation refers to
the influence between tasks within the same task group, and it follows a slightly different process.
Since both the source and target tasks are updated simultaneously, we must infer inter-task relations
based on how the tasks’ losses change. Let’s suppose we’re updating the task set G1. The proximal
inter-task affinity between tasks within the same group can be calculated as follows:

Bt
G1→j ≃ Bt

i→j = 1−
Lj(z

t,Θ
t+1/M
s|G1

,Θ
t+1/M
j )

Lj(zt,Θt
s,Θ

t
j)

where τi ∈ G1 and τj ∈ G1 (5)

Similarly to the inter-group case, we approximate the relations from τi to τj using the relations from
G1 to τj and this also can be justified by Theorem 3 when we use it to cluster task sets. Since the
target task τj is included in G1, we infer the inter-task relations by dividing cases into two. If both
Bt
i→j and Bt

j→i have positive signs, we infer that the inter-task affinity between τi and τj is positive.
Otherwise, if at least one of Bt

i→j or Bt
j→i has a negative sign, the inter-task affinity between τi

and τj is negative. This inference is intuitive, as an increase in one task’s loss during the decrease
of the other task’s loss implies that they transfer negative influences. However, it results in faster
convergence compared to previous gradient-based optimization methods, which require a number
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Algorithm 1: Tracking Proximal Inter-Task Affinity for Task Group Updates

Require: Loss function {Li}Ki=1, Dataset {zi}ni=1, Total iteration T ,
Proximal inter-task affinity (w/ decay) Bt (B̃t), Task group set {Gi}Mi=1, Decay rate β ∈ (0, 1)

Initialize: Proximal inter-task affinity B̃0 = 0K×K,
Task group Gi = {τi} for i = 1, ...,M (M = K for initialization)

1 for t = 1, . . . , T do
2 Randomly mix the sequence of task group {Gi}Mi=1 and calculate {Li(z

t,Θt
s,Θ

t
i)}Ki=1

3 for k = 1, . . . ,M do
4 Update gradients

∑
τi∈Gk

wi∇Li backpropagated from losses in Gk

5 Forward zt and calculate Li(z
t,Θ

t+k/M
s|Gk

,Θ
t+k/M
i ) for all i = 1, ...,K

6 Calculate Bt+(k−1)/M
i→j and Bt+(k−1)/M

j→i where τi ∈ Gk for all j = 1, ...,K
7 if τj /∈ Gk or Bt+(k−1)/M

i→j · Bt+(k−1)/M
j→i ≥ 0 then

8 B̃t+(k−1)/M
i→j = (1− β)B̃t+(k−2)/M

i→j + βBt+(k−1)/M
i→j

9 else
10 B̃t+(k−1)/M

i→j = (1− β)B̃t+(k−2)/M
i→j − βmax(|Bt+(k−1)/M

i→j |, |Bt+(k−1)/M
j→i |)

11 Divide task groups {Gi}M
′

i=1 based on proximal inter-task affinity B̃(t+M−1)/M

of backpropagations equal to the number of tasks, along with gradient manipulation. This is further
analyzed in Section 5. In the initial phase of learning, we initialize task groups by assigning each task
to a different group to facilitate the learning of proximal inter-task affinity. For stable tracking, we
employ a decay rate β. Using the tracked proximal inter-task affinity, the next task groups {Gi}M

′

i=1
are formed by grouping tasks with positive affinity, where M′ is the number of task sets for the next
step. During optimization, the number of clustered task sets M′ continuously fluctuates along with
their composition. The entire process is outlined in Algorithm 1.

We explain how it effectively approximates inter-task affinity in selective task group updates in
Theorem 3. To be specific, we compare the inter-task affinity when the target task is included in the
source task group versus when it is not.

Theorem 3. The affinity between {i, k} → k and i → k satisfies At
i,k→k ≥ At

i→k.

When task i and k are within the same task group, we can only access Bt
i,k→k rather than Bt

i→k

during the optimization process. If Bt
i,k→k ≤ 0, the inter-task affinity also satisfies At

i,k→k ≤ 0 as
At

i,k→k ≤ Bt
i,k→k (see the end of appendix A.1). According to Theorem 3, this condition implies

At
i→k ≤ 0. The proposed algorithm separates these tasks into different groups when Bt

i,k→k ≤ 0
which justifies our grouping rules.

Conversely, when tasks τi and τj belong to separate task groups, we only have access to Bt
i→k

instead of Bt
i,k→k. In this scenario, the proposed algorithm merges these tasks into the same group if

Bt
i→k ≥ 0. This inequality also implies At

i→k ≥ 0 as Bt
i→k = At

i→k (see the end of appendix A.1),
justifying the merging of tasks τi and τk based on Bt

i→k during optimization.

4 THEORETICAL ANALYSIS

We outline the benefits of grouping tasks with positive inter-task affinity and updating them in
multi-task optimization in Theorem 1 and Theorem 2. We validate the feasibility of tracking proximal
inter-task affinity and forming task groups based on this in our grouping updates strategy in Theorem 3.
In this section, we clarify why, from the viewpoint of standard convergence analysis in Theorem 4,
it’s difficult to demonstrate that updating task groups sequentially leads to better performance than
joint learning. We then explore how sequentially updating grouped task sets can improve multi-task
performance, as discussed in Theorem 5.
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4.1 CONVERGENCE ANALYSIS

We perform conventional convergence analysis to determine the convergence points of the sequential
updates of task groups, as outlined in Theorem 4. Conventional analyses treat the learning of shared
and task-specific parameters separately, which fails to explain why sequential updates result in better
multi-task performance while maintaining comparable stability.

Theorem 4 (Convergence Analysis). Given a set of differentiable losses {Li}Ki=1 and Lipschitz
continuous gradients with a constant H > 0, ||∇Li(x)−∇Li(y)|| ≤ H||x−y|| for all i = 1, 2, ...,K.
If we sequentially update task groups {Gi}Mi=1 based on inter-task affinity, employing a sufficiently
small step size η ≤ min( 2

HK , 1
H|Gm| ) where |Gm| is the number of tasks in Gm, then the following

inequalities are satisfied for any task group Gm.

M∑
k=1

LGk
(zt,Θ

t+m/M
s|Gm

,Θt+1
Gk

) ≤
M∑
k=1

LGk
(zt,Θ

t+(m−1)/M
s|Gm

,Θt
Gk

) (6)

− ηg
t+(m−1)/M
s,Gm

· (
M∑
k=1

g
t+(m−1)/M
s,Gk

− g
t+(m−1)/M
s,Gm

)− η

2
||gtts,Gm

||2 (7)

where gs,Gm and gts,Gm represent the gradients of the shared parameters and task-specific parameters,
respectively, for group Gm. Previous approaches, which handle updates of shared and task-specific
parameters independently, failing to capture their interdependence during optimization. The term,
g
t+(m−1)/M
s,Gm

·(
∑M

k=1 g
t+(m−1)/M
s,Gk

), fluctuates during optimization. When the gradients of group Gm

align well with the gradients of the other groups {Gk}Mi=1,i̸=m, their dot product yields a positive value,
leading to a decrease in multi-task losses. In practice, the sequential update strategy demonstrates a
similar level of stability in optimization, which appears to contradict the conventional results. Thus,
we assume a correlation between the learning of shared parameters and task-specific parameters,
where the learning of task-specific parameters reduces gradient conflicts in shared parameters. Under
this assumption, the sequential update strategy can guarantee convergence to Pareto-stationary points.
This assumption is reasonable, as task-specific parameters capture task-specific information, thereby
reducing conflicts in the shared parameters across tasks.

4.2 ADVANTAGES OF SELECTIVE TASK GROUP UPDATES

Nonetheless, sequentially updating task groups facilitates the learning of task-specific parameters,
a concept not covered by conventional analysis. We directly compare the loss of joint learning
with the loss of the sequential group updates strategy. To do this, we introduce two-step proximal
inter-task affinity, an expanded concept of proximal inter-task affinity over multiple steps, as defined
in Appendix A.6. We analyze the benefits of sequential updates using this two-step proximal inter-task
affinity based on the plausible assumptions delineated in Theorem 5.

Theorem 5. Consider three tasks {i, j, k}, where task groups are formed with positive inter-task
affinity as {i, k} and {j}. Assume all losses are convex and differentiable, and the change in affinity
during a single step from t + (m − 1)/M to t + m/M is negligible. The affinity, which learns
all tasks jointly, is denoted as Bt+(m−1)/M

i,j,k→k . The affinity for the updating sequence ({i, k}, {j}) is

represented as Bt+(m−1)/M
i,k;j→k , while for the sequence ({j}, {i, k}), it is represented as Bt+(m−1)/M

j;i,k→k .
Then, for a sufficiently small learning rate η ≪ 1, the following holds:

Bt+(m−1)/M
i,j,k→k ≃ Bt+(m−1)/M

i,k;j→k Bt+(m−1)/M
i,j,k→k ≤ Bt+(m−1)/M

j;i,k→k (8)

This suggests that grouping tasks with proximal inter-task affinity and subsequently updating these
groups sequentially result in lower multi-task loss compared to jointly backpropagating all tasks. This
disparity arises because the network can discern superior task-specific parameters to accommodate
task-specific information during sequential learning. Notably, the order in which tasks are updated
impacts multi-task outcomes within a single batch. However, as the optimization progresses, this
influence diminishes, as demonstrated in the following experimental results.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of time complexity and memory consumption between our optimization methods
and other multi-task optimization approaches, including loss-based and gradient-based methods.

Method Forward Pass Backpropagation Gradient Manipulation Optimizer Step Affinity Update Memory
Loss-based Methods O(1) O(1) ✗ O(1) ✗ O(1)
Gradient-based Methods O(1) O(K) ✓ O(1) ✗ O(K)
Ours O(M) O(M) ✗ O(M) ✓ O(1)

Figure 2: Comparison of the average time required by each optimization process to handle a single
batch for 5 tasks on PASCAL-Context (left) and 11 tasks on Taskonomy (right).

5 EXPERIMENTS

Experimental settings. We assess the proposed techniques using three datasets: NYUD-V2 for indoor
vision tasks (Silberman et al., 2012), PASCAL-Context for outdoor scenarios (Mottaghi et al., 2014),
and Taskonomy (Zamir et al., 2018) for large number of tasks. Multi-task performance is compared
using the metric introduced by (Maninis et al., 2019). This metric calculates the per-task performance
by averaging it relative to the single-task baseline b: △m = (1/K)

∑K
i=1(−1)li(Mm,i −Mb,i)/Mb,i

where li = 1 if a lower value of measure Mi means indicates better performance for task τi, and 0
otherwise. More details are introduced in Appendix C.

Baselines. We selected conventional multi-task optimization methods as our baselines: 1) Single-task
learning, where each task is trained independently; 2) GD, where all task gradients are updated jointly
without manipulation; 3) Gradient-based optimization methods that include gradient manipulation,
such as GradDrop (Chen et al., 2020), MGDA (Sener & Koltun, 2018), PCGrad (Yu et al., 2020),
CAGrad (Liu et al., 2021a), Aligned-MTL (Senushkin et al., 2023), and Nash-MTL (Navon et al.,
2022); 4) Loss-based optimization methods, including UW (Kendall et al., 2018), DTP (Guo et al.,
2018), DWA (Liu et al., 2019), and FAMO (Liu et al., 2024); and 5) A hybrid approach combining
gradient and loss-based methods, specifically IMTL (Liu et al., 2021b). Each experiment was
conducted three times with different random seeds to ensure a fair comparison.

Architectures. We use the most common multi-task architecture, employing a shared encoder and
multiple decoders, each dedicated to a specific task. For our encoder, we mainly use ViT Dosovitskiy
et al. (2020), coupled with a single convolutional layer as the decoder.

We conduct experimental analysis to address several key statements and questions. For additional
and comprehensive experimental results, please refer to Appendix D.

Computational cost and memory consumption. In Table 1, we compare the time complexity and
memory consumption of previous approaches with our methods. Additionally, Figure 2 presents the
average time required by each optimization process to handle a single batch. Loss-based approaches,
such as FAMO, DWA, DTP, and UW, exhibit the lowest computational cost and memory usage
because they do not require multiple forward passes or backpropagation. In contrast, gradient-
based approaches, including Nash-MTL, Aligned-MTL, CAGrad, PCGrad, and GradDrop, incur
significantly higher computational costs due to the iterative backpropagation required for each task
(K), even though they have the potential for better performance. These approaches also need to store
task-specific gradients, which demands K times more memory. Our methods, however, require M
(number of groups) forward passes and backward passes, where M < K. As shown in Figure 3c,
the number of groups changes during optimization on Taskonomy, with our methods maintaining
an average M = 1.8 with ViT-L, much lower than K = 11 for the Taskonomy benchmark. Despite
the need for multiple forward passes, our methods remain computationally competitive because the
majority of the computational load is concentrated on backpropagation and gradient manipulation.
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Table 2: Experimental results on the Taskonomy dataset using ViT-L. The best results in each column
are shown in bold, while convergence failures are indicated with a dash.

DE DZ EO ET K2 K3 N C R S2 S2.5
Task L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m (↑)

Single Task 0.0155 0.0160 0.1012 0.1713 0.1620 0.082 0.2169 0.7103 0.1357 0.1700 0.1435 -

GD 0.0163 0.0167 0.1211 0.1742 0.1715 0.093 0.2333 0.7527 0.1625 0.1837 0.1487 -8.65 ±0.229

GradDrop 0.0168 0.0172 0.1229 0.1744 0.1727 0.091 0.2562 0.7615 0.1656 0.1862 0.1511 -10.81 ±0.377

MGDA - - - - - - - - - - - -
UW 0.0167 0.0151 0.1212 0.1728 0.1712 0.089 0.2360 0.7471 0.1607 0.1829 0.1538 -7.65 ±0.087

DTP 0.0169 0.0153 0.1213 0.1720 0.1707 0.089 0.2517 0.7481 0.1603 0.1814 0.1503 -8.16 ±0.081

DWA 0.0147 0.0155 0.1209 0.1725 0.1711 0.089 0.2619 0.7486 0.1613 0.1845 0.1543 -7.92 ±0.077

PCGrad 0.0161 0.0165 0.1206 0.1735 0.1696 0.090 0.2301 0.7540 0.1625 0.1830 0.1483 -7.72 ±0.206

CAGrad 0.0162 0.0166 0.1202 0.1769 0.1651 0.091 0.2565 0.7653 0.1661 0.1861 0.1571 -10.05 ±0.346

IMTL 0.0162 0.0165 0.1206 0.1741 0.1710 0.090 0.2268 0.7497 0.1617 0.1832 0.1543 -8.03 ±0.179

Aligned-MTL 0.0150 0.0155 0.1135 0.1725 0.1630 0.086 0.2513 0.8039 0.1646 0.1800 0.1438 -6.22 ±0.285

Nash-MTL - - - - - - - - - - - -
FAMO 0.0157 0.0155 0.1211 0.1730 0.1702 0.090 0.2433 0.7479 0.1610 0.1823 0.1527 -7.58 ±0.211

Ours 0.0140 0.0145 0.1136 0.1735 0.1679 0.087 0.2029 0.7166 0.1500 0.1769 0.1469 -1.42 ±0.208

(a) {G}Mi=1 with ViT-L (b) {G}Mi=1 with ViT-T (c) Change of M (d) Change of Bt

Figure 3: The averaged grouping results {G}Mi=1 on the Taskonomy benchmark are shown for ViT-L
in (a) and for ViT-T in (b). (c) illustrates how the number of task groups, M, changes during
optimization. (d) shows the change in proximal inter-task affinity from DE to C.

This trend becomes more advantageous as the number of tasks increases. Our methods achieve a
computational cost that falls between loss-based and gradient-based methods, while maintaining
similar memory consumption to loss-based methods.

Optimization results comparison. We compare the results of multi-task optimization on Taskonomy
in Table 2 and on NYUD-v2 and PASCAL-Context in Table 3. Our methods achieve superior
multi-task performance across all benchmarks, demonstrating their practical effectiveness. One key
observation is that the tasks showing the greatest performance improvements differ between our
methods and previous approaches, reflecting the distinct motivations behind each optimization design.
Recent methods like Nash-MTL, IMTL, and Aligned-MTL focus on improving edge detection, often
at the expense of other tasks. This is due to their emphasis on balancing task losses or gradients,
which are affected by unbalanced loss scales. Since edge detection shows the lowest loss scale across
the optimization process, these methods prioritize enhancing its performance. Loss-based approaches
such as FAMO, DWA, DTP, and UW share a similar motivation but exhibit limited performance
compared to gradient-based methods. In contrast, our methods enhance performance across all tasks
compared to GD by optimizing task-specific parameters in a grouping update, which benefits all tasks.
Furthermore, our methods achieve stable convergence with many tasks, unlike MGDA or Nash-MTL,
which struggle to converge in such scenarios on Taskonomy.

Grouping results of selective task group updates. In Figure 3, we illustrate how the grouping
strategy evolves during the optimization process. Specifically, in Figures 3a and 3b, we show the
frequency with which different tasks are grouped together throughout the entire optimization process.
Similar tasks, such as depth euclidean (DE) and depth zbuffer (DZ), tend to be grouped more often,
whereas depth-related tasks are less frequently grouped with tasks of other types. Overall, the trends
in task grouping are consistent across different backbone network sizes. However, one notable
observation is that the overall level of grouping increases as the backbone size grows. This suggests
that larger models are better at extracting generalizable features across multiple tasks, leading to
higher inter-task affinity. In Figure 3c, we present the average number of task groups M throughout
the optimization process. During optimization, M tends to increase as proximal inter-task affinity
decreases, suggesting that task competition grows more intense over time. Moreover, M grows as
the backbone network’s capacity increases, which aligns with the grouping patterns observed for
different backbone sizes in Figures 3a and 3b. We provide an example of proximal inter-task affinity
in Figure 3d, with all task pairs shown in Figure D.2.
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Table 3: We assess the proposed method alongside previous multi-task optimization approaches on
both NYUD-v2 and PASCAL-Context. The best results are highlighted in bold.

NYUD-v2 PASCAL-Context

Semseg Depth Normal Edge △m Semseg Parsing Saliency Normal Edge △mMethod
mIoU ↑ RMSE ↓ mErr ↓ odsF ↑ % ↑ mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑ % ↑

Single Task 39.35 0.661 22.14 59.7 - 67.96 58.90 83.76 15.65 47.7 -

GD 38.51 0.641 25.64 53.0 -6.54±0.171 67.48 55.46 81.36 18.41 39.0 -9.06±0.095
GradDrop 38.42 0.638 25.75 53.0 -6.60±0.264 67.18 55.35 81.32 18.53 39.0 -9.35±0.092
MGDA 20.93 0.870 36.66 59.8 -35.96±0.117 - - - - - -
UW 38.20 0.631 25.32 53.0 -5.99±0.196 67.11 55.22 81.33 18.44 38.6 -9.46±0.113
DTP 38.52 0.633 25.60 52.8 -6.26±0.214 67.09 55.23 81.35 18.40 38.6 -9.41±0.108
DWA 38.56 0.634 25.62 52.8 -6.30±0.220 67.11 55.23 81.34 18.44 38.6 -9.46±0.116
PCGrad 38.26 0.633 25.40 54.0 -5.70±0.083 66.62 55.11 81.82 18.16 40.0 -8.58±0.101
CAGrad 38.31 0.641 26.11 58.0 -5.10±0.243 66.31 54.96 81.28 18.68 44.9 -7.46±0.067
Aligned-MTL 36.20 0.655 23.77 58.5 -4.12±0.121 60.78 54.42 82.29 17.44 45.5 -7.20±0.075
IMTL 37.19 0.652 23.45 57.8 -3.31±0.213 63.91 55.23 82.23 17.83 44.2 -7.07±0.104
Nash-MTL 36.94 0.641 23.60 58.0 -3.14±0.115 68.50 10.32 75.63 22.25 35.3 -31.91±0.166
FAMO 38.57 0.636 25.61 53.1 -6.23±0.166 67.12 55.23 81.34 18.44 38.6 -9.46±0.115
Ours 40.02 0.618 24.09 53.9 -2.58±0.205 68.14 57.15 82.52 17.19 39.5 -6.24±0.192

(a) (b) (c)

Figure 4: The averaged grouping results {G}Mi=1 are shown for NYUD-v2
in (a) and PASCAL-Context in (b). (c) illustrates how the decaying factor β
influences the stable tracking of proximal inter-task affinity.

Table 5: Ablation stud-
ies on Taskonomy ex-
ploring the impact of
group order and type of
grouping.

Method △m (↑)

Order of Group
Forward -1.41±0.211
Backward -1.44±0.209

Grouping Methods
Joint (GD) -8.65±0.229
Separate -2.48±0.651

Ours -1.42±0.208

Stability of optimization. In Tables 2 and 3, we also report the variance in multi-task performance.
Our methods demonstrate a similar level of variance compared to previous optimization approaches.
Additionally, we assess how the order of task group updates and the type of grouping affect perfor-
mance and optimization stability in Table 5. Using the task groups identified from tracked proximal
inter-task affinity, we compare performance when updating in forward order, backward order, and
randomly selected order. The results show that the order of task group updates does not significantly
impact the final multi-task performance or algorithm stability. When comparing our method to
gradient descent (GD), where all tasks are grouped together (M = 1), and a scenario where each task
is placed in a separate group (M = K), our approach demonstrates better performance and greater
stability by grouping tasks with high proximal inter-task affinity.

The effect of the decay rate on tracking affinity. The affinity decay rate β influences the tracking
of proximal inter-task affinity as shown in Figure 4c. A larger β results in more dynamic fluctuations
in affinity, resulting in more frequent changes in task groupings. In contrast, a smaller β leads to
slower adjustments in task groupings. We observe that the affinity decay rate β does not significantly
impact multi-task performance, which enhances the method’s applicability. In our experiments, we
set β to 0.001. We anticipate that β can be easily adjusted by monitoring the variation of proximal
inter-task affinity. The overall results are shown in Figure D.5.

6 CONCLUSION

We propose a novel approach to mitigate negative transfer by dynamically dividing task groups
during optimization. Through empirical experimentation, we observed significant differences in
multi-task performance depending on whether task losses are backpropagated collectively or updated
sequentially. Building on this insight, we introduce an algorithm that adaptively separates task sets
and updates them within a single shared architecture during optimization. To facilitate simultaneous
tracking of inter-task relations and network optimization, we introduce proximal inter-task affinity,
which can be measured throughout the optimization process. Our analysis highlights the profound
impact of sequential updates on the learning of task-specific representations. Ultimately, our methods
substantially enhance multi-task performance compared to previous multi-task optimization.
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A PROOFS OF THEORETICAL ANALYSIS

Before diving into the theoretical analysis proof, we’ll briefly introduce the basic concepts used in
our proof to ensure the paper is self-contained.
Definition 3 (Lipschitz continuity). f is λ-Lipschitz if for any two points u, v in the domain of f , we
have following inequality:

|f(u)− f(v)| ≤ λ||u− v|| (9)

A.1 DIFFERENCE BETWEEN INTER-TASK AFFINITY AND PROXIMAL INTER-TASK AFFINITY

Firstly, let’s reiterate the definitions of inter-task affinity and proximal inter-task affinity from the
main paper.

In a typical SGD process for task i at time step t with input zt, the update rule for Θs is as follows:
Θt+1

s|i = Θt
s − ηwi∇Θt

s
Li(z

t,Θt
s,Θ

t
i) where zt represents the input data and η is the learning rate,

Θt+1
s|i is the updated shared parameters with loss Li. Then the affinity from task i to k at time step t,

denoted as At
i→k, is:

At
i→k = 1−

Lk(z
t,Θt+1

s|i ,Θt
k)

Lk(zt,Θt
s,Θ

t
k)

(10)

For proximal inter-task affinity, let’s consider a multi-task network shared by the task set G, with their
respective losses defined as LG. For a data sample zt and a learning rate η, the gradients of task set
G are updated to the parameters of the network as follows: Θt+1

s|G = Θt
s − η∇Θt

s
LG(z

t,Θt
s,Θ

t
G) and

Θt+1
k = Θt

k − η∇Θt
k
Lk(z

t,Θt
s,Θ

t
k) for k ∈ G. Then, the proximal inter-task affinity from group G

to task k at time step t is defined as:

Bt
G→k = 1−

Lk(z
t,Θt+1

s|G ,Θt+1
k )

Lk(zt,Θt
s,Θ

t
k)

(11)

The primary distinction between the two affinities lies in the incorporation of the task set and
the update of task-specific parameters (indicated by red letters). Proximal inter-task affinity is an
expanded concept that integrates the task set rather than individual tasks as the source task. This
difference is evident from the notation, where i → k in Equation (10) and G → k in Equation (11).

The second main difference lies in the update of task-specific parameters. In the inter-task affinity in
Equation (10), the denominator includes Θt

k, while in the proximal inter-task affinity in Equation (11),
it includes Θt+1

k , which is a subtle distinction that may not be noticed by readers. These two
modifications allow us to track proximal inter-task affinity while simultaneously optimizing multi-
task networks.

When measuring affinity under the assumption of a convex objective, the proximal inter-task affinity
is equal to or greater than the inter-task affinity. This also aligns well with real-world scenarios, as
proximal inter-task affinity reflects updates to task-specific parameters, as shown below.

At
i→k = 1−

Lk(z
t,Θt+1

s|i ,Θt
k)

Lk(zt,Θt
s,Θ

t
k)

≤ 1−
Lk(z

t,Θt+1
s|i ,Θt+1

k )

Lk(zt,Θt
s,Θ

t
k)

= Bt
i→k (12)

This inequality can also be applied to an expanded setting that incorporates task sets. If we expand
the concept of inter-task affinity from individual task to task set as At

G→k, then the inequality
At

G→k ≤ Bt
G→k is satisfied. If k /∈ G then, At

G→k = Bt
G→k holds.

For ease of notation, we use the expanded version of the affinity for multiple tasks throughout the
proof, as follows:

At
G→k = 1−

Lk(z
t,Θt+1

s|G ,Θt
k)

Lk(zt,Θt
s,Θ

t
k)

(13)

This differs from proximal inter-task affinity, as it does not consider the update of task-specific
parameters.
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A.2 PROOF OF THEOREM 1

Theorem 1. Let gk denote the task-specific gradients backpropagated from the loss function Lk with
respect to the parameters Θt

s. At a given time step t, if the inter-task affinity from task group {i, k}
to task k is greater than or equal to the inter-task affinity from group {j, k} to task k, denoted as
At

i,k→k ≥ At
j,k→k. Then for a sufficiently small learning rate η ≪ 1, it follows that gi · gk ≥ gj · gk.

Proof. Let’s consider a scenario where we update the network parameters Θ with task-specific losses
Li and Lk simultaneously at time step t with input zt. Applying the Taylor expansion, we obtain the
following:

Lk(z
t,Θt+1

s|i,k,Θ
t
k) ≃ Lk(z

t,Θt
s,Θ

t
k) + (Θt+1

s|i,k −Θt
s)∇Θt

s
Lk(z

t,Θt
s,Θ

t
k) +O(η2) (14)

= Lk(z
t,Θt

s,Θ
t
k)− ηgk · (gi + gk) +O(η2) (15)

where gi and gk represent the gradients backpropagated from the losses Li and Lk, respectively, with
respect to the shared parameters Θt

s. For instance, gi = ∇Θt
s
Li(z

t,Θt
s,Θi).

Reorganizing the inequality to align with the format of inter-task affinity, we obtain:

At
i,k→k = 1−

Lk(z
t,Θt+1

s|i,k,Θ
t
k)

Lk(zt,Θt
s,Θ

t
k)

≃ 1

Lk(zt,Θt
s,Θ

t
k)

(
ηgk · (gi + gk) +O(η2)

)
(16)

Similar results can be obtained for At
j,k→k.

At
j,k→k = 1−

Lk(z
t,Θt+1

s|j,k,Θ
t
k)

Lk(zt,Θt
s,Θ

t
k)

≃ 1

Lk(zt,Θt
s,Θ

t
k)

(
ηgk · (gj + gk) +O(η2)

)
(17)

From At
i,k→k ≥ At

j,k→k and by ignoring the O(η2) term with a sufficiently small learning rate
η ≪ 1, we can derive the result:

gi · gk ≥ gj · gk (18)

The findings indicate that grouping tasks with positive inter-task affinity exhibits better alignment in
task-specific gradients compared to grouping tasks with negative inter-task affinity, thereby validating
the grouping strategies employed by our algorithm. Furthermore, we analyze how this alignment in
task-specific gradients contributes to reducing the loss of task k in Theorem 2.

A.3 PROOF OF THEOREM 2

Theorem 2. Let gk denote the task-specific gradients backpropagated from the loss function Lk

with respect to the parameters Θt
s. Let Θt+1

s|k represent the updated parameters after applying the
gradients. Assume that for tasks i, j, and k, the inequality gi · gk ≥ gj · gk holds. Then, for a
sufficiently small learning rate η ≪ 1, the inequality Lk(z

t,Θt+1
s|i,k,Θ

t
k) ≤ Lk(z

t,Θt+1
s|j,k,Θ

t
k) holds.

Proof. Let’s consider a scenario where we update the network parameters Θt
s with task-specific losses

Li and Lk simultaneously at time step t with input zt. Let gi denote the gradients backpropagated
from the loss Li with respect to the shared parameters Θt

s, expressed as gi = ∇Θt
sLi(z

t,Θt
s,Θi).

Using the first-order Taylor approximation of Lk for Θt
s, we obtain:

Lk(z
t,Θt+1

s|i,k,Θ
t
k) = Lk(z

t,Θt
s,Θ

t
k) + (Θt+1

s|i,k −Θt
s)∇Θt

s
Lk(z

t,Θt
s,Θ

t
k) +O(η2) (19)

= Lk(z
t,Θt

s,Θ
t
k)− η(gi + gk) · gk +O(η2) (20)

For task j, we can follow a similar process as follows:

Lk(z
t,Θt+1

s|j,k,Θ
t
k) = Lk(z

t,Θt
s,Θ

t
k)− η(gj + gk) · gk +O(η2) (21)
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With a sufficiently small learning rate η ≪ 1, subtract eq. (21) from eq. (20), then:

Lk(z
t,Θt+1

s|i,k,Θ
t
k)− Lk(z

t,Θt+1
s|j,k,Θ

t
k) = −η(gi + gk) · gk + η(gj + gk) · gk (22)

= −η(gi − gj) · gk ≤ 0 (23)

which proves the results.

The result indicates that when the gradients gi from task i align better with those of the reference
task k compared to task j, the loss on the reference task k tends to be lower with updated gradients
gi + gk compared to gj + gk, especially for sufficiently small learning rates η.

A.4 PROOF OF THEOREM 3

Theorem 3. The affinity between {i, k} → k and i → k satisfies At
i,k→k ≥ At

i→k.

Proof. Let’s begin with the definition of inter-task affinity between {i, j} → k and i → k as follows:

At
i,k→k = 1−

Lk(z
t,Θt+1

s|i,k,Θ
t
k)

Lk(zt,Θt
s,Θ

t
k)

At
i→k = 1−

Lk(z
t,Θt+1

s|i ,Θt
k)

Lk(zt,Θt
s,Θ

t
k)

(24)

When updating i and k simultaneously, we can derive the first-order Taylor approximation of Lk for
Θt

s as follows:

Lk(z
t,Θt+1

s|i,k,Θ
t
k) = Lk(z

t,Θt
s,Θ

t
k) + (Θt+1

s|i,k −Θt
s)∇Θt

s
Lk(z

t,Θt
s,Θ

t
k) +O(η2) (25)

= Lk(z
t,Θt

s,Θ
t
k)− η(gi + gk) · gk +O(η2) (26)

Similarly, when updating i alone, the first-order Taylor approximation of Lk for Θt
s is as follows:

Lk(z
t,Θt+1

s|i ,Θt
k) = Lk(z

t,Θt
s,Θ

t
k) + (Θt+1

s|i −Θt
s)∇Θt

s
Lk(z

t,Θt
s,Θ

t
k) +O(η2) (27)

= Lk(z
t,Θt

s,Θ
t
k)− ηgi · gk +O(η2) (28)

With a sufficiently small learning rate η, the difference between the two inter-task affinities in eq. (24)
can be expressed as follows:

At
i,k→k −At

i→k = 1−
Lk(z

t,Θt+1
s|i,k,Θ

t
k)

Lk(zt,Θt
s,Θ

t
k)

−
(
1−

Lk(z
t,Θt+1

s|i ,Θt
k)

Lk(zt,Θt
s,Θ

t
k)

)
(29)

=
Lk(z

t,Θt+1
s|i ,Θt

k)− Lk(z
t,Θt+1

s|i,k,Θ
t
k)

Lk(zt,Θt
s,Θ

t
k)

(30)

=
Lk(z

t,Θt
s,Θ

t
k)− ηgi · gk − (Lk(z

t,Θt
s,Θ

t
k)− η(gi + gk) · gk)

Lk(zt,Θt
s,Θ

t
k)

(31)

=
η||gk||2

Lk(zt,Θt
s,Θ

t
k)

(32)

≥ 0 (33)

The inequality in eq. (33) proves that At
i,k→k ≥ At

i→k.

When tasks i and k are within the same task group, we can access Bt
i,k→k during the optimization

process. If Bt
i,k→k ≤ 0, the inter-task affinity also satisfies At

i,k→k ≤ 0 as At
i,k→k ≤ Bt

i,k→k.
According to Theorem 3, this condition implies At

i→k ≤ 0. The proposed algorithm separates these
tasks into different groups when Bt

i,k→k ≤ 0 which justifies our grouping rules.

Conversely, when tasks i and j belong to separate task groups, we only have access to Bt
i→k instead

of Bt
i,k→k. In this scenario, the proposed algorithm merges these tasks into the same group if

Bt
i→k = At

i→k ≥ 0. This inequality also implies At
i,k→k ≥ 0, justifying the merging of tasks i and k

based on Bt
i→k during optimization.
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A.5 PROOF OF THEOREM 4

Theorem 4 (Convergence Analysis). Given a set of differentiable losses {Li}Ki=1 and Lipschitz
continuous gradients with a constant H > 0, ||∇Li(x)−∇Li(y)|| ≤ H||x−y|| for all i = 1, 2, ...,K.
If we sequentially update task groups {Gi}Mi=1 based on inter-task affinity, employing a sufficiently
small step size η ≤ min( 2

HK , 1
H|Gm| ) where |Gm| is the number of tasks in Gm, then the following

inequalities are satisfied for any task group Gm.
M∑
k=1

LGk
(zt,Θ

t+m/M
s|Gm

,Θt+1
Gk

) ≤
M∑
k=1

LGk
(zt,Θ

t+(m−1)/M
s|Gm

,Θt
Gk

) (6)

− ηg
t+(m−1)/M
s,Gm

· (
M∑
k=1

g
t+(m−1)/M
s,Gk

− g
t+(m−1)/M
s,Gm

)− η

2
||gtts,Gm

||2 (7)

Let’s represent the sum of losses of tasks included in Gm as LGm
, defined as follows:

LGm
(zt,Θ

t+m/M
s|Gm

,Θ
t+m/M
Gm

) =
∑

k∈Gm

Lk(z
t,Θ

t+m/M
s|Gm

,Θ
t+m/M
k ) (34)

where Θ
t+m/M
s|Gm

denotes the shared parameters, while Θ
t+m/M
Gm

represents the set of task-specific
parameters within Gm after updating tasks in Gm.

We begin by expanding the task-specific loss LGm
in terms of the shared parameter Θt+m/M

s|Gm
and the

task-specific parameters Θt+m/M
Gm

using a quadratic expansion. During this process, the task-specific

parameters Θt+(m−1)/M
Gm

= Θt
Gm

and Θ
t+m/M
Gm

= Θt+1
Gm

, since the task-specific parameters in Gm

are updated only once from Θ
t+(m−1)/M
Gm

to Θ
t+m/M
Gm

.

LGm
(zt,Θ

t+m/M
s|Gm

,Θt+1
Gm

) ≤ LGm
(zt,Θ

t+(m−1)/M
s|Gm−1

,Θt
Gm

) (35)

+∇
Θ

t+(m−1)/M
s|Gm−1

LGm
(zt,Θ

t+(m−1)/M
s|Gm−1

,Θt
Gm

)(Θ
t+m/M
s|Gm

−Θ
t+(m−1)/M
s|Gm−1

)

(36)

+
1

2
∇2

Θ
t+(m−1)/M
s|Gm−1

LGm
(zt,Θ

t+(m−1)/M
s|Gm−1

,Θt
Gm

)(Θ
t+m/M
s|Gm

−Θ
t+(m−1)/M
s|Gm

)2

(37)

+∇Θt
Gm

LGm
(zt,Θ

t+(m−1)/M
s|Gm−1

,Θt
Gm

)(Θt+1
Gm

−Θt
Gm

) (38)

+
1

2
∇2

Θt
Gm

LGm(zt,Θ
t+(m−1)/M
s|Gm−1

,Θt
Gm

)(Θt+1
Gm

−Θt
Gm

)2 (39)

≤LGm
(zt,Θ

t+(m−1)/M
s|Gm

,Θt
Gm

) (40)

+∇
Θ

t+(m−1)/M
s|Gm−1

Lk(z
t,Θ

t+(m−1)/M
s|Gm−1

,Θt
Gm

)(Θ
t+m/M
s|Gm

−Θ
t+(m−1)/M
s|Gm−1

) (41)

+
1

2
H|Gm|(Θt+m/M

s|Gm
−Θ

t+(m−1)/M
s|Gm−1

)2 (42)

+∇Θt
Gm

LGm
(zt,Θ

t+(m−1)/M
s|Gm−1

,Θt
Gm

)(Θt+1
Gm

−Θt
Gm

) (43)

+
1

2
H|Gm|(Θt+1

Gm
−Θt

Gm
)2 (44)

where |Gm| represents the number of tasks in Gm. The inequality holds with the Lipschitz continuity
of ∇L with a constant H .

For the shared parameters of the network, the update rule is as follows:

Θ
t+m/M
s|Gm

= Θ
t+(m−1)/M
s|Gm−1

− η∇
Θ

t+(m−1)/M
s|Gm−1

LGm
(zt,Θ

t+(m−1)/M
s|Gm−1

,Θt
Gm

) (45)

= Θ
t+(m−1)/M
s|Gm−1

− ηg
t+(m−1)/M
s,Gm

(46)
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where g
t+(m−1)/M
s,Gm

is the gradients of the shared parameters with respect to loss of tasks in Gm.

Similarly, the task-specific parameters of the network, the update rule is as follows:

Θt+1
Gm

= Θt
Gm

− η∇Θt
Gm

LGm
(zt,Θ

t+(m−1)/M
s|Gm−1

,Θt
Gm

) = Θt
Gm

− ηgtts,Gm
(47)

where gtts,Gm
is the gradients of the task-specific parameters with respect to the loss of tasks in Gm.

If we substitute eq. (46) and eq. (47) into the result of eq. (35), it become as follows:

LGm
(zt,Θ

t+m/M
s|Gm

,Θt+1
Gm

) ≤LGm
(zt,Θ

t+(m−1)/M
s|Gm−1

,Θt
Gm

) (48)

− η||gt+(m−1)/M
s,Gm

||2 + η2H|Gm|
2

||gt+(m−1)/M
s,Gm

||2 (49)

− η||gtts,Gm
||2 + η2H|Gm|

2
||gtts,Gm

||2 (50)

We can derive similar results for the loss of task group Gi, where the index i is not the same as the
updating group sequence m (i ̸= m). This process follows similarly to the one described above. For
the step from t+ (m− 1)/M to t+m/M, the task-specific parameters in Gi remain unchanged.

LGi
(zt,Θ

t+m/M
s|Gm

,Θt
Gi
) ≤ LGi

(zt,Θ
t+(m−1)/M
s|Gm−1

,Θt
Gi
) (51)

+∇
Θ

t+(m−1)/M
s|Gm−1

LGi
(zt,Θ

t+(m−1)/M
s|Gm−1

,Θt
Gi
)(Θ

t+m/M
s|Gm

−Θ
t+(m−1)/M
s|Gm−1

) (52)

+
1

2
∇2

Θ
t+(m−1)/M
s|Gm−1

LGi
(zt,Θ

t+(m−1)/M
s|Gm−1

,Θt
Gi
)(Θ

t+m/M
s|Gm

−Θ
t+(m−1)/M
s|Gm

)2

(53)

≤LGi
(zt,Θ

t+(m−1)/M
s|Gm

,Θt
Gi
) (54)

+∇
Θ

t+(m−1)/M
s|Gm−1

LGi(z
t,Θ

t+(m−1)/M
s|Gm−1

,Θt
Gi
)(Θ

t+m/M
s|Gm

−Θ
t+(m−1)/M
s|Gm−1

) (55)

+
1

2
H|Gi|(Θt+m/M

s|Gm
−Θ

t+(m−1)/M
s|Gm−1

)2 (56)

≤LGi
(zt,Θ

t+(m−1)/M
s|Gm

,Θt
Gi
) (57)

− ηg
t+(m−1)/M
s,Gi

· gt+(m−1)/M
s,Gm

+
η2H|Gi|

2
||gt+(m−1)/M

s,Gm
||2 (58)

(59)
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Then the total loss of multiple task groups can be expressed as follows:
M∑
k=1

LGk
(zt,Θ

t+m/M
s|Gm

,Θt+1
Gk

) ≤
M∑
k=1

LGk
(zt,Θ

t+(m−1)/M
s|Gm

,Θt
Gk

) (60)

− η

M∑
k=1

g
t+(m−1)/M
s,Gk

· gt+(m−1)/M
s,Gm

+
η2H

2
||gt+(m−1)/M

s,Gm
||2

M∑
k=1

|Gk| (61)

− η||gtts,Gm
||2 + η2H|Gm|

2
||gtts,Gm

||2 (62)

≤
M∑
k=1

LGk
(zt,Θ

t+(m−1)/M
s|Gm

,Θt
Gk

) (63)

− η

M∑
k=1

g
t+(m−1)/M
s,Gk

· gt+(m−1)/M
s,Gm

+ η||gt+(m−1)/M
s,Gm

||2 − η

2
||gtts,Gm

||2 (64)

=

M∑
k=1

LGk
(zt,Θ

t+(m−1)/M
s|Gm

,Θt
Gk

) (65)

− ηg
t+(m−1)/M
s,Gm

· (
M∑
k=1

g
t+(m−1)/M
s,Gk

− g
t+(m−1)/M
s,Gm

)− η

2
||gtts,Gm

||2 (66)

The inequality between eq. (61) and the first term in eq. (64) requires η ≤ 2
H·

∑M
k=1 |Gk|

= 2
HK , while

the inequality between eq. (62) and the second term in eq. (64) requires η ≤ 1
H|GM | . Therefore,

the inequality in eq. (63) holds when η ≤ min( 2
HK , 1

H|GM | ). Previous approaches, which handle
updates of shared and task-specific parameters independently, failing to capture their interdependence
during optimization. The term, gt+(m−1)/M

s,Gm
· (
∑M

k=1 g
t+(m−1)/M
s,Gk

), fluctuates during optimization.
When the gradients of group Gm align well with the gradients of the other groups {Gk}Mi=1,i̸=m,
their dot product yields a positive value, leading to a decrease in multi-task losses. However, in
practice, the sequential update strategy demonstrates a similar level of stability in optimization, which
appears to contradict the conventional results. Thus, we assume a correlation between the learning
of shared parameters and task-specific parameters, where the learning of task-specific parameters
reduces gradient conflicts in shared parameters. Under this assumption, the sequential update strategy
can guarantee convergence to Pareto-stationary points. This assumption is reasonable, as task-specific
parameters capture task-specific information, thereby reducing conflicts in the shared parameters
across tasks.

A.6 TWO-STEP PROXIMAL INTER-TASK AFFINITY

Before delving into the proof of Theorem 5, let’s introduce the concept of two-step proximal inter-task
affinity, which extends the notion of proximal inter-task affinity over two update steps.
Definition 4 (Two-Step Proximal Inter-Task Affinity). Consider a multi-task network shared by the
tasks i, j, k, with their respective losses denoted as Li,Lj ,Lk. Sequential updates of ({j}, {i, k})
result in parameters being updated from Θt

s → Θt+1
s|j → Θt+2

s|i,k and Θt
k → Θt+1

k → Θt+2
k . Then, the

two-step proximal inter-task affinity from sequential update ({j}, {i, k}) to k at time step t is defined
as follows:

Bt
j;i,k→k = 1− (1− Bt

j→k)(1− Bt+1
i,k→k) (67)

= 1−
Lk(z

t,Θt+1
s|j ,Θt+1

k )

Lk(zt,Θt
s,Θ

t
k)

·
Lk(z

t,Θt+2
s|i,k,Θ

t+2
k )

Lk(zt,Θ
t+1
s|j ,Θt+1

k )
= 1−

Lk(z
t,Θt+2

s|i,k,Θ
t+2
k )

Lk(zt,Θt
s,Θ

t
k)

(68)

A.7 PROOF OF THEOREM 5

Theorem 5. Consider three tasks {i, j, k}, where task groups are formed with positive inter-task
affinity as {i, k} and {j}. Assume all losses are convex and differentiable, and the change in affinity
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during a single step from t + (m − 1)/M to t + m/M is negligible. The affinity, which learns
all tasks jointly, is denoted as Bt+(m−1)/M

i,j,k→k . The affinity for the updating sequence ({i, k}, {j}) is

represented as Bt+(m−1)/M
i,k;j→k , while for the sequence ({j}, {i, k}), it is represented as Bt+(m−1)/M

j;i,k→k .
Then, for a sufficiently small learning rate η ≪ 1, the following holds:

Bt+(m−1)/M
i,j,k→k ≃ Bt+(m−1)/M

i,k;j→k Bt+(m−1)/M
i,j,k→k ≤ Bt+(m−1)/M

j;i,k→k (8)

Proof. We compare the loss after jointly updating three tasks {i, j, k} with the loss after sequentially
updating the task sets {i, k} and {j}. To assess the impact of the updating order of task sets, we also
conduct the analysis on the reverse order of task set {j}, {i, k}.

(i) Let’s begin with the definition of proximal inter-task affinity between {i, k} → k and j → k,
taking into account the updates of task-specific parameters as follows:

Bt+(m−1)/M
i,j,k→k = 1−

Lk(z
t,Θ

t+m/M
s|i,j,k ,Θ

t+m/M
k )

Lk(zt,Θ
t+(m−1)/M
s ,Θ

t+(m−1)/M
k )

(69)

Bt+(m−1)/M
i,k→k = 1−

Lk(z
t,Θ

t+m/M
s|i,k , Θ̂

t+m/M
k )

Lk(zt,Θ
t+(m−1)/M
s ,Θ

t+(m−1)/M
k )

(70)

Bt+m/M
j→k = 1−

Lk(z
t,Θ

t+(m+1)/M
s|j ,Θ

t+(m+1)/M
k )

Lk(zt,Θ
t+m/M
s|i,k , Θ̂

t+m/M
k )

(71)

= 1−
Lk(z

t,Θ
t+(m+1)/M
s|j , Θ̂

t+m/M
k )

Lk(zt,Θ
t+m/M
s|i,k , Θ̂

t+m/M
k )

(72)

where Θ̂
t+m/M
k represents the resulting task-specific parameters of k immediately after updating

the task set {i, j}. This notation is used to differentiate it from the task-specific parameter Θt+m/M
k

obtained after jointly updating all tasks.

The two-step proximal inter-task affinity with the sequence {i, k} and {j} can be represented as
follows:

Bt+(m−1)/M
i,k;j→k = 1− (1− Bt+(m−1)/M

i,k→k ) · (1− Bt+m/M
j→k ) (73)

= 1−
Lk(z

t,Θ
t+m/M
s|i,k , Θ̂

t+m/M
k )

Lk(zt,Θ
t+(m−1)/M
s ,Θ

t+(m−1)/M
k )

·
Lk(z

t,Θ
t+(m+1)/M
s|j , Θ̂

t+m/M
k )

Lk(zt,Θ
t+m/M
s|i,k , Θ̂

t+m/M
k )

(74)

= 1−
Lk(z

t,Θ
t+(m+1)/M
s|j , Θ̂

t+m/M
k )

Lk(zt,Θ
t+(m−1)/M
s ,Θ

t+(m−1)/M
k )

(75)

Our objective is to compare Bt+(m−1)/M
i,j,k→k from eq. (69) with Bt+(m−1)/M

i,k;j→k from eq. (75) to assess
each update’s effect on the final loss. Since both equations share a common denominator, we only
need to compare the numerators of each equation. Using the first-order Taylor approximation of
Lk(z

t,Θ
t+(m+1)/M
s|j , Θ̂

t+m/M
k ) in eq. (75), we have:

Lk(z
t,Θ

t+(m+1)/M
s|j , Θ̂

t+m/M
k ) = Lk(z

t,Θ
t+m/M
s|i,k , Θ̂

t+m/M
k ) (76)

+ (Θ
t+(m+1)/M
s|j −Θ

t+m/M
s|i,k )∇

Θ
t+m/M
s|i,k

Lk(z
t,Θ

t+m/M
s|i,k , Θ̂

t+m/M
k ) +O(η2) (77)

=Lk(z
t,Θ

t+m/M
s|i,k , Θ̂

t+m/M
k )− ηg

t+m/M
s;j · gt+m/M

s;k +O(η2) (78)
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The subscript s in gradients indicates that it represents the gradients of the shared parameters of the
network. Conversely, we will use the subscript ts for gradients of the task-specific network in the
following derivation. Similarly, Lk(z

t,Θ
t+m/M
s|i,k , Θ̂

t+m/M
k ) in eq. (76) can also be further expanded

using Taylor expansion as follows:

Lk(z
t,Θ

t+m/M
s|i,k , Θ̂

t+m/M
k ) = Lk(z

t,Θt+(m−1)/M
s ,Θ

t+(m−1)/M
k ) (79)

+ (Θ
t+m/M
s|i,k −Θt+(m−1)/M

s )∇
Θ

t+(m−1)/M
s

Lk(z
t,Θt+(m−1)/M

s ,Θ
t+(m−1)/M
k ) (80)

+ (Θ̂
t+m/M
k −Θ

t+(m−1)/M
k )∇

Θ
t+(m−1)/M
k

Lk(z
t,Θt+(m−1)/M

s ,Θ
t+(m−1)/M
k ) +O(η2)

(81)

=Lk(z
t,Θt+(m−1)/M

s ,Θ
t+(m−1)/M
k )− η(g

t+(m−1)/M
s;i + g

t+(m−1)/M
s;k ) · gt+(m−1)/M

s;k (82)

− ηg
t+(m−1)/M
ts;k · gt+(m−1)/M

ts;k +O(η2) (83)

By substituting eq. (76) with the results of eq. (82) and eq. (83), we can obtain the following results:

Lk(z
t,Θ

t+(m+1)/M
s|j , Θ̂

t+m/M
k ) = Lk(z

t,Θt+(m−1)/M
s ,Θ

t+(m−1)/M
k ) (84)

− ηg
t+m/M
s;j · gt+m/M

s;k − η(g
t+(m−1)/M
s;i + g

t+(m−1)/M
s;k ) · gt+(m−1)/M

s;k (85)

− ηg
t+(m−1)/M
ts;k · gt+(m−1)/M

ts;k +O(η2) (86)

For the scenario where all tasks {i, j, k} are jointly updated, the numerator of eq. (69) can also be
expanded as follows:

Lk(z
t,Θ

t+m/M
s|i,j,k ,Θ

t+m/M
k ) = Lk(z

t,Θt+(m−1)/M
s ,Θ

t+(m−1)/M
k ) (87)

+ (Θ
t+m/M
s|i,j,k −Θt+(m−1)/M

s )∇
Θ

t+(m−1)/M
s

Lk(z
t,Θt+(m−1)/M

s ,Θ
t+(m−1)/M
k ) (88)

+ (Θ
t+m/M
k −Θ

t+(m−1)/M
k )∇

Θ
t+(m−1)/M
k

Lk(z
t,Θt+(m−1)/M

s ,Θ
t+(m−1)/M
k ) +O(η2)

(89)

=Lk(z
t,Θt+(m−1)/M

s ,Θ
t+(m−1)/M
k ) (90)

− η(g
t+(m−1)/M
s,i + g

t+(m−1)/M
s,j + g

t+(m−1)/M
s,k ) · gt+(m−1)/M

s,k (91)

− ηg
t+(m−1)/M
ts,k · gt+(m−1)/M

ts,k +O(η2) (92)

Finally, we can compare Bt+(m−1)/M
i,j,k→k with Bt+(m−1)/M

i,k;j→k by comparing the losses we obtained:

Lk(z
t,Θ

t+(m+1)/M
s|j ,Θ

t+(m−1)/M
k ) with Lk(z

t,Θ
t+m/M
s|i,j,k ,Θ

t+(m−1)/M
k ). We assume a sufficiently

small learning rate η that allows us to ignore terms larger than order two with η.

Lk(z
t,Θ

t+(m+1)/M
s|j , Θ̂

t+m/M
k )− Lk(z

t,Θ
t+m/M
s|i,j,k ,Θ

t+m/M
k ) (93)

=− ηg
t+m/M
s,j · gt+m/M

s,k − η(g
t+(m−1)/M
s,i + g

t+(m−1)/M
s,k ) · gt+(m−1)/M

s,k (94)

− ηg
t+(m−1)/M
ts,k · gt+(m−1)/M

ts,k (95)

+ η(g
t+(m−1)/M
s,i + g

t+(m−1)/M
s,j + g

t+(m−1)/M
s,k ) · gt+(m−1)/M

s,k (96)

+ ηg
t+(m−1)/M
ts,k · gt+(m−1)/M

ts,k (97)

=η(g
t+(m−1)/M
s,j · gt+(m−1)/M

s,k − g
t+m/M
s,j · gt+m/M

s,k ) (98)

≃0 (99)

The approximation in eq. (99) holds as we assume inter-task affinity change during a single time step
from t+ (m− 1)/M to t+m/M is negligible.
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(ii) In case we update task groups in reverse order the results would differ with (i). Similarly, we begin
with the definition of proximal inter-task affinity with reverse order between j → k and {i, j} → k
as follows:

Bt+(m−1)/M
j→k = 1−

Lk(z
t,Θ

t+m/M
s|j ,Θ

t+m/M
k )

Lk(zt,Θ
t+(m−1)/M
s|i,k ,Θ

t+(m−1)/M
k )

(100)

= 1−
Lk(z

t,Θ
t+m/M
s|j ,Θ

t+(m−1)/M
k )

Lk(zt,Θ
t+(m−1)/M
s ,Θ

t+(m−1)/M
k )

(101)

Bt+m/M
i,k→k = 1−

Lk(z
t,Θ

t+(m+1)/M
s|i,k , Θ̂

t+(m+1)/M
k )

Lk(zt,Θ
t+m/M
s|j ,Θ

t+m/M
k )

(102)

= 1−
Lk(z

t,Θ
t+(m+1)/M
s|i,k , Θ̂

t+(m+1)/M
k )

Lk(zt,Θ
t+m/M
s|j ,Θ

t+(m−1)/M
k )

(103)

The two-step proximal inter-task affinity with the sequence {j} and {i, k} can be represented as
follows:
Bt+(m−1)/M
j;i,k→k = 1− (1− Bt+(m−1)/M

j→k ) · (1− Bt+m/M
i,k→k ) (104)

= 1−
Lk(z

t,Θ
t+m/M
s|j ,Θ

t+(m−1)/M
k )

Lk(zt,Θ
t+(m−1)/M
s ,Θ

t+(m−1)/M
k )

·
Lk(z

t,Θ
t+(m+1)/M
s|i,k , Θ̂

t+(m+1)/M
k )

Lk(zt,Θ
t+m/M
s|j ,Θ

t+(m−1)/M
k )

(105)

= 1−
Lk(z

t,Θ
t+(m+1)/M
s|i,k , Θ̂

t+(m+1)/M
k )

Lk(zt,Θ
t+(m−1)/M
s ,Θ

t+(m−1)/M
k )

(106)

Our objective is to compare Bt+(m−1)/M
i,j,k→k from eq. (69) with Bt+(m−1)/M

j;i,k→k from eq. (106) to assess
each update’s effect on the final loss. Since both equations share a common denominator, we only
need to compare the numerators of each equation. Using the first-order Taylor approximation of
Lk(z

t,Θ
t+(m+1)/M
s|i,k , Θ̂

t+(m+1)/M
k ) in eq. (106), we have:

Lk(z
t,Θ

t+(m+1)/M
s|i,k , Θ̂

t+(m+1)/M
k ) = Lk(z

t,Θ
t+m/M
s|j ,Θ

t+m/M
k ) (107)

+ (Θ
t+(m+1)/M
s|i,k −Θ

t+m/M
s|j )∇

Θ
t+m/M
s|j

Lk(z
t,Θ

t+m/M
s|j ,Θ

t+m/M
k ) (108)

+ (Θ̂
t+(m+1)/M
k −Θ

t+m/M
k )∇

Θ
t+m/M
k

Lk(z
t,Θ

t+m/M
s|j ,Θ

t+m/M
k ) +O(η2) (109)

=Lk(z
t,Θ

t+m/M
s|j ,Θ

t+m/M
k )− η(g

t+m/M
s;i + g

t+m/M
s;k ) · gt+m/M

s;k (110)

− ηg
t+m/M
ts;k · gt+m/M

ts;k +O(η2) (111)

Similarly, Lk(z
t,Θ

t+m/M
s|i,k ,Θ

t+m/M
k ) in eq. (107) can also be further expanded using Taylor expan-

sion as follows:
Lk(z

t,Θ
t+m/M
s|j ,Θ

t+m/M
k ) = Lk(z

t,Θ
t+m/M
s|j ,Θ

t+(m−1)/M
k ) (112)

=Lk(z
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s ,Θ
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k ) (113)
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t+m/M
s|j −Θt+(m−1)/M

s )∇
Θ
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s
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t,Θ

t+m/M
s|j ,Θ
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k ) (114)

=Lk(z
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s ,Θ
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k ) (115)

− ηg
t+(m−1)/M
s;j · gt+(m−1)/M

s;k +O(η2) (116)
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By substituting eq. (107) with the results of eq. (115) and eq. (116), we can obtain the following
results:

Lk(z
t,Θ

t+(m+1)/M
s|i,k , Θ̂

t+(m+1)/M
k ) = Lk(z

t,Θt+(m−1)/M
s ,Θ

t+(m−1)/M
k ) (117)

− η(g
t+m/M
s;i + g

t+m/M
s;k ) · gt+m/M

s;k − ηg
t+m/M
ts;k · gt+m/M

ts;k (118)

− ηg
t+(m−1)/M
s;j · gt+(m−1)/M

s;k +O(η2) (119)

Finally, we can compare Bt+(m−1)/M
i,j,k→k with Bt+(m−1)/M

j;i,k→k by comparing the losses we obtained:

Lk(z
t,Θ
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s|j ,Θ
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k ) with Lk(z

t,Θ
t+m/M
s|i,j,k ,Θ

t+(m−1)/M
k ). We assume a sufficiently

small learning rate η that allows us to ignore terms larger than order two with η.
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ts,k · gt+(m−1)/M

ts,k (126)

≃− ηg
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ts;k · gt+m/M

ts;k + ηg
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ts,k · gt+(m−1)/M

ts,k (127)

≤0 (128)

The approximation in eq. (127) holds under the assumption that the change in inter-task affinity
during a single time step from t+ (m− 1)/M to t+m/M is negligible. Since we assume convex
loss functions, the magnitude of task-specific gradients gts;k would increase after updating the loss
of j, which exhibits negative inter-task affinity with k (Aj→k < 0). Therefore, the inequality in
eq. (128) holds.

This suggest that grouping tasks with proximal inter-task affinity and subsequently updating these
groups sequentially result in lower multi-task loss compared to jointly backpropagating all tasks. This
disparity arises because the network can discern superior task-specific parameters to accommodate
task-specific information during sequential learning.
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B ADDITIONAL RELATED WORKS

Task Grouping. Early Multi-Task Learning research is founded on the belief that simultaneous
learning of similar tasks within a multi-task framework can enhance overall performance. Kang et
al. Kang et al. (2011) identify tasks that contribute to improved multi-task performance through
the clustering of related tasks with online stochastic gradient descent. This strategy challenges the
prevailing assumption that all tasks are inherently interrelated. In parallel, Kumar et al. Kumar &
Daume III (2012) present a framework for MTL designed to enable selective sharing of information
across tasks. They suggests that each task parameter vector can be expressed as a linear combination
of a finite number of underlying basis tasks. However, these initial methodologies face limitations in
their applicability and analysis, particularly in scaling to deep neural networks. Finding out related
tasks is more dynamically explored in the transfer learning domain Achille et al. (2019; 2021). They
find related tasks by measuring task similarity which can be comparing the similarity of features
extracted from the same depth of the independent task’s network or directly measuring the transfer
performance between tasks. Recent research has concentrated on identifying related tasks by directly
assessing the relations among them within shared networks. This focus stems from the recognition
that the measured inter-task relations in transfer learning fail to fully elucidate the dynamics within
the MTL domain Standley et al. (2020); Fifty et al. (2021).

Multi-Task Architectures. Multi-task architectures can be classified based on how much the
parameters or features are shared across tasks in the network. The most commonly used structure
is a shared trunk which consists of a common encoder shared by multiple tasks and a dedicated
decoder for each task Dai et al. (2016); Ma et al. (2018); Simonyan & Zisserman (2014); Zhang
et al. (2014). A tree-like architecture, featuring multiple division points for each task group, offers a
more generalized structure Lu et al. (2017); Vandenhende et al. (2019); Bruggemann et al. (2020);
Guo et al. (2020). The cross-talk architecture employs separate symmetrical networks for each task,
facilitating feature exchange between layers at the same depth for information sharing between tasks
Gao et al. (2019); Xu et al. (2018). The prediction distillation model Eigen & Fergus (2015); Xu et al.
(2018); Vandenhende et al. (2020); Zhang et al. (2019) incorporates cross-task interactions at the
end of the shared encoder, while the task switching network Sun et al. (2021); Sinha et al. (2018);
Fernando et al. (2017); Maninis et al. (2019) adjusts network parameters depending on the task.

MTL in Vision Transformers. Recent advancements in multi-task architecture have explored the
integration of Vision Transformer Dosovitskiy et al. (2020); Liu et al. (2021c); Wang et al. (2021a);
Yang et al. (2021); Xie et al. (2021); Wang et al. (2021b) into MTL. MTFormer Xu et al. (2022)
adopts a shared transformer encoder and decoder with a cross-task attention mechanism. MulT
Bhattacharjee et al. (2022) leverages a shared attention mechanism to capture task dependencies,
inspired by the Swin transformer. InvPT Ye & Xu (2022a) emphasizes global spatial position and
multi-task context for dense prediction tasks through multi-scale feature aggregation. The Mixture of
Experts (MoE) divides the model into predefined expert groups, dynamically shared or dedicated
to specific tasks during the learning phase Riquelme et al. (2021); Zhang et al. (2022); Fan et al.
(2022); Mustafa et al. (2022); Chen et al. (2023); Ye & Xu (2023). Task prompter Xu et al. (2023a;b);
Ye & Xu (2022c) employs task-specific tokens to encapsulate task-specific information and utilizes
cross-task interactions to enhance multi-task performance.

Multi-Task Domain Generalization. Task grouping based on their relations has also been explored
in the field of domain adaptation. In particular, (Wei et al., 2024) proposes grouping heterogeneous
tasks to regularize them, thereby promoting the learning of more generalized features across domain
shifts. (Smith et al., 2021) explores generalization strategies at the mini-batch level. (Li et al., 2020)
addresses diverse domain shift scenarios by incorporating all possible sequential domain learning
paths to generalize features for unseen domains. (Shi et al., 2021) focuses on generalization to unseen
domains by reducing dependence on specific domains through inter-domain gradient matching.
Additionally, (Hu et al., 2022) analyzes the problem of spurious correlations in MTL and proposes
regularization methods to mitigate this issue. The effect of gradient conflicts, which are considered
the primary cause of negative transfer between tasks, is thoroughly examined in (Jiang et al., 2024).
This work also proposes combining task distributions to identify better network parameters from
a generalization perspective. The objectives of conventional multi-task optimization and domain
generalization differ fundamentally. Conventional multi-task optimization typically assumes that the
source and target domains share similar data distributions. In contrast, domain generalization focuses
on scenarios involving significant domain shifts. This distinction leads to different approaches in
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leveraging task relations to achieve their respective goals. In multi-task optimization, simultaneously
updating heterogeneous tasks with conflicting gradients results in suboptimal optimization. On
the other hand, domain generalization leverages task sets as a tool to extract generalized features
applicable to various unseen domains. Overfitting to similar tasks can harm performance on unseen
domains, making it advantageous to use heterogeneous tasks as a form of regularization.

C EXPERIMENTAL DETAILS

We implement our experiments on top of publically available code from Ye & Xu (2022b). We run
our experiments on A6000 GPUs.

Datasets. We assess our method on multi-task datasets: NYUD-v2 Silberman et al. (2012), PASCAL-
Context Mottaghi et al. (2014), and Taskonomy Zamir et al. (2018). These datasets encompass
various vision tasks. NYUD-v2 comprises 4 vision tasks: depth estimation, semantic segmentation,
surface normal prediction, and edge detection. Meanwhile, PASCAL-Context includes 5 tasks:
semantic segmentation, human parts estimation, saliency estimation, surface normal prediction, and
edge detection. In Taskonomy, we use 11 vision tasks: Depth Euclidean (DE), Depth Zbuffer (DZ),
Edge Texture (ET), Keypoints 2D (K2), Keypoints 3D (K3), Normal (N), Principal Curvature (C),
Reshading (R), Segment Unsup2d (S2), and Segment Unsup2.5D (S2.5).

Metrics. To assess task performance, we employed widely used metrics across different tasks.
For semantic segmentation, we utilized mean Intersection over Union (mIoU). The performance of
surface normal prediction was gauged by computing the mean angle distances between the predicted
output and ground truth. Depth estimation task performance was evaluated using Root Mean Squared
Error (RMSE). For saliency estimation and human part segmentation, we utilized mean Intersection
over Union (mIoU). Edge detection performance was assessed using optimal-dataset-scale-F-measure
(odsF). For the Taskonomy benchmark, curvature was evaluated using RMSE, while the other tasks
were evaluated using L1 distance, following the settings in Chen et al. (2023).

To evaluate multi-task performance, we adopted the metric proposed in Maninis et al. (2019). This
metric measures per-task performance by averaging it with respect to the single-task baseline b, as
shown in the equation: △m = (1/T )

∑T
i=1(−1)li(Mm,i−Mb,i)/Mb,i where li = 1 if a lower value

of measure Mi means better performance for task i, and 0 otherwise.

Table C.1: Hyperparameters for experiments.

Hyperparameter Value
Optimizer Adam Kingma & Ba (2014)
Scheduler Polynomial Decay
Minibatch size 8
Number of iterations 40000
Backbone (Transformer) ViT Dosovitskiy et al. (2020)
⌞ Learning rate 0.00002
⌞ Weight Decay 0.000001
⌞ Affinity decay factor β 0.001

Implementation Details. For experiments, we adopt ViT Dosovitskiy et al. (2020) pre-trained
on ImageNet-22K Deng et al. (2009) as the multi-task encoder. Task-specific decoders merge the
multi-scale features extracted by the encoder to generate the outputs for each task. The models
are trained for 40,000 iterations on both NYUD Silberman et al. (2012) and PASCAL Everingham
& Winn (2012) datasets with batch size 8. We used Adam optimizer with learning rate 2×10−5

and 1×10−6 of a weight decay with a polynomial learning rate schedule. The cross-entropy loss
was used for semantic segmentation, human parts estimation, and saliency, edge detection. Surface
normal prediction and depth estimation used L1 loss. The tasks are weighted equally to ensure a
fair comparison. For the Taskonomy Benchmark Zamir et al. (2018), we use the dataloader from the
open-access code provided by Chen et al. (2023), while maintaining experimental settings identical
to those used for NYUD-v2 and PASCAL-Context. We use the same experimental setup for the other
hyperparameters as in previous works Ye & Xu (2022a;c), as detailed in Table C.1.
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D ADDITIONAL EXPERIMENTAL RESULTS

Comparison of optimization results with different backbone sizes. We compare the results of
multi-task optimization on Taskonomy across various sizes of vision transformers, as shown in
Tables D.1 to D.3. Our method consistently achieves superior performance across all backbone
sizes. Unlike previous approaches that focus on learning shared parameters, our optimization
strategy enhances the learning of task-specific parameters. This leads to significant performance
improvements, especially with smaller backbones, where competition between tasks is more intense
due to the limited number of shared parameters. How tasks are grouped, as visualized in fig. D.1,
depends on the backbone size.

Visualization of Proximal Inter-Task Affinity. In Figure D.2, we present the tracked proximal
inter-task affinity for each pair of tasks in Taskonomy. The changes in proximal inter-task affinity
depend on the nature of the task pair, but as the backbone size increases, the affinity tends to become
more positive. This trend is more noticeable in NYUD-v2 and PASCAL-Context, where there are
fewer tasks, as shown in Figures D.3 and D.4. This pattern also aligns with the number of clustered
tasks in Figure 3c, where the number of groups increases as the backbone size decreases.

Effect of the Decay Rate with Visualization. In Figure D.5, we visualize the proximal inter-task
affinity tracked during optimization with various decay rates β, ranging from 0.01 to 1e-5 on a
logarithmic scale. The decay rate β helps stabilize the tracking of proximal inter-task affinity as it
fluctuates during optimization. Additionally, it aids in understanding inter-task relations over time,
independent of input data. For vision transformers, a decay rate of β = 0.001 demonstrates stable
tracking. In real-world applications, multi-task performance is not highly sensitive to the decay rate β.
In Table D.4, we evaluate how β impacts multi-task performance on the Taskonomy benchmark. The
results demonstrate that the proposed optimization method consistently improves performance across
various β values, minimizing the need for extensive hyperparameter tuning in practical scenarios.

The Influence of Task Grouping Strategy. In Table D.5, we present results comparing different task
grouping strategies. These include randomly grouping tasks with a predefined number, grouping het-
erogeneous tasks, and grouping homogeneous tasks (our approach). The results clearly demonstrate
that grouping homogeneous task sets yields superior performance under the proposed settings. This
contrasts with the multi-task domain generalization approach, which groups heterogeneous tasks as a
form of regularization to enhance generalization to unseen domains. This difference arises from the
fundamentally distinct objectives of conventional multi-task optimization and domain generalization.
Conventional multi-task optimization typically assumes that the source and target domains share
similar data distributions, while domain generalization addresses scenarios with significant domain
shifts. Consequently, the approaches to leveraging task relations differ to meet these distinct goals.
As demonstrated in Theorems 1 and 2 of our work, in multi-task optimization, simultaneously updat-
ing heterogeneous tasks with low task affinity leads to suboptimal optimization and higher losses
compared to updating similar task sets with high task affinity. This observation aligns with findings
from previous multi-task optimization studies referenced in the related works section.

Influence of Batch Size. In Table D.6, we compare our method with single-gradient descent (GD) to
evaluate its robustness in improving multi-task performance across varying batch sizes. The proposed
optimization method consistently demonstrates performance improvements (△m (% ↑)) of 5.27%,
5.71%, and 6.13% across different batch sizes. These results highlight the robustness and adaptability
of the proposed algorithm across diverse scenarios.
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(a) {G}Mi=1 with ViT-L (b) {G}Mi=1 with ViT-B (c) {G}Mi=1 with ViT-S (d) {G}Mi=1 with ViT-T

Figure D.1: The averaged grouping results {G}Mi=1 on the Taskonomy benchmark are shown for (a)
ViT-L, (b) ViT-B, (c) ViT-S, and (d) ViT-T, respectively.

Table D.1: Comparison with previous multi-task optimization approaches on Taskonomy with ViT-B.

DE DZ EO ET K2 K3 N C R S2 S2.5
Task L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m (↑)

Single Task 0.0183 0.0186 0.1089 0.1713 0.1630 0.0863 0.2953 0.7522 0.1504 0.1738 0.1530 -

GD 0.0188 0.0197 0.1283 0.1745 0.1718 0.0933 0.2599 0.7911 0.1799 0.1885 0.1631 -6.35
GradDrop 0.0195 0.0206 0.1318 0.1748 0.1735 0.0945 0.3018 0.8060 0.1866 0.1920 0.1607 -9.54
MGDA - - - - - - - - - - - -
UW 0.0188 0.0198 0.1285 0.1745 0.1719 0.0933 0.2535 0.7915 0.1800 0.1883 0.1629 -6.19
DTP 0.0187 0.0198 0.1283 0.1745 0.1720 0.0933 0.2558 0.7912 0.1804 0.1884 0.1634 -6.25
DWA 0.0188 0.0197 0.1287 0.1745 0.1719 0.0933 0.2570 0.7927 0.1806 0.1887 0.1632 -6.33
PCGrad 0.0185 0.0188 0.1285 0.1738 0.1703 0.0928 0.2557 0.7964 0.1810 0.1882 0.1569 -5.22
CAGrad 0.0192 0.0196 0.1306 0.1733 0.1654 0.0939 0.2871 0.8147 0.1901 0.1906 0.1659 -8.34
IMTL 0.0189 0.0200 0.1287 0.1745 0.1720 0.0934 0.2618 0.7928 0.1811 0.1888 0.1635 -6.75
Aligned-MTL 0.0191 0.0202 0.1263 0.1729 0.1663 0.0944 0.3061 0.8560 0.1936 0.1872 0.1585 -8.93
Nash-MTL 0.0175 0.0182 0.1208 0.1730 0.1663 0.0901 0.2686 0.7958 0.1707 0.1839 0.1577 -2.79
FAMO 0.0189 0.0200 0.1285 0.1745 0.1720 0.0934 0.2715 0.7929 0.1807 0.1891 0.1640 -7.21
Ours 0.0167 0.0169 0.1228 0.1739 0.1695 0.0910 0.2344 0.7600 0.1691 0.1836 0.1571 -0.64

Table D.2: Comparison with previous multi-task optimization approaches on Taskonomy with ViT-S.

DE DZ EO ET K2 K3 N C R S2 S2.5
Task L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m (↑)

Single Task 0.0264 0.0259 0.1348 0.1740 0.1667 0.0973 0.3481 0.8598 0.1905 0.1857 0.1691 -

GD 0.0264 0.0272 0.1574 0.1775 0.1838 0.1038 0.4370 0.9237 0.2475 0.2076 0.1858 -11.39
GradDrop 0.0274 0.0280 0.1609 0.1779 0.1856 0.1042 0.4472 0.9366 0.2549 0.2106 0.1821 -13.14
MGDA - - - - - - - - - - - -
UW 0.0263 0.0269 0.1570 0.1775 0.1832 0.1037 0.4362 0.9202 0.2465 0.2075 0.1856 -11.11
DTP 0.0262 0.0273 0.1568 0.1778 0.1831 0.1037 0.4884 0.9207 0.2466 0.2073 0.1849 -12.52
DWA 0.0264 0.0271 0.1572 0.1776 0.1834 0.1038 0.4336 0.9215 0.2469 0.2075 0.1856 -11.20
PCGrad 0.0271 0.0274 0.1570 0.1766 0.1784 0.1034 0.4522 0.9343 0.2525 0.2071 0.1811 -11.78
CAGrad 0.0289 0.0282 0.1611 0.1769 0.1706 0.1062 0.4723 0.9557 0.2689 0.2122 0.1902 -15.09
IMTL-L 0.0255 0.0258 0.1510 0.1744 0.1716 0.1005 0.4339 0.9459 0.2466 0.2036 0.1825 -8.90
Aligned-MTL 0.0286 0.0290 0.1603 0.1744 0.1711 0.1033 0.4596 1.0022 0.2783 0.2090 0.1854 -15.06
Nash-MTL 0.0255 0.0258 0.1510 0.1744 0.1716 0.1005 0.4339 0.9459 0.2466 0.2036 0.1825 -8.79
FAMO 0.0263 0.0272 0.1573 0.1774 0.1835 0.1035 0.4326 0.9208 0.2464 0.2077 0.1858 -11.23
Ours 0.0225 0.0229 0.1444 0.1762 0.1775 0.0995 0.3983 0.8620 0.2156 0.1997 0.1774 -2.83

Table D.3: Comparison with previous multi-task optimization approaches on Taskonomy with ViT-T.

DE DZ EO ET K2 K3 N C R S2 S2.5
Task L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m (↑)

Single Task 0.0289 0.0290 0.1405 0.1774 0.1682 0.0970 0.3837 0.8968 0.2096 0.1904 0.1729 -

GD 0.0279 0.0285 0.1604 0.1789 0.1860 0.1043 0.4704 0.9488 0.2613 0.2086 0.1914 -9.21
GradDrop 0.0287 0.0292 0.1630 0.1795 0.1868 0.1052 0.4795 0.9621 0.2697 0.2118 0.1878 -10.68
MGDA - - - - - - - - - - - -
UW 0.0279 0.0285 0.1604 0.1789 0.1859 0.1043 0.4699 0.9488 0.2613 0.2085 0.1914 -9.21
DTP 0.0278 0.0288 0.1603 0.1790 0.1859 0.1042 0.4697 0.9488 0.2614 0.2088 0.1915 -9.27
DWA 0.0279 0.0285 0.1604 0.1789 0.1859 0.1043 0.4693 0.9489 0.2613 0.2086 0.1913 -9.20
PCGrad 0.0283 0.0290 0.1604 0.1769 0.1803 0.1036 0.4720 0.9645 0.2683 0.2090 0.1866 -9.28
CAGrad 0.0300 0.0304 0.1644 0.1743 0.1721 0.1055 0.4838 0.9818 0.2847 0.2143 0.1974 -12.12
IMTL 0.0276 0.0282 0.1553 0.1754 0.1743 0.1018 0.4621 0.9809 0.2623 0.2051 0.1878 -7.55
Aligned-MTL 0.0296 0.0318 0.1633 0.1765 0.1757 0.1150 0.4806 1.0270 0.2935 0.2109 0.1887 -13.70
Nash-MTL 0.0276 0.0282 0.1553 0.1754 0.1743 0.1018 0.4621 0.9809 0.2623 0.2051 0.1878 -7.46
FAMO 0.0279 0.0285 0.1604 0.1789 0.1859 0.1043 0.4718 0.9488 0.2612 0.2085 0.1913 -9.33
Ours 0.0252 0.0257 0.1526 0.1774 0.1827 0.1019 0.4337 0.9100 0.2402 0.2026 0.1845 -3.67
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Figure D.2: Changes in proximal inter-task affinity during the optimization process of ViT-L with
Taskonomy benchmark.
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Figure D.2: Changes in proximal inter-task affinity during the optimization process with Taskonomy
benchmark.
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Figure D.3: Changes in the proximal inter-task affinity during the optimization process of different
sizes of ViT with NYUD-v2.

Table D.4: Results on Taskonomy with different affinity decay rates β.

DE DZ EO ET K2 K3 N C R S2 S2.5
Task L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m (↑)

Single Task 0.0183 0.0186 0.1089 0.1713 0.1630 0.0863 0.2953 0.7522 0.1504 0.1738 0.1530 -

GD 0.0188 0.0197 0.1283 0.1745 0.1718 0.0933 0.2599 0.7911 0.1799 0.1885 0.1631 -6.35
β=0.0001 0.0165 0.0168 0.1224 0.1739 0.1693 0.0907 0.2304 0.7581 0.1683 0.1831 0.1571 -0.18
β=0.001 0.0167 0.0169 0.1228 0.1739 0.1695 0.0910 0.2344 0.7600 0.1691 0.1836 0.1571 -0.64
β=0.01 0.0167 0.0171 0.1232 0.1739 0.1698 0.0912 0.2362 0.7623 0.1705 0.1834 0.1576 -1.01
β=0.1 0.0167 0.0171 0.1231 0.1739 0.1695 0.0912 0.2355 0.7631 0.1697 0.1831 0.1575 -0.87

Table D.5: Comparison of different grouping strategies on the Taskonomy benchmark.

DE DZ EO ET K2 K3 N C R S2 S2.5
Task L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m (↑)

Heterogeneous 0.0172 0.0176 0.1252 0.1741 0.1700 0.0920 0.2475 0.7781 0.1743 0.1849 0.1660 -3.10
Random (N(M)=2) 0.0177 0.0180 0.1259 0.1741 0.1707 0.0923 0.2662 0.7807 0.1757 0.1871 0.1617 -4.24
Random (N(M)=3) 0.0172 0.0177 0.1250 0.1741 0.1703 0.0920 0.2619 0.7754 0.1749 0.1866 0.1607 -3.35
Random (N(M)=4) 0.0183 0.0187 0.1277 0.1746 0.1706 0.0936 0.2812 0.7841 0.1804 0.1882 0.1636 -6.12
Random (N(M)=5) 0.0186 0.0184 0.1274 0.1747 0.1708 0.0935 0.3150 0.7842 0.1800 0.1888 0.1640 -7.17
Random (N(M)=6) 0.0208 0.0209 0.1349 0.1750 0.1721 0.0961 0.3334 0.8222 0.1976 0.1935 0.1703 -13.20
Ours 0.0167 0.0169 0.1228 0.1739 0.1695 0.0910 0.2344 0.7600 0.1691 0.1836 0.1571 -0.64

E ALGORITHM COMPLEXITY AND COMPUTATIONAL LOAD

We also provide a detailed time comparison of previous multi-task optimization methods on Taskon-
omy. As shown in Table E.1, our approach effectively optimizes multiple tasks with more efficient
training times. Our method converges faster than gradient-based approaches, as the primary bottleneck
in optimization lies in backpropagation and gradient manipulation.
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Figure D.4: Changes in proximal inter-task affinity during the optimization process of different sizes
of ViT with PASCAL-Context.

Table D.6: Results on Taskonomy with varying batch sizes using ViT-B (batch sizes in brackets).

DE DZ EO ET K2 K3 N C R S2 S2.5
Task L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m (↑)

Single Task 0.0183 0.0186 0.1089 0.1713 0.1630 0.0863 0.2953 0.7522 0.1504 0.1738 0.1530 -

GD(4) 0.0208 0.0214 0.1323 0.1747 0.1723 0.0952 0.2768 0.8214 0.1936 0.1921 0.1677 -10.88
Ours(4) 0.0185 0.0190 0.1273 0.1741 0.1709 0.0928 0.2739 0.7957 0.1809 0.1888 0.1632 -6.19
GD(8) 0.0188 0.0197 0.1283 0.1745 0.1718 0.0933 0.2599 0.7911 0.1799 0.1885 0.1631 -6.35
Ours(8) 0.0167 0.0169 0.1228 0.1739 0.1695 0.0910 0.2344 0.7600 0.1691 0.1836 0.1571 -0.64
GD(16) 0.0172 0.0180 0.1248 0.1742 0.1711 0.0920 0.2280 0.7641 0.1706 0.1848 0.1589 -1.94
Ours(16) 0.0153 0.0154 0.1186 0.1737 0.1682 0.0893 0.1967 0.7334 0.1581 0.1780 0.1516 +4.19
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Figure D.5: Changes in proximal inter-task affinity during the optimization process with different
decay rates, β.

Table E.1: Comparison of the average time required by each optimization process to handle a single
batch for 11 tasks on Taskonomy.

Process (sec) Forward Pass Backpropagation Gradient Manipulation Optimizer Step Clustering + Affinity Update Total
GD 0.030(9.04%) 0.198(59.26%) - 0.106(31.69%) - 0.33
UW 0.030(8.82%) 0.198(58.24%) - 0.112(32.94%) - 0.34
DTP 0.030(8.70%) 0.199(57.68%) - 0.116(33.62%) - 0.34
DWA 0.031(9.01%) 0.198(57.56%) - 0.115(33.43%) - 0.34
GradDrop 0.030(1.13%) 2.05(80.54%) 0.411(16.02%) 0.059(2.30%) - 2.57
MGDA 0.033(0.086%) 2.06(5.36%) 36.29(94.47%) 0.031(0.081%) - 38.42
PCGrad 0.030(0.63%) 2.07(44.09%) 2.57(54.62%) 0.031(0.66%) - 4.70
CAGrad 0.030(0.57%) 2.06(39.39%) 3.11(59.44%) 0.031(0.59%) - 5.23
Aligned-MTL 0.027(0.86%) 2.07(64.99%) 1.06(33.20%) 0.030(0.95%) - 3.19
FAMO 0.030 (8.72%) 0.198(57.56%) - 0.116(33.72%) - 0.34
Ours 0.072 (7.13%) 0.576(56.72%) - 0.323(31.82%) 0.044(4.33%) 1.02
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