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Abstract

Multi-agent dynamics have powered innovation from time immemorial, such as
scientific innovations during the space race or predator-prey dynamics in the natural
world. The resulting landscape of interacting agents is a continually changing,
interconnected, and complex mosaic of opportunities for innovation. Yet, training
innovative and adaptive artificial agents remains challenging. Self-Play algo-
rithms bootstrap the complexity of their solutions by automatically generating
a curriculum. Recent work has demonstrated the power of foundation models
(FMs) as intelligent and efficient search operators. In this paper, we investigate
whether combining the human-like priors and extensive knowledge embedded
in FMs with multi-agent race dynamics can lead to rapid policy innovation in
open-ended Self-Play algorithms. We propose a novel algorithm, Quality-Diversity
Self-Play (QDSP) that explores diverse and high-performing strategies in interact-
ing (here, competing) populations. We evaluate QDSP in a two-player asymmetric
pursuer-evader simulation with code-based policies and show that QDSP surpasses
high-performing human-designed policies. Furthermore, QDSP discovers better
policies than those from quality-only or diversity-only Self-Play algorithms. Since
QDSP explores new code-based strategies, the discovered policies come from
many distinct subfields of computer science and control, including reinforcement
learning, heuristic search, model predictive control, tree search, and machine learn-
ing approaches. Combining multi-agent dynamics with the knowledge of FMs
demonstrates a powerful new approach to efficiently create a Cambrian explosion
of diverse, performant, and complex strategies in multi-agent settings.

1 Introduction

Creating algorithms that rival the diversity and ingenuity that evolution has achieved is exceedingly
difficult with current methods. In a multi-agent setting, each new policy presents new learning
opportunities for other agents. The result is a vast tapestry of agents, each learning in new and
diverse ways. We observe this adaptability in the natural world. For example, if a leopard has
survived on a nearby hunting ground for several years but a pride of lions migrates into the territory,
suddenly the leopard’s current strategy has been compromised as the lionesses can gang up on the
leopard to steal his kill. To survive, the leopard must learn a new strategy, such as dragging its
kill up a tree before eating it. Similar to nature, Self-Play (SP) algorithms have shown remarkable
capabilities for generating specialized agents that through competition can learn complex strategies,
e.g. AlphaGo [27]. However, replicating nature’s innovation is difficult for artificial algorithms
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(a) QDSP Propose Step (b) QDSP Update Population Step

Figure 1: Overview of Quality-Diversity Self-Play a) The Propose step takes in competing agents (from
two populations p1 and p2), and the outcome of their competition. If searching for a new member of p1, the
context is also filled with other members of that population. The FM-based search operator is asked to create an
interestingly new policy and refine its implementation until the code works. b) The Update step takes the newly
proposed policy and checks its novelty against the archive. If the policy is novel, it is added to the population.
Otherwise, it competes against its nearest neighbor and replaces it if better in the style of MAP-Elites.

because they lack a general understanding of the richness of the world, and training agents to exhibit
new behaviors tends to be slow.

Recent advances in foundation models (FMs) have enabled them to be used as flexible search
operators for tasks such as increasing sample efficiency of reinforcement learning algorithms [20] or
even making novel scientific discoveries [18, 25]. However, these settings are only “single-agent”,
e.g. black box optimization of a particular reward signal [8, 13] or even following an intrinsic notion
of interestingness [6, 18, 32]. Since multi-agent race dynamics have been shown to spur innovation
in humans and the natural world, we believe integrating these dynamics with FM search algorithms
will help spark an even bigger explosion of strategic creativity in multi-agent settings. Moreover,
integrating prior knowledge from FMs could speed up expensive multi-agent search algorithms.

Our algorithm, Quality-Diversity Self-Play (QDSP) iteratively seeks to either propose novel strategies
or improve an existing strategy to be more competitive against the current opposing population. We
evaluate QDSP on the (unfortunately named) Homicidal-Chauffeur [9] (HC), a classic asymmetric
pursuer-evader game, where the pursuer can move quickly but has a limited turning radius while the
evader is slower, but extremely agile. QDSP implements a diverse collection of policies drawn from
subfields of computer science and control theory based on tabular Q-learning [31], Monte Carlo tree
search [11], evolutionary search, model predictive control [7], linear and quadratic regression [10],
simple heuristics and more. Furthermore, QDSP outperforms a collection of human-designed policies
as well as multi-agent policy-search algorithms inspired by Eureka [20] and OMNI [32].

2 Background and Related Work

Self-Play: Self-Play (SP) algorithms train an agent to solve a task by having it compete against itself
and/or previous versions of itself. Because the opponent set is always expanding, and the algorithm
continually seeks to outperform its opponents, Self-Play is an open-ended process [2]. This arms-race
dynamic has been explored to great effect in training super-human agents in various matrix, board,
and video games [1, 12, 15, 22, 27, 29, 30]. However, these methods often have trouble learning a
large diversity of solutions, instead continually refining existing strategies.

Quality-Diversity: On the other hand, Quality-Diversity (QD) algorithms generate and curate an
ever-expanding collection of diverse high-performing solutions. A canonical QD algorithm is MAP-
Elites [21]. In MAP-Elites, diversity and performance are defined a priori by a collection of functions
that quantify characteristics of the solution’s behavior or “dimensions of variation” (i.e., how much
a robot used each limb) and quality (i.e., how far the robot walked). When MAP-Elites creates a
new solution, it is categorized according to its behavior and compared according to its quality. If this
solution is the first to display that behavior, it is added to the archive. Otherwise, it must compete
against the similar agent. The two are scored according to the performance function and only the
better agent is kept [5, 21]. As a result, MAP-Elites produces a diverse collection of policies that
have each been competing within their local niche to get as good as possible while keeping their
unique characteristics. The MAP-Elites algorithm has been applied to fields such as robotics [5, 21]
and evolving cooperative rule-based game-playing agents [3]. Quality-Diversity Self-Play combines
the competitive dynamics and curriculum generation of SP with the diversity-preservation of QD.
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(a) ObstacleAvoidance
vs MCTSPursuit

(b) ObstacleAvoidance
vs MPCPursuit

(c) RandomDirection-
Change vs GAPursuit

(d) TerrainEvasion vs
MCTSPursuit

Figure 2: Selected Generated Policies from Quality-Diversity Self-Play in the HC game. Red lines
represent the pursuer trajectories, while blue lines are from the evaders. The underlined agent wins.
Explored algorithms include: Q-Learning, MPC, evolutionary search, heuristics, and physics-inspired
attractive-repulsive policies (more in Appendix C and Appendix D). The algorithmic diversity shows
that many potential solutions exist and would be difficult to manually search for and optimize.

FMs for Search: FMs are generative models trained on internet-scale repositories of a) code and
b) general human-written text. Therefore, they achieve general coding competency [4] and also
approximate human-like notions such as novelty [6, 32]. Therefore, FMs can be used as “intelligent”
search operators when incorporated into stochastic optimization algorithms. Searching over the space
of code using FMs has seen great success in single-agent problems [6, 8, 14, 16, 17, 19, 25, 32].

3 Quality-Diversity Self-Play

We propose Quality-Diversity Self-Play, to the best of our knowledge, the first algorithm integrating
Quality-Diversity and Self-Play algorithms. Additionally, we believe our method is the first to
leverage an FM search operator within a Self-Play loop, thereby increasing its sample efficiency.
The FM searches for code-based policies that map states to actions: π(s) = a. This choice follows
recent work that used FM code policies to control robots [16] and simulated agents [8, 20]. Writing
control policies as code provides policies that are interpretable, extensible, and amenable to post-hoc
safety-critical transformations. Since we automatically execute FM-generated policies, rigorous
sandboxing is necessary to ensure safe execution. Our algorithm iterates between policy generation
and population improvement for two competing populations, as illustrated in Figure 1. QDSP has a
directive to seek out novel policies, and an update rule that improves policy quality.

Policy Generation: We seed QDSP with one simple human-designed policy per population. When
generating new policies, e.g., a new member of p1, QDSP provides the FM-search-operator with
context including a randomly sampled member of both populations and the score of how well they
perform against each other, as well as additional nearby members of p1 to inform already explored
strategies. The FM generates a new policy conditioned on the provided context and task. The
generated policy goes through a refinement period to remove implementation bugs [26].

Population Improvement: The new policy is then embedded, and its k nearest neighbors are
retrieved. QDSP asks the FM if the new policy is truly novel. If yes, it adds the new policy to
the population; otherwise, the algorithm compares the new policy’s performance against its nearest
neighbor and keeps the better policy. This update pattern results in a dimensionless1 MAP-Elites-style
Self-Play algorithm where novel policies are added to the archive as stepping stones for future
innovation while known behaviors are incrementally improved.

4 Evaluation

Problem Setting: We evaluate our algorithm on HC [9], a classic 2-body evader-pursuer game
implemented as a finite discrete-time system. The chase takes place on the XY-plane and each
agent outputs a continuous heading value to determine their next movement direction. The game
is asymmetric because the pursuer moves more quickly but has a limited turning radius, while the
evader is slower but has no such restriction. For more details, see Appendix A. QDSP and all
baselines are seeded with a single simple human-written policy for the evader (psiRandom) and

1While the original MAP-Elites pre-defined dimensions of variation, our algorithm lets the FM automatically
cluster discovered policies into groups.
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Figure 3: For each run of each algorithm, we select
the highest ELO pursuer and evader to create a popu-
lation of the best agents and the human-designed
pursuer and evader policies (SingleStatePursuit,
HistoricalPursuit, PerturbPursuit, RandomEvasion,
Turn90Evasion). These agents compete in 100
round-robin tournaments against the matching op-
ponent populations to calculate an ELO score. The
mean ELO of QDSP’s discovered top-end policies
in both populations is as good or better than the high-
quality human-designed policies (Perturb, Historical,
and Turn90).

pursuer (phiSingleState) and run for 250 generations using GPT-4o as a search operator that outputs
a code file implementing a policy class. Each algorithm is run three (independent) times.

Baselines: The baselines take inspiration from OMNI [32] and Eureka [20] to design diversity-only
and quality-only algorithms. The Quality-Only (Eureka-inspired) baseline, is a Self-Play loop
where the FM observes the current policies for each player and their competition outcomes. The FM
suggests improvements for each policy, after which these new policies compete and the cycle repeats.
Furthermore, to test the FM’s base knowledge, we implement an Open-Loop baseline that is identical
to Quality-Only, except the FM is not allowed to observe how well its policies score or any opponent
policies. For the Diversity-Only (OMNI-inspired) baseline, we maintain two populations of players.
To design a new e.g. evader, we sample an evader and pursuer from each population to evaluate them
against each other and get the evader’s k-nearest neighbors (using policy text embeddings) from the
archive. The sampled policies, their competition outcome, and the evader’s k-nn are provided to
the FM, like OMNI-EPIC [6]. Then the FM designs an interestingly new policy that is added to the
evader population, and the cycle repeats.

The Quality-Only (Eureka-inspired) and Open-Loop baselines only maintain the most recent policies
for each role and only seek to constantly improve that current strategy whereas QDSP innovates from
the entire set of stepping stones in a population’s archive. While the Diversity-Only (OMNI-inspired)
control maintains populations like QDSP, there is no explicit hill-climbing step to continually improve
older no-longer-novel policies. Thus QDSP is a Quality-Diversity algorithm unlike the Diversity-Only
(OMNI-inspired) control that focuses on creating interesting diversity only.

Strategy Evaluation and Visualizations: We include a tournament-based analysis quantifying
QDSP’s and the baselines’ generated policies via ELO scores in Figure 3 and Appendix B. Among
the generated policies, both QDSP and the Diversity-Only (OMNI-inspired) control explored policies
from across computer science and control theory as shown in Appendix D. For example, both pursuers
and evaders often used Kalman filters [28] and linear regression models to predict the opponent’s
future position. Meanwhile, some evasion policies attempted strategies that created imaginary targets
on the XY-plane that it had to avoid or tried to hide next to. QDSP is the only algorithm that generates
strong policies for both evader and pursuer populations. Even more impressively, when compared
against strong human-designed policies, QDSP’s policies are as good as the pursuer baseline and
better than the evader baseline (Figure 3). Interestingly, the highest-performing pursuers included
Monte Carlo tree-search and genetic algorithm policies that implemented their own reward and
forward models for finding optimal heading angles. The optimal evader, which achieved higher ELO
than the human-designed Turn90 policy (Figure 3b), was a simple heuristic policy that calculates
the pursuer’s approach vector and moves away from its next location. Figure 2 shows a sample of
competitions between various QDSP-generated pursuers (red) and evaders (blue). Additional policies
are visualized in Appendix C with example codes in Appendix D.

Measuring Quality and Diversity: To measure the quality of QDSP and the controls, we create
shared evaluation populations of pursuers and evaders. Given the competitive nature of the game
and the fact that each algorithm bootstraps its populations of policies, there is no shared benchmark
to compare each run against (besides the human-designed policies). Therefore we do a post-hoc
quality analysis where we construct a shared population from each experiment that is made up of
the: human-designed policies, the top-3 policies from each experiment (calculated using ELO scores
via an intra-experiment tournament), and then 15 random policies from each experiment. Each
algorithm’s generated policies compete against this shared population’s opposing policies. This
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Figure 4: Example QD Plots for each algorithm that show the diversity and quality of the solutions
found. The QD Plots are defined using policy embedding vectors. We take all of the policy
embeddings from all the experiments and compress them to 2 dimensions via Principle Component
Analysis [23]. The resulting space is discretized into 25x25 bins and each policy is put into its
appropriate category. The QD map maintains only the highest-performing policy per cell. The QD
Score then calculates the average of the Map combining how much and how well the space has been
explored into a shared metric. For further QD-Score analysis see Figure 5 in Appendix B.

generates a shared objective score can be compared across algorithms. We incorporate their quality
information into the QD-Plots seen in Figure 4 and discussed below.

Which algorithm created the best policies? To answer that, we take a champion from each run and
have them compete against each other. To measure just the quality of the high-end policies, we
subsample the evaluation population to the top-1 policy from each algorithm’s run and the human-
designed policies and have them compete against each other. This removes as many confounding
variables as possible when determining which algorithm generated the best policy. QDSP’s top-end
policies achieve the highest mean ELO scores of the top-1 policies in Figure 3.

Measuring the diversity of QDSP and the controls is a more involved process. To measure each
algorithm’s diversity, we take all of the policy embeddings and create a shared 2-dimensional space
across the experiments. This space is created by doing a 2-dimensional PCA-transformation [23] of
all the generated policies which is then chunked into 625 equal bins (25 x 25) defining a Map. Each
policy can be categorized into the Map based on where the PCA transform places the embedding
vector. The Map uses the quality-information to keep the best policy for each cell in the space.
The diversity of each algorithm can then be calculated as the number of filled cells in the Map.
Furthermore, we derive the QD-Score of the algorithm to show both the achieved diversity of the
solutions found along with their quality (discussed more in Appendix B), as the mean of the Map
(including not-filled-in cells as zeroes in the mean calculation) [24]. As seen in Figure 5 (Appendix B),
QDSP achieves the highest QD-Score.

5 Conclusion

In this paper, we have introduced the first Quality-Diversity Self-Play algorithm. Furthermore, we
demonstrate the power of foundation models as powerful search operators in (already powerful)
Self-Play algorithms. We demonstrate that Quality-Diversity Self-Play discovers a wide variety of
high-performing strategies in the competitive multi-agent HC game, spanning many disciplines of CS
and control. However, the principles here extend beyond code-as-policies; FMs could also define
strategies in terms of reward functions for an RL agent to optimize [20] within or beyond Self-Play,
which could enable future versions of QDSP to discover and train neural network strategies that are
hard to define programmatically.
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November 1901. ISSN 1941-5990. doi: 10.1080/14786440109462720. URL http://dx.doi.
org/10.1080/14786440109462720.

[24] Justin K. Pugh, L. B. Soros, Paul A. Szerlip, and Kenneth O. Stanley. Confronting the challenge
of quality diversity. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
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Figure 5: Using QD Plots, like Figure 4, we derive the QD-Score of each algorithm. QDSP achieves
the highest QD-Score across all our experiments showing that QDSP both explores many different
solution types and improves their quality. The Diversity-Only baseline achieves high coverage of the
search space, but does not achieve high quality while the Quality-Only and Open-Loop baselines
achieve high quality but low coverage thus bringing down their respective scores.

A Homicidal Chauffeur Update Equations

The problem used in Section 4 is a 2-dimensional Homicidal Chauffeur problem where we have two
agents that are navigating around the XY-plane: one evader, e, and one pursuer, p. The pursuer has
a minimum turn radius of R and moves at speed s1 according to heading-angle ϕ while the evader
moves at speed s2 according to heading-angle ψ with s1 > s2. The next xy-locations for each agent
are defined as follows:

θ̇ =
s1
R
ϕt (1)

xp,t+1 = xp,t + s1 sin(ϕt−1 + θ̇) (2)

yp,t+1 = yp,t + s1 cos(ϕt−1 + θ̇) (3)

xe,t+1 = xe,t + s2 sin(ψt) (4)

yp,t+1 = ye,t + s2 cos(ψt) (5)

ϕt+1 = θ̇ (6)

B Evaluation Results

In addition to the existing visualization in our main paper Section 4, we present further evaluation
details and statistics from our tournament evaluation here.

The human-written seed policies are: SingleStatePursuit which calculates the pursuer’s optimal
heading angle to minimize the distance between the current positions of the pursuer and evader and
RandomEvasion which randomly changes direction every 20 timesteps.

Each algorithm creates candidate policies. As an early measure of their quality, the two populations
(augmented to include the hand-written policies) compete in 100 round-robin tournaments with
the opposing population. These match outcomes update ELO scores for each policy. While ELO
scores are incomparable across experiments (i.e., Quality-Only (Eureka-inspired)-policy ELOs do
not correspond to QDSP-policy ELOs), they can be compared within each treatment. A secondary
evaluation is then run on the two populations by comparing them against a shared evaluation
population described in Section 4. Only QDSP created policies that consistently outperform the
high-quality hand-written solutions in both populations as shown in Figure 3. While Quality-Only
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(Eureka-inspired) managed to find good pursuers, the overall quality of their evaders was low.
Similarly, for Diversity-Only (OMNI-inspired) and the Open-Loop control found some good pursuers,
but their evaders were weaker than the high-quality human-designed policy. Because each algorithm
played against the same human-written policies, they can serve as a shared benchmark of quality
across the experiments.

The QD-Score of the policies found by the different algorithms is shown in Figure 5 with QDSP
showing the highest QDScore. This indicates that QDSP did the best at balancing fine-tuning existing
policies while also exploring new solutions.
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C Additional Visualizations

We provide additional visualizations for generated agents discussed in Section 4, in addition to
existing figures in Figure 6. We sampled 26 evader and pursuer combinations at random for inclusion.
Pursuer trajectories are in red while evader trajectories are in blue.

(a) (b)

(c) (d)

(e) (f)

Figure 6: 26 randomly sampled policies from each population. Red trajectories are pursuers and Blue
trajectories are from evaders.
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(g) (h)

(i) (j)

(k) (l)

Figure 6: Sample Trajectories (continued).
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(m) (n)

(o) (p)

(q) (r)

Figure 6: Sample Trajectories (continued).
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(s) (t)

(u) (v)

(w) (x)

Figure 6: Sample Trajectories (continued).
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(y) (z)

Figure 6: Sample Trajectories (continued).

D Code Policies

Below are example generated policies. Policies with “phi” in the class name are pursuer policies
while policies with “psi” in the class name are evader policies.

Monte-Carlo-Tree-Search Pursuer Policy seen in Figure 2:

import numpy as np
import math
import random

class phiMCTSPursuit:
def __init__(self , consts=(0.01, 0.006 , 0.1), simulation_depth=10,

exploration_param=1.4):
self.description = "phi calculation using Monte Carlo Tree

Search (MCTS) to explore
potential future states and
optimize the pursuer ’s

heading angle"
self.__name__ = "phiMCTSPursuit"
self.consts = consts
self.simulation_depth = simulation_depth # Depth of the tree

search
self.exploration_param = exploration_param # Exploration

parameter for UCB1

def ucb1(self , node , total_visits):
if node[’visits ’] == 0:

return float(’inf’)
return node[’reward ’] / node[’visits ’] + self.

exploration_param * math.
sqrt(math.log(total_visits)
/ node[’visits ’])

def simulate(self , state , depth):
if depth == 0:

return 0
x = state
total_reward = 0
for _ in range(depth):

action = random.uniform(-1, 1)
theta_dot = self.consts[0] / self.consts[2] * action
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x_next = dXdt(x, [action , x[2]]) # Assume evader
maintains same heading
for simplicity

distance = np.sqrt(( x_next[0] - x_next[3]) ** 2 + (x_next[
1] - x_next[4]) ** 2)

total_reward -= distance
x = x_next

return total_reward

def mcts(self , state):
tree = {}
tree[str(state)] = {’reward ’: 0, ’visits ’: 0, ’children ’: {}}
total_visits = 0

for _ in range(self.simulation_depth):
path = []
current_state = state
depth = 0

for depth in range(self.simulation_depth):
node = tree[str(current_state)]
if not node[’children ’]:

break
action = max(node[’children ’], key=lambda a: self.ucb1

(node[’children ’][a
], node[’visits ’]))

path.append (( current_state , action))
theta_dot = self.consts[0] / self.consts[2] * action
current_state = dXdt(current_state , [action ,

current_state[2]])

if str(current_state) not in tree:
tree[str(current_state)] = {’reward ’: 0, ’visits ’: 0,

’children ’: {}}
reward = self.simulate(current_state , self.

simulation_depth -
depth)

for state , action in reversed(path):
node = tree[str(state)]
if action not in node[’children ’]:

node[’children ’][action] = {’reward ’: 0, ’visits ’:
0}

node[’children ’][action][’reward ’] += reward
node[’children ’][action][’visits ’] += 1
node[’reward ’] += reward
node[’visits ’] += 1
total_visits += 1

best_action = max(tree[str(state)][’children ’], key=lambda a:
tree[str(state)][’children ’
][a][’reward ’])

return best_action

def __call__(self , X):
if len(X) < 2:

return 0 # Not enough data to perform meaningful
calculation

state = X[-1]
return self.mcts(state)

const = (0.01, 0.006 , 0.1)

def dXdt(x0, input):
# theta dot limiter
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if abs(input[0]) > 1:
input[0] = 1 * np.sign(input[0])

x_dot = np.empty(5)

# simultaneous update of theta
theta_dot = const[0] / const[2] * input[0]
x_dot[0] = const[0] * np.sin(x0[2] + theta_dot)
x_dot[1] = const[0] * np.cos(x0[2] + theta_dot)
x_dot[2] = theta_dot

x_dot[3] = const[1] * np.sin(input[1])
x_dot[4] = const[1] * np.cos(input[1])
return x0 + x_dot

Sample Evader seen in Figure 2

import numpy as np

class psiDynamicObstacleAvoidanceEvasion:
def __init__(self , consts=(0.01, 0.006 , 0.1), obstacle_radius=0.15

):
self.description = "psi calculation using dynamic obstacle

avoidance to create a
zigzag evasion pattern"

self.__name__ = "psiDynamicObstacleAvoidanceEvasion"
self.consts = consts
self.obstacle_radius = obstacle_radius

def __call__(self , psi , ii, X):
if len(X) < 2:

return psi # Not enough data to perform meaningful
calculation

x = X[-1]
evader_pos = np.array([x[3], x[4]])

# Calculate the direction to the pursuer
dx_pursuer = x[3] - x[0]
dy_pursuer = x[4] - x[1]
angle_to_pursuer = np.arctan2(dy_pursuer , dx_pursuer)

# Create dynamic obstacles around the evader ’s current
position

obstacle_angle = angle_to_pursuer + np.pi / 4 # 45 degrees
offset from the pursuer
direction

obstacle_pos = evader_pos + self.obstacle_radius * np.array([
np.sin(obstacle_angle), np.
cos(obstacle_angle)])

# Calculate the avoidance vector from the obstacle
dx_obstacle = evader_pos[0] - obstacle_pos[0]
dy_obstacle = evader_pos[1] - obstacle_pos[1]
distance_to_obstacle = np.sqrt(dx_obstacle ** 2 + dy_obstacle

** 2)
avoidance_vector = np.array([dx_obstacle , dy_obstacle]) / (

distance_to_obstacle + 1e-5
)

# Calculate the final heading direction for the evader
final_vector = avoidance_vector + np.array([np.sin(

angle_to_pursuer), np.cos(
angle_to_pursuer)])
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new_psi = np.arctan2(final_vector[1], final_vector[0])

# Normalize psi to be within [-pi , pi]
psi = (new_psi + np.pi) % (2 * np.pi) - np.pi

return psi

Model-Predictive Control Pursuer Policy:

import numpy as np
from scipy.optimize import minimize

class phiModelPredictiveControlPursuit:
def __init__(self , consts=(0.01, 0.006 , 0.1), horizon=10 ,

control_weight=0.1):
self.description = "phi calculation using Model Predictive

Control to optimize the
pursuer ’s heading angle
over a finite horizon"

self.__name__ = "phiModelPredictiveControlPursuit"
self.consts = consts
self.horizon = horizon # Prediction horizon
self.control_weight = control_weight # Weight for control

effort in the cost function

def predict_evader_positions(self , X, psi):
evader_positions = []
evader_x , evader_y = X[-1][3], X[-1][4]
for _ in range(self.horizon):

evader_x += self.consts[1] * np.sin(psi)
evader_y += self.consts[1] * np.cos(psi)
evader_positions.append ((evader_x , evader_y))

return evader_positions

def cost_function(self , phi , X, evader_positions):
pursuer_x , pursuer_y , pursuer_theta = X[-1][:3]
cost = 0
for i in range(self.horizon):

theta_dot = self.consts[0] / self.consts[2] * phi
pursuer_theta += theta_dot
pursuer_x += self.consts[0] * np.sin(pursuer_theta)
pursuer_y += self.consts[0] * np.cos(pursuer_theta)
evader_x , evader_y = evader_positions[i]
distance = np.sqrt(( pursuer_x - evader_x) ** 2 + (

pursuer_y - evader_y)
** 2)

cost += distance + self.control_weight * np.abs(phi)
return cost

def __call__(self , X):
if len(X) < 2:

return 0 # Not enough data to perform meaningful
calculation

psi = X[-1][2] # Use the current heading angle of the evader
as the prediction base

evader_positions = self.predict_evader_positions(X, psi)
result = minimize(self.cost_function , x0=0, args=(X,

evader_positions), bounds=[
(-1, 1)])

return result.x[0]

A Genetic Algorithm Policy for selecting direction headings:
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import numpy as np

class phiGeneticAlgorithmPursuit:
def __init__(self , consts=(0.01, 0.006 , 0.1), population_size=30,

generations=50 , mutation_rate=0
.1):

self.description = "phi calculation using Genetic Algorithm (
GA) to evolve the best
pursuit strategy over
multiple generations"

self.__name__ = "phiGeneticAlgorithmPursuit"
self.consts = consts
self.population_size = population_size # Number of

individuals in the
population

self.generations = generations # Number of generations to
evolve

self.mutation_rate = mutation_rate # Probability of mutation
self.population = np.random.uniform(-1, 1, population_size) #

Initialize population with
random phi values

def evaluate_fitness(self , X):
x = X[-1]
pursuer_x , pursuer_y , pursuer_theta , evader_x , evader_y = x
fitness = np.zeros(self.population_size)
for i in range(self.population_size):

phi = self.population[i]
theta_dot = self.consts[0] / self.consts[2] * phi
new_pursuer_x = pursuer_x + self.consts[0] * np.sin(

pursuer_theta +
theta_dot)

new_pursuer_y = pursuer_y + self.consts[0] * np.cos(
pursuer_theta +
theta_dot)

distance_to_evader = np.sqrt(( new_pursuer_x - evader_x) **
2 + (new_pursuer_y -

evader_y) ** 2)
fitness[i] = -distance_to_evader # Negative distance for

maximization problem
return fitness

def select_parents(self , fitness):
probabilities = fitness - fitness.min() + 1e-6 # Avoid

division by zero
probabilities /= probabilities.sum() # Normalize to make a

probability distribution
parents_indices = np.random.choice(self.population_size , size=

self.population_size , p=
probabilities)

return self.population[parents_indices]

def crossover(self , parents):
offspring = np.empty(self.population_size)
crossover_point = np.random.randint(1, self.population_size -

1)
for i in range(0, self.population_size , 2):

parent1 , parent2 = parents[i], parents[i + 1]
offspring[i] = np.concatenate (( parent1[:crossover_point],

parent2[crossover_point
:]))

offspring[i + 1] = np.concatenate (( parent2[:
crossover_point],
parent1[crossover_point
:]))
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return offspring

def mutate(self , offspring):
for i in range(self.population_size):

if np.random.rand() < self.mutation_rate:
mutation_value = np.random.uniform(-1, 1)
offspring[i] += mutation_value
offspring[i] = np.clip(offspring[i], -1, 1) # Ensure

phi values are
within [-1, 1]

return offspring

def __call__(self , X):
if len(X) < 2:

return 0 # Not enough data to perform meaningful
calculation

for _ in range(self.generations):
fitness = self.evaluate_fitness(X)
parents = self.select_parents(fitness)
offspring = self.crossover(parents)
self.population = self.mutate(offspring)

best_individual_index = np.argmax(self.evaluate_fitness(X))
return self.population[best_individual_index]

A physics-inspired attraction-based policy:

import numpy as np

class phiStochasticAttractionPursuit:
def __init__(self , consts=(0.01, 0.006 , 0.1), attraction_coeff=1.0

, randomness_coeff=0.5):
self.description = "phi calculation using a combination of

deterministic attraction to
the evader and random

exploration"
self.__name__ = "phiStochasticAttractionPursuit"
self.consts = consts
self.attraction_coeff = attraction_coeff # Coefficient for

attractive force towards
evader

self.randomness_coeff = randomness_coeff # Coefficient for
random exploration

def __call__(self , X):
if len(X) < 2:

return 0 # Not enough data to perform meaningful
calculation

x = X[-1]
pursuer_x , pursuer_y , pursuer_theta , evader_x , evader_y = x

# Calculate attractive force towards the evader
dx = evader_x - pursuer_x
dy = evader_y - pursuer_y
distance_to_evader = np.sqrt(dx ** 2 + dy ** 2)
attraction_heading = np.arctan2(dy, dx)
attraction_error = attraction_heading - pursuer_theta
attraction_error = (attraction_error + np.pi) % (2 * np.pi) -

np.pi # Normalize to [-pi ,
pi]

# Add random exploration component
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random_exploration = np.random.uniform(-1, 1) * self.
randomness_coeff

# Combine the deterministic attraction and random exploration
phi = self.attraction_coeff * attraction_error +

random_exploration

# Clip phi to be within [-1, 1]
phi = np.clip(phi , -1, 1)

return phi

Q-Learning Evader Policy!

import numpy as np
import random

class psiQlearningEvasion:
def __init__(self , consts=(0.01, 0.006 , 0.1), learning_rate=0.1,

discount_factor=0.9, epsilon=0.
1):

self.description = "psi calculation using Q-learning to
adaptively learn the
optimal evasion strategy"

self.__name__ = "psiQlearningEvasion"
self.consts = consts
self.learning_rate = learning_rate
self.discount_factor = discount_factor
self.epsilon = epsilon
self.q_table = {}
self.prev_state = None
self.prev_action = None

def state_to_key(self , x):
# Discretize the state for the Q-table
state = (int(x[0] * 10), int(x[1] * 10), int(x[3] * 10), int(x

[4] * 10))
return state

def choose_action(self , state):
if state not in self.q_table:

self.q_table[state] = np.zeros(8) # Initialize Q-values
for 8 possible actions
(angles)

if random.uniform(0, 1) < self.epsilon:
return random.randint(0, 7) # Explore: choose a random

action
else:

return np.argmax(self.q_table[state]) # Exploit: choose
the best action based
on Q-values

def update_q_table(self , reward , new_state):
if self.prev_state is not None and self.prev_action is not

None:
prev_q_value = self.q_table[self.prev_state][self.

prev_action]
max_future_q = np.max(self.q_table[new_state]) if

new_state in self.
q_table else 0

new_q_value = prev_q_value + self.learning_rate * (reward
+ self.discount_factor
* max_future_q -
prev_q_value)
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self.q_table[self.prev_state][self.prev_action] =
new_q_value

def __call__(self , psi , ii, X):
if len(X) < 2:

return psi # Not enough data to perform meaningful
calculation

x = X[-1]
current_state = self.state_to_key(x)
action = self.choose_action(current_state)
angle = action * (2 * np.pi / 8) - np.pi # Convert action

index to angle

# Simulate one step to get the new state and calculate reward
x_dot = np.empty(5)
x_dot[3] = self.consts[1] * np.sin(angle)
x_dot[4] = self.consts[1] * np.cos(angle)
new_x = x.copy()
new_x[3] += x_dot[3]
new_x[4] += x_dot[4]
new_state = self.state_to_key(new_x)
reward = -np.sqrt((x[0] - new_x[3]) **2 + (x[1] - new_x[4])** 2)

# Negative distance to
pursuer

self.update_q_table(reward , new_state)
self.prev_state = current_state
self.prev_action = action

return angle
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