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Abstract

Scientific language models drive research in-001
novation but require extensive fine-tuning on002
large datasets. This work enhances such mod-003
els by improving their inference and evalu-004
ation capabilities with minimal or no addi-005
tional training. Focusing on molecule caption006
generation, we explore synergies between007
alignment fine-tuning and model merging in008
a cross-modal setup. We reveal intriguing009
insights into the behaviour and suitability of010
such methods while significantly surpassing011
state-of-the-art models. Moreover, we pro-012
pose a novel atomic-level evaluation method013
leveraging off-the-shelf Natural Language In-014
ference (NLI) models for use in the unseen015
chemical domain. Our experiments demon-016
strate that our evaluation operates at the right017
level of granularity, effectively handling mul-018
tiple content units and subsentence reasoning,019
while widely adopted NLI methods consis-020
tently misalign with assessment criteria.021

1 Introduction022

AI in Chemistry is essential for developing023

scalable and cost-effective scientific solutions,024

such as pioneering drugs (Ferguson and Gray,025

2018), advanced materials (Kippelen and Brédas,026

2009), and improved chemical processes (Zhong027

et al., 2023). The vast search spaces in which028

these solutions reside make chemical language029

models crucial for accelerating scientific discov-030

ery (AI4Science and Quantum, 2023; Zhang et al.,031

2023). Recent trends have led to the use of mul-032

timodal models to learn molecular and linguistic033

representations, either in separate but coordinated034

spaces (Edwards et al., 2021, 2022; Liu et al.,035

2023a), in a common space (Liu et al., 2023b), 036

or through dual approaches (Luo et al., 2023; 037

Christofidellis et al., 2023). These models often 038

rely heavily on extensive supervised fine-tuning. 039

However, merely increasing model size and data 040

does not guarantee improvement (Tirumala et al., 041

2022; Xu et al., 2023). Thus we propose focusing 042

on novel training methods. 043
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Figure 1: Overview of our proposed comprehensive so-
lution to address key limitations in chemical LLMs, in-
cluding extensive fine-turning and out-of-distribution
performance via model merding and alignment tuning
with synthetic dispreferred data generated by MolT5.

Here we enhance molecule language models 044

using minimal training by leveraging synergies be- 045

tween alignment fine-tuning (Ouyang et al., 2022) 046

and model merging (Yang et al., 2024) in a cross- 047

modal setup. Specifically, we focus on molecule- 048

language translation, using as little as 10% of 049

the training data (Edwards et al., 2024). Fig. 1 050

illustrates our comprehensive solution. 051
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Model merging, a technique for fusing models052

fine-tuned on different tasks, builds a versatile053

model without needing the original training data054

or expensive computation. This method has been055

quickly adopted in foundation models and Large056

Language Models (LLMs) (Yang et al., 2024).057

We extend this concept to a crossmodal setting by058

merging per-task pretrained molecule language059

models (see Fig. 1), deploying both weight- and060

subspace-based techniques to obtain universal061

models (§ 3.2.1).062

For fine-tuning alignment, we focus on Re-063

inforcement Learning from Human Feedback064

(RLHF)(Stiennon et al., 2020) to align the uni-065

versal models. Although alignment has typically066

been used to calibrate LLM behaviour (Askell067

et al., 2021), we hypothesise that it can also accel-068

erate learning in crossmodal spaces by rewarding069

preferred over dispreferred outputs, thus improv-070

ing inference with minimal training data. We fo-071

cus on optimisation algorithms using closed-form072

losses on offline preferences, such as Direct Pref-073

erence Optimisation (DPO) (Rafailov et al., 2024),074

Contrastive Preference Optimisation (CPO) (Xu075

et al., 2024), and Kahneman-Tversky Optimisa-076

tion (KTO) (Ethayarajh et al., 2024). We incorpo-077

rate golden data as human preferences and dispre-078

ferred synthetic outputs generated by proprietary079

models into the reward signal (see Fig. 1).080

We evaluate our models on out-of-distribution081

data using established statistical-based met-082

rics (Sets, 2022; Edwards et al., 2022). Addition-083

ally, we use Natural Language Inference (NLI)084

models to assess generated text within the chemi-085

cal domain. However, we argue that off-the-shelf086

NLI models are suboptimal for several reasons: a)087

they are trained on relatively short texts (Williams088

et al., 2018), while generated text may aggregate089

multiple content units that partially overlap with090

different sentences in the reference text (Nenkova091

et al., 2007); b) they are limited by the data they092

were trained on, making them unreliable for un-093

seen domains (McIntosh et al., 2024); and c) they094

lack subsentence inference, hindering their ability095

to handle reordered content in generated text (see096

Fig. 3). Thus we propose a novel atomic-level097

cross-NLI approach that addresses these issues.098

By decomposing reference and generated texts 099

into atomic premises and hypotheses using an 100

LLM, we calculate probability distributions of 101

contradiction and entailment via an NLI model 102

and finally apply row-wise operations to obtain 103

novel hallucination and coverage metrics (§3.3). 104

Our findings and contributions are as follows: 105

• Extensive training doesn’t guarantee better 106

models. Models trained on large benchmark 107

datasets exhibit memorisation effects, with per- 108

formance dropping by 50% to 100% on out-of- 109

distribution data (§ 4.2.1). 110

• Alignment fine-tuning is not a panacea. Our 111

experiments reveal that not all fine-tuning ap- 112

proaches applicable to heavily trained models 113

are effective with minimal training (§ 4.2.1). 114

• Effective alignment methods balance struc- 115

tured learning and generalisation. Of the 116

alignment fine-tuning methods, only CPO man- 117

aged both crossmodal agnostic and minimal 118

training effectively (§ 4.2.1). 119

• Model merging addresses inherent limita- 120

tions in alignment fine-tuning. It improves 121

performance with minimal training, reduces de- 122

pendence on human-labeled data, and provides 123

a scalable, cost-effective alignment method for 124

LLMs. (§ 4.2.2). 125

• Our novel atomic-level cross-NLI evalua- 126

tion reveals intriguing insights about perfor- 127

mance interpretability and effectively han- 128

dles multiple content units in text. By con- 129

trast, widely adopted NLI methods consistently 130

misalign with assessment criteria (§ 4.2.3). 131

2 Related Work 132

2.1 LLMs for Chemistry 133

Existing approaches for LLMs in the chemi- 134

cal domain typically rely on costly pretraining 135

with large unimodal datasets for reaction predic- 136

tion and retrosynthesis (Schwaller et al., 2019; 137

Vaucher et al., 2020), or task-specific fine-tuning 138

for language-molecule learning (Edwards et al., 139

2021, 2022, 2024) and molecule editing (Liu 140

et al., 2023a; Fang et al., 2023). Other meth- 141

ods focus on multitask learning, which requires 142

resource-intensive pretraining and large multitask 143
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datasets (Lu and Zhang, 2022; Ross et al., 2022;144

Christofidellis et al., 2023; Zhang et al., 2024). In145

contrast, we investigate synergies between fine-146

tuning alignment and model merging to enhance147

molecule language models with minimal training.148

2.2 Model Merging149

Existing model merging techniques can be150

broadly categorised into weight-based, subspace-151

based, and routing-based approaches. Weight-152

based methods often use optimisation algo-153

rithms (Yang et al., 2023; Akiba et al., 2024)154

or geometric interpolations (Zhou et al., 2024;155

Goddard et al., 2024) to determine optimal task156

vector coefficients. Subspace-based methods in-157

volve pruning (Yadav et al., 2023; Yu et al.,158

2024) or masking (Wang et al., 2024) to remove159

insignificant parameters, reducing task interfer-160

ence. Routing-based methods combine models161

adaptively during inference based on specific in-162

put (Muqeeth et al., 2023; Tang et al., 2024).163

We experiment with weight- and subspace-based164

merging in a crossmodal context.165

2.3 Aligning LLMs166

LLM alignment methods can be divided into test-167

time and fine-tuning approaches. Test-time align-168

ment techniques, such as prompt engineering and169

guided decoding (Khanov et al., 2024; Huang170

et al., 2024), adjust LLMs without changing their171

weights, but depend on the original model’s per-172

formance. Fine-tuning methods, like RLHF (Sti-173

ennon et al., 2020; Ouyang et al., 2022), are effec-174

tive but complex, requiring model retraining and175

continuous sampling. DPO (Rafailov et al., 2024)176

simplifies RLHF by directly optimizing PPO’s ob-177

jective, while CPO (Xu et al., 2024) improves effi-178

ciency by using a uniform reference model. Other179

methods leverage SFT for optimizing RLHF man-180

agement and parameter tuning (Ethayarajh et al.,181

2024; Meng et al., 2024). Here, we explore align-182

ment fine-tuning in a crossmodal setup.183

2.4 NLI-based Evaluation184

NLI models determine the relationship between185

a premise and a hypothesis. Existing approaches186

either identify a sentence in the reference text187

as the premise (sentence-level NLI)(Nie et al., 188

2019b; Laban et al., 2022), or use the entire refer- 189

ence as the premise(Dziri et al., 2022; Honovich 190

et al., 2022), which can be inefficient for long 191

texts (Schuster et al., 2022). Context-level NLI 192

addresses this by retrieving relevant sentences to 193

create a short context (Nie et al., 2019a; Schus- 194

ter et al., 2022; Kamoi et al., 2023), but lacks 195

sufficient granularity (Nenkova et al., 2007). We 196

propose a novel atomic-level NLI evaluation for 197

the chemical domain to address these limitations. 198

3 Methodology 199

3.1 Task Definition 200

Let (x, y) represent a pair of source and target 201

sequences mapped to the X and Y spaces, re- 202

spectively. We cast molecule caption genera- 203

tion (MoCG) as a crossmodal alignment task 204

that operates on offline preference data D = 205

{x(i), y(i)w , y
(i)
l }Ni=1, where x is the input, and yw 206

and yl are the preferred and dispreferred outputs, 207

respectively, with N being the total number of 208

pairs in D. The goal is to learn an optimal func- 209

tion f : X ↔ Y via a model πθ parameterised 210

by θ. We coordinate the molecule and caption 211

generation tasks via instruction modelling 1. 212

3.2 Aligned Mixed Molecule Language 213

Models 214

This section elaborates on how we obtain aligned 215

universal molecule language models. 216

3.2.1 Universal Models via Model Merging 217

Let τ1 and τ2 represent task vectors 2 from pre- 218

trained molecule and caption generation models. 219

Our goal is to obtain a multitasking cross-modal 220

model Θ(merge) without accessing training data 221

by exploring weight-based and subspace-based 222

merging techniques. Fig. 2 illustrates the process. 223

Specifically, we experiment with model merging 224

approaches that inherently manage conflicts and 225

mitigate modality dominance or instability when 226

integrating modality-specific information using 227

1Instructions can be found in Appx. F.
2A task vector τ represents the model’s parameters Θ(t)

fine-tuned for task t (Ilharco et al., 2022).
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off-the-shelf LLMs, ensuring that neither modal-228

ity overshadows the other.229
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Figure 2: Model merging techniques for obtaining uni-
versal models. (A) Weight-based merging via spher-
ical interpolation. (B) Subspace-based merging by
pruning and merging parameter magnitudes. τ1 and
τ2 are task vectors obtained from pretrained molecule
and caption generation models, respectively.

Weight-based model merging: We experiment230

with SLERP (Goddard et al., 2024), which ap-231

plies spherical interpolation to fuse model param-232

eters. The goal is to find optimal coefficients233

λ1 and λ2 so that the merged model Θ(merge) =234

λ1τ1 + λ2τ2 retains the capabilities of the inde-235

pendent models. The coefficients are given by236
sin((1−λ)·ρ)

sin(ρ) and sin(λ·ρ)
sin(ρ) , respectively, where237

ρ = arccos
(

τ1·τ2
|τ1|·|τ2|

)
is the angle between the238

task vectors, and λ is the merging coefficient.239

Subspace-based model merging: We utilise240

TIES (Yadav et al., 2023) to prune the task vectors241

τ1 and τ2, retaining the top 20% parameters, re-242

sulting in refined vectors τ̂1 and τ̂2 (see Fig. 2 (B)).243

We then fuse the vectors via Task Arithmetic (Il-244

harco et al., 2022) to obtain the merged model as245

Θ(merge) = 1
2

∑2
i=1 τ̂i. During the merging pro-246

cess, conflicts arising from differing signs in the247

parameters p are resolved by aligning the pruned248

vectors as follows:249

Align(τ̂p1 , τ̂
p
2 ) =

{
τ̂p1 if |τ̂p1 |> |τ̂p2 |
τ̂p2 if |τ̂p2 |≥ |τ̂p1 |

(1)250

3.2.2 Crossmodal Alignment Fine-tuning251

Let πref be the reference policy (i.e., the uni-252

versal model from model merging), πθ the pol-253

icy model being trained, parameterised by θ, and254

D = {x(i), y(i)w , y
(i)
l } the offline preference data. 255

Our goal is to learn effective crossmodals for the 256

MoCG task with minimal training via alignment 257

fine-tuning. We experiment with different opti- 258

mizations that differ substantially in how they 259

learn a reward signal, as overviewed in Table 1. 260

• SFT minimises the difference between gener- 261

ated output z and target yw by optimising model 262

πθ through negative log-likelihood (Eq. 2). 263

• DPO (Rafailov et al., 2024) enhances cross- 264

modal translations using an offline preference 265

dataset D. It aligns model πθ by maximising 266

the likelihood of preference data, with reference 267

model πref, Sigmoid function σ, and hyperpa- 268

rameter β (Eq. 3). 269

• CPO (Xu et al., 2024) reduces reliance on high- 270

quality data by avoiding suboptimal translations. 271

It modifies Eq. 3 using a uniform reference 272

model, ensuring equal likelihood for all outputs. 273

A behaviour cloning (BC) regulariser is injected 274

to reflect uniform output matching, with an ad- 275

ditional SFT term in the final loss (Eq. 4). 276

Method Optimisation Objective
SFT

min
θ

− log πθ(yw|x) (2)

DPO

log σ
(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
(3)

CPO

min
θ

log σ
(
β log πθ(yw|x)− β log πθ(yl|x)

)
− log πθ(yw|x)

s.t. E(x,yw)∼D

[
KL(πw(yw|x)||πθ(yw|x))

]
< ϵ

(4)

KTO

−λwσ

(
β log

πθ(yw|x)
πref(yw|x)

− zref

)
+ λlσ

(
zref − β log

πθ(yl|x)
πref(yl|x)

)
where zref = E(x,y)∼D [βKL(πθ(y|x)∥πref(y|x))]

(5)

Table 1: Alignment fine-tuning algorithms for the
MoCG task given preference data D = {x, yw, yl}.

• KTO (Ethayarajh et al., 2024) utilises non- 277

paired preference data D = {x(i), y(i), λ(i)} 278

where λ denotes the desirability of y. The loss 279

is computed from the generated output z in re- 280

lation to a reference zref and λ (Eq. 5). 281
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3.3 Atomic-level Cross-NLI Evaluation282

Our aim is to develop a method that operates at283

the right level of granularity, precisely captur-284

ing small distinctions and subtle nuances in cap-285

tions, ensuring reliable evaluation. Atomic-level286

cross-NLI evaluation uses a LLM and an NLI287

model to assess relationships between generated288

and reference captions. The process begins with289

an LLM (Touvron et al., 2023) decomposing a290

(reference, generated) pair into atomic premises291

{Pi}Ni=1 and hypotheses {Hj}Lj=1, where each292

atomic unit conveys a single piece of information293

(see Appx. E). An NLI model (He et al., 2020)294

then constructs probabilistic distributions of en-295

tailment and contradiction by considering all pos-296

sible combinations of premises and hypotheses.297

Finally, pooling operators match atomic hypothe-298

ses and premises in terms of both factual correct-299

ness, i.e., hallucination, and completeness, i.e.,300

coverage. Fig. 3 illustrates this process.301

Hallucination we define here as the introduc-302

tion of information not present in the reference303

text. Given {(Pi, Hj)}, the NLI model constructs304

a contradiction probability distribution for each305

atomic hypothesis against all premises, such as306

pj,i = (Cj,i|Pi, Hj). This results in an ML×N307

matrix of contradiction probabilities Cj,i (see308

Fig. 3). To measure hallucination, we apply min309

row-wise pooling and average the matching prob-310

abilities to compute the score by the formula:311

Hallucination =
1

L

L∑
j=1

min
i

Cj,i (6)312

Coverage we define as atomic unit recall, rep-313

resenting how much reference information is314

present in the generated text. Unlike halluci-315

nation, here generated text forms the atomic316

premises (Pj) and the reference text the hypothe-317

ses (Hi). The NLI model constructs an entail-318

ment probability distribution for each Hi against319

all Pj , such that pi,j = (Ei,j |Pj , Hi), resulting in320

an MN×L matrix of entailment probabilities Ei,j .321

To measure coverage, we apply max row-wise322

pooling and average the matching probabilities to323

compute the score given by the formula:324

Coverage =
1

N

N∑
i=1

max
j

Ei,j (7) 325

4 Experiments 326

4.1 Experimental Setup 327

Data: We conduct experiments training Med- 328

itron (Chen et al., 2023) on the benchmark L+M- 329

24 (Edwards et al., 2024) dataset, using only 10% 330

of the data for training, and evaluate on out-of- 331

distribution data (see Appx. D for details). For 332

alignment fine-tuning, we create synthetic dis- 333

preferred outputs generated by MolT5 (Edwards 334

et al., 2022). In practice, this involves feeding 335

MolT5 with inputs from the 10% subset of L+M- 336

24 used in our experiments, generating outputs, 337

and then using these outputs as dispreferred sam- 338

ples (see Fig. 1 ). Our training, validation, and 339

test sets contain approximately 12.7k, 3.4k, and 340

3k samples. 341

Baselines: We selected established baselines 342

based on their relevance to our hypotheses, en- 343

abling comparison with models trained on fully 344

(i.e., Chem-LLM (Zhang et al., 2024)) and par- 345

tially (i.e., TxtChem-T5 (Christofidellis et al., 346

2023)) out-of-distribution data, as well as in- 347

distribution data (Meditron (Chen et al., 2023)). 348

In this context, TxtChem-T5 and Chem-LLM are 349

evaluated in a zero-shot setting. For more de- 350

tails about the baselines, please refer to Appx. G. 351

Lastly, we fine-tune Meditron with SFT using 352

only 10% of the training data. We leave all the 353

implementation details in Appx. J. 354

Evaluation: When evaluating the performance 355

of both baselines and our models, we employ es- 356

tablished statistical metrics (see Appendix H), in 357

addition to our atomic-level cross-NLI evaluation 358

method (§ 3.3). For our proposed evaluation, we 359

assess the robustness of different NLI methods 360

by measuring the entropy of textual entailment 361

between generated outputs from high and low per- 362

formance models in association with linguistic 363

ones derived by bioinformatic databases curated 364

by humans. Specifically, we compare our atomic- 365

level NLI approach with leading ones, including 366
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It impacts both atherosclerosis and cardiovascular disease. 
The molecule is a nutrient, thyroxine treatment, fat storage 
that impacts pancreatitis and metabolic syndrome.

The molecule is a fat storage that impacts both atherosclerosis 
and pancreatitis. The molecule is a nutrient that impacts both 
cardiovascular disease and thyroxine treatment.

The molecule is a fat storage. 
The molecule impacts atherosclerosis.
The molecule impacts pancreatitis.
The molecule is a nutrient.
The molecule impacts cardiovascular disease.
The molecule impacts thyroxine treatment.

The molecule impacts atherosclerosis. 
The molecule impacts cardiovascular disease.
The molecule is a nutrient.
The molecule is a thyroxine treatment.
The molecule impacts pancreatitis. 
The molecule impacts metabolic syndrome.
The molecule is involved in fat storage.

𝐻!
𝐻"
𝐻#
𝐻$
𝐻%

𝑃&
𝑃!
𝑃"
𝑃#
𝑃$
𝑃%
𝑃'

𝐻& 0.06   0.05    0.99   0.99   0.04   0.04   0.01
0.00   0.01    0.02   0.06   0.91   0.36   0.06
0.97   0.76    0.01   0.05   0.00   0.94   0.01
0.01   0.01    0.00   0.20   0.02   0.01   0.02
0.02   0.00    0.02   0.01   0.95   0.03   0.01
0.98   0.13    0.01   0.00   0.98   0.02   0.82

𝑀!×# =

Reference Text Generated Text

Atomic Premises Atomic Hypotheses
Decompose

via LLM Probability
Distribution

Matrix

A

B

C Match & Compute

Cross NLI

𝐻𝑎𝑙𝑙𝑢𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =0.00069

𝑃 𝑦 = 𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡 𝐴𝑡𝑜𝑚𝑖𝑐 (𝑃𝑟𝑒𝑚𝑖𝑠𝑒, 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠))

3

1 2
4 5

6 7

5 1

6 3
2 4

Reordered content units

Matching via pooling operators

Figure 3: The process of atomic-level cross-NLI evaluation when measuring the level of hallucination.

full NLI, which treats entire premises and hypothe-367

ses as single units, and sentence-level NLI (Laban368

et al., 2022), which evaluates chunks in text.369

4.2 Experimental Results370

4.2.1 Aligning Molecule-Language Modals371

with Minimal Training372

We first present results for molecule language373

models with minimal alignment fine-tuning, ini-374

tialising pretrained weights from molecule gener-375

ation rather than deploying model merging (see376

Appx. J for details). Tables 2 and 3 summarise377

experimental results. Generally, benchmarking378

models trained on extensive data with SFT exhibit379

memorisation effects, with performance dropping380

by 50% to 100% compared to reported results,381

when evaluated on out-of-distribution data.382

Our experiments show that not all alignment383

optimisations are effective in the minimal training384

setting. Both DPO and KTO show zero perfor-385

mance in caption generation when models are386

initialised with crossmodal weights unrelated to387

the task (see Table 2). However, performance388

improves significantly when the crossmodals are389

known (see Table 3). In molecule generation,390

DPO achieves up to 42% better performance than391

Meditron, trained on the full dataset, while KTO392

still performs poorly, likely due to overfitting (see393

Appx. I).394

By contrast, CPO effectively handles both the395

crossmodal agnostic and minimal training set-396

tings, outperforming Meditron by up to 20% in397

caption generation and 42% in molecule gener-398

ation. This is likely due to its inherent ability399

to balance structured learning and generalisation.400

It aligns with preferred data through behaviour401

cloning and SFT, which encourage the model 402

to mimic expert behaviour while reducing bias 403

and suboptimal outcomes via a uniform reference 404

model that assigns equal likelihood to all possible 405

outputs. 406

4.2.2 Alignment with Model Merging 407

Tables 4 and 5 summarise the experimental results 408

when we incorporate model merging in alignment 409

fine-tuning while keeping the training data the 410

same. Combining DPO with molecule and cap- 411

tion crossmodals via TIES improves caption gen- 412

eration (see ∆DPOvsTIES+DPO in Table 4) but 413

leads to significant performance loss in molecule 414

generation (see ∆DPOvsTIES+DPO in Table 5). 415

Conversely, fusing CPO with crossmodals via 416

SLERP significantly boosts performance in cap- 417

tion generation (see ∆CPOvsSLERP+CPO in Ta- 418

ble 4) while having minimal impact on molecule 419

generation (see ∆CPOvsSLERP+CPO in Table 5), 420

demonstrating overall gains compared to Med- 421

itron trained on the full dataset. 422

Overall, our experiments show that model 423

merging can effectively address key limitations 424

in alignment fine-tuning. By fusing pretrained 425

models, one can enhance performance with mini- 426

mal training, reducing reliance on human-labelled 427

data, lowering training costs, minimising human 428

bias, and improving generalisation. Examples of 429

caption and molecule generation are provided in 430

Appx. K. We leave further ablation experimental 431

studies in Appx. A. 432

4.2.3 Atomic-level Cross-NLI Evaluation 433

Atomic-level NLI revealed intriguing insights re- 434

garding performance interpretation. Fig. 4 shows 435
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Method Blue-2 ↑ Blue-4 ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑ METEOR ↑
TxtChem-T5 (Christofidellis et al., 2023) 0.08 0.09 0.19 0.06 0.17 0.16

Chem-LLM (Zhang et al., 2024) 0.03 0.00 0.11 0.02 0.09 0.14
Meditron (Chen et al., 2023) 0.42 0.30 0.63 0.47 0.49 0.54

SFT §4.1 0.37 0.26 0.55 0.40 0.39 0.61
DPO (Rafailov et al., 2024) 0.00 0.00 0.00 0.00 0.00 0.00

CPO (Xu et al., 2024) 0.62 0.45 0.68 0.50 0.48 0.62
KTO (Ethayarajh et al., 2024) 0.00 0.00 0.00 0.00 0.00 0.00

∆CPOvsMED +20% +19% +5% +3% -1% +8%

Table 2: Alignment fine-tuning results for caption generation on 3k unseen pairs. Arrows next to metrics denote
value increase with performance gains. Best results are in bold. ∆CPOvsMED is the performance gain of our
best model, trained on 10% of the data, compared to Meditron trained on the entire dataset.

Method BLEU ↑ Levenshtein ↓ MACCS FTS ↑ RDK FTS ↑ Morgan FTS ↑ FCD ↓ Validity ↑
TxtChem-T5 0.18 133.29 0.21 0.10 0.03 37.67 0.58
Chem-LLM 0.04 732.74 0.00 0.00 0.00 59.44 0.19

Meditron 0.43 66.16 0.35 0.29 0.19 13.64 0.57
SFT 0.30 186.99 0.70 0.62 0.41 11.14 0.98
DPO 0.72 42.40 0.77 0.69 0.49 10.47 0.99
CPO 0.71 42.65 0.77 0.70 0.48 4.19 1.00
KTO 0.23 294.63 0.03 0.03 0.02 32.64 0.06

∆CPOvsMED +29% -23.76% +42% +41% +30% -9.45% +41%

Table 3: Alignment fine-tuning results for molecule generation on 3k unseen pairs. Arrows next to metrics indicate
whether higher or lower values denote better performance. Best results are highlighted in bold. ∆CPOvsMED

represents the performance gain of our best model compared to Meditron trained on the entire dataset.

assessment score distributions from our proposed436

evaluation method, comparing our top models437

against Meditron trained on the entire dataset. All438

models exhibit low hallucination, likely due to the439

narrow, well-defined topics that enable factually440

correct captions without unrelated information.441

However, our models excel in coverage, gener-442

ating more comprehensive captions, with perfor-443

mance increasing to 69% compared to Meditron’s444

51% (Fig. 4 (B)). Examples of insights captured445

by our proposed evaluation are in Appx. L.446

We also evaluated the robustness of our pro-447

posed NLI evaluation method against leading ap-448

proaches by measuring the entropy of textual449

entailment between human-curated texts (i.e.,450

gold labels) and outputs generated by our top-451

performing model, CPO+SLERP (preferred), ver-452

sus those from a low-performing model, Med-453

itron (dispreferred). Ideally, all NLI methods454

should favour preferred outputs over dispreferred455

ones. However, we observed that both the full and456

10% training – CPO+SLERP10% training – CPO100% Training – Meditron

Coverage Score

Di
st

rib
ut

io
n

Hallucination Score

(B)

(A)

Figure 4: Score distributions from our atomic-level
cross-NLI evaluation comparing (A) hallucination and
(B) coverage between our top models and Meditron.

sentence-level NLI methods misclassify preferred 457

captions as non-entailment and dispreferred cap- 458

tions as entailment (see Fig. 5 (B)-(D)). By con- 459

trast, atomic-level cross-NLI accurately favours 460

preferred captions, assigning higher scores to 461

certain cases (Fig. 5 (A)). Additionally, Kull- 462
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Fusion Method Blue-2 ↑ Blue-4 ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑ METEOR ↑

TIES (Yadav et al., 2023)
DPO 0.74 0.53 0.74 0.54 0.51 0.70
CPO 0.74 0.54 0.76 0.57 0.53 0.72

SLERP (Goddard et al., 2024)
DPO 0.00 0.00 0.02 0.01 0.00 0.00
CPO 0.73 0.53 0.76 0.56 0.53 0.71

∆DPOvsTIES+DPO +74% +53% +74% +54% +51% +70%
∆CPOvsSLERP+CPO +11% +8% +8% +6% +5% +9%
∆MEDvsSLERP+CPO +31% +28% +13% +9% +4% +17%

Table 4: Model merging and alignment fine-tuning results for caption generation. ∆DPOvsTIES+DPO,
∆CPOvsSLERP+CPO, and ∆MEDvsSLERP+CPO measure performance gains of the best-combined approaches
compared to the vanilla crossmodal setting of DPO, CPO, and the benchmark Meditron, as reported in Table 2.

Fusion Method BLEU ↑ Levenshtein ↓ MACCS FTS ↑ RDK FTS ↑ Morgan FTS ↑ FCD ↓ Validity ↑

TIES
DPO 0.32 93.18 0.31 0.22 0.19 19.80 0.42
CPO 0.68 46.91 0.72 0.65 0.45 24.50 0.94

SLERP
DPO 0.72 43.85 0.77 0.70 0.51 10.35 0.98
CPO 0.71 44.01 0.73 0.66 0.45 11.22 0.95

∆DPOvsTIES+DPO -40% +51% -46% -47% -30% +7.33% +58%
∆CPOvsSLERP+CPO 0% +1.36% -4% -4% -3% +5% -4%
∆MEDvsSLERP+CPO +29% -22.40% +38% +37% +27% -4.45% +37%

Table 5: Model merging and alignment fine-tuning results for molecule generation. ∆DPOvsTIES+DPO,
∆CPOvsSLERP+CPO, and ∆MEDvsSLERP+CPO measure performance gains of the best-combined approaches
from the vanilla crossmodal setting of DPO, CPO, and the benchmark Meditron, as reported in Table 2.

back–Leibler divergence shows that atomic-level463

NLI offers better discrimination, achieving a di-464

vergence score of 0.54 compared to 0.12–0.17 for465

other methods, demonstrating its effectiveness in466

distinguishing the quality of generated captions.467

We leave further ablation analysis in Appx. B.468

(A) (B)

(C) (D)

Figure 5: Relative entropy in coverage scores for
preferred vs. dispreferred generated captions across
atomic-level (A), full (B), and sentence-level (C & D)
NLI approaches.

5 Conclusion 469

In this work, we address limitations of scientific 470

language models that rely on extensive training. 471

Focusing on molecule caption generation, we 472

propose synergies between model merging and 473

alignment fine-tuning with minimal training to 474

enhance chemical language models. Our experi- 475

ments show that while alignment fine-tuning per- 476

forms poorly, incorporating model merging signif- 477

icantly outperforms extensively trained models on 478

out-of-distribution data, offering a cost-effective 479

approach that relies less on human-labelled data. 480

Furthermore, we propose an atomic-level cross- 481

NLI evaluation to overcome limitations of widely 482

used NLI evaluation methods, which lack appro- 483

priate granularity. Our method provides valuable 484

insight into performance interpretability and ef- 485

fectively handles multiple content units, where 486

existing NLI methods consistently misalign with 487

assessment criteria. 488
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Limitations489

In this work, we employ weight-based and490

subspace-based merging methods to create uni-491

versal models for the MoCG task, facilitating492

alignment fine-tuning in a training setting with493

minimal data. However, both are static merging494

methods. This means that the merged model re-495

main the same for all samples or tasks. Given that496

there are differences between input samples/tasks,497

the models’ ability may vary when processing498

different samples/tasks. In the future, we aim to499

investigate dynamically merging models (or sub-500

sets of layers) based on the samples/tasks during501

the inference phase (Kang et al., 2024).502

We also propose an atomic-level NLI evalua-503

tion method that successfully handles multiple504

content units, offering valuable insights into per-505

formance interpretability for caption generation,506

where widely adopted NLI methods consistently507

misalign with assessment criteria. However, de-508

composing text into atomic units can be challeng-509

ing for other tasks involving complex or lengthy510

text. While this method captures nuanced con-511

tent, there is a risk of over-fragmentation, which512

may lead to a loss of context or coherence in513

evaluation. Additionally, the effectiveness of this514

approach relies heavily on the LLM for decompo-515

sition and the NLI model for entailment and con-516

tradiction assessment. If either model struggles517

with domain-specific content (e.g., highly techni-518

cal language), the evaluation could yield inaccu-519

rate or biased results. Furthermore, if generated520

texts introduce valid but creative or non-standard521

content, this approach may penalise them by clas-522

sifying such deviations as contradictions or hallu-523

cinations, even when they provide accurate infor-524

mation. Future work will need to address these525

limitations across various domains.526

Finally, the proposed methods in this work are527

tailored specifically for the chemical domain, fo-528

cusing on tasks like molecule caption generation.529

While these techniques—such as model merging530

and alignment fine-tuning—show promising re-531

sults within this context, their ability to generalise532

to other domains or scientific fields is uncertain.533

Different domains may have distinct data struc-534

tures, tasks, and requirements, which might not 535

align well with the crossmodal setup used here. 536

For instance, a method optimised for chemical 537

language and molecular structures may not work 538

as effectively in domains like physics or biology, 539

where the types of entities and relationships differ 540

significantly. This potential lack of generalisation 541

highlights the need for future research to explore 542

the applicability of the proposed approaches in 543

diverse scientific domains beyond chemistry, aim- 544

ing to adapt and validate the methods for varying 545

data structures and task requirements. 546

Ethical Considerations 547

The potential for generating misleading or incor- 548

rect information poses significant ethical consid- 549

erations in this work, particularly given the sci- 550

entific context in which the language models are 551

applied. If the models produce inaccurate cap- 552

tions or misrepresent molecular characteristics, it 553

could lead to erroneous conclusions in research 554

and applications that rely on these outputs. This 555

risk is particularly critical in fields like chemistry, 556

where precise data interpretation is vital for safety, 557

compliance, and advancing scientific knowledge. 558

Furthermore, the reliance on automated evalua- 559

tions may not adequately catch nuanced errors 560

that human experts would recognise, potentially 561

allowing flawed outputs to go unchecked. There- 562

fore, ensuring that the models maintain a high 563

standard of accuracy and reliability is essential 564

to prevent the dissemination of misinformation, 565

which could undermine trust in automated sys- 566

tems and hinder scientific progress. Addressing 567

these ethical concerns requires implementing ro- 568

bust validation mechanisms and continuously in- 569

volving domain experts in the evaluation process 570

to ensure the integrity of the generated content. 571
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A Complementary Experiments in873

Model Merging874

For our best-performing model, CPO+SLERP, we875

conducted ablation studies to examine the impact876

of coefficients in model merging through weight877

interpolation of pretrained models on MoCG878

tasks. Specifically, we used Meditron, trained for879

caption-to-molecule (Cap2Mol) generation (Ed-880

wards et al., 2024), as the base model from which881

the merging process begins. For the source model,882

we deployed Meditron trained for molecule-to-883

caption (Mol2Cap) generation. Our experiments884

focused on blending weighs across all layert (i.e.,885

0-32) from the source model into the base model886

while preserving Cap2Mol performance and en-887

hancing Mol2Cap performance (see Tables 2-3),888

ultimately obtaining a universal model with im-889

proved overall capabilities.890

We began by blending 20% of the891

source model’s weights with 80% of the892

base model’s weights, represented as893

Ratio (Cap2Mol : Mol2Cap) = 1 : 4. We894

then iteratively adjusted the ratio coefficient895

to obtain a universal model that maintained896

satisfactory inference performance for both tasks.897

Specifically, we conducted experiments with898

coefficient ratios of 1 : 4, 1 : 8, 1 : 16, and 1 : 32.899

Figure 6 overviews the experimental results.900

Overall, we observed that when merging mod-901

els with a relatively high percentage of weights902

from the source model (i.e., ratios of 1 : 4 and903

1 : 8 in Figure 6), the universal model showed904

decreased performance on the Cap2Mol task. By905

contrast, when the percentage of source model906

weights was kept minimal (i.e., ratio of 1 : 32 in907

Figure 6), the universal model showed decreased908

performance on the Mol2Cap task. Based on909

these results, we concluded that the optimal ratio910

for merging models in MoCG tasks is 1 : 18.911

We compared SLERP and TIER model merg-912

ing techniques against a weighted linear com-913

bination of parameters, referred to as model914

soup (Wortsman et al., 2022), when applying915

CPO in the MoCG task. Our results indicated that916

model soup caused a significant drop in perfor-917

mance for both Mol2Cap and Cap2Mol tasks (see918

Ratio (Mol2Cap : Cap2Mol) = 1:4 Ratio (Mol2Cap : Cap2Mol) = 1:8

Ratio (Mol2Cap : Cap2Mol) = 1:18 Ratio (Mol2Cap : Cap2Mol) = 1:32

Figure 6: Inference performance for Mol2Cap and
Cap2Mol tasks, achieved by merging weights from
task-specific pretrained models at varying ratios to
obtain universal models.

Fig. 7). We hypothesise that this is because model 919

soup assumes that performance improvement or 920

preservation is linearly related to weight blend- 921

ing, which may not hold for complex models. 922

This observation justifies our decision to explore 923

task-specific arithmetic and geometric merging 924

approaches, as they inherently manage conflicts 925

and better preserve the strengths of each model in 926

specialised tasks. 927

Figure 7: Comparison of SLERP and TIES with Model
Soup for (A) Mol2Cap and (B) Cap2Mol generation.
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B Complementary Experiments in Our928

Atomic-Level NLI Evaluation Method929

We conducted ablation studies on our atomic-level930

NLI evaluation method to investigate potential is-931

sues in semantic understanding, such as a loss932

of cohesiveness in complex and lengthy captions933

due to excessive decomposition into atomic units.934

First, we analysed the distribution of word counts935

in captions from the test subset. We observed936

that the captions are typically short, with an av-937

erage of 31 words (STD = 50) as shown in Fig.8.938

Additionally, the captions generally exhibit lit-939

tle dependency across sentences, as they consist940

of simple natural language describing chemical941

properties (for a more detailed view, see Table 6).942

Figure 8: Distribution of word counts in captions from
the test subset.

Based on the above word count distribution943

analysis, we filtered captions of varying lengths944

for our ablation studies: long captions (at least 50945

words) and extreme captions (at least 70 words).946

Figures 9 and 10 illustrate the robustness of our947

atomic-level NLI method in comparison to other948

leading methods, particularly in handling long949

and extreme cases.950

For long captions, our NLI method demon-951

strated a significant improvement in its ability to952

differentiate preferred outputs from dispreferred953

ones accurately, achieving a KL divergence of954

2.53 (see Fig. 9), as opposed to a KL divergence955

of 0.54 across all cases in the test subset (see Fig.956

5). In contrast, other leading NLI methods ex-957

Figure 9: Relative entropy in coverage scores for
preferred vs. dispreferred generated captions across
atomic-level and leading NLI approaches in long cap-
tions.

Figure 10: Relative entropy in coverage scores for
preferred vs. dispreferred generated captions across
atomic-level and leading NLI approaches in extreme
captions.

perienced a marked increase in KL divergence, 958

favouring dispreferred outputs, which misaligned 959

with the entailment aspect. A similar trend was 960

observed with extreme captions (see Fig. 10). Our 961

ablation studies demonstrate that our atomic-level 962

NLI method effectively handles long and complex 963

captions in the MoCG task, whereas established 964

NLI approaches lacked reliability in evaluating 965

lengthy sequences. 966

C Foundations in Alignment with RLHF 967

Feedback-aligned LLMs traditionally undergo 968

fine-tuning with RLHF, where human preferences 969

serve as a reward signal in optimisation (Stiennon 970
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et al., 2020; Ouyang et al., 2022). To train a LLM971

with RLHF, a reinforcement learning optimisation972

algorithm such as PPO (Schulman et al., 2017)973

is typically deployed on offline preference data,974

commonly involving three steps:975

• Model Training: Typically, a model π is976

trained for auto-regressive language generation977

on a large generic corpus. This training operates978

under the premise that the probability distribu-979

tion of a sequence of words can be broken down980

into the product of conditional distributions for981

the next word (Radford et al., 2019).982

• Reward Model Training: A reference model983

πref is employed to optimise π for a downstream984

task. Typically, the πref model undergoes fine-985

tuning with an auto-regressive objective, using986

data pertinent to the downstream task. This987

often involves instruction tuning πref to regulate988

the generated outputs.989

• Reinforcement Learning: The optimisation990

of π with respect to πref operates on a triple991

dataset D = {x, yw, yl}, where x represents the992

input, and yw and yl denote preferred and dis-993

preferred outputs, respectively, such that yw ≻994

yl for x. In the Bradley–Terry model (Bradley995

and Terry, 1952), the probability of yw being996

preferred over yl in pairwise comparisons can997

be formulated as follows:998

p∗(yw ≻ yl|x) = σ(r∗(x, yw)− r∗(x, yl))
(8)999

Here, σ represents the logistic function, and1000

r∗ denotes the “true” reward function that un-1001

derlies the preferences. As obtaining the true1002

reward directly from a human would be pro-1003

hibitively expensive, a reward model rϕ is1004

trained to act as a surrogate. This is achieved1005

by minimising the negative log-likelihood in1006

human preference data;1007

L(rϕ) = −E(x,yw,yl)∼D[ log σ(rϕ(x, yw)

− rϕ(x, yl))]
(9)1008

Additionally, the Kullback-Leibler (KL) diver-1009

gence between the outputs generated by πref1010

and the parameterised πθ models serves as an1011

additional reward signal, ensuring that the gen-1012

erated responses closely align with the refer-1013

ence model. Consequently, an optimal model 1014

πθ is one that maximises; 1015

E(x∈D,y∈πθ)[rϕ(x, y)]− βDKL(πθ(y | x)
||πref(y | x))

(10)
1016

where β is parameter typically ∈ [0.1, 0.5]. 1017

Human-aware Loss Functions (HALOs): 1018

Definition 1 (HALOs) Let x ∈ X and y ∈ Y 1019

denote an input and output respectively. An f : 1020

(x, y) → R is considered a human-aware loss 1021

function if it satisfies 1022

f(x, y; θ) = t
(
vf (rθ(x, y)

− Ex′∼Q′,y′∼Q′ [rθ(x
′, y′)])

) (11) 1023

with a parameterised reward function rθ such 1024

that ∀(x1, y1), (x2, y2) ∈ X × Y , rθ(x1, y1) > 1025

rθ(x2, y2) ⇔ (x1, y1) ≻rθ (x2, y2), reference 1026

point distributions Qx(X
′) and Qy(Y

′|X ′), a 1027

value function vf : R → R that is monotonic non- 1028

decreasing and concave in (0,∞), and a negative 1029

affine function t. 1030

RLHF can present challenges due to inherent 1031

slowness and instability, especially in the case 1032

of highly varied outputs (Zheng et al., 2024). 1033

Recently, there has been a shift towards using 1034

closed-form losses in RLHF to align LLMs with 1035

human preferences. These losses are predomi- 1036

nantly HALOs that model human biases, as dis- 1037

cussed in (Tversky and Kahneman, 1992), aiming 1038

to maximise the margin between preferred and 1039

dispreferred generated outputs. This approach 1040

offers a mathematical equivalence with RLHF, 1041

while effectively addressing inherent limitations. 1042

D Data 1043

Experiments are conducted on the benchmark 1044

L+M-24, which integrates molecular and linguis- 1045

tic modalities in four key categories: biomedi- 1046

cal; light and electricity; human interaction and 1047

organoleptics; and agriculture and industry (Ed- 1048

wards et al., 2024). The dataset was created by 1049

extracting SMILES (Simplified Molecular-Input 1050
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Line-Entry System) strings and their chemical1051

properties from databases. The properties were1052

transformed into natural language using GPT-41053

templates. The training and validation subsets1054

contain around 127k and 34k language-molecule1055

pairs, with only 10% used for our experiments.1056

For evaluation, we randomly selected 3k un-1057

seen pairs from a separate dataset provided by the1058

L+M-24 research group. The samples were drawn1059

from 635k molecule-caption pairs included in the1060

supplementary data for the Language + Molecules1061

@ ACL2024 workshop 3.1062

E LLM Instruction for Decomposing1063

Text into Atomic Context Units1064

### User:
Please breakdown the following text into indepen-
dent facts:
{It impacts both atherosclerosis and cardiovascular
disease. The molecule is a nutrient, thyroxine
treatment, fat storage that impacts pancreatitis and
metabolic syndrome.}

**
IMPORTANT: No words or explanation is needed.
Only include truths that are factual.
You should NOT include any prior knowledge, and
take the text at face value when extracting facts.
**
### Assistant:
- The molecule impacts atherosclerosis. - The
molecule impacts cardiovascular disease. - The
molecule is a nutrient. - The molecule is a thyrox-
ine treatment. - The molecule impacts pancreatitis.
- The molecule impacts metabolic syndrome. - The
molecule is involved in fat storage.

Figure 11: Instruction for decomposing text into
atomic content units conveying one piece of infor-
mation.

F Instructions for Molecule Language1065

Translation1066

3https://github.com/language-plus-molecules/
LPM-24-Dataset

Below is an instruction that describes a task, paired
with an input that provides further context.
Write a response that appropriately completes the
request.

### Instruction: You are a researcher. You
can come up captions based on your existing
knowledge.
Captions are given against the following input. You
should be as detailed as possible.

### Input: Molecule: {source molecule}
In that molecule, could you formulate a caption
about?

### Response:{target caption}

Instruction for caption generation, i.e., M → L

Below is an instruction that describes a task, paired
with an input that provides further context.
Write a response that appropriately completes the
request.

### Instruction: You are a researcher. You
can come up molecule smile strings based on your
existing knowledge.
Molecule smile strings are given against the
following input. You should be as detailed as
possible.

### Input: Caption: {source caption}
In that caption, could you generate a molecule
smile string?

### Response: {target molecule}

Instruction for molecule generation, i.e., L → M

G Baselines 1067

• TxtChem-T5 (Christofidellis et al., 2023) is a 1068

T5XL multitask model trained on linguistic and 1069

molecule modalities across multiple datasets, 1070

including CheBI-20, akin to L+M-24. 1071

• Chem-LLM (Zhang et al., 2024), an InternLM2- 1072

Base-7B model, is trained on large chemical 1073

knowledge databases using DPO, achieving 1074

GPT-4-level results. 1075

• Meditron (Chen et al., 2023), a 7B model, is 1076

fine-tuned on the entire L+M-24 dataset. 1077
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H Evaluation Metrics1078

For performance evaluation, we employ estab-1079

lished metrics from the literature (Sets, 2022; Ed-1080

wards et al., 2022). In translation from molecule1081

to language, we assess using BLEU-2, BLEU-1082

4, ROUGE-1, ROUGE-2, ROUGE-L, and ME-1083

TEOR metrics. For translation from molecule to1084

language, evaluation metrics include BLEU, Lev-1085

enshtein distance, fingerprint metrics (MACCS,1086

RDK, and Morgan), Fréchet ChemNet Distance1087

(FCD), and molecule validity metrics. The anno-1088

tations in the result tables indicate whether higher1089

or lower values indicate superior performance.1090

I Training Efficiency1091

Train Convergence Train Efficiency

Val Loss

Figure 12: Training efficiency across alignment fine-
tuning methods

J Implementation Details1092

All implementations used Meditron (Chen et al.,1093

2023) as the backbone model, known for its per-1094

formance on L+M-24. For alignment fine-tuning1095

experiments, we initialised Meditron crossmodals,1096

trained for molecule generation 4. For the model1097

merging experiments, we combined Meditron1098

weights trained on MoCG tasks in a 1:18 ratio.1099

This ratio aimed to preserve the balance of in-1100

formation between the linguistic and molecule1101

modalities. All models were fine-tuned using1102

QLoRA (Dettmers et al., 2024).1103

For the atomic-level NLI evaluation method,1104

we instruct Meta-Llama-3-8B (Touvron et al.,1105

4Crossmodal initialisation was based on the most chal-
lenging task reported in (Edwards et al., 2024).

2023) to break down (reference, generated) pairs 1106

into a series of atomic premises and hypotheses. 1107

We then use DeBERTa 5 to measure hallucination 1108

and coverage by performing NLI across all the 1109

atomic premises and hypotheses. 1110

(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type=nf64,
bnb_4bit_compute_dtype=torch.bfloat16
)

Figure 13: Quantisation Configurations

args = TrainingArguments(
output_dir=save_path,
overwrite_output_dir=True,
load_best_model_at_end=True,
num_train_epochs=3,
per_device_train_batch_size=1
per_device_eval_batch_size=1
gradient_accumulation_steps=64
gradient_checkpointing=False
optim="adamw_torch_fused",
learning_rate=5e-5,
max_grad_norm=0.3,
warmup_ratio=0.1,
lr_scheduler_type="cosine",

)

Figure 14: Training configurations

(
lora_alpha=16,
r = 64,
lora_dropout=0.1,
task_type="CAUSAL_LM",
bias=False,
target_modules= "all-linear"
)

Figure 15: LoRA Configurations

5https://huggingface.co/MoritzLaurer/DeBERTa-v3-
large-mnli-fever-anli-ling-wanli
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K Examples of generated molecules and1111

captions.1112

Fig. 16 and 17 illustrate examples of molecules1113

and captions generated by our top-performing1114

models compared to Meditron, respectively.1115

L Examples of Atomic-level Cross-NLI1116

evaluation1117

Table 6 presents examples of assessing hallucina-1118

tion and coverage in generated captions using our1119

atomic-level cross-NLI evaluation method.1120
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Ground Truth SLERP+CPOMeditron CPO

!!"#:32, Char-F:0.23, Validity:1 !!"#:15, Char-F:0.32, Validity:1 !!"#:13, Char-F:0.29, Validity:1

!!"#:-60, Char-F:0.28, Validity:0

#$%&'() *+',-.', /,0.,$-,

!!"#: 1, Char-F:0.42, Validity:1 !!"#:-1, Char-F:0.29 Validity:1

!!"#:2, Char-F:0.21, Validity:1 !!"#:31, Char-F:0.30, Validity:1 !!"#:2 Char-F:0.35, Validity:1

Figure 16: Examples of molecules generated by our top-performing models compared to Meditron, the best
benchmark model trained on the entire dataset.

Ground Truth SLERP+CPOMeditron CPO
The molecule is a stabilizing 
cytochrome oxidase, cholesterol 
translocation, proton trap for oxidative 
phosphorylation, apoptosis that 
impacts non-alcoholic fatty liver 
disease. The molecule is a stabilizing 
mitochondrial structure that impacts 
diabetic heart disease, aging, barth
syndrome, and tangier disease

The molecule is a stabilizing 
cytochrome oxidase, a cholesterol 
translocation, and a energy source, and 
it impacts tangier disease. The 
molecule is a membrane stabilizer, a 
proton trap for oxidative 
phosphorylation, and a food additive

The molecule is a stabilizing cytochrome 
oxidase and a stabilizing mitochondrial 
structure that impacts non-alcoholic fatty 
liver disease, aging, and diabetic heart 
disease. The molecule is a cholesterol 
translocation, proton trap for oxidative 
phosphorylation, apoptosis that impacts 
barth syndrome and tangier disease.

The molecule is a cholesterol translocation
and a stabilizing cytochrome oxidase that 
impacts barth syndrome, non-alcoholic fatty 
liver disease, and aging. The molecule is a 
stabilizing mitochondrial structure, proton 
trap for oxidative phosphorylation, 
apoptosis that impacts tangier disease and 
diabetic heart disease.

It impacts non-alcoholic fatty 
liver disease. The molecule is a 
nutrient that impacts 
Parkinson's disease, Alzheimer's 
disease, and diabetes mellitus 
type 2.

The molecule is a nutrient that 
impacts non-alcoholic fatty liver 
disease, diabetes mellitus type 2, 
and Alzheimer's disease.

The molecule is a nutrient that impacts 
non-alcoholic fatty liver disease, 
diabetes mellitus type 2, Alzheimer's 
disease, and Parkinson's disease

It impacts cardiovascular disease, 
Alzheimer's disease, seizure, and 
diabetes mellitus. 

The molecule is a stabilizing 
mitochondrial structure, a stabilizing 
cytochrome oxidase, and a apoptosis, 
and it impacts diabetic heart disease. 
The molecule is a proton trap for 
oxidative phosphorylation and a 
cholesterol translocation, impacting 
both tangier disease and non-alcoholic 
fatty liver disease. It impacts both aging 
and barth syndrome.

The molecule is a stabilizing 
cytochrome oxidase and a stabilizing 
mitochondrial structure that impacts
non-alcoholic fatty liver disease, 
aging, and diabetic heart disease. The 
molecule is a cholesterol 
translocation, proton trap for 
oxidative phosphorylation, apoptosis
that impacts barth syndrome and 
tangier disease.

The molecule is a cholesterol 
translocation, stabilizing cytochrome 
oxidase, proton trap for oxidative 
phosphorylation that impacts barth
syndrome and non-alcoholic fatty liver 
disease. The molecule is a stabilizing 
mitochondrial structure and a
apoptosis that impacts tangier disease, 
aging, and diabetic heart disease.

The molecule is a stabilizing 
mitochondrial structure, apoptosis, 
and stabilizing cytochrome oxidase.

Figure 17: Examples of captions generated by our top-performing models compared to Meditron, the best
benchmark model trained on the entire dataset.
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Reference Text Atomic Premises Generated Text Atomic Hypothesis Hallucination Coverage
It impacts pancreatitis. The
molecule is a fat storage and nu-
trient, belonging to the thyrox-
ine treatment class of molecules,
and impacts metabolic syndrome,
atherosclerosis, and cardiovascu-
lar disease.

- The molecule impacts pancre-
atitis.
-The molecule is a fat storage
molecule.
-The molecule is a nutrient.
- The molecule belongs to the
thyroxine treatment class of
molecules.
- The molecule impacts metabolic
syndrome.
- The molecule impacts
atherosclerosis.
- The molecule impacts cardio-
vascular disease.

The molecule is a nutrient. - The molecule is a nutrient. 0.00 0.14

The molecule is a energy storage
and is floral. The molecule is
a emulsifier, nutrient, surfactant,
energy source, membrane stabi-
lizer, and rose.

- The molecule is a floral energy
storage.
- The molecule is an emulsifier.
- The molecule is a nutrient.
- The molecule is a surfactant.
- The molecule is an energy
source.
- The molecule is a membrane sta-
bilizer.
- The molecule is rose.

The molecule is a energy storage,
a membrane stabilizer, and a en-
ergy source. The molecule is a
surfactant, a emulsifier, and a nu-
trient.

- The molecule is an energy stor-
age.
- The molecule is a membrane sta-
bilizer.
- The molecule is an energy
source.
- The molecule is a surfactant.
- The molecule is an emulsifier.
- The molecule is a nutrient.

0.00 0.75

The molecule is a orexin receptor
antagonist.

- The molecule is an orexin
receptor antagonist.

The molecule is a anti viral. - The molecule is an anti-viral. 0.75 0.00

The molecule is a stabilizing
cytochrome oxidase, apoptosis,
stabilizing mitochondrial struc-
ture that impacts non-alcoholic
fatty liver disease and tangier dis-
ease. The molecule is a choles-
terol translocation and a proton
trap for oxidative phosphoryla-
tion that impacts aging, barth syn-
drome, and diabetic heart dis-
ease.

- The molecule is a cytochrome
oxidase.
- The molecule is a stabilizer of
apoptosis.
- The molecule is a stabilizer of
mitochondrial structure.
- The molecule impacts non-
alcoholic fatty liver disease.
- The molecule impacts Tangier
disease.
- The molecule is a cholesterol
translocation.
- The molecule is a proton trap.
- The molecule impacts oxidative
phosphorylation.
- The molecule impacts aging.
- The molecule impacts Barth syn-
drome.
- The molecule impacts diabetic
heart disease.

The molecule is a cholesterol
translocation, a apoptosis, and a
stabilizing cytochrome oxidase,
and it impacts tangier disease.
The molecule is a stabilizing mi-
tochondrial structure and a pro-
ton trap for oxidative phospho-
rylation that impacts barth syn-
drome, aging, and non-alcoholic
fatty liver disease. It impacts dia-
betic heart disease.

- The molecule is a cholesterol
translocation.
- The molecule is involved in
apoptosis.
- The molecule is a stabilizing cy-
tochrome oxidase.
- The molecule impacts Tangier
disease.
- The molecule is a stabilizing mi-
tochondrial structure.
- The molecule is a proton trap
for oxidative phosphorylation.
- The molecule impacts Barth syn-
drome.
- The molecule impacts aging.
- The molecule impacts non-
alcoholic fatty liver disease.
- The molecule impacts diabetic
heart disease.

0.00 0.91

The molecule is a anti microbial
member of the anti fungal class.

- The molecule is anti-microbial.
- The molecule is a member of
the anti-fungal class.

It belongs to the anti viral class
of molecules. The molecule is
both a hepatitis c treatment and a
hcv inhibitor.

- The molecule belongs to the
anti-viral class of molecules.
- The molecule is a hepatitis C
treatment.
- The molecule is an HCV in-
hibitor.

0.02 0.10

Table 6: Cases showcasing insights captured by our atomic-level cross-NLI in assessing the level of hallucination
and coverage in generated captions. Red highlights indicate missing information in atomic premises or invalid
information in atomic hypotheses. Hallucination refers to the introduction of information absent from the
reference, while coverage assesses the recall of atomic units (refer to § 3.3).
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