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ABSTRACT

In general, automatic scientific claim verification methods retrieve evidence para-
graphs, select rationale sentences, and predict the sentence stances for a given claim.
Large language models (LLMs) are expected to be the next-generation tool to solve
this task. However, due to the domain-specific claims, LLMs trained on the large-
scale general corpus at least need external knowledge to warm up. Therefore, how
to extract qualified and reasonable sentences with their stances toward a given claim
is indispensable. GraphRAG is designed to learn the hierarchical relationships of
context and selectively retrieve related information, improving LLMs’ reasoning
in ad-hoc and domain-specific claim verification scenarios. Nevertheless, current
GraphRAG methods typically require a pre-existing domain-specific knowledge
base. Hence, a natural question can be asked: How far are we from automatically
building a semantic graph and selecting rationale sentences for a pre-trained LLM,
and which process is better to be independent of the pre-trained LLM?
In this paper, we propose our ongoing research on distilling information across
sentences by constructing a complete evidence graph and pruning it to capture
the relevant connections between claim and paragraph sentences. This enables
updating the sentence embeddings, and consequently enhances multiple-rationale
sentence identification and stance prediction. The effectiveness of this proposed
framework is empirically tested on SciFact, i.e., an open-access dataset in the
biomedical domain. From the current stage, we discern that selected baselines,
including our method, can hardly outperform across all experimental settings,
which indicates many future research directions for researchers and practitioners.

1 INTRODUCTION

Scientific claim verification tends to focus on findings reported in the scientific literature as opposed
to countering disinformation in social media contents (Wadden et al., 2020). With the rapid growth of
scientific research, it becomes more and more challenging for researchers to keep up with the latest
scientific outcomes, and retrieve and verify the literature corresponding to specific claims. Automatic
scientific claim verification (Wadden et al., 2020; Liu et al., 2020; Zhong et al., 2020; Li et al., 2021;
Wadden et al., 2022; Alvarez et al., 2024; Vladika et al., 2025) is proposed for numerous applications,
like scientific paper recommendations, scientific question answering, etc.

As shown in Figure 1, the general framework for automatic claim verification includes three modules:
(1) a module to select evidence paragraph for a given claim; (2) a module to select rationale sentences
from the paragraph for a given claim; and (3) a classifier to predict the stances of the rationale
sentences to the given claim. Under this pipeline, most existing approaches organize the claim and
scientific document as a sequence of tokens and utilize Transformer-based pre-trained language
models (PLMs) in the pipeline or joint training fashion (Wadden et al., 2020; DeYoung et al.,
2020; Devlin et al., 2019; Zhang et al., 2021). Two challenges originate from this simple sequence
document modeling: (1) one evidence scientific document may consist of multiple rationale sentences,
supporting or contradicting the claim; (2) these rationale sentences may be scattered across paragraphs.
For example, two rationale sentences in Figure 2 locate in the first and fifth sentences of the evidence
paragraph. These two challenges are related to the complex structure of scientific documents that
are formatted following standard structures and can be segmented into rhetorical categories in
order (Mann & Thompson, 1987; Agarwal & Yu, 2009).
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Figure 1: An example claim from the SciFact dataset. The general framework for claim verification
includes three modules: a) a module to select evidence paragraph for a given claim, b) a module to
select rationale sentences from the paragraph for a given claim, and c) a classification module to
predict stances of the rationale sentences to the given claim.

The above analysis calls for an in-depth investigation of structures for scientific claim verification
from at least two aspects.

• First, facing complex underlying semantic structures in scientific documents, nascent studies
propose to use graph modeling for the input document, whose assumption is based on the fact that
scientific documents consist of sets of sentences and hierarchical sets of sentences that are related
to each other (Mann & Thompson, 1987). For example, graph neural network modeling (Fu & He,
2021; Zhou et al., 2022; Fu et al., 2022b; 2024b; Tieu et al., 2024; Zheng et al., 2024) associated
with the construction of complete evidence graphs can be used to capture complex relational and
logical information of natural language (Thorne et al., 2018; Liu et al., 2020; Fu et al., 2022a).

• Second, large language models (LLMs) are usually trained on the massive general text corpus (Zhao
et al., 2023), which may be insufficient to answer domain-specific scientific questions (e.g.,
biomedical claim and drug discovery) but relies on the involvement of external knowledge, like
fine-tuning(Zhang et al., 2023; Han et al., 2024), in-context learning (Dong et al., 2024; Sahoo
et al., 2024), and retrieval-augmented generation (RAG) (Gao et al., 2023; Fan et al., 2024). To
be specific, external knowledge is also structurally organized, which requires the corresponding
method to pay attention to hierarchical representation and multi-hop reasoning and prompt the
GraphRAG research direction (Edge et al., 2024).

The aforementioned two aspects reflect two possible research directions for automatic scientific claim
verification. The first direction depends on developing the large-scale graph foundation models (Li
et al., 2024b; Liu et al., 2025; Zhu et al., 2025). The second direction is expecting to develop
lightweight graph representation learning methods to select multi-hop evidence for enriching the
knowledge of pre-trained LLMs (Grattafiori et al., 2024; Guo et al., 2025; Fu et al., 2024a) via
instruction-tuning or prompting methods.

Following the second direction, in this paper, we are curious about "in which part and how graph rep-
resentation learning methods can help LLMs verify domain-specific scientific claims?" Motivated
by this question, we present our preliminary studies in this paper.

First of all, the recent GraphRAG method (Li et al., 2024a) relies on the existing knowledge base as
the input graph (Li et al., 2025), such as the Wikipedia knowledge graph. However, for an ad-hoc and
specific domain, a previously deliberately built knowledge base is not quite possible and not easy to
acquire; it requires users to build a structural knowledge base at the first step (Zou et al., 2025). For
the scientific claim verification, we refer to this knowledge graph as an evidence graph (e.g., the node
can be the stance of a sentence towards a given claim, and the formal dedication and expression can
be found in Section 3) in the rest of the paper.
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A naive solution is to build a complete (or fully connected) evidence graph. Then, users can use
this graph to select if a sentence is rational to a given claim and what is the sentence’s stance (e.g.,
support or refute), as shown in Section 3, to provide external useful information for LLM reasoning
via in-context learning, etc.

However, a complete evidence graph captures contextualized information from all sentences in the
paragraph, but does not necessarily guarantee distinguishing the order or distance of those sentences.
Furthermore, a complete evidence graph may not represent the underlying structure of scientific
documents and may introduce noisy connections when reasoning across the graph.

To serve as an auxiliary tool for enriching LLM’s external knowledge, besides the graph representation
learning ability, we also expect the proposed technology can avoid the overhead of LLM’s usage cost,
just learn the basic semantics meaning by small pre-trained language models (PLMs), and focus more
on the structure discovery of external knowledge.

Hence, in this paper, we propose our ongoing framework PrunE that learns to Prune the sentence-
level complete Evidence graph with positional encoding for the scientific claim verification task. To
be specific, PrunE first extends the complete evidence graph with the positional encoding of sentences
without losing the sequential information. Then, PrunE learns to prune the complete evidence graph
using binary gates in order to mine task-relevant connections.

2 RELATED WORK

The current proposed frameworks (Wadden et al., 2020; DeYoung et al., 2020; Glockner et al., 2020;
Li et al., 2021; Liu et al., 2020; Zhong et al., 2020; Zhou et al., 2019) have similar pipelines, including
a) a model to retrieve evidence documents(abstracts) for a given claim, b) a model to select rationale
sentences for a given claim, and c) a classification model to predict stances of the rationale to the
given claim.

2.1 PRETRAINED LMS FOR CLAIM VERIFICATION

Most existing approaches to automatic scientific claim verification leverage pretrained language
models (PLMs) such as BERT and SciBERT as sentence encoders and classifiers. These models
typically process concatenated claim-evidence pairs independently for evidence retrieval and stance
prediction (Wadden et al., 2020; DeYoung et al., 2020; Glockner et al., 2020). PLMs can model
intra-pair relationships via self-attention mechanisms.

2.2 LLM-BASED SCIENTIFIC CLAIM VERIFICATION

More recently, large language models (LLMs) have been explored for scientific claim verification
in zero- and few-shot settings. Alvarez et al. (2024) propose a framework in which LLMs generate
negated variants of scientific claims to serve as negative training examples. They use in-context
learning (ICL) for stance inference and introduce Scitance, a dataset built upon SciFact that includes
citation-level annotations. Vladika et al. (2025) present a step-by-step verification pipeline for
medical claims, incorporating explainable reasoning through chain-of-thought (CoT) prompting.
Their system generates clarification questions, retrieves evidence from open-domain corpora such as
PubMed and Wikipedia, and combines retrieved content with LLM internal knowledge to improve
semantic understanding and verdict prediction. These works illustrate the potential of LLMs to
generalize scientific reasoning across domains, though they also raise challenges related to grounding,
hallucination, and controllability.

2.3 GRAPH-BASED SCIENTIFIC CLAIM VERIFICATION

Graph-based approaches have been increasingly explored for modeling inter-sentence and inter-entity
relationships in scientific claim verification. These methods construct structured representations,
such as sentence-level or semantic-level graphs, to facilitate more expressive reasoning. Zhou et al.
(2019) construct a fully connected evidence graph, considering each rationale sentence as a node,
and leverages GCN to convert the stance prediction task into a node classification task. Liu et al.
(2020) extend this approach by introducing an edge kernel attention mechanism to capture richer
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sentence-level dependencies via edge-based message passing. Zhong et al. (2020) introduce reasoning
over a semantic-level graph for fact checking, which models higher-level semantic structures among
sentence segments. Their method reorders sentences based on semantic relatedness and integrates
them via graph-based representations to support more structured reasoning. More recently, Jeon &
Lee (2025) propose GraphCheck, a multi-path fact-checking framework that uses entity-relationship
graphs. Given a claim, their model generates knowledge triplets using LLM prompts and verifies
them using document evidence.

2.4 MULTI-TASK LEARNING IN CLAIM VERIFICATION

One normally-used training method is to train each model in the pipeline. However, this would cause
the stance prediction model, which could worsen the performance more if the rationale sentence
selection model, the former model, returns a wrong prediction. Therefore, jointly training the rationale
sentence selection task and the stance prediction task as multi-task learning have been considered (Ma
et al., 2018; Li et al., 2021). Li et al. (2021) use the cross-entropy loss as the objectives for both
tasks and compute a weighted sum of two objectives. Also, Ma et al. (2018) build the model with
task-shared and task-specific layers and add l-2 regularization to the sum of each tasks’ objective.

2.5 EXPLAINABLE CLAIM VERIFICATION

Various methods have been applied to the explainable claim verification task, including attention-
based methods (Shu et al., 2019) and explanation generation (Kotonya & Toni, 2020). Shu et al.
(2019) leverage co-attention networks over the news and its comments and visualize the explanation
by outputting the last co-attention layer’s weights. Kotonya & Toni (2020) mention that the scientific
evidence would be difficult to understand; thus, they focus on generating abstractive explanations.
This paper focuses on explaining the co-attention method, as natural language generation would be a
different direction.

3 PROBLEM DEFINITION

According to (Wadden et al., 2020), automatic scientific claim verification can be expressed as follows.
Given a claim c, a textual abstract a ∈ A has the stance label y(c, a) ∈ {SUPPORTS, REFUTES,
NOINFO}, and only SUPPORTS and REFUTES are evidence abstracts. In each evidence abstract,
not every sentence si, i ∈ {1, ..., |a|}, support or refute a given claim. Thus, those related sentences
are defined as rationale sentences. For example, an evidence abstract a to claim c can have m
rationale sentences {r1(c, a), ..., rm(c, a)}, and m ≤ |a|.
To identify those rationale sentences through their latent relationships, a complete evidence graph
G = (V,E) is proposed to be constructed for the evidence abstract a and its claim c (Thorne et al.,
2018; Liu et al., 2020). To be specific, in graph G, a node, consisting of a sentence si and the claim c
pair, is denoted by (si, c) and i ∈ |a|. Therefore, the initial problem can be transferred to the node
classification problem, i.e., given the complete graph structure and node features from (si, c), and m
ground-truth rationale sentences should be classified out of all given sentences in an abstract.

However, the fully connected graph structure introduces noise and hinders scalability at the same
time. Inspired by that, we aim to learn an evidence graph G, which has both a sparse and meaningful
layout to accurately predict:

• whether an abstract a is an evidence abstract to claim c?

• what is the exact label of abstract a (i.e., SUPPORTS or REFUTES)?

• what sentences in a are rationale sentences?

4 METHODOLOGY

PrunE consists of the following components, as illustrated in Figure 2: 1) a sentence encoder
component that transform the token- and sentence- level textual sequence into the embedding space
for a claim and paragraph sentences, 2) an evidence graph topology adaptation component that prunes
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Figure 2: Overview of our proposed PrunE framework

the task-irrelevant edges of complete evidence graph and consolidates the embedding of evidence
pairs accordingly. 3) a prediction component that is responsible for sentence identification, stance
prediction, and abstract retrieval.

4.1 SENTENCE ENCODER COMPONENT

The sentence encoder component maps the input textual sequence into the embedding space by
leveraging PLMs. First, the claim and paragraph sentences [c, s1, .., sN ] are serialized and concate-
nated as the input sequence of PLMs. The first and last hidden states of PLMs are averaged as the
token embeddings ht ∈ Rm×d. m is the number of tokens, and d is the output dimensions of PLMs.
The token embeddings are fed into the pooling layer, attention mechanism (Bahdanau et al., 2015)
to generate the sentence-level embeddings hs =

∑
i(α

ihi
t), α

i = softmax(wi⊤hi
t) for claim and

paragraph sentences (Zhang et al., 2021; Li et al., 2021), where αi is the learnable attention weights
and hi

t is the token embedding.

4.2 EVIDENCE GRAPH TOPOLOGY ADAPTATION COMPONENT

To model the complex structure of scientific documents, the evidence graph topology adaptation
component first constructs a complete evidence graph with positional encoding, which preserves
both contextualized information and positional information within paragraph sentences. Besides, the
methods are introduced to learn how to prune the complete evidence graph to predict task-relevant
sentence-level evidence graphs and consolidate sentence embeddings for the claim verification task.

4.2.1 EVIDENCE GRAPH CONSTRUCTION

The evidence graph represents the content of each abstract a and the given claim c, capturing the
relationships across the evidence node. In the complete evidence graph, each node represents an
evidence pair vi = (c, si) of claim c and sentence si in a candidate abstract a. Mathematically, the
evidence graph can be denoted as G = (V,E), where V = {vi}, E = {(vi, vj), vi ∈ V, vj ∈ V },
and adjacency matrix A ∈ RN×N , N = |a|. The simple concatenation of the evidence sentence and
the claim may be insufficient to model the complex relationship between the claim sentence and the
paragraph sentences. Therefore, we generate the node representations hvi

by combining the claim
sentence embedding hc and paragraph sentence embeddings hsi , as follows.

hvi
= [hc ⊙ hsi , |hc − hsi |,hc,hsi ,hp] (1)

where ⊙ denotes the element-wise multiplication. hp denotes the positional encoding of each
sentence in the paragraph (Vaswani et al., 2017).
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4.2.2 TOPOLOGY ADAPTATION

The complete evidence graph could only provide redundant connections for the claim verification
task. Here, PrunE extends the Graph Neural Networks (GNNs) model with trainable binary gates to
learn the sparse topology of the complete evidence graph and generate enhanced node embeddings.
In detail, we integrate the GNNs with hard concrete distribution for binary gates Z ∈ {0, 1}|V |×|V | to
optimize the L0 regularization (Louizos et al., 2018; Luo et al., 2021). In this paper, Graph Attention
Neural Networks (GAT) are used as the backbone GNN model.

Graph Attention Neural Network. The GAT layer implicitly weights the neighborhood nodes
differently based on attention scores αvi,vj

(Velickovic et al., 2018).

h(l)
vi =

∑
vj∈N (vi)

αvi,vjh
(l−1)
vj

αvi,vj
= softmax(a⊤[Whvi ⊕Whvj ])

(2)

Sparsification. Even though GAT can assign various weights to the neighbors, the task-irrelevant
connections can still introduce noisy information for neighborhood aggregation (Luo et al., 2021). To
prune these task-irrelevant connections, PrunE aims to learn a binary gate Zl to filter out the task-
irrelevant connections of the adjacency matrix and generate the new adjacency matrix Ãl = A⊙ Zl

by penalizing the non-zero elements of the Zl, for each layer l of GAT.

Ll
0 = ∥Zl∥ =

∑
vi,vj∈E

1[zlvi,vj ̸= 0] (3)

In order to enable to differentiate the L0 loss with the respect of Z, the reparameterization trick
of zlvi,vj is used, by introducing a Bernoulli distribution with parameter πl

vi,vj over gate zlvi,vj , i.e.,
q(zlvi,vj

|πl
vi,vj ) = Bern(πl

vi,vj
). Accordingly, we can rewrite the attention scores αvi,vj

of the GAT
layer as follows.

α̃vi,vj = softmax(a⊤[Wh(l−1)
vi ⊕Wh(l−1)

vj ]z(l)vi,vj ) (4)
Then, L0 can be differentiable over π. However, the downstream classification objective still
does not allow for efficient gradient-based optimization. Therefore, we can further relax the
binary gates zlvi,vj

from Bernoulli distribution by a parameterized networks and employ hard-
sigmoid rectification of the parameter svi,vj

∼ qsvi,vj (svi,vj |ϕ) to mimic the binary gate zvi,vj =

min(1,max(0, svi,vj )) (Louizos et al., 2018; Maddison et al., 2017). Inspired by Louizos et al. (2018),
we assume a binary concrete random variable svi,vj distributed in the (0,1) interval with probability
density qsvi,vj (svi,vj |ϕ) and then utilize hard-sigmoid on svi,vj . The parameters of the distribution
ϕ = (α̃vi,vj , β).

svi,vj = σ((logu− log(1− u) + α̃vi,vj )/β),

u ∼ U(0, 1), s̄ = s(ζ − γ) + γ,

α̃vi,vj = leakyReLU(a⊤[Whvi
⊕Whvj

]),

zvi,vj = min(1,max(0, s̄vi,vj )),

(5)

where ζ < 0 and γ > 1 are hyperparameters, and σ denotes sigmoid function. We stretch the
distribution of s from the (0,1) interval to the (ζ, γ) interval. β is the temperature that controls the
degree of approximation. If β = 0, we will get the bernoulli random variable svi,vj = πvi,vj . And
then, the sentence embeddings h̃(l)

vi and output the new adjacency matrix Ã = A⊙ 1[Z > 0] can be
rewritten as follows.

h̃(l)
vi

=
∑

vj∈N (vi)

softmax(zvi,vj )h
(l−1)
vj (6)

4.2.3 PREDICTION COMPONENT

The prediction component includes sentence-level and abstract-level prediction tasks, such as sentence
identification, sentence stance prediction, abstract selection, and abstract stance prediction.

The new adjacency matrix Ã and topology-consolidated evidence representation h̃
(l)
vi are fed into the

GAT layer and feedforward layer. Abstract-level prediction component employs two feedforward
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layers. The input of the abstract-level prediction component is the combination of the sentence-level
output and the first token of the PLM hidden states, hcls. Cross-entropy loss is used for abstract
selection, stance prediction, and rationale selection. The final objective function is the weighted
summation L = λ1Labstract retrieval + λ2Lstance + λ3Lrationale selection + λ0L0.

5 EXPERIMENTS

5.1 DATASET

We use the SciFact 1 dataset, which contains 1,409 scientific claims related to COVID-19, verified by
5183 titles and abstracts from CORD-19 corpus, indexed from PubMed (Wadden et al., 2020). In
reality, a claim can be both supported and refuted by different abstract rationales. However, in this
dataset, all the selected rationale sentences for a claim have the same annotated label: “Supports”,
“NoInfo”, or “Refutes”. We only involve the training data and development data from the SciFact
dataset, since we cannot evaluate the test data without ground truth labels. Accordingly, the training
data and test data in total include 456 claims annotated as Supports, 416 claims labeled as NoInfo,
and 237 claims labeled as Refutes, as shown in Table 1. Claims with the Supports or Refutes label
contain at least one evidence abstract and a rationale sentence. We use 809 instances of training data
to train our model and test it on the development data, which consists of 300 instances.

Table 1: Data Statistics of SciFact
Data Supports NoInfo Refutes All
Train 332 304 173 809
Dev 124 112 64 300
All 456 416 237 1109

5.2 BASELINE MODELS

We compare our framework with three baseline models, including KGAT and Paragraph-Joint (Li
et al., 2021) and ARSJoint (Zhang et al., 2021).

• KGAT (Liu et al., 2020) employs a kernel mechanism to learn the node and edge masks
during training. The training process of evidence abstract retrieval, rationale sentence
selection, and stance prediction is in a pipeline fashion. That is, each task is trained
separately. KGAT reranks the predicted evidence abstract and utilizes the top three evidence
abstracts after reranking to train the sentence-level task.

• Paragraph-Joint (Li et al., 2021) is trained in a paragraph-level multi-task learning model.
• ARSJoint (Zhang et al., 2021) is the multi-task learning model for abstract retrieval, rationale

identification, and stance prediction.

5.3 EVALUATION METRICS

We evaluate model performance at two levels of granularity: abstract and sentence levels, following
the setup in (Wadden et al., 2020). For both levels, we report precision, recall, and micro-F1 scores.
For abstract-level evaluation, we assess the prediction of the stance label only and of both the stance
label and the rationale sentences. For sentence-level evaluation, we include only the evaluation
of rationale sentence selection and the evaluation of both rationale sentence selection and stance
prediction.

5.4 IMPLEMENTATION DETAILS

We first retrieve the top 150 related abstracts for each given claim in the training and testing datasets
by using a bi-gram tf-idf vectorizer and calculating cosine similarity over the sum of title and abstract
vectors.

1https://github.com/allenai/scifact
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We train our model with k = 12 negative candidate abstracts for each given claim that are randomly
selected from 150 related abstracts and 1 positive abstract sample. For the testing phase, we set
k equal to 12, by randomly selecting 12 samples from 150 related abstracts for each claim. The
epoch number of the training is 40. The learning rate to update the pre-trained language models is
1e− 5, and the learning rate of other parameters in our framework is 5e− 6. As for the pre-trained
language models, we choose the Microsoft PubMedBert (Gu et al., 2021) as the backbone PLMs
for PrunE and all baselines. PubMedBert is pretrained on PubMed titles, abstracts, and full texts.
The parameter dimension of PubMedBert is 768. The hidden state dimension of PrunE is 512,
with 1024 input dimension, following (Wadden et al., 2020; Li et al., 2021). We set the λ0 = 1,
λ1 = 3.5, λ2 = 2.5, λ3 = 4.5 for the objective function. The topology adaptation component
contains hyperparameter ζ = −1, γ = 1.1, and temperature β = 2/3. The entire experiments are
conducted on an Nvidia A100 GPU with 32GB of memory. The implementation scripts can be found
at https://github.com/LiriFang/PrunE-code.git.

5.5 EXPERIMENTAL RESULTS

Overall Performance. PrunE achieves the competitive performance compared with baseline models
in Table 2, and no baselines can outperform across all settings, which leaves more investigation space
for future directions.

Table 2: Performance Comparison: The highest scores are in bold, second-highest are underlined.

Model Sentence Level
Selection Only Selection + Label

Precision Recall F1 Precision Recall F1

KGAT 0.6741 0.4126 0.5119 0.5759 0.3525 0.4373
Paragraph-Joint 0.8084 0.5765 0.6730 0.4713 0.3361 0.3923
ARSJoint 0.6380 0.5683 0.6012 0.4387 0.3907 0.4133
PrunE 0.6782 0.5874 0.6296 0.5741 0.4973 0.5329

Model Abstract Level
Label Only Label + Rationale

Precision Recall F1 Precision Recall F1

KGAT 0.7227 0.4115 0.5244 0.6891 0.3923 0.5000
Paragraph-Joint 0.5839 0.4163 0.4860 0.5369 0.3828 0.4469
ARSJoint 0.6012 0.4976 0.5445 0.5145 0.4258 0.4660
PrunE 0.6893 0.5837 0.6321 0.6554 0.5550 0.6010

Sentence-level evaluation. The F1 score of PrunE does not compete with the Paragraph-Joint in the
rationale selection-only setting. However, PrunE achieves better precision, recall, and F1 scores than
Paragraph-Joint and ARSJoint models, if both the rationale sentence and stance label are evaluated.
Even though Paragraph-Joint achieves the highest performance in the selection-only setting, the recall
of rationale sentences that have an accurate stance is lowest.

Abstract-level evaluation. PrunE achieves the best F1 score for abstract stance Label Only and Label
+ Rationale. Label + Rationale evaluates whether the abstract stance is correct and contains at least an
accurate rationale sentence. KGAT utilizes rerank methods as an additional step for evidence abstract
retrieval and uses only the top three evidence abstracts as training instances for rationale selection.
The rerank module may contribute to the high precision score at an abstract level. Compared to the
two joint training models, i.e., Paragraph-Joint and ARSJoint, PrunE achieves higher precision, recall,
and F1 scores in both label-only and label+Rationale settings.

5.6 ABLATION STUDY

We conduct an ablation study to assess the effectiveness of the topology adaptation component in our
framework. Specifically, we compare three variants: (1) the full framework without sparsification,
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Table 3: Ablation Study: Performance of PrunE with various components removed.

Model Sentence Level
Selection Only Selection + Label

Precision Recall F1 Precision Recall F1

PrunE 0.6782 0.5874 0.6296 0.5741 0.4973 0.5329
PrunE w/o sparsification 0.4141 0.1448 0.2146 0.2969 0.1038 0.1538
PrunE (w/o topology adaptation) 0.6017 0.5902 0.5959 0.4318 0.4235 0.4276
PrunE (w/o complete graphs) 0.6083 0.5984 0.6033 0.4444 0.4372 0.4408

Model Abstract Level
Label Only Label + Rationale

Precision Recall F1 Precision Recall F1

PrunE 0.6893 0.5837 0.6321 0.6554 0.5550 0.6010
PrunE w/o sparsification 0.6154 0.1148 0.1935 0.5128 0.0957 0.1613
PrunE (w/o topology adaptation) 0.5926 0.5359 0.5628 0.5450 0.4928 0.5176
PrunE (w/o complete graphs) 0.5735 0.5598 0.5666 0.5196 0.5072 0.5072

(2) the framework without the entire topology adaptation module (as illustrated in Figure 2), and (3)
the framework without constructing the complete evidence graph.As shown in Table 3, the model
variant that stacks three GAT layers over a fully connected graph, without learning a sparse adjacency
matrix, performs significantly worse than the full model. This might be caused by stacking three
GAT layers over a complete graph with small sizes (around 10 nodes), leading to an over-smoothing
problem for sentence-level prediction tasks. Moreover, our abstract-level embeddings are generated
based on sentence selection rationale, which can propagate the error to the abstract prediction tasks.
The performance increases when we drop the entire topology adaptation component; however, it is
still lower than PrunE. Lastly, removing the complete evidence graph also results in a performance
drop, comparable to the model without the topology adaptation component. These results collectively
demonstrate that both the construction of the evidence graph and the topology adaptation mechanism
make meaningful contributions to model performance.

6 CONCLUSION AND DISCUSSION

We propose PrunE, a lightweight and structure-aware framework for scientific claim verification that
integrates graph representation learning with pretrained language models. PrunE comprises three
main components: (1) sentence embeddings initialized using PLMs and attention pooling; (2) a fully
connected evidence graph that is pruned via learnable binary gates to capture task-relevant structural
relationships; and (3) a prediction module that leverages the refined embeddings and the learned
graph structure to jointly identify relevant abstracts, rationale sentences, and their stance toward a
given claim.

Our method addresses two central challenges in scientific claim verification: the complex, non-
sequential structure of scientific text, and the need to augment general-domain PLMs with domain-
specific relational knowledge without incurring the high cost of fine-tuning or large-scale retrieval. By
learning sparse and interpretable graph structures, PrunE enables localized multi-hop reasoning over
sentence-level evidence, while remaining compatible with lightweight, modular inference pipelines.

This work aims to contribute to the growing body of research at the intersection of graph learning and
language modeling, highlighting opportunities for enhancing retrieval-augmented and instruction-
tuned LLMs with structural priors. Future directions include modeling discourse-aware graph
topologies and integrating symbolic or citation-based constraints to further guide the construction of
evidence graphs.
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