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Figure 1: Results of InkSight. Left: Image of handwriting (offline handwriting), Right: output digital inks (online handwriting). In
every word, character colors transition from red to purple, following the rainbow sequence; within each stroke, the shade progresses
from darker to lighter. More results in Appendix A.

Abstract

Digital note-taking is gaining popularity, offering
a durable, editable, and easily indexable way of
storing notes in the vectorized form, known as
digital ink. However, a substantial gap remains
between this way of note-taking and traditional
pen-and-paper note-taking, a practice still favored
by a vast majority. Our work, InkSight, aims
to bridge the gap by empowering physical note-
takers to effortlessly convert their work (offline
handwriting) to digital ink (online handwriting),
a process we refer to as derendering. Prior re-
search on the topic has focused on the geometric
properties of images, resulting in limited gener-
alization beyond their training domains. Our ap-
proach combines reading and writing priors, al-
lowing training a model in the absence of large
amounts of paired samples, which are difficult to
obtain. To our knowledge, this is the first work
that effectively derenders handwritten text in ar-
bitrary photos with diverse visual characteristics
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and backgrounds. Furthermore, it generalizes be-
yond its training domain into simple sketches. Our
human evaluation reveals that 87% of the samples
produced by our model on the challenging Hier-
Text dataset are considered as a valid tracing of
the input image and 67% look like a pen trajec-
tory traced by a human. Interactive visualizations
of 100 word-level model outputs for each of the
three public datasets are available in our Hugging
Face space. Model release is in progress.

1. Introduction
Handwritten notes have been a cornerstone of information
storage for centuries. Today, with the rise of stylus and dig-
ital pen technologies, digital inking presents a compelling
alternative. This modern approach offers several advantages:
enhanced durability, seamless organization and integration
with other digital content (images, text, links) or digital
assistance. Despite these benefits, many people still prefer
traditional handwritten notes over the digital format.

Our work aims to make physical notes, particularly hand-
written text, available in the form of digital ink, capturing the
stroke-level trajectory details of handwriting. This allows
paper note-takers to enjoy the benefits of digital medium
without the need to use a stylus. This area has gained sig-
nificant interest in both academia (Nguyen et al., 2021;
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Chen et al., 2022b; Mohamed Moussa et al., 2023) and
industry (Not, 2023), with software solutions that digitize
handwriting and hardware solutions that require smart pens
and/or special paper (Liv, 2024; Roc, 2024; Neo, 2024). Our
approach requires only a picture of the handwritten note,
without the need for specialized equipment.

Our approach differs from the methods that rely on geomet-
ric priors, where gradients, contours, and shapes in an image
are utilized to extract writing strokes. Instead, we harness
the power of learned reading and writing priors, where:

• Learned reading prior enhances the model’s capability
in precisely locating and extracting textual elements
from the images. This is achieved either through the
model’s textual understanding ability or aided with
external textual input, e.g. from an OCR engine.

• The integration of writing prior ensures that the result-
ing vector representation, the digital ink, closely aligns
with the typical human approach of writing in terms of
physical dynamics and the order of strokes.

To the best of our knowledge, our work is the first to in-
corporate these priors, resulting in a robust model that is
capable of derendering handwriting across diverse scenarios
and appearances, including challenging lighting conditions,
noticeable occlusions, etc.

Our model adopts a simple architecture combining the
widely popular and readily available ViT (Dosovitskiy et al.,
2021) encoder and an mT5 (Xue et al., 2021) encoder-
decoder, fostering reproducibility, reusability, and ease of
adoption.

To summarize, the major contributions of our work are:

1. We propose the first system to perform derendering,
transforming arbitrary photos of handwritten text into
digital ink.

2. We propose a training and inference setup that works
without expensive data collections and scales to arbi-
trarily large input images.

3. We show that the inks produced by our system are
both semantically and geometrically similar to the in-
put images, and are similar to real digital ink data, as
measured by both automatic and human evaluations.

4. We show that, due to the learned reading and writing
priors, our approach is robust well beyond its training
data and works on various types of handwriting, simple
sketches, and full pages of notes.

2. Related Work
Pen trajectory recovery has been a task of interest to
many researchers due to its utility for tasks that can benefit
from stroke order / temporal information such as online

handwriting recognition (Lallican et al., 2004; Viard-Gaudin
et al., 2005; Zhang et al., 2015; Chan, 2020). Another
point of interest is the ability to efficiently store, index, and
edit handwritten notes within existing online note taking
systems.

Classical approaches commonly consist of domain-specific
preprocessing (e.g. noise removal, image binarization, skele-
tonization), local (sub-)stroke level processing (e.g. identifi-
cation of junction points) and global aggregation (usually as
a graph-based optimization problem) (Jager, 1996; Kato &
Yasuhara, 2000; Qiao et al., 2006; Chan, 2020; Doermann
et al., 2002). These approaches often rely on the quality of
the preprocessing and hand-designed heuristics and do not
generalize well to other scripts and domains.

More recent methods use convolutional (Nguyen et al., 2021;
Archibald et al., 2021) and/or recurrent (Bhunia et al., 2018;
Chen et al., 2022b) neural networks to translate an image
into a sequence of coordinates. Mohamed Moussa et al.
(2023) use two Transformer models to first encode the sub-
strokes of the input and then reorder them, given the encod-
ings. Those methods produce promising results, but focus
on the simplified setups of rendered online handwriting
and/or single characters.

Line drawing vectorization shares a lot of features with
geometric approaches of pen trajectory recovery, but does
not include stroke order reconstruction.

Recent techniques for this problem involve solving an op-
timization task of fitting a set of geometric primitives (e.g.
Bezier curves) to match the geometric and/or semantic con-
tent of the input image (e.g. Vinker et al. 2022), sometimes
relying on differentiable rendering to maintain the inputs
and outputs in the image space Mo et al. (2021).

These approaches focus on converting raster images (per-
fectly aligned, clean, clear backgrounds) to vector ones.
Thus they avoid dealing with the realistic photo artifacts re-
lated to lighting, noisy backgrounds or photo-taking angles.
These artifacts are however unavoidable in a real-world
setting.

Dataset availability is limiting the research in trajectory
recovery as there are few datasets of images and their corre-
sponding digital inks. These include IRONOFF (Viard-
Gaudin et al., 1999), CASIA (Liu et al., 2011), IBM-
UB (Shivram et al., 2013) for handwritten text (images
there exhibit limited variability being always black-on-
white line writing, usually on the same input device) and
Sketchy (Sangkloy et al., 2016) for crowd-sourced sketches
of photos from 125 object categories.

Combining language models with new modalities is
related to this work as we convert the pen trajectory to a
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started

<ink_token_450> 
<ink_token_6> 
<ink_token_257> 
…

ViT mT5 
Encoder

mT5 
Decoder

…
…

Figure 2: Left: Illustration of model inference. Inputs include an image and a prompt specifying the task. Outputs may consist of ink
alone or a combination of ink and text, as indicated by matching colors in both the input prompt and the output. Ink tokens are detokenized
into digital ink using our proposed ink tokenizer explained in Section 3.3. Right: Diagram of the Full Page System.

sequence of coordinates on a fixed size canvas and rep-
resent the coordinates with ”ink tokens” (more details in
Section 3.3). Hence, we consider our approach as extending
a Vision-Language Model (VLM) with a new modality.

Recent research in this area has been pointed towards train-
ing adapters for merging the pretrained unimodal mod-
els (e.g. Alayrac et al. (2022)) or, fully or partially
fine-tuning a system with multi-modal tasks (e.g. Chen
et al. (2022a)). Works most similar to ours are Au-
dioPaLM (Rubenstein et al., 2023), extending LLM with au-
dio tokens, Painter (Pourreza et al., 2023) using coordinate-
based representation of strokes to perform generation and
understanding of sketches, and PixelLLM (Xu et al., 2023)
using the same representation to localize words in the image
caption.

3. Method
While the fundamental concept of InkSight appears
straightforward – training a model that generates digital
ink representations from input images – the practical im-
plementation for arbitrary input images presents two signif-
icant challenges: (1) Limited Supervised Data: acquiring
paired data with corresponding images and ground truth
digital ink for supervised training can be expensive and
time-consuming and no datasets with sufficient diversity ex-
ist for this task. (2) Scalability to Large Images: the model
must effectively handle potentially arbitrary large input im-
ages with varying resolutions and amount of content.

To address the first problem without expensive data collec-
tion, we propose a multi-task training setup which com-
bines recognition and derendering tasks. We show that this
multi-task training setup enables the model to generalize
on derendering tasks with various styles of images as input,
and injects the model with both semantic understanding
and writing priors of handwritten text. We discuss our data
and multi-task training setup in Section 3.2, and ablate the
design choices in Section 4.6. The exact model structure,
which consists of standard publicly available off-the-shelf
components, is discussed in Section 3.1.

The second problem can be addressed by training a model
with very high-resolution input images and very long output
sequences, but this is computationally prohibitive. Instead,
we break down the derendering of a page of notes into three
steps: running OCR to extract word-level bounding boxes,
derendering each of the words separately and pasting the
derendered words back, as shown in Figure 2. We discuss
the representation of digital ink, the normalization of the
data, and the tokenization scheme we use in Section 3.3.
More full page results can be found in Appendix L.

3.1. Vision-Language Model for Digital Ink
In this study, we employ a model architecture inspired by
PaLI (Chen et al., 2022a; 2023b;a) which integrates a Vision
Transformer (ViT) encoder (Dosovitskiy et al., 2021) with
an mT5 encoder-decoder Transformer model (Xue et al.,
2021). We provide the task-specific instructions as text, as
described in Section 3.2. We use the same set of tokens for
both input and output, which contains the individual char-
acter tokens from the original mT5 vocabulary and specific
tokens reserved for the ink representation (further details in
Sec. 3.3).

To initialize the model, we use the pre-trained weights of the
ViT encoder. The mT5-based encoder-decoder weights are
initialized randomly, which is motivated by our customized
token dictionary differing from the one used in mT5’s origi-
nal training. In our training, we freeze the weights of the ViT
encoder – we justify this choice empirically in Section 4.6.

3.2. Training Task Mixture
To circumvent the challenge of not having diverse paired
image and ink samples as training data, we propose a multi-
task training setup comprising two derendering tasks, two
recognition tasks, and one hybrid task (shown in Figure 3
and described in Table 1).

We show that this setup helps the model to (1) generalize to
the derendering of real photos; (2) learn useful priors which
help dealing with occlusions and generating realistic ink;
(3) allow using different inference setups which enables, e.g.
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Input Text
Recognize and derender 
the ink.

Output
<extra_id_0> Plattform wie die 
<ink_token_450> <ink_token_26> 
<ink_token_342> <ink_token_25> 
<ink_token_353> ...

Recognize and Derender
Input Text
Derender the ink.

Output
<extra_id_0> <ink_token_450> 
<ink_token_26> <ink_token_342> 
<ink_token_25> <ink_token_353> 
<ink_token_24> ...

Vanilla Derender
Input Text
What is written?

Output
близких

Recognition [Synthetic]

Training Task Mixture …

Input Text
What is written?

Output
PIZZA.

Recognition [Real]
Input Text
Derender the ink: 笑

Output
<extra_id_0> <ink_token_450> 
<ink_token_173> <ink_token_226> 
<ink_token_173> <ink_token_234> 
<ink_token_172> ...

Derender with Text

Figure 3: Illustration of multi-task training mixture. The training mixture comprises five different task types: two derendering tasks
(ink output), two recognition tasks (text output), and one mixed task (text-and-ink output). Each type of task utilizes a task-specific input
text, enabling the model to distinguish between tasks during both training and inference.

Table 1: Summary of tasks in our proposed multi-task training.

Tasks Description

Vanilla
Derender

The model receives a synthetic ink image with
a conditioning task prompt and outputs ink
tokens corresponding to the image content.

Derender
with Text

The model receives a synthetic ink image, the
target textual content together with a task con-
ditioning prompt, and outputs ink tokens corre-
sponding to the provided text within the image.

Recognition
(Syn/Real)

The model receives an ink image (either syn-
thetic or real) and a task conditioning prompt
and outputs the recognized textual content.
This task uses both synthetic ink images and
real images from OCR datasets.

Recognize
and Derender

This task combines recognition and derender-
ing. The model receives a synthetic ink image
and a prompt and outputs both the recognized
text and the corresponding ink tokens.

high-quality text derendering with OCR result (Derender
with Text) or derendering without textual input for non-
textual elements (Vanilla Derender).

Training tasks are shuffled and assigned equal appearance
probability (20%). By default, during inference, we use
Derender with Text (this choice is ablated in Section 4.6).

Data augmentation. To narrow the domain gap between
the synthetic images of rendered inks and the real photos,
we augment the data in tasks that take rendered ink as input.
This is done by randomizing the ink angle, color, stroke
width, and by adding Gaussian noise and cluttered back-
grounds. Examples are provided in Figure 3, more details
are given in Appendix E, and Section 4.6 highlights the
importance of having the data augmentation.

3.3. Data Representation
Digital ink tokenization. Digital ink is usually repre-
sented as a sequence of strokes I = {s1, s2, · · · , sn}, where
each stroke si consists of a sequence of mi (represent-
ing i-th stroke length) coordinate-time triplets, denoted as

si = {(xi, yi, ti)}mi

i=1. To enable text decoders like mT5
to generate ink strokes, we first normalize the ink and then
tokenize it into a set of discrete tokens from a pre-defined
dictionary.

1

2

3

4

5

7

Ink Tokens

Beginning of Stroke Token

k-th Sampled Point

Text Label
S
Fixed Size Canvas 6

k

b

b

1 2 3 4 5 6 7

Figure 4: Illustration of the ink tokenization for a single-stroke
ink. The dark red ink depicts the normalized ink stroke, with
numbered circles marking sampled points after time resampling.
The color gradient of the sampled points indicates the point order.
Each point is represented with two tokens encoding its x and y
coordinates. The token sequence for this ink begins with b, signi-
fying the start of the stroke, followed by the tokens for coordinates
of sampled points.

Normalizing the ink includes (1) resampling it at a fixed
frequency (20 ms) to account for potential differences be-
tween input devices; (2) applying Ramer-Douglas-Peucker
resampling (Visvalingam & Whyatt, 1990) to reduce the out-
put sequence length while preserving the overall shape; (3)
shifting and scaling the ink to place it at the center of fixed
size canvas, such that each point in each stroke is within the
range of [0, N ].

As shown in Figure 4, tokenization of the normalized ink
involves prepending a beginning of stroke token followed
by the x and y coordinates of each point inside the stroke,
rounded to the nearest integer value. This is done for every
stroke inside the digital ink. The total dictionary size is
2N + 3 with separate set of tokens for x and y, including
N +1 possible x and y values and a token indicating a start
of the stroke. N controls the tradeoff between rounding
error and vocabulary size, and we use N = 224 in practice.
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Image representation. For the derendering tasks of the
training mixture, we render digital inks in the center of an
M × M image with stroke width, color, and background
color selected via random augmentation (see Appendix E).
For the recognition task training and inference with real
images, we apply a similar transformation: the input image
is scaled and then centered and padded in black to produce
an M ×M image, although we use M = 224 in practice,
by design there are no constraints to have N = M .

Expanding text vocabulary with ink. Our set of tokens
contains all individual symbols from the multilingual mT5
tokenizer (Xue et al., 2021) (appx. 20k), with additional
2N + 3 tokens reserved for the representation of the digital
ink, as described above. Removing all multi-symbol tokens
allows to reduce the size of the input text embedding and
final softmax of the decoder model by ∼ 80%, while main-
taining the ability to input and output arbitrary text and not
affecting the quality of derendering or recognition.

4. Results
In this section, we discuss the training datasets and imple-
mentation details, and present the qualitative and quantita-
tive results, followed by an ablation study on training tasks
and design choices.

4.1. Datasets
We train our models using two types of datasets: publicly
available data and our in-house proprietary data. Below,
we detail the public datasets and provide aggregated statis-
tics for the in-house counterparts. Additional details are
provided in Appendix B.

OCR training data. As public OCR training data, we
use RIMES (Augustin et al., 2006; Grosicki et al., 2009),
HierText (Long et al., 2022; 2023), IMGUR5K (Krishnan
et al., 2023), ICDAR’15 historical documents (Murdock
et al., 2015), and IAM (Marti & Bunke, 1999). We crop
out word-level images where possible, acquiring 295 000
samples with text in Latin script.

The in-house dataset consists of images of handwritten and
printed text (67% and 33% respectively) written on a diverse
set of backgrounds, with 95% of the labels in English.

For data sources that contain word-level segmentation, we
extract images of individual words based on their bounding
boxes. For others, we found it beneficial to heuristically
filter the training data to exclude samples that are too short,
too long, or of too low resolution to be rendered on a 224×
224 image. The filtering rules ensure that the aspect ratio
satisfies (0.5 < width / height < 4.0), and that the image
size is at least 25 pixels per side.

Digital ink training data. As public digital ink train-
ing data, we use VNOnDB (Nguyen et al., 2018), SCUT-
Couch (Li et al., 2008), and DeepWriting (Aksan et al.,
2018). For DeepWriting we use the available segmentation
information to produce 3 datasets with character-level, word-
level, and line-level croppings, and use all 3 for training.
For VNOnDB we extract individual words to be used as
training data. The public dataset size totals ∼2.7M samples.

The in-house multilingual dataset primarily comprises short
snippets of text in Mandarin (37%) and Japanese (23%),
with other languages contributing under 5%.

Evaluation data. Since there are no available diverse
datasets of paired inks and images (as discussed in Sec-
tion 2), we perform the evaluation on OCR data, and addi-
tionally do a small data collection to obtain paired samples.

To automatically assess our models, we evaluate the quality
of derendering on the test splits of 3 OCR datasets: IAM
(testset f, ∼17.6k samples), IMGUR5K (∼23.7k sam-
ples), and HierText. For HierText, which was not originally
designed around handwritten samples, we apply the same
filtering as to the OCR training data, and additionally only
consider words marked as handwritten (∼1.3k samples).

Additionally, we have performed a small annotation cam-
paign, asking people to trace ∼200 samples from the Hier-
Text test set. We use these as the “golden” set to find the
reference point in the automated evaluation and as a control
group when doing the human evaluation.

4.2. Models
We train 3 variants of our model: Small-i (∼340M pa-
rameters, -i stands for in-house setup) with a ViT B/16
encoder pretrained on JFT-300M (Sun et al., 2017) paired
with an mT5-base encoder-decoder; Small-p (-p stands for
public setup), built with the same architecture as Small-i,
but trained on public datasets and using a publicly avail-
able ImageNet-21k (Deng et al., 2009) pretrained ViT B/16
checkpoint; Large-i (∼1B parameters) with a ViT L/16 en-
coder pretrained on JFT-300M, paired with an mT5-large
encoder-decoder. All models employ a context length of
1024 for the output, and 128 for the input. Implementation
details are provided in Appendix F, and a model card for
Small-p in Appendix K.

4.3. Baseline Method
Despite pen trajectory recovery being a popular research di-
rection in the last decades, available comparisons are limited
due to the scarcity of open-sourced code, training data, and
pre-trained model weights. Appendix C offers a detailed
analysis of recent work and their reproducibility. We choose
the General Virtual Sketching (GVS) Framework (Mo et al.,
2021) as our baseline. Originally trained for sketch and
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photo vectorization, GVS offers a valuable reference point
despite the domain discrepancy between sketches and hand-
written notes. We found that providing the GVS line draw-
ing vectorization model with binarized inputs yields best
performance, we compare all 3 available models on original
and binarized inputs in Appendix G.

4.4. Qualitative Evaluation
We compare the performance of our models and GVS on
3 public evaluation datasets (mentioned in Section 4.1), in
Figure 5. Our models mostly produce results that accurately
reflect the text content, disregarding semantically irrelevant
background. They can also handle occlusions, highlighting
the benefit of the learned reading prior, in contrast to GVS,
which produces multiple duplicate strokes, and does not
distinguish between background and foreground. Large-i is
able to retain more details and accommodate more diverse
image styles.

Input Image GVS Small-p Small-i Large-i

Figure 5: Comparison between performance of GVS, Small-
i, Small-p, and Large-i on 3 public evaluation datasets (IAM,
IMGUR5K, HierText from top to bottom), more visualizations in
Appendix L.1. In every word, character colors transition from red
to purple, following the rainbow sequence; within each stroke, the
shade progresses from darker to lighter.

Generalization to sketches. We study performance of our
models on out-of-domain samples on simple sketches. We
use the Vanilla Derender inference mode to obtain the inks.
In Figure 6, we observe that our models partly generalize to

sketches, but the performance varies significantly depending
on the sample and has noticeable artifacts such as missing
details or over-focusing on a segment and over-tracing it.
They, however, demonstrate robustness to complicated back-
grounds (e.g. the lighting of the coffee sample).

Figure 6: Sketch derendering for Small-p, Small-i, Large-i and
GVS. Our models are mostly able to derender simple sketches,
however with significant artifacts: missing strokes (e.g the cat),
creating cycles (e.g the eye of the penguin for Small-i, the paws of
the cat for Large-i) or unnatural strokes (e.g. for Small-p).

4.5. Quantitative Comparison
To support the claims about the performance of our model,
we conduct both a human evaluation and an automated
evaluation that compare the similarity of our model output
to the original image and to real digital inks. There are no
established metrics and benchmarks for this problem yet.

4.5.1. HUMAN EVALUATION

We performed a human evaluation of the quality of the deren-
dered inks produced by the three variants of our model. We
used the “golden” human traced data on the HierText dataset
as the control group and the output of our model on these
samples as the experiment group. Evaluators were shown
the original image alongside a rendered digital ink, which
was either model-generated or human-traced (unknown to
the evaluators). They were asked to answer two questions:
(1) Is the digital ink output a reasonable tracing of the input
image? (Answers: Yes, it’s a good tracing; It’s an okay trac-
ing, but has some small errors; It’s a bad tracing, has some
major artifacts); (2) Could this digital ink output have been
produced by a human? (Answers: Yes; No). We provide a
more detailed description of the task and the instructions in
Appendix J. The evaluation included 16 individuals familiar
with digital ink, but not involved in this research. Each sam-
ple was evaluated by 3 raters and aggregated with majority
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voting (with inter-rater reliability κ : (1) 0.46, (2) 0.44 for
the respective questions).

We demonstrate the results of our evaluation campaign in
Figure 7. We observe better performance (good or okay rat-
ing, more realistic samples) when both the data and model
size are scaled up. The most common imprecisions that lead
to choosing ”okay tracing” over ”good tracing” include: a
small number of extra strokes (derendering irrelevant ele-
ments present in the image), missing details (e.g. punctu-
ation, a dot over i, j), and unnecessary double strokes (see
Appendix J for examples).

Human traced Small-p Small-i Large-i
0

20

40

60

80

100

90.5

42 42

52.5

100

82
87.5 87

Is Reasonable?

Yes, it s a good tracing
It s an okay tracing, but has some small errors
It s a bad tracing, has some major artifacts

Human traced Small-p Small-i Large-i
0

20

40

60

80

100 95.5

53
61

67

Is Human?

Yes
No

Figure 7: Human evaluation results for Small-p, Small-i and
Large-i on 200 “golden” samples of HierText dataset.

4.5.2. AUTOMATED EVALUATION

Automated metrics (described below) are presented in Ta-
ble 2 and most importantly the ordering using the automated
metrics of our models matches the results of the human
evaluation.

Table 2: Automated metrics comparison between three variants of
our model, GVS, and the “golden” human traced data.

Model IAM IMGUR5K HierText

F1 Acc. F1 Acc. F1 Acc.

Small-p 0.65 0.60 0.47 0.33 0.53 0.37
Small-i 0.65 0.59 0.51 0.33 0.61 0.44
Large-i 0.66 0.58 0.51 0.32 0.61 0.46

GVS 0.69 0.02 0.51 0.01 0.55 0.01

Human* – – – – 0.64 0.74
* Computed on the human-traced subset of HierText data.

Similarity to the input image. To capture how similar
the output of our model is to the input image semanti-
cally and geometrically, we compute the Character Level
F1 score by following the protocol of the Robust Reading
Challenge (Rob, 2023). This measure captures both geome-
try and semantics by counting the character bounding boxes
found by an OCR model (in the original input image and in
the output of the model rendered as an image) that both over-

lap significantly and match content-wise. To obtain those
character bounding boxes, we use the publicly available
API (Clo, 2024).

We see that our models perform similarly to GVS on simpler
black-on-white IAM dataset, but outperforms it on HierText
which has more diverse background. We also note that the
OCR engine used is not perfect, and due to errors in the
OCR model and its sensitivity to line width, the value of
this metric is 0.64 for the “golden” human traced data on
HierText. Therefore, it can only be used to meaningfully
distinguish models as long as their F1 score is fairly low.

Similarity to the real digital ink data. To assess the
semantic consistency and geometric properties of our gen-
erated digital inks, we compute recognition Exact Match
Accuracy with the state-of-the-art online handwriting rec-
ognizer (Carbune et al., 2020) trained on real digital ink
data.

With results shown in Table 2, our models show superior
accuracy over GVS (on which the online handwriting recog-
nizer is struggling due to unnatural stroke number, length
and order). We also observed that while the three model vari-
ants perform similarly on the IAM and IMGUR5K datasets,
the Large variant exhibits better performance compared to
the Small variants on the HierText dataset which has greater
text source diversity. This aligns with our human evaluation.

Table 3: Online handwriting recognition results on IAMOnDB test
set for Small-i trained on real digital inks (IAMOnDB train set),
derendered digital inks (from IAM train set) and their combination.

IAMOnDB
IAM

derendered
IAMOnDB

+ IAM derendered

CER 6.1 7.8 4.6

To further confirm the similarity of real and derendered
digital inks in terms of low-level feature statistics, we train
an online handwriting recognizer on inks derendered from
the IAM training set. We measure the performance on the
testset f of IAMOnDB (Liwicki & Bunke, 2005) and
compare it with the model trained on IAMOnDB, with the
commonly used Character Error Rate metric (CER). As
shown in Table 2, model trained on derendered inks only
has CER performance that is worse, but not far off from the
one trained on real data. Furthermore, the combination of
derendered IAM inks and real IAMOnDB inks allows to
acquire a more diverse training set, resulting in significantly
lower CER. We verify that this observation holds for Small-
p and Large-i (see Appendix H). We attribute the relatively
far from state-of-the-art CER of 6.1 to the small size of the
training set. The details of the online handwriting recognizer
we train are given in Appendix H.
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4.6. Ablation Studies
This section examines the performance variation across in-
ference tasks and ablates the impact of augmentation, data
mixture, and training strategies on the Small-i model’s per-
formance. Conclusions and numerical results of the ablation
study are presented in Table 4 and summarized below. For
more details, see Appendix D.

Table 4: Ablation studies on Small-i. The first row shows the
original performance (with inference mode Derender with Text).
Subsequent rows display results for the Vanilla Derender and
Recognize and Derender tasks (Figure 3), followed by the impact
of various design choices on performance.

Setup IAM IMGUR5K HierText

F1 Acc. F1 Acc. F1 Acc.

Small-i† 0.66±0.07 0.59±0.01 0.51±0.09 0.33±0.02 0.61±0.07 0.45±0.01

Vanilla 0.61 ↓ 0.53 ↓ 0.44 ↓ 0.28 ↓ 0.53 ↓ 0.35 ↓
R+D 0.62 ↓ 0.57 ↓ 0.46 ↓ 0.32 0.57 ↓ 0.42 ↓
Remove
data aug* 0.42 ↓ 0.33 ↓ 0.21 ↓ 0.09 ↓ 0.23 ↓ 0.13 ↓
syn rec 0.58 ↓ 0.50 ↓ 0.50 ↓ 0.25 ↓ 0.56 ↓ 0.38 ↓
real rec 0.64 ↓ 0.50 ↓ 0.55 ↑ 0.19 ↓ 0.59 ↓ 0.36 ↓
all rec 0.65 0.51 ↓ 0.55 ↑ 0.22 ↓ 0.61 0.38 ↓
fr ViT† 0.65±0.13 0.53±0.06↓ 0.43±0.24 0.31±0.06 0.59±0.15 0.41±0.05↓

* Digital ink rendered as fixed-width white strokes on black background.
† The results are aggregated from three random initializations, all other

results are acquired with the best performing initializations with the
same three seeds.

Inference task matters (Row 2-3). We compare the per-
formance between three types of inference tasks, we find
Derender with Text is better than both Vanilla Derender and
Recognize and Derender (R+D) on all three datasets, we
attribute this difference to the fact that it generates more
semantically consistent inks than the other two. Figure 8
shows a collection of derendered inks from Small-i where
each input image has ambiguous or difficult-to-read char-
acters. Inference with Vanilla Derender gives results that
capture the overall geometry of the input image, but can
lack textual understanding. Derender with Text gives results
that are consistent with the text input to the model provided
by OCR, while Recognize and Derender gives results that
are consistent with the model’s own recognition. More
examples in Appendix D.2.

The necessity of data augmentation (Row 5). Removing
the data augmentation leads to significantly worse perfor-
mance across all metrics on all datasets. While data aug-
mentation (as shown in Figure 3) does not visually align
rendered inks with real ink photos, it diversifies the ren-
dered ink distribution and we find that it is essential for the
model to perform valid derendering on real images with our
training setup.

In
pu

t I
m
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DESiGNÉRS Cilantro breakfast-nook hobbits

Va
ni

lla
w/

 R
ec

og
ni

tio
n Recognized:  DESiGNER'S Recognized:  Cllantro Recognized:  Leath/silhood Recognized:  horstatos 

w/
 O

CR
 In

pu
t OCR Input: Designers OCR Input: Cilantra OCR Input: breakfast-nook OCR Input: hôBBits

Figure 8: Varied digital ink outputs from Small-i inference tasks on
samples with ambiguous transcription. Column titles correspond
to the ground truth labels. Image titles correspond to either the
recognition result from our model or an OCR system.

Recognition tasks improve derendering quality (Row 6-
8). Removing recognition tasks from the multi-task train-
ing mixture, while maintaining the relative ratios of other
tasks, notably reduces overall performance across all evalua-
tion datasets, particularly impacting accuracy which reflects
the model’s semantic understanding ability.

Impact of frozen ViT in multi-task training. (Last row).
Unfreezing the Vision Transformer (ViT) in multi-task train-
ing typically incurs training instability, as evidenced by
significant variance in model evaluations and an increased
tendency to misinterpret background noise as textual con-
tent (see Appendix D). The observed increase in F1 scores
can be attributed to the model interpreting more background
noise as strokes, which leads to digital inks that closely
mimic the style of the input images, resulting in a higher
likelihood of overlapping bounding boxes in F1 calculations.
More details in Appendix D.1.

5. Conclusion and Future Work
In this work we present the first approach to converting
photos of handwriting into digital ink. We propose a training
setup that works without paired training data, which can be
difficult to acquire. We show that our method is robust to
a variety of input conditions, can work on full handwritten
notes, and generalizes to out-of-domain sketches to some
extent. Furthermore, our approach does not require complex
modelling and can be constructed from standard building
blocks. Future work may address the main limitation of our
model which is the need to have a page segmentation to
run derendering on the individual words identified by the
segmentation.

6. Impact Statements
6.1. Ethical Considerations
Proposed model can not be used for open-ended gener-
ation. We verify that proposed models are unable to per-
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form open-ended ink generation. We provide random texts
in task prompts of task Derender with Text (in Figure 3) with
input images either empty or contain handwritings that do
not match the label. We observe that the generated inks do
not match the labels for 100 cases inspected, signifying that
the model is unable to generate the prompted text that is not
present in the input image. More details in Appendix L.2.

6.2. Future Societal Consequences
Our work could allow access to the digital ink underlying
the physical notes, potentially enabling the training of bet-
ter online handwriting recognizers for languages that are
historically low-resource in the digital ink domain.
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A. Full-page Results
We show the full-page results on samples that resemble real-life inputs (mostly from Unsplash with keyword search for
“handwriting”, and others collected by the authors with consent from the writers) produced by three variants of our models.

Figure 9: Large-i full page results of handwritten notes in a real-life scenario, credit: Unsplash.

Figure 10: Small-i full page results of handwritten notes in a real-life scenario, credit: Unsplash.

Figure 11: Small-p full page results of handwritten notes in a real-life scenario, credit: Unsplash.
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Figure 12: Large-i full page results of French sample. credit: Unsplash

Figure 13: Small-i full page results of French sample. credit: Unsplash

Figure 14: Small-p full page results of French sample. credit: Unsplash
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Figure 15: Large-i full page results of handwritten notes in a real-life scenario with low resolution, credit: Unsplash.

Figure 16: Small-i full page results of handwritten notes in a real-life scenario with low resolution, credit: Unsplash.

Figure 17: Small-p full page results of handwritten notes in a real-life scenario with low resolution, credit: Unsplash.
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Figure 18: Large-i full page results of a Post-It note.

Figure 19: Small-i full page results of a Post-It note.

Figure 20: Small-p full page results of a Post-It note.
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Figure 21: Large-i full page results of handwritten notes of mass-energy equivalence.

Figure 22: Small-i full page results of handwritten notes of mass-energy equivalence.

Figure 23: Small-p full page results of handwritten notes of mass-energy equivalence.
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Figure 24: Large-i full page results of multilingual handwritten notes.

Figure 25: Small-i full page results of multilingual handwritten notes.

Figure 26: Small-p full page results of multilingual handwritten notes.
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Figure 27: Large-i full page results of OOD sample.

Figure 28: Small-i full page results of OOD sample.

Figure 29: Small-p full page results of OOD sample.
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Figure 30: Large-i full page results of OOD sample, credit: Unsplash.

Figure 31: Small-i full page results of OOD sample, credit: Unsplash.

Figure 32: Small-p full page results of OOD sample, credit: Unsplash.
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B. Data statistics and Preprocessing
We present the language distribution of the digital ink datasets used to train our in-house (-i suffix) and publicly available
(-p suffix) models in Figures. 33, 34 and specific datasets and corresponding number of samples used in training our public
model in Table 5
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Tamil
1.9%
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1.6%

English
3.0%

Gujarati
1.7%
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Armenian
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Georgian
1.6%

Malayalam
1.6%

English
94.8%

Latin Mixed
4.2%

Japanese
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Figure 33: In-house Datasets Language Distributions. Left: Digital inks, Right: OCR for Recognition. These datasets are used to train
both in-house models Small-i and Large-i.
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Figure 34: Public Datasets. Language distribution of public Digital ink datasets used to train our public models (on the left) and public
OCR datasets used to train our public available model Small-p (on the right).

Table 5: Public training datasets used for training small-p.

Task Type Dataset Number of Samples

Derendering

DeepWriting (words) 89,565
DeepWriting (lines) 33,933

DeepWriting (characters) 359,643
VNOnDB 66,991

SCUT-COUCH Chinese characters 1,998,784
SCUT-COUCH Chinese pinyin 156,53

OCR

IAM word-level (train) 53,839
IMGUR5k (train) 181,792

RIMES word-level (train) 51,738
HierText (train) 5,978

ICDAR-2015 (train) 1,535
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C. Survey of Derendering Models
In this section we provide a small survey of recent published pen trajectory recovery approaches and show that none of them
release sufficient materials to reproduce their work with a reasonable amount of effort. We illustrate this with Table 6.

Table 6: Existing pen trajectory recovery approaches and their reproducibility.

Work Has code Has data Has model weights Year

Mohamed Moussa et al. (2023) ✗ ✓ ✗ 2023

Chen et al. (2022b) ✗
repository missing core elements:
data preprocessing, outdated/incompetable config files

✓ ✗ 2022

Archibald et al. (2021) ✗ ✓ ✗ 2021

Bhunia et al. (2021) ✗
repository missing core elements:
training scripts, data preprocessing

✓ ✗ 2021

Nguyen et al. (2021) ✗ ✓ ✗ 2021
Sumi et al. (2019) ✗ ✓ ✗ 2019
Bhunia et al. (2018) ✓ ✗ ✗ 2018
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D. Further Details of Ablation Studies
D.1. Frozen ViT helps training stability
We investigated the impact of freezing the vision encoder during training on model stability and derendering performance.
To assess training stability, we analyzed the ratio of empty ink predictions across training steps on the “golden” human
traced dataset (detailed in Section 4.5.1). Empty inks typically occur when the model confuses tasks, mistakenly outputting
text instead of ink or both (different tasks depicted in Figure 3). Our analysis revealed significantly greater variance between
runs with an unfrozen setup compared to the consistent learning observed with a frozen vision encoder (Figure 35).
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Figure 35: Comparison between frozen and unfrozen ViT Small-i trainings. Comparison is executed with 3 random seeds. Left: ratio
of empty ink outputs for unfrozen ViT multi-task training setup. Right: ratio of empty ink outputs for the frozen ViT multi-task training
setup, both use inference task Derender with Text.

Furthermore, in terms of final model derendering performance, we identified that certain model initializations (controlled by
seeds) within the unfrozen setup could also converge to functional models with comparable abilities to those trained with
a frozen setup. These models demonstrate superior preservation of visual ink details but exhibit increased sensitivity to
background noise. We present a visual comparison of their output characteristics in Figure 36.
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Figure 36: Difference between Small-i-unfrozen which was trained with an unfrozen ViT (seed 46 in Figure 35) and Small-i which was
trained with a frozen ViT. This shows that Small-i-unfrozen is more sensitive to background noise compared to Small-i.

D.2. Inference type matters
As we first illustrated in Section 4.6, different inference tasks can produce different output digital inks especially when the
input image of text is semantically or geometrically ambiguous due to either image quality or how the texts were written.
For example the first column of Figure 37 where the word ”wich” is removed by the writer with a strike through line but still
recognized by both Recognize and Derender (model intrinsic) and Derender with Text (extrinsic OCR system) inference,
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and the difference in understanding and locating the textual information in input image results in different output digital
inks. Additionally, the output from Vanilla Derender where semantics are not intentionally involved during training is more
robust to ambiguous inputs but shows poorer semantic consistency with the input image.
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Figure 37: Difference between inference tasks of Small-i on samples from 3 public evaluation datasets, where the texts on top are the
ground truth labels for the images in these datasets. Vanilla stands for inference with Vanilla Derendering, w/Recognition stands for
inference with Recognize and Derender, and w/ OCR Input stands for inference with Derender with Text where we resort to an OCR
system.

For Derender with Text inference, we have shown that how external textual input could benefit the model’s semantic
understanding. We explore the behavior of the model in cases where the external text is different than the ground-truth
textual information in Figure 38. The results reveal that the model’s output is not solely determined by input text. It
demonstrates the ability to produce valid outputs even when external textual information is incomplete or erroneous.
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Figure 38: Cases when there is a mismatch between ground-truth textual information and external textual information provided
to the model. We evaluated this using Small-i on samples from 3 public evaluation datasets, where the texts on top are the ground truth
labels for the images in these datasets. Vanilla stands for inference with Vanilla Derender, w/Recognition stands for inference with
Recognize and Derender, and w/ OCR Input stands for inference with Derender with Text where we resort to an OCR system.
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E. Rendering and Data Augmentation
To create synthetic rendered inks of our online samples, we use the Cairo graphics library to render online ink samples onto
a 224× 224 canvas. We then add several augmentations to these rendered samples, to ensure that they are closer in domain
to the real-world samples expected.

Before rendering, we first randomly rotate the samples. Then, we pick the color of the strokes and the background uniformly
at random from the RGB color space and render the ink with a random width. Furthermore, we add lines, grids, or Gaussian
noise into the background with a fixed probability. Finally, we potentially add box blur on the resulting image. This
approach was mainly inspired by approaches from synthetic OCR generation, e.g. as described in (Etter et al., 2019). The
detailed parameters of data augmentation and some samples are shown in Table 7. An example of how samples augmented
with all parameters chosen at random could appear in the training set can be seen in Figure 39. Other approaches, such

Table 7: Data Augmentations Overview (sample from Aksan et al. 2018).

Augmentation Possible Values Examples

Rotation angle (rad): [−π
4
, π
4
]

Stroke color RGB: [0, 1]3

Background color RGB: [0, 1]3

Stroke Width width: [1px, 12px]

Lines line width: [1px, 6px] line
dist: [10px, 100px] line
color: RGB: [0, 1]3

Grids line width: [1px, 6px] line
dist: [10px, 100px] line
color: RGB: [0, 1]3

Gaussian Noise standard dev.: [50, 500]

Box blur radius: [0px, 5px]

as perspective skew, shifting, scaling, or padding, did not show any improvements in the model performance and were
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discarded.

Figure 39: Demonstration of possible ways to combine all used augmentations. (Sample from Aksan et al. 2018)
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F. Additional Model Details
The overview and individual components of three versions of our model Small-i, Small-p, and Large-i is shown in Table 8.

Table 8: Model overview and components.

Model Components Parameters Training Data

Large-i ViT-L 303M In-house proprietary datasets
mT5-Large 783M as shown in Appendix B.

Small-i ViT-B 85M In-house proprietary datasets
mT5-Base 247M as shown in Appendix B.

Small-p ViT-B 85M Publicly available datasets
mT5-Base 247M as shown in Appendix B.

Implementation Details. Similar to PaLI models (Chen et al., 2022a; 2023a;b), our models together with the training
mixtures are implemented in JAX/Flax (Bradbury et al., 2018) using the open-source T5X, SeqIO (Roberts et al., 2023)
and Flaxformer (Heek et al., 2023) frameworks. For training, we use the Adafactor optimizer (Shazeer & Stern, 2018)
with β1 = 0, second order moment of 0.8, and a language-model–style teacher forcing with softmax cross-entropy loss. For
the learning rate schedule, we use the linear decay scheduler with a peak learning rate of 0.01, 5k steps of warmup and a
linear decay with decay factor of 3e− 6, and a dropout of 0.1 on both ViT encoder and the mT5 encoder-decoder. We train
our models for 340k steps with batch size 512. With frozen ViT encoders, the training of Small-i takes ∼33h on 64 TPU
v5e chips and the training of Large-i takes ∼105h on 64 TPU v5e chips.

In our experiments, we observe marginal performance improvements in derendering tasks through adjustments in temperature
sampling. However, for the sake of reproducibility and framework simplicity, we employ a greedy decoding strategy during
inference for all tasks, with model checkpoints selected from the final step.

Training Mixture. As described in Section 3.2, the training mixture consists of 5 tasks constructed using SeqIO (Roberts
et al., 2023). These tasks are pre-shuffled before training, ensuring each task appears with equal probability throughout the
entire training process. And to foster reproducibility, the input pipeline as well as the model initialization are designed to be
deterministic, reducing randomness-induced variations that could affect our design choices.
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G. General Virtual Sketching Framework Performance
We demonstrate the performance of three GVS models from the official GitHub repository: Line Drawing Vectorization,
Rough Sketch Simplification, and Photo to Line Drawing Conversion in two setups (original image as input and binarized
image as input) in Figure 40. We inspect the samples visually on the more challenging HierText dataset. The photo to
line drawing model was trained on people portrait photos and fails to generalize to the images of text. Binarization is
beneficial for both remaining setups and reduces the noise when derendering texts. Line Drawing Vectorization and Sketch
Simplification perform similarly on the inspected samples, we choose Line Drawing Vectorization on binarized images as a
baseline since this model was trained on black & white raster images and therefore treats binarized samples as in-domain.
For derendering of the sketches (Figure 6) we use the Sketch Simplification model as intended by the authors.

Figure 40: Comparison between General Virtual Sketching Framework inference setups.
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H. Online Handwriting Recognizer Details
In this section we provide the result of online handwriting recognizers used to evaluate the low-level feature similarity of
real inks for IAMOnDB dataset and inks derendered by Small-p, Small-i and Large-i (see Table 9). We observe that the
inks acquired with all of our models perform similarly when used as training data both on their own and in combination with
real digital inks.

Table 9: Online handwriting recognition results on IAMOnDB test set for models trained on real digital inks (IAMOnDB train set),
derendered digital inks (from IAM train set) and the combination of the two.

IAMOnDB
Small-i
IAM
derendered

Small-i
IAMOnDB +
IAM
derendered

Small-p
IAM
derendered

Small-p
IAMOnDB +
IAM
derendered

Large-i
IAM
derendered

Large-i
IAMOnDB +
IAM
derendered

CER 6.1 7.8 4.6 8.2 4.5 8.4 4.6

Additionally, we describe the architecture and our recognition training procedure. We choose a common approach of training
a (relatively small, 9.2M, due to the amount of the training data) Transformer encoder combined with a CTC loss, similar
to Alwajih et al. 2022. We fix the same preprocessing steps for both real and derendered inks. Those include shifting and
scaling the inks to start at the origin and have a fixed y side, time resampling at 20 ms for real inks and time hallucination
(assuming the predicted ink tokens are produced at a fixed sampling rate of 20ms, matching the training data) and adding
pen up strokes. We apply a random rotation within ±45◦ with probability 0.5 as data augmentation to account for the small
size of the dataset. The points from the ink are encoded into Bezier curves. The input features are then processed by 7
transformer attention layers with 8 attention heads.

We train the models on a training set of IAMOnDB only (baseline), derendered IAM train set only and the combination of
the two for 17.5k steps with batch size of 64. We perform a hyper-parameter search for dropout and learning rate on the
same grid for all 3 setups. The best parameters for each model can be found in Table 10.

Table 10: Recognizer parameters found through hyper-parameter search.

Parameter IAMOnDB
Small-i
IAM
derendered

Small-i
IAMOnDB +
IAM
derendered

Small-p
IAM
derendered

Small-p
IAMOnDB +
IAM
derendered

Large-i
IAM
derendered

Large-i
IAMOnDB +
IAM
derendered

Dropout 0.25 0.25 0.3 0.3 0.25 0.25 0.25
Learning rate 0.005 0.001 0.001 0.005 0.005 0.001 0.001
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I. Limitations
While our system exhibits satisfactory performance across various tested inputs, we have identified specific failure patterns
that warrant further attention. As some examples shown in the Figures 36 and 38 we notice model’s performance deteriorates
when processing samples with wider stroke widths or significant variations in stroke width. Additionally, we observed that
the model’s ability to preserve handwriting details improves with the scaling of the vision component (visualized in Figure 5,
aligned with findings in Section 4.5.1). However, we also noticed a lack of proportional scaling between the vision (ViT)
and text-ink (mT5) components negatively impacts semantic understanding.

Furthermore, our investigation, as detailed in Section 4.6, demonstrated that unfreezing the vision heads allows the model to
capture more input image details. Nevertheless, this enhancement comes at the cost of training instability and increased
confusion between textual information and background noise. Future research in this domain may explore fine-tuning the
vision backbone while leveraging the existing semantic understanding of ink representations, following a similar idea as
described in (Zhai et al., 2022).
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J. Human Evaluation
We provide the text of our evaluation instructions in Table 11 and the screenshot of the interface in Figure 41. Furthermore,
we show the samples and corresponding rating (after majority voting) in Figure 42.

Table 11: Human evaluation campaign instructions.

Description Instruction

Task setup You will be looking at input images of photos of handwriting in a variety of styles and the corresponding
digital ink tracing performed either by a human or by one of our derendering models.
Each stroke is rendered in a different color and with color gradient (darker → whiter) to reflect the
direction.
You will see the derendered ink as well as the derendered ink overlaid on top of the image and can use
either to make the judgment.
For each sample answer the two questions on the right and click submit to proceed to the next sample.

Is Reasonable Is the digital ink a reasonable tracing of the input image?
• Yes, it’s a good tracing
• It’s an okay tracing, but has some small errors
• It’s a bad tracing, has some major artifacts

One interpretation of the quality of the ink could be like this:
If you were to use it in a note taking app, would you

• keep it as is: good tracing
• need to make some edits: okay tracing
• not use it at all: bad tracing

If you need some examples to get a better feeling, you can use the ones below, however there is some
ambiguity within the task since we don’t want to impose any strict rules but allow for a natural variety of
what people find a good derendering (it is designed to be subjective).

Is Real Could this digital ink have been produced by a human?
• Yes
• No

In this question go with your intuition, do you think the ink could have been traced by a [reasonable]
human?

Figure 41: A screenshot of the human evaluation interface.
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Figure 42: Examples of samples produced by our models and ratings given to them by our evaluators.
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K. Model Card
We present the model card (Mitchell et al., 2019) of our public release model Small-p in Table 12.

Table 12: Model card of publicly available Small-p.

Model Summary

Model Architecture A multimodal sequence-to-sequence Transformer (Vaswani
et al., 2017) model with the mT5 (Xue et al., 2021) encoder-
decoder architecture. It takes text tokens and ViT (Dosovit-
skiy et al., 2021) dense image embeddings as inputs to an
encoder and autoregressively predicts discrete text and ink
tokens with a decoder.

Input(s) A pair of image and text.
Output(s) Generated digital ink.

Usage

Application The model is for research prototype, and the public version is
planned to be released and available for the public.

Known Caveats None.

System Type

System Description This is a standalone model.
Upstream Dependencies None.
Downstream Dependencies None.

Implementation Frameworks

Hardware & Software Hardware: TPU v5e.
Software: T5X (Roberts et al., 2023), JAX/Flax (Bradbury
et al., 2018), Flaxformer (Heek et al., 2023)
For implementation details please refer to Appendix F.

Compute Requirements Please refer to Appendix F.

Data Overview

Training Datasets The ViT encoder (Dosovitskiy et al., 2021) is pretrained on
ImageNet-21k (Deng et al., 2009), mT5 encoder and decoder
are initialized from scratch. The entire model is trained on
the mixture of publicly available datasets described in Ap-
pendix B.

Evaluation Results

Evaluation Methods Human evaluation (reported in Section 4.5.1) and automated
evaluations (reported in Section 4.5.2).

Model Usage & Limitations

Sensitive Use The model is capable of converting images to digital inks.
This model should not be used for any of the privacy intruding
use cases, e.g. forging handwritings.

Known Limitations Reported in Appendix I.
Ethical Considerations & Potential Societal Consequences Reported in Sections 6.1 and 6.2.
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L. Additional Visualizations
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Figure 43: Results of Small-p on randomly selected samples from 3 public evaluation datasets.
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Figure 44: Results of Small-i on randomly selected samples from 3 public evaluation datasets.
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Figure 45: Results of Large-i on randomly selected samples from 3 public evaluation datasets.
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L.1. More Visualizations on Public Evaluation Datasets
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Figure 46: Comparison between Small-i, Small-p, and Large-i on IAM Dataset.
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Figure 47: Comparison between Small-i, Small-p, and Large-i on IMGUR5K Dataset.
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Figure 48: Comparison between Small-i, Small-p, and Large-i on HierText Dataset.
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L.2. Open-ended Generation

Small-p
Input text: result

Small-i
Input text: result

Large-i
Input text: result

Input text: carrion Input text: carrion Input text: carrion

Input text: December Input text: December Input text: December

Input text: used Input text: used Input text: used

Input text: Carnivora Input text: Carnivora Input text: Carnivora

Figure 49: Inability to perform open-ended generation. Prompting Small-p, Small-i and Large-i with text that is not presented in the
image does not produce digital inks that match the textual input.
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