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Abstract
The adoption of Foundation Models in resource-
constrained environments remains challenging
due to their large size and inference costs. A
promising way to overcome these limitations is
post-training compression, which aims to balance
reduced model size against performance degra-
dation. This work presents Any Compression via
Iterative Pruning (ACIP), a novel algorithmic ap-
proach to determine a compression-performance
trade-off from a single stochastic gradient descent
run. To ensure parameter efficiency, we use an
SVD-reparametrization of linear layers and itera-
tively prune their singular values with a sparsity-
inducing penalty. Importantly, the resulting prun-
ing order gives rise to a global parameter ranking
that allows compressing a model to any target size
without requiring re-computation. We evaluate
ACIP on a large selection of open-weight LLMs
and downstream tasks, demonstrating state-of-
the-art results compared to existing factorization-
based compression methods.

1. Introduction
Post-training compression of Foundation Models, especially
Large Language Models (LLMs), promises access to pow-
erful tools where resources are limited, e.g., in automotive
systems, mobile deployments, or on the shop floor. Typical
reasons for scarcity include constrained access to hardware,
monetary limitations, high inference speed requirements,
and environmental concerns (Hohman et al., 2024).

As model compression is almost always lossy, a fundamen-
tal trade-off arises between the model size and desired down-
stream performance. While characterizing this trade-off sup-
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ports practitioners in deployment decisions (Boggust et al.,
2025), the scientific literature typically focuses on bench-
marks with preset compression levels (Zhu et al., 2024).
Consequently, in real-world applications, practitioners often
find themselves adjusting their needs to a set of predefined
compression parameters. We argue that the situation should
be the other way round, and that a user should be enabled to
adjust compression parameters to their individual needs.

We therefore advocate for approaches that permit Any Com-
pression of pre-trained models. Here, ‘Any’ signifies an
algorithm’s ability to scale a given base model to any desired
target size, guided by the user’s specific needs and limita-
tions, rather than the algorithm dictating possible sizes. To
facilitate decision-making, such an algorithm should allow
accessing the compression-performance trade-off efficiently,
without requiring extensive additional computations.

In this work, we develop Any Compression via Iterative
Pruning (ACIP).1 To the best of our knowledge, ACIP
is the first algorithm that enables model compression to
any size in real-time without requiring re-computation or
re-calibration. As detailed in Section 2 below, the Any
Compression feature is achieved by explicitly decoupling an
(optimization-based) pruning stage from the actual compres-
sion stage. We empirically demonstrate the effectiveness
of our approach in Section 3, accompanied by a series of
additional experiments in the supplementary material (Ap-
pendix E). After a brief discussion of related literature in
Section 4, we conclude in Section 5, also pointing out some
limitations of our study.

2. Any Compression via Iterative Pruning
The approach of Any Compression via Iterative Pruning
(ACIP) aims to compress linear layers of the form

y = Wx+ b, (1)

where W is an m × n matrix, b is a bias term, and x
and y are layer inputs and outputs, respectively. Linear
layers are the molecular building blocks of modern ML
models, typically accounting for more than 90% of model
parameters in transformers (Vaswani et al., 2017), which
makes them a natural target for compression.

1Pronounced like “a sip” of coffee.
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Previous research has explored LLM compression through
reparametrization using singular value decomposition
(SVD) (Mirsky, 1960) followed by rank reduction (Idel-
bayev & Carreira-Perpiñán, 2020; Yuan et al., 2024; Wang
et al., 2024). While ACIP builds on SVD-based low-rank
approximations as well, unlike existing methods, it achieves
Any Compression by decoupling the pruning and compres-
sion stages. More specifically, ACIP constructs a score map
(LeCun et al., 1989; Hassibi et al., 1993) that establishes
a global importance ranking of singular values across all
linear layers within the network. Initially, the score map
is derived by running a (stochastic) gradient descent on a
sparsity-inducing objective (Tibshirani, 1996; Efron et al.,
2004; Mairal & Yu, 2012; Hastie et al., 2015), using the
pruning order of the singular values as a proxy for feature
importance. In an independent step, the score map can then
be used to compress the base model to any desired size
without requiring re-computation.

Algorithmically, ACIP consists of the following three key
steps, which are detailed in the sections below. For a visual-
ization of ACIP, we refer to Figure A3.

Step 1. (Model Reparametrization) Apply SVD to the
weights Wl of all linear layers based on (2).

Step 2. (Scoring via Iterative Pruning) Choose a surro-
gate loss L and a calibration data set X. Perform
iterative pruning of singular values and tuning of low-
rank adapters ∆. Obtain a parameter score map ρ.

Step 3. (Any Compression) Choose any desired compres-
sion rate. Use the score map ρ and adapters ∆ to
materialize the compressed model in real-time.

2.1. Step 1. Model Reparametrization

We start by reparametrizing all linear layers of a network2

using SVD and assign

Wl ← UlMlΣlV
⊤
l +∆l, (2)

where l denotes the layer index, Ml is a diagonal matrix
with entries m(i)

l ∈ {0, 1} masking the singular values s(i)l

in Σl, Ul and Vl are m×r and n×r matrices of (orthonor-
mal) singular vectors, and ∆l is a low-rank adapter (LoRA)
(Hu et al., 2022). We freeze Σl, Ul, and Vl.

We find that adding a low-rank adapter helps to compensate
for potential errors that are introduced through pruning in
Step 2. We initialize Ml as the identity matrix and ∆l as
zero weights. In this way, the reparametrized model remains
identical to the original model up to numerical precision.

The above parametrization leads to a parameter-efficient
compression scheme. Indeed, given an m × n matrix W,

2Following common practice, we ignore the embedding layer
and classification head in (decoder-only) transformers.

the number of non-zero singular values is bounded by
r = min(m,n), which means the number of tunable mask
parameters scales linearly in the feature dimensions.

We parametrize the binary masks through a thresholding
operation of the form

m
(i)
l =

{
0, for p(i)

l ≤ 0

1, for p(i)
l > 0

, (3)

where p(i)
l are scalar learnable parameters. As this operation

is not differentiable, we use the straight-through estimator
for backpropagation (Bengio et al., 2013; Yin et al., 2018).

2.2. Step 2. Scoring via Iterative Pruning

We now aim to build a global score map over all singu-
lar values in the reparametrized layers, which can guide
model compression subsequently in Step 3. Leveraging the
sparsity-inducing property of ℓ1-regularization, we progres-
sively shrink the mask parameters p(i)

l to zero and derive a
score map based on the pruning order. The two key algo-
rithmic components of this “iterative scoring” strategy are
presented next.

Iterative Pruning The optimization problem solved by
ACIP takes the form

min
p,∆
L
(
X;θ,p,∆

)
+ λ ∥p∥1 , (4)

where L denotes a suitable calibration loss for the model,
p = {p0, . . . ,pL} the set of all mask parameters, ∆ =
{∆0, . . . ,∆L} the set of all low-rank adapters, and θ the
set of all remaining model parameters that are frozen dur-
ing optimization. We perform gradient-based optimization
until a preset stopping compression rate rstop is reached (see
Appendix E.6 for further discussion). Optionally, we per-
form post-tuning for a fixed number of steps by freezing the
masks p and continue optimizing the low-rank adapters ∆.
Remark 2.1 (Scaling of λ). If λ is chosen too small, the stop-
ping rate rstop might never be reached. If λ is too large, train-
ing might become unstable and the score map ambiguous.
Therefore, we use a simple linear scheduler that scales λ by
a fixed factor >1 every j optimization steps, so that pruning
becomes increasingly aggressive over time.

From Iterative Pruning to a Score Map The optimiza-
tion process of (4) is used to inform our score map. We
hypothesize that there is a close relationship between the
order in which the parameters p(i)

l are pruned and their im-
portance for the model — the least important parameters
are pruned first and so on.

Based on the pruning order, the score map ρ is updated
iteratively in order to represent these feature importances. A
negative number in the map indicates how many steps ago a
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parameter was pruned. For all parameters that have not been
pruned, the score is set to the value of the corresponding
parameter; see Appendix E.11 for visual examples of ACIP
score maps. Our approach ensures that (i) the score map
stores the pruning history, and (ii) it estimates future pruning
based on the parameter magnitudes. Note that absolute
values of the score are irrelevant for parameter ranking.

2.3. Step 3. Any Compression

From Step 2, we only retain the score map ρ and the low-
rank adapters ∆. In particular, the pruned masks m(i)

l are
discarded, as they are irrelevant for compression at this stage
(cf. Figure A3). As motivated above, the score map allows
us to globally rank all singular values based on their score.
This leads to a fully independent compression stage where
we can flexibly create a model of any reduced size: we
prune as many singular values s(i)l (and the corresponding
singular vectors) according to their scores ρ

(i)
l so that a

given compression rate r is achieved. Note that there is
a monotonic but non-linear relationship between the total
number of pruned singular values k and compression rate r.
Given a target rate r, we find k via a binary search (in almost
real-time). As this compression procedure operates directly
on the reparametrized model from Step 1, it is reversible
and therefore indeed allows for Any Compression.

3. Experiments
We evaluate ACIP on a representative selection of open-
weight models: LLaMA-7B/13B (Touvron et al., 2023a),
LLaMA-2-7B/13B (Touvron et al., 2023b), LLaMA-3.1-8B
(Grattafiori et al., 2024), Qwen2.5-7B/14B (Qwen et al.,
2024), and Mistral-7B-v0.3 (Jiang et al., 2023). We use a
subset of C4 training data (Raffel et al., 2019) for the prun-
ing stage. Regarding evaluation tasks, we follow Wang et al.
(2024) and report perplexity on validation held-outs of C4
(Raffel et al., 2019) and WikiText-2 (Merity et al., 2017),
and we consider seven zero-shot tasks from EleutherAI LM
Evaluation Harness (LM-Eval) (Gao et al., 2023). Imple-
mentation details of ACIP can be found in Appendix D.

3.1. Analyzing Compression-Performance Trade-Offs

We first study compression-performance trade-offs powered
by ACIP. Figures 1 and 2 demonstrate smooth and con-
sistent curve shapes for all considered models; analogous
results for WikiText-2 and individual zero-shot LM-Eval
tasks can be found in Figure A4. A remarkable observation
is that the oldest models, LLaMA-7B/13B, perform best
perplexity-wise, while newer, more capable models like
Qwen2.5-7B/14B dominate on LM-Eval as expected, espe-
cially on the lower compression levels. This apparent con-
tradiction is likely caused by a deviation of the pre-training
data distributions from C4 in the case of more recent models.
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Figure 1: Compression-performance trade-offs generated
by ACIP on C4. Each curve was obtained by the Any
Compression stage (Step 3 in Section 2.3), i.e., no additional
computation was required except for a perplexity evaluation.
Square marks denote the base model performance.
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Figure 2: Compression-performance trade-off curves gen-
erated by ACIP, using average accuracy on all LM-Eval
tasks as metric.

A second noteworthy outcome of Figures 1 and 2 are the
gaps between LLMs of different base model sizes in the
same family. Indeed, ACIP cannot match the performance
of base models of smaller size, e.g., compare the compressed
Qwen2.5-7B with the original Qwen2.5-3B. This is not sur-
prising because the corresponding smaller-size base models
were obtained by pre-training or knowledge distillation,
which are orders of magnitudes more expensive than ACIP.

3.2. Comparison to Existing Works

In this section, we compare ACIP to two recent works focus-
ing on SVD-based structured pruning, namely ASVD (Yuan
et al., 2024) and SVD-LLM (Wang et al., 2024). Both ap-
proaches are backpropagation-free and perform (activation-
aware) layer-wise updates instead. Table 1 shows that ACIP
consistently outperforms both methods with a growing gap
for higher compression levels. Note that SVD-LLM was
calibrated on WikiText-2 instead of C4, which might ex-
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Table 1: Any Compression under SVD reparameterization. Zero-shot evaluation of LLaMA-7B. Comparison with baselines
ASVD (Yuan et al., 2024) and SVD-LLM (Wang et al., 2024). ↑: larger is better; ↓: smaller is better; best results for each
task and size ratio are marked in bold. The scores for ASVD and SVD-LLM are taken from Wang et al. (2024).

C4 ↓ WikiText-2 ↓ Openb. ↑ ARC e ↑ WinoG. ↑ HellaS. ↑ ARC c ↑ PIQA ↑ MathQA ↑ LM Eval Avg. ↑
Size Method

100% Original 7.34 5.68 0.28 0.67 0.67 0.56 0.38 0.78 0.27 0.52

80%
ASVD 15.93 11.14 0.25 0.53 0.64 0.41 0.27 0.68 0.24 0.43
SVD-LLM 15.84 7.94 0.22 0.58 0.63 0.43 0.29 0.69 0.24 0.44
ACIP (ours) 10.92 8.83 0.28 0.66 0.63 0.49 0.32 0.74 0.23 0.48

70%
ASVD 41.00 51.00 0.18 0.43 0.53 0.37 0.25 0.65 0.21 0.38
SVD-LLM 25.11 9.56 0.20 0.48 0.59 0.37 0.26 0.65 0.22 0.40
ACIP (ours) 12.22 10.35 0.28 0.64 0.62 0.47 0.31 0.73 0.23 0.47

60%
ASVD 1109.00 1407.00 0.13 0.28 0.48 0.26 0.22 0.55 0.19 0.30
SVD-LLM 49.83 13.11 0.19 0.42 0.58 0.33 0.25 0.60 0.21 0.37
ACIP (ours) 13.91 12.46 0.25 0.61 0.59 0.44 0.30 0.71 0.24 0.45

50%
ASVD 27925.00 15358.00 0.12 0.26 0.51 0.26 0.22 0.52 0.19 0.30
SVD-LLM 118.57 23.97 0.16 0.33 0.54 0.29 0.23 0.56 0.21 0.33
ACIP (ours) 16.47 16.16 0.21 0.57 0.57 0.40 0.27 0.68 0.22 0.42

40%
ASVD 43036.00 57057.00 0.12 0.26 0.49 0.26 0.21 0.51 0.18 0.29
SVD-LLM 246.89 42.30 0.14 0.28 0.50 0.27 0.22 0.55 0.21 0.31
ACIP (ours) 21.05 23.99 0.19 0.49 0.55 0.35 0.24 0.64 0.21 0.38

plain slightly better results on the former dataset for 70%
and 80% size. We think that these results underpin the bene-
fits of an end-to-end scheme: (i) a simultaneous correction,
e.g., by LoRA, can drastically improve performance, and
(ii) robust pruning patterns can be found without leveraging
any specific features of the SVD factorization. Moreover,
note that re-computations are required to generate each row
of Table 1 for ASVD and SVD-LLM, whereas ACIP only
needs a single run. Analogous results for ACIP applied to
all other models can be found in Table A2.

Further Experiments and Ablations Additional exper-
iments and results can be found in Appendix E, demon-
strating the effectiveness of fine-tuning (Appendix E.2) and
quantization (Appendix E.3), analyzing the efficiency of
ACIP (Appendix E.4), and studying the impact of several
key components and design aspects (Appendix E.5–E.12).

4. The Current State of Any Compression
The two dominant approaches to efficient post-training
model compression are quantization (reducing numerical
precision) and (un-)structured weight pruning (removing
redundant weights) (Zhu et al., 2024). However, these meth-
ods usually only permit a restricted set of compression rates
— quantization due to fixed bit-length reductions and prun-
ing due to n:m structured sparsity required for efficient
memory allocation. These structural constraints prevent
Any Compression as described in Section 1.

In this work, we achieve Any Compression through the use
of score maps to determine global parameter importance.
Score maps have been used as a tool for model compression
since the 1980s (LeCun et al., 1989; Hassibi et al., 1993).
However, in the era of LLMs, deriving a score for each

parameter poses significant challenges in terms of scala-
bility. Existing approaches involve layer-wise scoring and
the compression to preset factors (Sun et al., 2024; Wang
et al., 2024; Yuan et al., 2024), while sacrificing the ability
to choose different compression ratios without extra cost. In
contrast, ACIP enables scalable Any Compression by (i) us-
ing weight factorization to significantly reduce the score
map size (e.g., to 900k parameters for a 7B model), and
(ii) decoupling the scoring and compression stages (Step 2
and 3 in Section 2, respectively). For a further discussion of
related work, we refer to Appendix C.

5. Conclusion
We have introduced Any Compression via Iterative Prun-
ing (ACIP), an end-to-end algorithm to determine the
compression-performance trade-off of pre-trained models.
The underlying score map ranking allows us to material-
ize models of any compression rate in real-time. We have
demonstrated empirically that ACIP outperforms existing
factorization approaches and that it can be combined with
weight quantization (see Appendix E.3).

Discussion Our main results in Figures 1 and 2 resem-
ble the well-known phenomenon of scaling laws (Kaplan
et al., 2020; Hoffmann et al., 2022). Recently, it has been
shown that any-size models can be achieved through pre-
training (Devvrit et al., 2024; Gonzalez & Shivanna, 2025),
exhibiting similar trade-offs as ACIP. Establishing a rigor-
ous connection between these two fields of research would
be an interesting avenue of future research.

A technical limitation of our work is that we have only
focused on models that are tunable on a single (NVIDIA
H100) GPU in bf16-precision. Hence, the scaling behavior
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of ACIP for larger LLMs (30B+) remains to be explored.
Finally, a more detailed study of inference speed (beyond
the results of Appendix E.4) could provide useful insights
into the interplay of low-rank models and their efficiency.

Software and Data
The training and evaluation code can be found at
https://github.com/merantix-momentum/
acip.

Ready-to-use ACIP models can be found at
https://huggingface.co/
collections/MerantixMomentum/
acip-67fe8f7b9f3132468a117ea6.
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A. Question & Answers
In this section, we discuss a few common questions about our method and experimental design that were not (fully) addressed
in the main part due to length restrictions.

Q1. Why did you not directly compare your results to quantization and full-weight (unstructured) pruning?

A1. We argue that these are fundamentally different compression approaches. Full weight manipulations, in principle,
have the potential to lead to more powerful compressions because they have more degrees of freedom (analogously to
full-weight fine-tuning vs. PEFT). Therefore, they should not be seen as competing methods but complementary ones.
We admit that practitioners probably would not favor ACIP over well-established and widely supported quantization
techniques. However, the adapter-style nature of ACIP makes it suitable for a combination which can lead to extra
gains, as demonstrated in Appendix E.3.

Q2. Why did you not compare with model distillation or combined ACIP with it?

A2. While model distillation can lead to outstanding compression results, e.g., see (Busbridge et al., 2025; Raschka,
2024), this approach requires significantly more resources than ACIP, typically orders of magnitudes more. A direct
comparison is therefore not meaningful from our point of view, as it should at least be based on approximately the
same computational budget.

Q3. Why do you propose a backpropagation-based algorithm instead of layer-wise weight updates?

A3. Let us first summarize several benefits of our end-to-end optimization approach from the main paper: (i) it is
conceptually simple and requires no feature engineering, (ii) an error correction can be injected with almost no extra
costs, (iii) it allows us to perform efficient and accurate Any Compression.

Apart from that, and to the best of our knowledge, existing compression algorithms that use layer-wise updates
like ASVD (Yuan et al., 2024), SVD-LLM (Wang et al., 2024), or WeLore (Jaiswal et al., 2024) require a separate
fine-tuning step to achieve competitive downstream performance at stronger compression ratios. Therefore, the lower
costs of layer-wise compression are actually dominated by a more expensive backpropagation-based step. It remains
open if similar results can be obtained by a fully tuning-free algorithm.

Q4. Why do you use matrix factorization, and SVD in particular?

A4. Committing to a backpropagation-based algorithm (see Q3) means that we have to deal with increased memory
requirements. As such, matrix factorization is not helpful in that respect because the number of parameters might
even increase initially (for instance, an SVD-parametrization basically doubles the size of a quadratic weight matrix).
On the other hand, tuning and pruning only the bottleneck layer (i.e., the singular value mask in case of ACIP) has
the potential for drastic size reductions and is highly parameter-efficient. For example, the number of tunable mask
parameters for LLaMA-7B with ACIP is <1M.

With this in mind, SVD as a specific matrix factorization is an obvious candidate due to its beneficial mathematical
and numerical properties, in particular, optimal low-rank matrix approximation and stable matrix operations due to
orthogonality.
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B. Schematic Overview of ACIP
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Figure A3: A visual overview of ACIP. 1 The linear layers of the base model are reparametrized in terms of their singular
value decomposition UMΣV⊤, with a (binary) singular value mask M = M(p) and a low-rank adapter ∆. 2 The
objective function is optimized over the mask parameters p and adapters ∆, where sparsity is induced on p by an ℓ1-penality
leading to pruned entries in the mask M(p). The optimization path of p gives rise to a score map that determines the global
importance of the singular values across the full model. Potential compression errors are compensated by ∆. 3 Based on
the parameter scores, the base model can be flexibly compressed to any target size by masking the entries of Σ. The learned
adapters ∆ are used as correction for any compression level.
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C. Related work
Post-training compression methods for Foundation Models largely fall into three categories: knowledge distillation,
quantization and (un-)structured pruning. For a comprehensive survey covering all of these, we refer to (Zhu et al., 2024)
and the references therein.

ACIP represents a specific form of structured pruning: factorization-based compression. Conventional structured pruning
(Frantar & Alistarh, 2023; Xia et al., 2024; Ashkboos et al., 2024) jointly removes groups of parameters (e.g., network layers
or matrix columns/rows). At high compression rates, however, such coarse approaches often remove important weights,
causing a significant performance drop that is only recoverable through additional fine-tuning.

Low-Rank Decomposition Approximation of weight matrices through appropriate factorization aims to preserve critical
information while being simple to implement. After initial exploration for smaller language models (Edalati et al., 2022;
Tahaei et al., 2022), methods for LLMs primarily built on (weighted) SVD of linear layers (Ben Noach & Goldberg, 2020;
Hsu et al., 2022). Large approximation errors, however, made additional fine-tuning on down-stream tasks necessary.

Follow-up work recognized that the poor approximations are caused by LLM weights being high-rank and instead turned
to decompose network features which are sparse (Kaushal et al., 2023; Yu & Wu, 2023). Notably, ASVD (Yuan et al.,
2024) explicitly accounts for the data distribution eliciting these activations and SVD-LLM (Wang et al., 2024) derives an
analytical layer-wise correction.

Recent studies (Sharma et al., 2023; Yuan et al., 2024; Jaiswal et al., 2024) have shown rank reduction to differently affect
layers in a network and proposed different heuristics for non-uniform pruning of singular values.

A common feature of these works is that they first truncate singular values to a desired size before computing an error
correction. A change in compression ratio therefore prompts another round of computation. At the same time, the correction
quality varies across different ratios, so that milder compression may not automatically preserve more predictive quality. In
contrast, our approach creates consistent compression trade-offs from a single round of computation (optimization) and
performs corrections on-the-fly.

Rate-distortion theory Rate-distortion theory investigates the analytical trade-off between achievable data compression
rates and the error (distortion) introduced by general lossy compression algorithms (Cover & Thomas, 2006). While some
recent work (Gao et al., 2019; Isik et al., 2022) investigates rate-distortion theory of machine learning models for simple
architectures under rather specific assumptions, the information-theoretic limits of neural network compression are generally
unknown in practically relevant settings. In this context, the family of compressed models generated by ACIP conveniently
provides an empirical (upper) bound on the distortion-rate function of a large-scale model from a single optimization run.
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D. Implementation Details
In this section, we report more technical details and hyperparameters used for our experiments.

Dataset and Models Following previous work on LLM compression, we use C4 (Raffel et al., 2019) for training as it is a
good proxy of a general-purpose dataset. In the context of ACIP, it should be primarily seen as a calibration dataset that
allows us to propagate meaningful activations through a pre-trained model while performing structured pruning. Overfitting
to the distribution of C4 is implicitly mitigated, since we only tune very few parameters (masks and LoRA-adapters)
compared to the total model size. As loss function L in (4), we use the standard negative log-likelihood loss for next-token
prediction.

All considered (evaluation) datasets and pre-trained models are imported with the HuggingFace transformers-library
in bfloat16-precision. Our experiments were implemented with PyTorch (Paszke et al., 2019) and the Lightning
package.

ACIP-Specifics As mentioned in Remark 2.1, we apply a linear scheduler that increases the regularization parameter λ
dynamically over the pruning process. This ensures that the pruning becomes more and more aggressive over time and the
stopping criterion will be reached at some point. Across all experiments, we use λ = 1e−3 as initial value and increase it by
a factor of 1.01 every 4 steps (this amounts to a doubling of λ at about every 280 steps).

As pointed out in Section 2.2, we choose a (maximum) target compression rate as a stopping criterion for ACIP. In
most experiments, a rate of rstop = 0.4 is reasonable (i.e., only 40% or the original parameters remain), and we refer to
Appendix E.6 for further discussion and analysis. After the stopping criterion is reached, we tune the low-rank adapter for
1k more steps while the masks are frozen (see Section 2.2).

The mask parameters in (3) are rescaled by a fixed factor of 0.02 to ensure a better alignment with the numerical range of
the remaining network weights. The low-rank adapters are created with r = 32, α = 16, and dropout 0.05. For LLaMA-7B,
the number of tunable parameters amounts to <1M mask parameters and approximately 80M low-rank adapter parameters.

For sample data from C4, we use 1024 tokens per sample and a batch size of 4. We use Adam (Kingma & Ba, 2015) as
optimizer without weight decay and a learning rate of 5e−5.

Runtime Analysis ACIP requires significantly fewer steps than fine-tuning. Depending on when the stopping criterion
is reached, it typically takes 1.5k - 2.5k steps, including 1k post-tuning steps of the low-rank adapters. For LLaMA-7B,
for example, this amounts to a wall clock runtime of < 30 minutes, including the initial SVD computations for the base
model parametrization. All runs were performed on single NVIDIA H100 GPUs. See also Appendix E.4 for a more detailed
efficiency analysis.

Fine-Tuning In all post-compression fine-tunings (see Appendix E.2), we simply continue training ACIP’s low-rank
adapters (the optimizer states are reset). We train for 25k steps on C4 with a batch size of 4 and a learning rate of 2e−4.
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E. Further Experiments and Ablations
This section presents several additional experiments and results to (i) demonstrate the effectiveness of fine-tuning (Ap-
pendix E.2) and quantization (Appendix E.3), (ii) analyze the efficiency of ACIP (Appendix E.4), and (iii) study the impact
of several key components and design aspects (Appendix E.5–E.12). Note that the most detailed analyses and ablations are
carried out with LLaMA-7B as it was most extensively studied in previous research on structured weight pruning.

E.1. Supplementary Results for Section 3.1 (Analyzing Compression-Performance Trade-Offs)

Figure A4 complements the trade-off curves in Figures 1 and 2 by all other considered evaluation metrics (see Section 3.1).

E.2. Improving Performance Through Fine-Tuning

While the main goal of this work is to produce a full family of accurate, compressed models from a few optimization steps,
their performance can be certainly improved through continued fine-tuning. Figure A5 highlights the gains of fine-tuning
LLaMA-7B; see Table A2 for more detailed numerical results on all other models. We observe that fine-tuning leads to a
performance offset that is almost constant across all compression levels, which underlines the predictive capacity of ACIP.
Note that we even observe a jump at zero compression because inserting the low-rank adapters learned by ACIP leads to a
slight initial performance drop.

An optional fine-tuning step is not exclusive to ACIP but can be applied to many other compression approaches as well.
Table A3 provides a comparison with ASVD (Yuan et al., 2024) and SVD-LLM (Wang et al., 2024) (cf. Section 3.2) when
fine-tuned with LoRA. While ACIP still performs best in this respect, we argue that post-compression fine-tuning should be
still seen as an independent (and much more costly) algorithmic step for two reasons. (i) Its outcome strongly depends on the
specific training protocol and data, making a fair and direct comparison challenging; (ii) it requires us to fix a compression
level, which breaks the crucial Any Compression feature of ACIP. Therefore, promoting a costly fine-tuning step after
compression is not the primary concern of our work.

E.3. Combining ACIP with Quantization

In the field of low-cost compression for LLMs, quantization is still considered as the gold standard (Hohman et al., 2024;
Zhu et al., 2024), so that a practitioner might not be willing to exchange its gains for the benefits of ACIP. Fortunately,
ACIP only tunes a tiny fraction of weights with high precision, so that all remaining modules are suitable for quantization.
In our experiments, we quantize all parameterized and unparametrized linear layers to 4-bit in fp4-format (Dettmers et al.,
2023) using the bitsandbytes-Package (W4A16), except for the embedding layer and final classification head. We
study the gains of quantization for ACIP in the following two ways.

Compress first, then quantize We first apply ACIP as usual, compress the model to a given target size, and then quantize
all remaining linear layers. Figure A5 confirms that this approach works fairly well, only producing a slight performance
drop compared to non-quantized versions; see Table A4 for a full evaluation on all other metrics. We also observe that
an optional fine-tuning step as in Appendix E.2 can almost fully compensate for the errors introduced by quantization
after compression. This finding is well in line with the effectiveness of the popular QLoRA approach (Dettmers et al.,
2023). Moreover, Figure A5 reveals a drastic improvement through quantization in terms of required memory. Here, the
ACIP-trade-off allows practitioners to study and apply a more fine-grained compression on top of quantization.

Quantize first, then compress and transfer Compared to layer-wise methods like ASVD and SVD-LLM, ACIP has a
higher demand in GPU memory due to backpropagation. A quantization of all frozen weight matrices can be an effective
remedy in this respect. For the experiment shown in Figure A6, we have applied quantization before ACIP, which leads to
very similar compression-performance trade-offs as in the non-quantized case. Going one step further, we transfer the score
maps and low-rank adapters from this quantized version of ACIP back to full precision: We load the base model in bf16,
apply layer-wise SVD-parametrization, insert the low-rank adapters learned by quantized ACIP, and use the corresponding
score map to obtain a compressed model (W16A16). The resulting trade-off curve in Figure A6 confirms that this simple
strategy works fairly well, especially for lower compression levels.
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Figure A4: Compression-performance trade-off curves generated by ACIP on WikiText-2 and individual LM-Eval tasks,
complementing the results of Figures 1 and 2.
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Figure A5: Compression-performance trade-off curves for LLaMA-7B on C4 showing the impact of fine-tuning and
quantization after compression with ACIP. The horizontal axis measures size in terms of required (weight) memory to
visualize the gains of quantization more clearly.
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Figure A6: Compression-performance trade-off curves for LLaMA-7B on C4, showing that quantization before ACIP
leads to similar results as without.

15



Any Compression via Iterative Pruning

Table A2: Evaluation results for ACIP on all considered LLMs. Scores on C4 and WikiText-2 are measured in perplexity
(smaller is better), and the LM-Eval zero-shot tasks are measured in accuracy (higher is better). ∗The results of LLaMA2-13B
were achieved by ignoring all up-projection layers in ACIP (see Appendix E.10 for more details).

C4 ↓ WikiText-2 ↓ ARC c ↑ ARC e ↑ HellaS. ↑ MathQA ↑ Openb. ↑ PIQA ↑ WinoG. ↑ LM Eval Avg. ↑
Type ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT

Model Size

LLaMA-7B

40% 21.05 15.66 23.99 17.33 0.24 0.24 0.49 0.53 0.35 0.38 0.21 0.21 0.19 0.20 0.64 0.67 0.55 0.57 0.38 0.40
50% 16.47 12.89 16.16 11.88 0.27 0.27 0.57 0.59 0.40 0.43 0.22 0.23 0.21 0.23 0.68 0.71 0.57 0.60 0.42 0.44
60% 13.91 11.14 12.46 9.63 0.30 0.32 0.61 0.64 0.44 0.47 0.24 0.23 0.25 0.26 0.71 0.73 0.59 0.63 0.45 0.47
70% 12.22 9.84 10.35 8.27 0.31 0.34 0.64 0.69 0.47 0.50 0.23 0.24 0.28 0.28 0.73 0.75 0.62 0.66 0.47 0.49
80% 10.92 8.81 8.83 7.19 0.32 0.38 0.66 0.71 0.49 0.53 0.23 0.24 0.28 0.31 0.74 0.77 0.63 0.68 0.48 0.52
90% 9.75 7.69 7.56 6.12 0.33 0.39 0.67 0.73 0.50 0.56 0.25 0.25 0.27 0.33 0.76 0.78 0.63 0.69 0.49 0.53
100% 9.52 7.32 7.20 5.75 0.33 0.40 0.69 0.75 0.51 0.57 0.25 0.26 0.26 0.34 0.76 0.79 0.63 0.70 0.49 0.54
Original 7.31 5.68 0.42 0.75 0.57 0.27 0.34 0.79 0.70 0.55

LLaMA-13B

40% 16.64 13.38 17.66 13.42 0.28 0.28 0.57 0.59 0.41 0.43 0.22 0.23 0.23 0.24 0.69 0.70 0.60 0.62 0.43 0.44
50% 13.06 11.12 12.42 10.49 0.32 0.34 0.63 0.63 0.47 0.48 0.23 0.23 0.26 0.28 0.72 0.73 0.62 0.64 0.47 0.47
60% 11.33 9.76 9.79 8.30 0.35 0.33 0.67 0.68 0.50 0.51 0.24 0.24 0.28 0.30 0.74 0.76 0.65 0.67 0.49 0.50
70% 10.10 8.72 8.17 7.06 0.38 0.38 0.70 0.69 0.53 0.54 0.24 0.26 0.31 0.31 0.76 0.77 0.67 0.70 0.51 0.52
80% 9.06 7.91 6.91 6.21 0.41 0.41 0.74 0.74 0.55 0.57 0.26 0.27 0.32 0.34 0.77 0.78 0.68 0.69 0.53 0.54
90% 8.04 7.06 5.98 5.40 0.42 0.44 0.75 0.76 0.57 0.59 0.29 0.29 0.32 0.33 0.79 0.79 0.70 0.72 0.55 0.56
100% 7.86 6.79 5.83 5.15 0.42 0.46 0.75 0.77 0.57 0.60 0.29 0.30 0.31 0.32 0.79 0.79 0.70 0.73 0.55 0.57
Original 6.77 5.09 0.47 0.77 0.60 0.30 0.33 0.79 0.73 0.57

LLaMA-2-7B

40% 24.62 16.74 29.20 18.00 0.21 0.22 0.46 0.50 0.34 0.37 0.20 0.21 0.18 0.19 0.62 0.66 0.51 0.55 0.36 0.39
50% 18.36 13.32 19.64 12.25 0.25 0.27 0.53 0.57 0.38 0.42 0.22 0.22 0.24 0.23 0.67 0.69 0.53 0.56 0.40 0.42
60% 15.27 11.15 14.47 9.54 0.28 0.31 0.59 0.63 0.43 0.46 0.23 0.24 0.25 0.23 0.69 0.72 0.57 0.62 0.44 0.46
70% 12.96 9.73 10.47 7.74 0.33 0.35 0.62 0.68 0.46 0.50 0.25 0.24 0.27 0.26 0.73 0.74 0.60 0.64 0.47 0.49
80% 11.31 8.63 8.46 6.54 0.33 0.37 0.66 0.70 0.49 0.53 0.25 0.26 0.28 0.31 0.74 0.77 0.63 0.66 0.48 0.51
90% 9.46 7.43 6.69 5.45 0.34 0.43 0.69 0.75 0.51 0.56 0.26 0.28 0.28 0.33 0.76 0.78 0.63 0.69 0.50 0.54
100% 9.34 7.06 6.54 5.13 0.34 0.43 0.70 0.76 0.51 0.57 0.26 0.28 0.27 0.32 0.76 0.78 0.64 0.69 0.50 0.55
Original 7.04 5.11 0.44 0.76 0.57 0.28 0.31 0.78 0.69 0.55

LLaMA-2-13B

40% 27.55 84.28 41.22 145.79 0.23 0.23 0.43 0.46 0.33 0.30 0.21 0.21 0.18 0.18 0.62 0.63 0.52 0.52 0.36 0.36
50% 17.10 12.76 17.89 13.12 0.30 0.32 0.58 0.61 0.41 0.44 0.21 0.23 0.27 0.27 0.69 0.70 0.56 0.58 0.43 0.45
60% 13.29 10.05 11.11 8.43 0.32 0.36 0.65 0.68 0.47 0.50 0.22 0.23 0.29 0.31 0.72 0.74 0.60 0.63 0.47 0.49
70% 11.04 8.64 8.40 6.71 0.35 0.41 0.70 0.74 0.51 0.54 0.23 0.25 0.30 0.33 0.74 0.77 0.62 0.66 0.49 0.53
80% 9.54 7.68 6.80 5.66 0.37 0.44 0.72 0.76 0.54 0.57 0.25 0.28 0.30 0.34 0.77 0.78 0.64 0.71 0.51 0.55
90% 8.26 6.86 5.70 4.87 0.40 0.47 0.74 0.78 0.55 0.60 0.26 0.31 0.31 0.34 0.78 0.79 0.66 0.72 0.53 0.57
100% 7.87 6.56 5.42 4.61 0.41 0.47 0.75 0.79 0.56 0.60 0.28 0.32 0.31 0.35 0.78 0.79 0.69 0.71 0.54 0.58
Original 6.52 4.57 0.48 0.79 0.60 0.32 0.35 0.79 0.72 0.58

LLaMA-3.1-8B

50% 43.32 26.52 61.77 29.52 0.23 0.27 0.51 0.58 0.33 0.37 0.22 0.23 0.17 0.19 0.64 0.68 0.53 0.54 0.38 0.41
60% 31.55 21.00 36.69 19.26 0.29 0.29 0.60 0.61 0.37 0.42 0.24 0.24 0.22 0.23 0.69 0.72 0.55 0.56 0.42 0.44
70% 24.90 17.08 23.06 13.55 0.33 0.32 0.64 0.66 0.41 0.47 0.26 0.27 0.23 0.27 0.71 0.73 0.59 0.62 0.45 0.48
80% 20.78 14.21 15.60 10.12 0.38 0.40 0.69 0.72 0.46 0.51 0.28 0.30 0.28 0.29 0.74 0.77 0.61 0.66 0.49 0.52
90% 16.25 11.28 9.80 7.24 0.41 0.48 0.74 0.80 0.52 0.57 0.33 0.35 0.27 0.31 0.77 0.79 0.67 0.71 0.53 0.57
100% 14.57 9.42 8.04 5.95 0.40 0.51 0.75 0.82 0.53 0.60 0.36 0.40 0.27 0.34 0.78 0.80 0.66 0.74 0.54 0.60
Original 9.31 5.86 0.51 0.82 0.60 0.39 0.33 0.80 0.74 0.60

Mistral-7B-v0.3

40% 28.92 19.21 44.29 23.24 0.24 0.26 0.48 0.53 0.35 0.38 0.21 0.21 0.18 0.19 0.66 0.67 0.55 0.57 0.38 0.40
50% 21.44 14.86 28.60 16.53 0.28 0.28 0.57 0.59 0.40 0.43 0.21 0.23 0.22 0.21 0.69 0.70 0.58 0.60 0.42 0.43
60% 16.89 12.49 21.19 12.29 0.32 0.32 0.63 0.66 0.45 0.48 0.24 0.24 0.20 0.23 0.72 0.73 0.60 0.62 0.45 0.47
70% 13.75 10.95 13.28 9.69 0.35 0.34 0.67 0.68 0.49 0.52 0.27 0.28 0.21 0.26 0.74 0.76 0.63 0.63 0.48 0.49
80% 11.80 9.84 8.70 7.49 0.38 0.39 0.70 0.73 0.52 0.55 0.29 0.29 0.23 0.26 0.76 0.77 0.65 0.69 0.50 0.53
90% 10.42 8.84 6.51 5.85 0.40 0.43 0.72 0.75 0.54 0.59 0.31 0.33 0.25 0.31 0.78 0.79 0.68 0.70 0.53 0.56
100% 9.85 8.31 6.04 5.31 0.40 0.45 0.73 0.77 0.55 0.60 0.33 0.34 0.26 0.33 0.78 0.79 0.68 0.72 0.53 0.57
Original 8.05 4.96 0.49 0.79 0.61 0.36 0.34 0.80 0.73 0.59

Qwen2.5-3B

40% 71.23 36.85 91.51 39.44 0.20 0.22 0.45 0.51 0.29 0.31 0.21 0.22 0.15 0.16 0.60 0.64 0.50 0.52 0.34 0.37
50% 57.17 29.43 62.42 26.92 0.22 0.25 0.49 0.57 0.32 0.34 0.22 0.21 0.18 0.19 0.63 0.67 0.52 0.53 0.37 0.39
60% 43.30 23.30 38.26 18.38 0.26 0.29 0.57 0.63 0.35 0.39 0.23 0.23 0.21 0.24 0.67 0.69 0.54 0.56 0.40 0.43
70% 34.24 19.04 25.81 13.50 0.31 0.34 0.62 0.68 0.39 0.43 0.25 0.26 0.24 0.26 0.70 0.72 0.57 0.58 0.44 0.47
80% 25.50 16.16 17.02 10.68 0.34 0.36 0.68 0.73 0.43 0.47 0.28 0.31 0.26 0.24 0.72 0.74 0.58 0.57 0.47 0.49
90% 20.10 13.82 11.99 8.57 0.37 0.42 0.73 0.77 0.46 0.52 0.33 0.36 0.27 0.33 0.74 0.78 0.60 0.67 0.50 0.55
100% 18.73 12.81 10.63 7.70 0.36 0.47 0.72 0.78 0.46 0.54 0.33 0.41 0.24 0.31 0.74 0.78 0.60 0.69 0.49 0.57
Original 12.90 7.64 0.45 0.77 0.55 0.37 0.30 0.78 0.68 0.56

Qwen2.5-7B

40% 46.43 29.26 49.04 27.24 0.23 0.24 0.52 0.58 0.31 0.34 0.22 0.21 0.19 0.20 0.64 0.67 0.53 0.53 0.38 0.40
50% 34.90 23.26 29.96 19.72 0.27 0.30 0.59 0.64 0.35 0.39 0.22 0.23 0.23 0.25 0.67 0.70 0.54 0.57 0.41 0.44
60% 27.84 18.73 21.98 13.73 0.31 0.33 0.63 0.68 0.39 0.45 0.25 0.26 0.25 0.28 0.70 0.73 0.55 0.60 0.44 0.48
70% 22.97 15.96 15.72 10.71 0.35 0.42 0.68 0.74 0.44 0.49 0.28 0.30 0.29 0.30 0.73 0.76 0.57 0.63 0.48 0.52
80% 19.68 14.02 12.07 8.89 0.40 0.46 0.73 0.78 0.48 0.53 0.33 0.36 0.30 0.33 0.75 0.78 0.59 0.67 0.51 0.56
90% 17.09 12.59 9.82 7.63 0.44 0.48 0.75 0.80 0.52 0.56 0.39 0.41 0.31 0.32 0.77 0.79 0.64 0.70 0.54 0.58
100% 15.34 11.43 8.38 6.60 0.43 0.50 0.75 0.82 0.53 0.59 0.43 0.46 0.28 0.34 0.77 0.79 0.66 0.72 0.55 0.60
Original 11.47 6.55 0.48 0.81 0.60 0.43 0.34 0.79 0.73 0.60

Qwen2.5-14B

40% 36.51 25.58 33.78 22.22 0.26 0.29 0.55 0.61 0.36 0.38 0.22 0.23 0.24 0.26 0.67 0.68 0.54 0.57 0.41 0.43
50% 26.27 19.53 20.15 14.57 0.32 0.33 0.65 0.68 0.43 0.44 0.25 0.25 0.26 0.27 0.70 0.71 0.57 0.59 0.45 0.47
60% 21.29 15.63 14.87 10.48 0.36 0.40 0.70 0.73 0.49 0.51 0.28 0.32 0.28 0.31 0.74 0.76 0.62 0.66 0.50 0.53
70% 17.99 13.99 11.25 8.89 0.42 0.43 0.73 0.76 0.53 0.54 0.33 0.36 0.31 0.32 0.77 0.78 0.64 0.68 0.53 0.55
80% 15.23 11.97 8.73 7.11 0.44 0.48 0.77 0.78 0.57 0.58 0.39 0.44 0.34 0.36 0.78 0.79 0.68 0.73 0.57 0.60
90% 13.05 10.77 6.86 6.04 0.48 0.52 0.80 0.82 0.59 0.60 0.49 0.49 0.32 0.35 0.79 0.81 0.70 0.74 0.60 0.62
100% 12.37 9.98 6.23 5.11 0.47 0.53 0.79 0.82 0.58 0.62 0.51 0.53 0.32 0.35 0.79 0.81 0.73 0.77 0.60 0.63
Original 9.99 5.05 0.56 0.82 0.63 0.53 0.35 0.81 0.75 0.64
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Table A3: Evaluation of LLaMA-7B on WikiText-2 (perplexity, smaller is better) under different compression ratios, with
and without post-training fine-tuning. We compare ACIP with the existing SVD-based compression methods ASVD (Yuan
et al., 2024) and SVD-LLM (Wang et al., 2024), see also Section 3.2. The scores for ASVD and SVD-LLM are taken from
Wang et al. (2024, Table 4). Note that ACIP was fine-tuned on C4, while ASVD and SVD-LLM fine-tuned on WikiText-2
directly.

Compression Ratio 40% 50% 60% 70% 80%
Method

ASVD 57057.00 15358.00 1407.00 51.00 11.14
ASVD + LoRA FT 44.81 21.83 14.86 10.16 8.37
SVD-LLM 42.30 23.97 13.11 9.56 7.94
SVD-LLM + LoRA FT 17.93 13.26 10.65 9.14 7.78
ACIP 24.00 16.17 12.46 10.34 8.83
ACIP + FT 17.33 11.88 9.63 8.27 7.19

Table A4: More detailed evaluation results for our quantization experiments in Appendix E.3, reported in terms of numbers.

Eff. model size [GB] C4 ↓ WikiText-2 ↓ ARC c ↑ ARC e ↑ HellaS. ↑ MathQA ↑ Openb. ↑ PIQA ↑ WinoG. ↑ LM Eval Avg. ↑
Size Ablation

40%

ACIP 5.47 21.05 24.00 0.24 0.49 0.35 0.21 0.19 0.65 0.55 0.38
ACIP → FT 5.47 15.66 17.33 0.24 0.53 0.38 0.21 0.20 0.67 0.57 0.40
ACIP → W4A16 1.89 27.12 35.40 0.22 0.46 0.33 0.20 0.18 0.62 0.53 0.36
ACIP → W4A16 → FT 1.89 16.67 18.90 0.23 0.52 0.37 0.22 0.20 0.67 0.57 0.40

50%

ACIP 6.70 16.47 16.17 0.28 0.58 0.40 0.22 0.21 0.68 0.57 0.42
ACIP → FT 6.70 12.89 11.88 0.27 0.59 0.43 0.23 0.23 0.71 0.60 0.44
ACIP → W4A16 2.21 19.28 19.96 0.26 0.54 0.37 0.21 0.20 0.67 0.55 0.40
ACIP → W4A16 → FT 2.21 13.85 13.33 0.25 0.58 0.41 0.23 0.23 0.70 0.59 0.43

60%

ACIP 7.88 13.91 12.46 0.30 0.61 0.43 0.23 0.25 0.71 0.60 0.45
ACIP → FT 7.88 11.14 9.63 0.32 0.64 0.47 0.23 0.26 0.73 0.63 0.47
ACIP → W4A16 2.51 15.84 14.64 0.29 0.58 0.42 0.22 0.22 0.69 0.57 0.43
ACIP → W4A16 → FT 2.51 11.77 10.31 0.29 0.64 0.45 0.22 0.26 0.72 0.61 0.46

70%

ACIP 9.10 12.22 10.34 0.31 0.64 0.47 0.23 0.27 0.73 0.62 0.47
ACIP → FT 9.10 9.84 8.27 0.34 0.69 0.50 0.24 0.28 0.75 0.66 0.49
ACIP → W4A16 2.83 13.45 11.80 0.29 0.63 0.45 0.23 0.24 0.72 0.60 0.45
ACIP → W4A16 → FT 2.83 10.38 8.74 0.32 0.67 0.48 0.23 0.28 0.75 0.64 0.48

80%

ACIP 10.30 10.91 8.83 0.33 0.67 0.49 0.23 0.28 0.74 0.63 0.48
ACIP → FT 10.30 8.81 7.19 0.38 0.71 0.53 0.24 0.31 0.77 0.68 0.52
ACIP → W4A16 3.13 12.61 9.87 0.32 0.65 0.47 0.23 0.28 0.74 0.61 0.47
ACIP → W4A16 → FT 3.13 9.26 7.60 0.36 0.69 0.52 0.24 0.30 0.76 0.66 0.50

90%

ACIP 11.50 9.75 7.56 0.34 0.68 0.50 0.25 0.27 0.75 0.63 0.49
ACIP → FT 11.50 7.69 6.12 0.39 0.73 0.56 0.25 0.33 0.78 0.69 0.53
ACIP → W4A16 3.44 10.25 7.90 0.32 0.66 0.50 0.24 0.27 0.75 0.63 0.48
ACIP → W4A16 → FT 3.44 7.97 6.39 0.38 0.73 0.56 0.25 0.35 0.78 0.69 0.53

100%

ACIP 12.70 9.52 7.20 0.33 0.69 0.51 0.25 0.26 0.76 0.63 0.49
ACIP → FT 12.70 7.32 5.75 0.40 0.75 0.57 0.26 0.34 0.79 0.70 0.54
ACIP → W4A16 3.75 9.75 7.37 0.34 0.69 0.51 0.25 0.27 0.76 0.63 0.49
ACIP → W4A16 → FT 3.75 7.52 5.94 0.40 0.75 0.56 0.27 0.34 0.78 0.69 0.54
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Table A5: Efficiency analysis of ACIP for LLaMA-7B. The first three rows report the runtime and memory statistics of
ACIP’s key steps (see Section 2 and Figure A3) both in terms of numbers and their qualitative asymptotics. Here, the
model sizes are measured as (uncompressed) checkpoint sizes. “Runtime pruning” refers to the process of pruning the mask
parameters to a desired compression ratio (revertible), whereas “Runtime compress” refers to the process of discarding
pruned singular vectors and possibly unparametrizing linear layers, so that the model gets actually compressed. The statistics
of inference speed were obtained by generating new text of sequence length 64 and batch size 64. To measure FLOPs, we
used the fvcore package and an input sequence of length 512.

Stage Metric LLaMA-7B

ACIP Step 1 (Model Reparametrization)
O(#Layers × SVD of Layer)

Runtime [min] 4.95
Size parametrized model [GB] 19.71
Size base model [GB] 12.70

ACIP Step 2 (Scoring by Iterative Pruning)
O(#Steps of Masks & LoRA Updates)

Runtime [min] 23.12
Reserved GPU memory peak [GB] 62.45
Steps / s 1.68

ACIP Step 3 (Any Compression)
O(#Layers × Layer Input Dimension)

Runtime pruning [s] 0.49
Runtime compress [s] 0.18

Inference at 40% Size

Size model [GB] 5.47
Reserved GPU memory peak [GB] 25.68
Latency [s] 2.57
Tokens / s 1594.99
GigaFLOPs 1335.85

Inference at 70% Size

Size model [GB] 9.10
Reserved GPU memory peak [GB] 29.43
Latency [s] 2.47
Tokens / s 1658.63
GigaFLOPs 2265.03

Inference at 100% Size (Original)

Size model [GB] 12.70
Reserved GPU memory peak [GB] 32.79
Latency [s] 1.67
Tokens / s 2447.75
GigaFLOPs 3188.63

E.4. Efficiency Analysis

Table A5 reports several statistics on the efficiency of the ACIP algorithm and inference speed of compressed models.
While these preliminary results do not immediately indicate gains in inference speed, we expect that further optimization
like merging the low-rank adapters can compensate for the matrix-factorization overhead and outperform the base model.
Moreover, we note that compared to performance-size trade-offs, which are our main concern, analyzing inference speed-ups
requires a very careful consideration about the hardware in use (accelerator model, parallel processing units, etc.) and
measurement setup (sequence length, batch size, etc.).

E.5. Impact of Low-Rank Adapters

The primary purpose of the low-rank adapters used in ACIP is to correct compression errors on-the-fly during the
optimization. A surprising finding of our work is that the final adapters are “universal” in the sense that they can be used
across all seen compression levels. While we expect that other PEFT-style approaches would lead to similar findings, it is
natural to ask how ACIP would perform without any correction, i.e., just the mask parameters are tuned according to (4).
This ablation study is shown in Figure A7. While performing significantly worse than with LoRA, we observe that the
perplexity does not blow up and the results are even slightly better than SVD-LLM (see Table 1). This stable behavior
of ACIP is closely related to our parameterization of the mask in (3) which ensures that the forward pass corresponds to
the actual outputs of the pruned model with binary masks. On the other hand, the straight-through estimator still enables
backpropagation.

E.6. Impact of the Stopping Criterion

In most experiments, we have used a compression ratio rstop of 0.4 as stopping criterion, i.e., the pruning of masks is stopped
if the size of the model is only 40% of the original one (measured in number of parameters of all target weight matrices).
We have observed that at this point, the model performance has typically dropped so much that even a fine-tuned model
would be of limited practical use.
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Figure A7: Compression-performance trade-off curves for LLaMA-7B on C4 with and without using a LoRA-adapter for
correction in ACIP.
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Figure A8: Compression-performance trade-off curves for LLaMA-7B on C4, using different stopping compression
ratios rstop for ACIP.

Nevertheless, it is interesting to explore the sensitivity of compression-performance curves against different stopping ratios.
The comparison shown in Figure A8 provides several insights in this respect: (i) “Forecasting” compressed models beyond
the stopping ratio does not work very well, especially when stopping very early (> 0.8). (ii) The predictive capacity of ACIP
remains valid for even stronger stopping compression ratios than 0.4. However, finding the largest reasonable stopping ratio
is highly model-dependent. For less compressible models like LLaMA-3.1-8B, it could make sense to stop even earlier than
0.4 (cf. Figure 1). In general, we hypothesize that older models are more compressible than new ones, as the latter “carry”
more information per weight due to significantly more training data (Allen-Zhu & Li, 2024).

E.7. Impact of the Score Map – Forecasting Pruning Patterns

Here, we pick up the observation from Appendix E.6 that forecasting the performance of compressed models beyond the
stop ratio leads to inaccurate predictions, i.e., the model is compressed more strongly than it has been done by ACIP itself.
However, it turns out that the score map itself exhibits a certain forecasting capability. To this end, we run ACIP as usual
until a stop ratio is reached, say rstop = 0.4, but we stop updating the score map earlier in the optimization process. A few
compression-performance curves with this modification are reported in Figure A9. We observe very similar curve shapes
even if the score map is frozen after only a tiny fraction of mask parameters was pruned. This underpins our intuition that
the pruning path of each parameter is fully determined at very early stage of ACIP.

E.8. Impact of the Score Map – A Trivial One Does Not Work

There are certainly alternative ways to design useful score maps. For example, simply accumulating the gradients of all
mask parameters entrywise over an ACIP-run works equally well as the strategy proposed in Section 2. It is therefore
valid to ask whether one could even design score maps without any optimization. We demonstrate that perhaps the most
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Figure A9: Compression-performance trade-off curves for LLaMA-7B on C4, stopping updates of the score map before the
actual stopping criterion of ACIP.
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Figure A10: Compression-performance trade-off curves for LLaMA-7B on C4, using a trivial score map based on the initial
singular values of the base model.

obvious approach, namely setting the score map equal to the singular values of the weight matrices, does not work very
well. Figure A10 shows that this training-free approach does not produce any reasonable compressed models and decent
performance cannot be easily recovered with LoRA-finetuning. This simple experiment confirms that designing useful score
maps is not a trivial endeavour and requires a carefully crafted algorithmic approach.

E.9. Impact of Post-Tuning

Our main experiments are performed with 1k post-tuning steps in ACIP (see the description in Section 2.2). Figure A11
shows analogous compression-performance trade-off curves for fewer or no post-tuning steps. We observe that post-tuning
can indeed notably increase performance for higher compression ratios.

E.10. Impact of Individual Layers – Example of LLaMA2-13B

As pointed out in the caption of Table A2, the linear layers targeted by ACIP were slightly modified for LLaMA2-13, namely
all up projection layers were ignored. Figure A12 shows what would happen if they are compressed as well. While the
performance predictions for ≥ 0.6 look decent, the perplexity explodes for stronger compression; note that even additional
fine-tuning does not recover a reasonable performance in this situation. We hypothesize that ACIP has pruned one or more
singular values of the up projection layers that are crucial for model’s integrity. This finding might be related to the recent
work by Yu et al. (2024) on pruning so-called super weights. In any case, ACIP is capable of revealing this undesirable
behavior as demonstrated in Figure A12.
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Figure A11: Compression-performance trade-off curves for LLaMA-7B on C4 with different numbers of post-tuning steps.
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Figure A12: Compression-performance trade-off curves for LLaMA2-13B on C4, (not) ignoring the up projection layers in
ACIP.

E.11. Examples of Score Maps Generated by ACIP

Figure A13 and Figure A14 show two typical score maps generated by ACIP for LLaMA-7B and Qwen2.5-7B, respectively.
A characteristic feature is that attention layers can be pruned more aggressively than the MLP layers. Similarly, we observe
non-uniform pruning patterns for layers of the same type across all transformer layers. This confirms the findings of (Yuan
et al., 2024; Jaiswal et al., 2024) and demonstrates that non-uniform structured compression can be achieved without any
feature engineering.

E.12. Examples of Generated Text by Compressed Models

Table A6 shows examples of generated text by compressed versions of LLaMA-7B.
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Figure A13: Example score maps generated by ACIP for LLaMA-7B. The negative values (cf. Step 2 of ACIP in
Section 2.2) are normalized to −1 for the purpose of visualization.
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Figure A14: Example score maps generated by ACIP for Qwen2.5-7B. The negative values (cf. Step 2 of ACIP in
Section 2.2) are normalized to −1 for the purpose of visualization.
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Table A6: Example texts for two prompts generated for LLaMA-7B under different compressions produced by ACIP.

Size “How to compress Large Language Models?” “What is the concept of time?”

Original I am trying to run a large Language model generation,
but I have a few files on disk of around 3gb each. I was
wondering if there is a way to compress these files? I
have searched the internet but have found nothing.
Re: How to compress Large Language Models?
I suggest compressing it to HDF5, you can find instruc-
tions on how to do this using TensorPacker and PNet on
the TensorFlow Github repository . . .

Have you ever tried to ask a baby what it sees? Time,
is it real? What is the concept of time? Have you ever
tried to ask a baby what it sees? Let’s see what they can
understand.
The concept of time. What it is about, who discovered
the idea of time, and how was it discovered? How is
time measured? We can’t define it. We can’t point at
what we are defining, we can’t even show a picture of it
. . .

90% Jeffrey Hunt, a linguist and applied deep learning re-
searcher at the University of Technology, Sydney, talks
with Caleigh Blackstock”s to discuss how to compress
a large language model to speed up training and model
execution.
What does the language model compression actually do
to the overall model? . . .

Please let me know what is the concept of time.
The concept of time is all about the measurement of
time.
This measurement was first done using the hourglass.
When this hour Glass was invented, it was the only thing
that could represent the passage of time. . . .

80% Jeffrey Shafman, Zsolt Nemeth, Jeffrey Shafman, Zsolt
Nemeth, Jeffrey Shafman, Zsolt Nemeth. (2013). How
to compress Large Language Models? In: ICML pro-
ceedings, Vol. 22, pp. 462-463.
Magnus Skallman. (2013). How to compress Large
Language Models? In: ICML13 Proceedings, pp. 462-
463. . . .

You can’t even imagine that in that time,
The life of a tree in nature is as brief
As a flash of a lightning bolt,
But in this human world, it may endure
Through many millennia, if the will of man.
So tell me, what is the concept of time?
Hey, I’ve got one, and it’s this: . . .

70% Apr 04, 2018 at 12:05 pm In the last 5-6 years, Natural
Language Systems have been an important direction for
my work and the research I do in the course of my PhD.
I have been using them to teach myself Swedish and
improve my Swedish by machine time in this post. Let’s
see if I’ve got it! . . .

Please tell me where is the concept of time in this poem.
What is the significance of the poem ”I Am Wine” by
H.W.C. Carson”?
What does he mean by the poem title?
What does the stairs, the wine, & the man have in com-
mon?
What does he mean by ”I am wine”?
What do you mean by ”I am wine”? . . .

60% This is a 14 day free trial.
Please use the following link to sign in.
Select the country you need here to view pricing and
purchase.
Whenever you use our web site, we will track your web-
site traffic, the page where you first connected to our
site, and the search keywords you use to find us. We’ll
use this information to help us continually improve our
website. . . .

You may be wondering what is the concept of time.
The concept of time is all about the phenomenon of time.
It says that there is never no time. It states that there is
always a moment in time. At the moments of time is
when we refer the time of life.
So, as a matter of the moment, time is just a point in
space. . . .

50% Jeffrey Huan, Shu-Hua Ji, Xiao-Hong
Li, Xiao-Xiao Li, Layin Ma”s. 2019:5,
Springer.0000.0001/13/8/19/12/720-22-F43.
Miller A. ”The Structure of the Language in Unsuper-
vised Deep-Processing” in Journal of the Acoustical
Actors (v. 11(6). 2006:, pp. 278-295).
Dong Ming, Sun Jin, He Mei-Chen,’ . . .

Getting to this answer isn’t that hard.
The concept of time is all about the study of time. The
study of time isn’t so hard to get a hold on.
When you’re younger, you can begin thinking of how
much you could have had if you had known how much
time you had...if only we had it back then . . .

40% Apr 14, 2018 Resumes at The University of Florida will
be released on Friday, May 29, 2018 2.05:53pm.
Cover your next job announcement with the help of our
new Resume Template Builder.
To create your own Resume Template in minutes.
Improving the quality of your Resume.
To improve your Resume . . .

You may think that it is just a fancy word, or just the
idea it had in the earlier world. But there exists a way to
understand it.
To understand the idea of time by using the example of
a clock, you can learn the very importance of time with
a simple strategy.
The clock ticks with a watch. The clock has it time to
operate. . . .
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