
Portable Reward Tuning:
Towards Reusable Fine-Tuning across Different Pretrained Models

Daiki Chijiwa * 1 Taku Hasegawa * 2 Kyosuke Nishida 2 Kuniko Saito 2 Susumu Takeuchi 1

Abstract

While foundation models have been exploited for
various expert tasks through fine-tuning, any foun-
dation model will become outdated due to its old
knowledge or limited capability. Thus the un-
derlying foundation model should be eventually
replaced by new ones, which leads to repeated
cost of fine-tuning these new models. Existing
work addresses this problem by inference-time
tuning, i.e., modifying the output probabilities
from the new foundation model with the outputs
from the old foundation model and its fine-tuned
model, which involves an additional overhead in
inference by the latter two models. In this paper,
we propose a new fine-tuning principle, Portable
Reward Tuning (PRT), that reduces the inference
overhead by its nature, based on the reformulation
of fine-tuning as the reward maximization. Specif-
ically, instead of fine-tuning parameters of the
foundation models, PRT trains the reward model
explicitly through the same loss function as in
fine-tuning. During inference, the reward model
can be used with any foundation model (with the
same set of vocabularies or labels) through the for-
mulation of reward maximization. Experimental
results, covering both vision and language mod-
els, demonstrate that the PRT-trained model can
achieve comparable accuracy to the existing work
of inference-time tuning, with less inference cost.

1. Introduction
Foundation models, or simply pretrained models, play a
central role in the recent development of artificial intelli-
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gence (Bommasani et al., 2021). They are typically large-
scale neural networks pretrained on massive amounts of data
from the Internet, which makes them generalizable to vari-
ous downstream tasks, such as CLIP (Radford et al., 2021)
for visual recognition and LLAMA-series (Touvron et al.,
2023a;b) for language generation. Even though foundation
models are somewhat already capable of handling down-
stream tasks, we can further bring out their potential ability
by fine-tuning for each task, i.e., additional optimization
of the foundation models on supervised data. Furthermore,
fine-tuning can also be used for aligning the behavior of
foundation models to follow human instructions or prefer-
ences, by instruction tuning or reinforcement learning from
human feedback (RLHF; Christiano et al. (2017)).

Although fine-tuning has been the standard principle for
tuning foundation models, there still remains an overlooked
problem in the long term: the underlying foundation models
should be eventually replaced by other (often newer) foun-
dation models for various reasons, such as their outdated
knowledge or limited capability, which requires the new
foundation models to be fine-tuned on every task again. For
example, (i) in the case of open-source CLIP models (Schuh-
mann et al., 2021; 2022), an early model was initially trained
on a dataset with 400 million image-text pairs, but later it
was replaced by new versions trained on 2 billion and 5 bil-
lion pairs; (ii) in the case of the LLAMA series, both major
updates (e.g., LLAMA-2 to LLAMA-3) and minor updates
(e.g., LLAMA-3.1 to LLAMA-3.2) have occurred. Every time
such an update occurs, one may have to fine-tune the new
foundation model again, which poses an important issue of
the repeated training cost.

One promising approach for this challenge is inference-time
tuning (Mitchell et al., 2024; Liu et al., 2024a), which em-
ulates fine-tuning of the new foundation model even with
a possibly different architecture, by mixing three output
probabilities from the old foundation model, its fine-tuned
model, and the new foundation model. More specifically,
the approach first defines an implicit reward for each task
as the logarithmic density ratio of the output probabilities
from the (old) foundation and its fine-tuned models. Then,
it reinterprets fine-tuning as maximization of the implicit
reward with penalizing the deviation from the foundation

1



Portable Reward Tuning

Previous Approach (EFT) Our Approach (PRT)

Implicit Reward:

Tuned 
RewardFine-Tuning Reward Tuning

PRT Model 𝝅 𝑦|𝑥  :EFT Model 𝝅 𝑦|𝑥  :

𝜋!"(𝑦|𝑥)

𝑟 𝑥, 𝑦 ≔ log
𝜋!" 𝑦|𝑥
𝜋#" 𝑦|𝑥

argmax
𝝅 ⋅|$

𝔼%∼𝝅(⋅|$) 𝑟(𝑥, 𝑦) − 𝐷)* 𝝅 ∥ 1𝜋+, argmax
𝝅 ⋅|$

𝔼%∼𝝅(⋅|$) 𝑟-(𝑥, 𝑦) − 𝐷)* 𝝅 ∥ 1𝜋+,

𝑟-(𝑥, 𝑦)
𝜋."(𝑦|𝑥)

)𝜋."(𝑦|𝑥)

𝜋."(𝑦|𝑥)

)𝜋."(𝑦|𝑥)

Training

Inference with other pretrained models

Figure 1: An overview of our approach of portable reward tuning (PRT) compared with the previous work of inference-time
tuning, emulated fine-tuning (EFT). In training phase, we tune the reward model rθ(x, y) instead of tuning a given pretrained
model, through the same loss and dataset, which leads to the reduced cost in inference with another pretrained model.

model in Kullback-Leibler (KL) divergence, whose closed-
form solution (Ziebart, 2010) can be computed efficiently
and coincides with the fine-tuned model itself in this for-
mulation. Based on this viewpoint, inference-time tuning
is performed by solving the reward maximization, with the
foundation model in the KL penalty replaced by the new
foundation model. This approach is promising since it can
avoid the repeated fine-tuning associated with replacement
of foundation models, but instead it introduces another issue
of inference cost, i.e., requiring three models to run at each
inference step.

In this paper, we propose a new principle as an alternative
to fine-tuning, called Portable Reward Tuning (PRT), that
is more suitable for inference-time tuning. The proposed
principle is straightforward from the above viewpoint of fine-
tuning as reward maximization: we introduce an auxiliary
model as an explicit reward, and redefine a fine-tuned model,
which we call a PRT model, as the closed-form solution that
maximizes the explicit reward with KL regularization to a
given foundation model. For training, instead of directly
optimizing the foundation model itself, the explicit reward
model is trained so that the corresponding PRT model min-
imizes the same cross-entropy loss as in usual fine-tuning.
For inference, the PRT model is (re-)constructed from a
pair of the explicit reward model and a given (possibly
different) foundation model to serve as the corresponding
fine-tuned model. By its nature, PRT enables us to freely
update the underlying foundation model only with a sin-
gle model overhead, while the existing methods based on
standard fine-tuning still require additional two models to
compute the implicit reward for inference-time tuning.

Our contributions are as follows:

• We derive portable reward tuning (PRT) as an alter-
native to conventional fine-tuning, and established its
basic theoretical properties including (i) a natural in-
terpretation of its training objective as reward learning,
(ii) evaluation of how the PRT model changes its be-

havior by replacement of the underlying foundation
model in terms of KL divergence, (iii) generalization
analysis from the PAC-Bayesian perspective.

• Using both vision and language models, we conduct
experiments on inference-time tuning in realistic sce-
narios like updating the pretrained knowledge and up-
scaling the size of foundation models. We confirmed
that PRT models can achieve comparable accuracy to
the baseline of emulated fine-tuning, even with less in-
ference cost in terms of both speed and memory usage.

2. Background
In this section, we summarize the background of this work.
In Sec. 2.1, we review the basics of KL-regularized Reward
Maximization from the literature of Decision-Making The-
ory and Reinforcement Learning. In Sec. 2.2, we briefly
explain previous work on inference-time tuning with its
formulation based on reward maximization.

2.1. KL-Regularized Reward Maximization

Let S be a state space, A be an action space, and a policy
model π(a|s) be the probability that the action a ∈ A is
chosen by some probabilistic mapping S → A given the
state s ∈ S. Furthermore, we consider a reward function
r(s, a) : S × A → R and a reference model πref(a|s).
Then the goal of KL-regularized reward maximization is
to maximize the expected reward Ea∼π(a|s)[r(s, a)] with
a soft constraint that keeps π(a|s) close to the reference
model πref(a|s), in the sense of KL divergence, as follows:

max
π(-|s)

Ea∼π(a|s) [r (s, a)]

− λDKL (π(-|s) ∥ πref(-|s)) , (1)

where DKL(π(-|s) ∥ πref(-|s)) :=
∑

a π(a|s) log(π(a|s)/
πref(a|s)). The closed-form solution of this problem is well-
known (Ziebart, 2010; Korbak et al., 2022) as an extension
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of maximum entropy principle (Ziebart et al., 2008), given
by

π(a|s) = 1

Z(s)
πref(a|s) exp

(
1

λ
r(s, a)

)
, (2)

where Z(s) :=
∑

a∈A πref(a|s) exp
(
1
λr(s, a)

)
is the nor-

malization factor.

2.2. Inference-Time Tuning

Let πθ(y|x) be a classification model defined as πθ(y|x) :=
softmax(f(x; θ)), where x ∈ X is an input, y ∈ Y =
{c1, · · · , cL} a classification label, f(x; θ) ∈ RL a neural
network parameterized by θ ∈ RN , and the softmax func-
tion1. Let πpt(y|x) := πθpt(y|x) be a pretrained model, and
πft(y|x) := πθft(y|x) its fine-tuned model on some specific
task. Typical examples include (i) in image classification,
x is an image, y is its corresponding label and f(x; θ) is a
CNN (Bengio et al., 2017) or Vision Transformer (Doso-
vitskiy et al., 2021); and (ii) in language generation, x is a
sequence of tokens t1 · · · tk, y is the next token tk+1 and
fθ(x) is a decoder-only Transformer (Radford et al., 2018).

Based on the theory of KL-regularized reward maximization,
Mitchell et al. (2024) proposed an emulated fine-tuning
(EFT) which views the fine-tuned model πft(y|x) as the
solution of the following problem:

max
π(-|x)

Ey∼π(y|x)

[
log

(
πft(y|x)
πpt(y|x)

)]
−DKL

(
π(-|x) ∥ πpt(-|x)

)
, (3)

where log (πft(y|x)/πpt(y|x)) is called an implicit reward,
expected to be the reward function that reflects the task-
specific preference for y ∈ Y . Indeed, by applying (2), the
closed-form solution π(y|x) of (3) is given by

π(y|x) = 1

Z(x)
πpt(y|x) exp

(
log

(
πft(y|x)
πpt(y|x)

))
= πft(y|x)

Building on this fact, Mitchell et al. (2024) also proposed
what they call scale decoupling, which replaces the pre-
trained model in the KL constraint by different pretrained
model from the one appeared in the implicit reward. In other
words, they consider the following problem:

max
π(-|x)

Ey∼π(y|x)

[
log

(
πft(y|x)
πpt(y|x)

)]
−DKL

(
π(-|x) ∥ π̃pt(-|x)

)
, (4)

where π̃pt(-|x) is another pretrained model that is different
from πpt(-|x), possibly with different network architecture.
The closed-form solution of (4) can be considered as the

1softmax(y1, · · · , yL) := (ey1/
∑

i e
yi , · · · , eyL/

∑
i e

yi)

emulation result of fine-tuning the new pretrained model
π̃pt(y|x) through the implicit reward on the specific task.
Also, Liu et al. (2024a) proposed almost the same approach
called proxy-tuning.

3. Portable Reward Tuning
In this section, we develop a new fine-tuning framework,
called portable reward tuning (PRT), with both training
and inference algorithms based on KL-regularized reward
maximization. Throughout this section, we follow the same
classification setting as in Sec. 2.2, which includes both
image classification and language generation tasks.

3.1. Training of PRT

Setup. Let r(x; θ) = (r1(x; θ), · · · , rL(x; θ)) ∈ RL be
a neural network with L-dimensional outputs. We refer to
the i-th component of r(x; θ) as the reward value, denoting
rθ(x, ci) := ri(x; θ) for an input x and the i-th label ci ∈ Y .
We also assume that a pretrained model πpt and a dataset of
input-label pairs S = {(x1, y1), · · · , (x|S|, y|S|)} for some
specific task are given.

Formulation. In our PRT framework, we optimize the
reward model rθ(x, y), instead of directly optimizing the
given pretrained model πpt(y|x). For a little while, assume
that we already have the learned reward model rθ(x, y) for
the given specific task. Then, the desired classification
model πθ(y|x) is defined as the solution of reward maxi-
mization with KL-constraint to the pretrained model:

max
π(-|x)

Ea∼π(y|x) [rθ(x, y)]

− λDKL (π(-|x) ∥ πpt(-|x)) . (5)

As we already discussed in Sec. 2.1, the closed-form solu-
tion for this maximization problem is provided by

πθ(y|x) =
1

Zθ(x)
πpt(y|x) exp

(
1

λ
rθ(x, y)

)
, (6)

where Zθ(x) :=
∑

y πpt(y|x) exp(rθ(x, y)/λ) is the nor-
malization factor. We call this πθ(y|x) a PRT model (for
training) with the reward rθ(x, y) and the pretrained model
πpt(y|x).

Although it is somewhat obvious, the following proposition
guarantees that the above PRT models are equivalent to
standard fine-tuned models in terms of their expressiveness:

Proposition 3.1. There is a one-to-one correspondence
between fine-tuned models and rewards, which preserves
their accuracy:

{πft(y|x) : fine-tuned models}
→ {r(y|x) : rewards satisfying Ey∼πpt(y|x)[e

r(x,y)] = 1}
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where πft(y|x) is mapped to the implicit reward
log(πft(y|x)/πpt(y|x)).

Proof. The mapping preserves accuracy since the PRT
model (6) with the implicit reward recovers the given model
πft(y|x). The invertibility also holds since the implicit re-
ward of the PRT model (6) recovers the reward itself.

In other words, if there is a fine-tuned model that achieves
some accuracy, there is also the corresponding reward whose
PRT model achieves the same accuracy. Thus, the reparam-
eterization in PRT (6) does not restrict its expressiveness,
even compared to standard fine-tuning.

Training objective. The reward model rθ(x, y) is trained
by simply optimizing the same loss function L(p, y∗) as in
standard fine-tuning, with the true label y∗ for the input x
and the output distribution p := πθ(-|x) of the PRT model.
(See also lines 6-9 in Algorithm 1.) In particular, throughout
this paper, we minimize the cross-entropy loss L(p, y∗) :=
CE(p, y∗) := − log πθ(y

∗|x) over a given dataset S ⊂
X × Y to train the reward model:

argmin
θ

1

|S|
∑

(x,y∗)∈S

L(p, y∗) (7)

= argmax
θ

∑
(x,y∗)∈S

log πθ(y
∗|x)

= argmax
θ

∑
(x,y∗)∈S

rθ(x, y
∗)− Vθ(x), (8)

where Vθ(x) := λ logZθ(x). Notably, this maximization
can be reinterpreted in terms of reward training. Indeed, by
applying Jensen’s inequality, we obtain

rθ(x, y
∗)− Vθ(x)

= rθ(x, y
∗)− λ logEy∼πpt(y|x) exp(rθ(y|x)/λ)

≤ rθ(x, y
∗)− λEy∼πpt(y|x) log exp(rθ(y|x)/λ)

= rθ(x, y
∗)− Ey∼πpt(y|x)rθ(y|x). (9)

Therefore, maximization of (8), i.e., training the reward
model using the cross-entropy loss, leads to an increase
in the reward for the ground-truth y∗ while decreasing
rewards for the average outcomes y from the pretrained
model πpt(y|x). This interpretation can be seen as anal-
ogous to the training of the Bradley-Terry reward model
in RLHF (Christiano et al., 2017) with pairs of preferred-
dispreferred sentences, where the reward model learns to
evaluate the preferred one higher than the dispreferred one.

Implementation Details Algorithm 1 presents the pseu-
docode for training PRT models. The training data is a set
of input-label pairs just like in standard training. For the

Algorithm 1 Pseudocode for Training of PRT

1: Given: training data S = {(x1, y1), · · · , (xm, ym)},
2: a reward model r(x; θ),
3: a pretrained model πpt(-|x) = softmax(f(x; θpt)).
4: Initialize θ.
5: for i = 1, ...,m do
6: vθ ← log softmax(f(xi; θpt)) + r(xi; θ).
7: pθ ← softmax(vθ)
8: Lθ ← CE(pθ, yi)
9: Update θ with the gradient of Lθ.

10: end for
11: return θ.

Algorithm 2 Pseudocode for Inference of PRT

1: Given: an input x, the trained reward r(x; θ),
2: a pretrained model π̃pt(y|x) = softmax(f̃(x; θ̃pt)),
3: ṽ← log softmax(f̃(x; θ̃pt)) + r(x; θ).
4: p̃← softmax(ṽ)
5: return p̃ as the output probability conditioned by x.

reward model r(x; θ), although it can be an arbitrary neu-
ral network model, we assume that it is modeled using the
same network architecture as the pretrained model f(x; θpt)
and that θ initialized with θpt throughout this paper. Lines
6-7 compute the PRT model (6) in the logit space to avoid
numerical instability. Here, we set the coefficient λ = 1
in (6) since the reward model can automatically learn the
scaling factor.

3.2. Inference of PRT

Let rθ(x, y) and πpt(y|x) be the reward and pretrained
model introduced in Section 3.1. Let π̃pt(y|x) be another
pretrained model whose label space Y (or vocabularies for
language models) is the same as the one for πpt(y|x). Ex-
amples of π̃pt(y|x) include a model pretrained on a larger or
more recent dataset than that of πpt(y|x), and a pretrained
model with more parameters.

The inference model π̃θ(y|x) for the reward rθ(x, y) and
the specified pretrained model π̃pt(y|x) can be derived by
replacing πpt(y|x) in (6) with π̃pt(y|x). Specifically, given
an input x ∈ X , the prediction for its label y is performed
by the following model that maximizes the reward rθ(x, y)
while minimizing the deviation from the specified pretrained
model π̃pt(y|x):

π̃θ(y|x) := argmax
π(-|x)

Ea∼π(y|x) [rθ(x, y)]

− λDKL (π(-|x) ∥ π̃pt(-|x))

=
1

Z̃θ(x)
π̃pt(y|x) exp

(
1

λ
rθ(x, y)

)
, (10)

4



Portable Reward Tuning

where Z̃θ(x) :=
∑

y π̃pt(y|x) exp(rθ(x, y)/λ). The imple-
mentation of inference by this PRT model (10) is straight-
forward as described in Algorithm 2, with λ = 1 as in
training.

Now the following question naturally arises: How does
the choice of π̃pt(y|x) affect the behavior of the inference
model π̃(y|x)? Intuitively, if π̃pt(y|x) does not deviate
from the original πpt(y|x), the inference model π̃pt(y|x)
also keeps to behave similarly to the training time. This
intuition can be formalized as follows:

Proposition 3.2. Suppose that π̃pt(y|x) is close to πpt(y|x),
i.e., DKL (πpt(-|x) ∥ π̃pt(-|x)) ≤ ε. Additionally, we as-
sume that the maximum and mean value ratio of the ex-
ponential reward, i.e., maxy exp rθ(x, y)/Ey exp rθ(x, y),
is bounded by some constant C. Then, the PRT models
πθ(y|x) and π̃θ(y|x) are also close as distributions:

DKL (πθ(y|x) ∥ π̃θ(y|x)) ≤ O(
√
ε).

Proof. See Appendix A.

3.3. A PAC-Bayesian Perspective

We can suppose that the pretrained models for both train-
ing and inference, i.e., πpt(y|x) and π̃pt(y|x), are chosen
from some distribution P over the set of pretrained models.
Then the PRT models for inference, π̃θ(y|x) combined with
the sampled pretrained model π̃pt(y|x) ∼ P , form a new
distribution Qθ.

This formulation of PRT models naturally fits into the PAC-
Bayes framework established in McAllester (1999), which
enables us to analyze the generalization error of posterior
distributions over classifiers, in comparison to a fixed prior
distribution. Specifically in our setting, the pretrained dis-
tribution P can be seen as a prior distribution, and the PRT
distribution Qθ as a posterior distribution.

Let l(x, π) be a finitely bounded loss function, e.g., one that
returns the error rate, for a given input x and classifier π.
Assume that the input x follows some distribution D. The
following generalization bound can be obtained as a direct
consequence of Theorem 1 in McAllester (1999):

Proposition 3.3. Let S = (x1, · · · , xm) ∼ Dm be i.i.d. m
training samples from the data distribution D. Then, with
probability at least 1− δ, we have

Eπ∼Qθ
Ex∼D

[
l(x, π)

]
≤ Eπ∼Qθ

[
1

m

m∑
i

l(xi, π)

]

+

√
DKL(Qθ ∥ P) + log( 1δ ) +

5
2 logm+ 8

2m− 1
, (11)

for the posterior distribution Qθ with the reward rθ trained
on S.

The KL divergence DKL(Qθ ∥ P) is not computationally
tractable because the pretrained distribution P itself is not
tractable and also the underlying space of pretrained models
is too vast. Nevertheless, the result implies that the gen-
eralization capability of PRT models can be captured by
the closeness of the PRT model π̃θ(y|x) compared to the
underlying pretrained model π̃pt(y|x).

In particular, we can easily see that the KL divergence term
vanishes if the reward rθ(x, y) is a constant value given
each x and then the equality π̃θ(y|x) = π̃pt(y|x) holds.
This can be seen as the case that the exponential distribution
ρθ(y|x) := exp(rθ(x, y))/

∑
y exp(rθ(x, y)) maximizes

its entropy. Thus, the generalization capability can be further
improved by regularizing the exponential distribution of the
reward rθ(x, y) during training of rθ(x, y), while it may
hurt the optimization quality instead.

The above analysis motivates us to consider the following
regularization, which we call Entropy Maximization (EM),
to optionally enhance the generalization capability across
various pretrained models:

L̃(θ) := L(θ)− α
1

|S|
∑

(x,y)∈S

H(ρθ(-|x)), (12)

where L(θ) is the original loss (7) for training the reward
model, H(ρθ(-|x)) := −

∑
y∈Y ρθ(y|x) log ρθ(y|x) is the

entropy of the exponential distribution ρθ(y|x), and α ∈
R≥0 is the hyperparameter to control the regularization. As
we can see larger α enforces the reward rθ(x, y) to be closer
to some constant for each input x ∈ X .

4. Experiments
In this section, we evaluate the performance of portable
reward tuning (PRT) for inference-time tuning, with vari-
ous pretrained models including both vision and language
models. The main comparison is between PRT and its cor-
responding baseline, emulated fine-tuning (EFT; Mitchell
et al. (2024)), which differ only in whether they maximize
an explicit or implicit reward during inference-time tuning.

Setups for vision experiments. (1) Pretrained models:
We employed CLIP models (Ilharco et al., 2021) pre-
trained on various datasets including OpenAI’s proprietary
dataset (Radford et al., 2021), LAION-400M (Schuhmann
et al., 2021), LAION-2B (Schuhmann et al., 2022), and
DataComp-1B (Gadre et al., 2024). (2) Fine-tuning: For
each fine-grained dataset, such as Cars (Krause et al., 2013)
and CUB (Wah et al., 2011), we first constructed and fixed
the classification layer of each pretrained model for zero-
shot classification, and then fine-tuned (or reward-tuned)
its feature extractor on the train set. (3) Evaluation: We
evaluated models on the test set of each dataset where the
training set was used for tuning the models.
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Figure 2: Evaluations of inference-time tuned models for vision tasks. Each subcaption refers to the source pretrained
model, and the labels in x-axis are target pretrained models. Pretrained means the zero-shot classification by each target
model as a baseline, and FT means the fine-tuned target model as an oracle result.
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Figure 3: Evaluations of inference-time instruction-tuned models on GSM8k and IFEval benchmarks. Each subcaption
refers to the source pretrained model, and the labels in x-axis are target pretrained models. Pretrained means the zero-shot
inference by each target model as a baseline, and Instruct means the instruct-tuned target model as an oracle result.

Setups for language experiments. (1) Pretrained models:
We employed pretrained language models of the decoder-
only Transformers such as LLAMA series (Touvron et al.,
2023b), Qwen series (Yang et al., 2024b;a) and Falcon
series (Team, 2024). (2) Fine-tuning: We performed in-
struction tuning on these pretrained models with Tulu v2
dataset (Ivison et al., 2023), a large-scale dataset consisting
of demonstrations for following given instructions. (3) Eval-
uation: We evaluated models on downstream benchmarks,
particularly on the GSM8k benchmark (Cobbe et al., 2021)
for reasoning ability and IFEval benchmark (Zhou et al.,
2023) for instruction-following ability.

4.1. Results
Figures 2, 3 and 4 show the results of inference-time tuning
using PRT and EFT, from a source pretrained model, i.e.,
the one used in tuning the (either explicit or implicit) reward,
to a target pretrained model, i.e., the one never used in tun-
ing the reward. Here PRT refers to the vanilla one without
regularization for fair comparison. We also compare them
with the zero-shot performance of pretrained models them-
selves as baselines, and with their fine-tuned performance as
oracles. Note that, in the case that the source and target are
the same pretrained model (i.e., the leftmost one in x-axis),
the results correspond to the ones without inference-time
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Figure 4: Inference-time tuning from Qwen2-0.5B to the Qwen2.5
models with various sizes.

tuning. Overall, these results support our main claim in this
paper, i.e., PRT achieves comparable accuracy to EFT with
less inference cost. (See also Section 4.4)

Particularly, the pairs of the source/target pretrained models
can be categorized into either of the following two scenar-
ios: (i) upscaling the source model to larger target models,
and (ii) updating the pretrained knowledge of the source
model to the target model with better pretraining data. The
results for the former scenario (i) are shown in Figures 2a-
2b, 3a-3d, where the source and target models are pretrained
on the same dataset, and thus the only difference between
them is the network architecture. The results for the lat-
ter scenario (ii) are shown in Figures 2c-2e and Figure 4.
In both scenarios, we observe that PRT successfully lever-
ages the improved capabilities of target pretrained models,
by reusing the fixed reward model trained with the source
pretrained model.

4.2. Qualitative Analysis
To analyze the behavior of PRT in more detail, we examine
the tokens generated by the model. In this analysis, we used
Llama3-8B as the target model, while Llama-3.2-1B was
used for training and reward-model initialization. Figure 5
presents the output obtained under these settings. We ob-
serve that the PRT output correctly produces the chain of
reasoning that leads to the final answer of 21.2 Additionally,
Figures 5a and 5b show the top-5 prediction probabilities
for the tokens that follow each highlighted sentence. From
these distributions, we see that the target pretrained model’s
predictions are altered by the PRT model. In Figure 5b,
for instance, the pretrained model attempts to output the
answer ”33” directly, whereas the PRT outputs ”6” which re-
flects the step-by-step reasoning capability acquired through
inference-time instruction-tuning.

2By contrast, the pretrained Llama3-8B output was only “18.”
For details, see Appendix D.

Prompt

Question: James has 6 more candies than Robert. John
has twice as many candies as Robert. If John has 54
candies, how many more candies does John have than
James?
Answer:

Model Response

Let R be the number of candies Robert has. John has 2R
candies. James has 6 + R candies. We know that John
has 54 candies, so 2R = 54. R = 27. James has 6 + 27
= 33 candies. John has 54 - 33 = 21 more candies than
James.
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Figure 5: Changes in next-token probabilities by PRT.
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ViT-B-16
(LAION-400M)

ViT-B-16
(LAION-2B)

ViT-B-16
(DC-1B)

0

20

40

60

80

100
Flowers

0.0
1e-05
1e-04
1e-03
1e-02
0.1

(b) Inference-time tuning with various
regularization coefficients α.

Figure 6: Analysis on how the EM regularization affects on
performance of PRT with various coefficient α. Reward-only
refers to the exponential distribution ρθ(y|x) in Sec 3.3.
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Figure 7: Performance of PRT on GSM8k with various regular-
ization coefficients α.

4.3. Effects of Entropy Regularization
Here we employ Entropy Maximization (EM) regularization
in PRT training, with its coefficient α ∈ R≥0. In Section 3.3,
the PAC-Bayesian analysis indicated that the generalization
capability of PRT models is affected by the entropy of the
reward distribution ρθ(y|x) defined by the reward model
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rθ(x, y). In Figure 6 and 7, we empirically analyze its effect
by varying α. First of all, we observed that the EM regular-
ization generally suppresses the accuracy of the reward itself
(Fig. 6a) as α increases, which can be naturally expected.
However, interestingly, the performance of PRT (Fig. 6b, 7)
is not degraded even with such rewards, but also sometimes
boosted regardless of the accuracy of rewards themselves.
The regularization itself may not be yet practical since the
optimal α tends to be dependent on tasks and pretrained
models, but these analyses provide valuable insights for
generalization capability of PRT models, which may lead to
future exploration of more practical regularization.

4.4. Memory and Speed Analysis
Since PRT introduces an auxiliary model as the reward for
both training and inference, we investigate how the memory
usage and speed increase or decrease, compared to standard
fine-tuning in training and EFT in inference. For training,
Table 1 in Appendix shows that, while training time slightly
increases due to the auxiliary model, the increase in memory
usage is relatively negligible because the pretrained model
in PRT does not require back-propagation. For inference,
Tables 2 and 3 show that PRT successfully reduces both
inference time and memory usage compared to EFT, which
highlights the benefit of employing explicit reward models.

5. Related Work
Tuning by Refining Predictions. In this paper we focused
on inference-time tuning accomplished by refining predic-
tions from the underlying pretrained model. In particular,
our baseline is the emulated fine-tuning (EFT; Mitchell et al.
(2024)) which established the interpretation of inference-
time tuning based on KL-regularized reward maximization.
Parallel work by Liu et al. (2024a) also proposed an es-
sentially same method called proxy-tuning. While these
previous work focused on inference-time tuning with pre-
trained models that only differ in their model scale, we
examined a more general setting that the pretrained models
may differ even in their architectures or pretraining datasets.
Also, the previous work assumed the fine-tuned model was
prepared in advance, and explored how to exploit it for a
new pretrained model. In contrast, we reexamined the as-
sumption and explored an alternative to fine-tuning that is
more suitable for inference-time tuning. As a consequence,
at the cost of a little overhead in training, our approach
successfully halves the overhead in inference-time tuning.

The literature of controlled text generation (Krause et al.,
2021; Yang & Klein, 2021; Pascual et al., 2021; Li et al.,
2023; Deng & Raffel, 2023) is also related to our work,
but they have explored specific methods for attribute-
conditioned text generation, which requires a classifier for
some attributes, rather than fine-tuning for general tasks as

in our work. In particular, Deng & Raffel (2023) proposed
to control language models with reward models similarly to
our work, but which are trained with a manually-designed
loss specific to text classification tasks, while our method
employs standard loss for fine-tuning and thus can be nat-
urally applied to broader domains and tasks such as vision
classification and instruction tuning.

Tuning by Editing Parameters or Activations. Another
possible approach for inference-time tuning would be di-
rectly editing the parameters or activations of pretrained
models, instead of their predictions. A bunch of research
on parameter editing, including (Ilharco et al., 2023; Gueta
et al., 2023; Ortiz-Jimenez et al., 2024; Yadav et al., 2024;
Chijiwa, 2024; Daheim et al., 2024), addresses inference-
time tuning by leveraging existing fine-tuned results. How-
ever, most of these work aimed to tune a given pretrained
model for multiple tasks, and thus cannot be used to tune a
newly provided pretrained model. Although Chijiwa (2024)
tackled the challenge of inference-time tuning with different
pretrained models, it still requires the pretrained models to
share the same architecture, which may be a fundamental
limitation of the approach by editing parameters. Similarly,
there is a line of research (Dathathri et al., 2020; Hernan-
dez et al., 2023; Chuang et al., 2024; Li et al., 2024) on
tuning by editing the activations, but they also require the
model architecture to have the same dimension for acti-
vations. In contrast to these approaches, the approach by
refining predictions in this paper would be more promising
since it is completely free from the choice of the model
architectures. Also, in cases of language models, automatic
prompt tuning (Zhou et al., 2022; Pryzant et al., 2023; Wang
et al., 2024b) can also be considered as an approach of tun-
ing models by editing input prompts and reusable to other
language models, though there still have been difficulties
coming from both the discrete nature of prompts and their
limited expressiveness.

Reward for Language Models. For language models, the
notion of rewards has been exploited mainly in two lines
of research: (i) Reinforcement Learning from Human Feed-
back (RLHF; Christiano et al. (2017); Jaques et al. (2017);
Ouyang et al. (2022)), and (ii) multi-step reasoning (Cobbe
et al., 2021; Uesato et al., 2022). In RLHF, reward models
are first trained on a dataset of human feedbacks, such as
pairs of prefered-disprefered responses, and then used for
training LLMs by reinforcement learning. Although recent
methods (Rafailov et al., 2024a; Calandriello et al., 2024;
Ethayarajh et al., 2024; Rafailov et al., 2024b) successfully
bypass the explicit use of reward models, they are still learn-
ing human preferences through implicit rewards. Several
work (Liu et al., 2024b; Chakraborty et al., 2024; Khanov
et al., 2024) also integrate the idea of inference-time de-
coding into RLHF, but they assume the reward model is
already prepared by RLHF. In multi-step reasoning, reward
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models are trained to evaluate the intermediate process of
reasoning by LLMs, from datasets with process or outcome
supervision, and then used as verifiers for sampling such
as Best-of-N sampling (Lightman et al., 2024; Wang et al.,
2024a) or self-consistency decoding (Wang et al., 2023;
Luo et al., 2024). In contrast to these lines of work, where
rewards are used for either training LLMs or verifying infer-
ence, the reward model in our approach is directly trained
for classification or generation from ground-truth labels
or tokens through the same loss and dataset for standard
fine-tuning, which may lead to a broad range of applications
in various domains including language generation.

6. Conclusion
In this paper, we introduced a new fine-tuning principle
called portable reward tuning (PRT) as an alternative to
standard fine-tuning, based on the interpretation of fine-
tuning as reward maximization with KL regularization. PRT
naturally fits into the framework of inference-time tuning
as the reward maximization. We theoretically analyzed its
basic properties of both training and inference, revealing
how the reward evolves in training and how the choice of
pretrained models affects inference-time tuning. Also we
empirically confirmed that PRT can achieve comparable
accuracy to previous work of inference-time tuning, even
with less computational overhead.

Impact Statement
This paper investigates basic properties of a proposed prin-
ciple of fine-tuning, which aims to advance the field of
Machine Learning. There may be potential societal conse-
quences of our work, but discussing about them is out of
scope of this work.
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A. Proof of Proposition 3.2

Proof. Let Zθ(x) := Ey∼πpt(y|x)[exp(rθ(x, y))] and similarly Z̃θ(x) := Ey∼π̃pt(y|x)[exp(rθ(x, y))] for convenience.

DKL(πθ(-|x) ∥ π̃θ(-|x))

=
∑
y

πθ(y|x) log
(
πθ(y|x)
π̃θ(y|x)

)
=
∑
y

πpt(y|x) exp(rθ(x, y))
Zθ(x)

log

(
πθ(y|x)
π̃θ(y|x)

)
=
∑
y

πpt(y|x) exp(rθ(x, y))
Zθ(x)

×

{
log

(
πpt(y|x)
π̃pt(y|x)

)
+ log

(
Z̃θ(x)

Zθ(x)

)}

=
1

Zθ(x)

∑
y

exp (rθ(x, y))πpt(y|x) log
(
πpt(y|x)
π̃pt(y|x)

)

+ log

(
Z̃θ(x)

Zθ(x)

)

≤ maxy exp rθ(x, y)

Ey∼πpt(y|x) exp rθ(x, y)
DKL(πpt(-|x) ∥ π̃pt(-|x))

+ log

(
Z̃θ(x)

Zθ(x)

)
.

The first term can be bounded by Cε by combining the assumptions. The second term can be evaluated as follows:

Z̃θ(x)

Zθ(x)

=

∑
y π̃pt(y|x) exp rθ(x, y)∑
y πpt(y|x) exp rθ(x, y)

= 1 +

∑
y(π̃pt(y|x)− πpt(y|x)) exp rθ(x, y)∑

y πpt(y|x) exp rθ(x, y)

≤ 1 +
maxy exp rθ(x, y)

Ey∼πpt(y|x) exp rθ(x, y)

∑
y

∣∣π̃pt(y|x)− πpt(y|x)
∣∣

≤ 1 + C
∑
y

∣∣π̃pt(y|x)− πpt(y|x)
∣∣

(by the assumption)

≤ 1 + C ′
√
DKL(π̃pt(-|x) ∥ πpt(-|x))

(by Pinsker’s inequality)

≤ 1 + C ′√ε.

Since log(1 + C ′√ε) = O(
√
ε) holds asymptotically, finally we have DKL(πθ(y|x) ∥ π̃θ(y|x))) ≤ O(

√
ε).
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B. Experimental Setup
B.1. Image Classification Tasks.

Training Setups In training of either standard fine-tuning or PRT, we used the same hyperparameters following existing
work (Ilharco et al., 2023) as follows: learning rate = 1× 10−5, batch size = 128, number of iterations = 2000, optimizer
= Adam, cosine annealing with 500 warmup iterations. All models are trained on a single A100 GPU.

Fine-Tuning and Evaluation Dataset We consider the following image classification tasks:

• Aircraft (Maji et al., 2013): A dataset with 100 classes of aircrafts, 100 images per class.

• Caltech101 (Li et al., 2022): A dataset with 101 classes of objects, 40 to 800 images per class.

• Cars (Krause et al., 2013): A dataset with 196 classes of various cars.

• CIFAR-100 (Krizhevsky et al., 2009): A dataset with 100 classes of 32x32 color images.

• Country211 (Radford et al., 2021): A dataset of photos taken in 211 different countries.

• CUB (Wah et al., 2011): A dataset of images with 200 bird species for fine-grained classification.

• Flowers (Nilsback & Zisserman, 2008): The Oxford 102 Flower Dataset, containing images of 102 flower categories
for fine-grained classification.

• RESISC45 (Cheng et al., 2017): A dataset of images with 45 scene classes.

Models We employed the following model architectures for the vision feature extractors of CLIP models:

• ResNets (ResNet-50, ResNet-101; He et al. (2016))

• ConvNext (Liu et al., 2022)

• Vision Transformers (ViT-B-16, ViT-L-14; Dosovitskiy et al. (2021))

B.2. Language Modeling Tasks.

Training Dataset and Settings For instruction tuning, we used the Tulu v2 dataset (Ivison et al., 2023), which is a
large-scale dataset designed to improve the instruction-following capabilities of language models. The dataset includes a
diverse set of instructions and corresponding responses, covering a wide range of topics and tasks. The training conditions
are as follows: learning rate = 2× 10−5, batch size = 128, number of epochs = 2, optimizer = Adam, warmup ratio = 0.03,
and learning rate scheduler = linear. We conducted all training on 8 NVIDIA A100 GPUs.

Evaluation Dataset We consider the following language modeling tasks: GSM8k and IFEval.

• GSM8K (Cobbe et al., 2021): A dataset for evaluating the ability of models to solve grade-school math problems.
Evaluation is based on the exact match metric, which measures whether the model’s final answer exactly matches the
correct answer.

• IFEval (Zhou et al., 2023): A dataset for evaluating the ability of models to perform information extraction tasks. It
employs four evaluation metrics: instruction-level strict accuracy, instruction-level relaxed accuracy, prompt-level strict
accuracy, and prompt-level relaxed accuracy, which comprehensively assess the model’s ability to follow complex
instructions. In this paper, we report the average of these four scores as the evaluation metric.
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Models We evaluated the proposed PRT method on the following models:

• LLAMA 2 Series (Touvron et al., 2023a): A family of large-scale language models developed by Meta AI, available in
various sizes, including 7B, 13B, and 70B parameters, designed for a wide range of natural language processing tasks.

• LLAMA 3 Series (Dubey et al., 2024): A family of large-scale language models developed by Meta AI, introduced
in April 2024 with 8B and 70B parameter variants. Compared to Llama 2, it features improvements in tokenizer
efficiency, training data scale, and overall model optimization. The subsequent update, LLAMA 3.1, released in July
2024, further enhanced performance by refining pretraining methodologies while maintaining the same parameter
sizes. In September 2024, LLAMA 3.2 introduced lightweight text models with 1B and 3B parameters, optimized for
efficiency in resource-constrained environments such as mobile and edge devices.

• Qwen 2 Series (Yang et al., 2024b;a): A series of large-scale language models developed by Alibaba Cloud’s Qwen
team, designed for various natural language understanding and generation tasks. The initial Qwen 2 models were
released with parameter sizes such as 1.5B and 3B, focusing on high-quality training data and diverse applications. The
subsequent Qwen 2.5 series expanded the model range, introducing sizes from 0.5B to 72B parameters, with both base
and instruction-tuned variants, further improving performance and efficiency.

• Falcon 3 Series (Team, 2024): A series of open-source large language models developed by the Technology Innovation
Institute (TII) in Abu Dhabi, designed to provide accessible and efficient AI solutions. Released in December 2024,
Falcon 3 models are available in 1B, 3B, 7B, and 10B parameter sizes, each offered in both Base and Instruct
variants. The Base models are tailored for general-purpose text generation, while the Instruct models are fine-tuned for
conversational applications.

C. Memory and Speed Benchmarks
See Table 1 for training-time benchmarks, and Tables 2 and 3 for inference-time benchmarks.

Models FT PRT

ResNet-50 Peak GPU memory 12.84 GB 13.08 GB
Average time per batch 38.26±3.62 ms 46.36±3.34 ms

ViT-B-16 Peak GPU memory 20.17 GB 20.58 GB
Average time per batch 116.10±0.43 ms 151.13±0.48 ms

Table 1: Memory usage and average time per batch in training with batch size 128.

Source Models Target Models Target FT (Oracle) EFT PRT

ResNet-50 ViT-B-16 Peak GPU memory 1.46 GB 2.42 GB 2.18 GB
Average time per batch 3.52± 0.17 ms 10.27± 0.22 ms 7.00± 0.12 ms

ResNet-50 ViT-L-14 Peak GPU memory 2.96 GB 3.44 GB 3.20 GB
Average time per batch 5.85± 0.11 ms 12.52± 0.21 ms 9.43± 0.19 ms

ViT-B-16 (LAION-400M) ViT-B-16 (LAION-2B) Peak GPU memory 1.46 GB 2.29 GB 1.88 GB
Average time per batch 3.52± 0.17 ms 9.18± 0.12 ms 6.33± 0.07 ms

ViT-B-16 (LAION-2B) ViT-L-14 (LAION-2B) Peak GPU memory 2.96 GB 3.79 GB 3.38 GB
Average time per batch 5.85± 0.11 ms 11.73± 0.15 ms 8.89± 0.11 ms

Table 2: Memory usage and average time per batch in inference with batch size 128.
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Average Time per Token (ms)
Source Models Llama2-7B Llama3.2-1B Llama3.2-3B
Target Models Llama2-13B Llama3-8B

Pretrained 26.0±0.2 17.1±1.1

EFT 39.8±0.1 (× 0.65) 24.4±0.2(×0.7) 30.4±0.0(×0.56)
PRT 27.8±0.5 (× 0.93) 22.7±1.8(×0.75) 23.1±1.0(×0.74)

Table 3: Inference speed of Pretrained, EFT and PRT. The number following “×” in brackets indicates each method’s token
generation speed relative to the Pretrained model, whose speed is set to 1.0.

D. Qualitative Analysis
To analyze the behavior of PRT in more detail, we examine the tokens generated by the model. In this analysis, we adopt
Llama3-8B as the target model. In this analysis, we used Llama3-8B as the target model, while Llama-3.2-1B was used for
training and reward-model initialization. Figures 8 and 9 present the output obtained under these settings.

Prompt

Question: James has 6 more candies than Robert. John has twice as many candies as Robert. If John has 54 candies,
how many more candies does John have than James?
Answer:

Response of Pretrained

18

Response of PRT

Let R be the number of candies Robert has. John has 2R candies. James has 6 + R candies. We know that John has
54 candies, so 2R = 54. R = 27. James has 6 + 27 = 33 candies. John has 54 - 33 = 21 more candies than James.
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Figure 8: Example of model response.

Prompt

Question: Gerald and Julia divided $100 in the ratio 3:2. If Gerald spent $10 on a book, how much money did he
have left?
Answer:

Response of Pretrained

$40

Response of PRT

Let x be the amount of money Julia had. Then 3x / 2 - 10 = x. So x = 20. Therefore, Gerald had 60 - 10 = $50 left.
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Figure 9: Example of model response.
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E. Ablation Study: Impact of Source Model Choice on PRT
In this section, we investigate the impact of source model differences on PRT by comparing GSM8K and IFEval scores
when using Llama 3.2-1B and 3B, Qwen 2.5-0.5B and 1.5B, and Falcon 3-1B and 3B as source models. All models were
trained under the same conditions using the training data and hyperparameters specified in Appendix B. The results for each
case are shown in Figures 10 and Figures 11.
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Figure 10: Evaluations of inference-time instruction-tuned models on the GSM8k benchmark. Each subcaption refers to the
source pretrained model, and the labels in x-axis are target pretrained models. Pretrained means the zero-shot inference by
each target model as a baseline, and Instruct means the instruct-tuned target model as an oracle result.
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Figure 11: Evaluations of inference-time instruction-tuned models on the IFEval benchmark. Each subcaption refers to the
source pretrained model, and the labels in x-axis are target pretrained models. Pretrained means the zero-shot inference by
each target model as a baseline, and Instruct means the instruct-tuned target model as an oracle result.
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F. Ablation Study: Instruction-Tuning with Multiple Random Seeds
We conducted additional experiments using the Qwen-2.5 0.5 B model as the source model, where three independent training
runs are carried out with different random seeds. As summarized in Table 4 the variance of evaluation scores across seeds is
nearly identical between our method (PRT) and standard fine-tuning, indicating that PRT is as stable as standard fine-tuning
for language-model training.

0.5B 1.5B 3B 7B 14B
EFT 26.79± 3.79% 45.94± 4.40% 53.37± 4.77% 66.14± 2.43% 71.01± 3.16%
PRT 26.69± 1.45% 51.73± 1.84% 62.37± 2.14% 71.34± 0.60% 77.23± 0.20%

Table 4: Performance comparison of EFT and PRT with standard deviations across model sizes.

G. Ablation Study: Robustness to Distribution Shifts in Inputs
Here we examine the robustness of PRT to input distribution shifts. For this purpose, we conducted experiments on
CIFAR100 with Gaussian noise. We employ a reward model (ResNet50, untuned) trained on clean data by PRT, and then
additionally tune it by PRT on the noisy data (ResNet50, tuned) for only a few iterations. In Table 5, we observed that
(1) PRT degrades its performance on noisy data (as well as standard FT), but (2) additional PRT training can recover its
performance.

ResNet50 ResNet101 ViT-B-16
PRT on clean data (ResNet50, untuned) 71.70% 72.36% 79.5%
PRT on noisy data (ResNet50, untuned) 21.37% 34.77% 53.47%
PRT on noisy data (ResNet50, tuned) 71.60% 72.18% 78.06%

Table 5: Performance of PRT under clean and noisy training conditions across different backbone models

H. Ablation Study: PRT with LoRA
Here we conducted additional experiments of instruction-tuning by PRT with LoRA (Hu et al., 2022). Table 6 presents the
results of instruction-tuned models with LoRA, evaluated on GSM-8k, showing that LoRA actually works with PRT as well
as FT.

0.5B 1.5B 3B 7B 14B
EFT+LoRA (0.5B) 29.72% 53.15% 65.28% 56.41% 53.37%
PRT+LoRA (0.5B) 21.83% 50.11% 63.15% 74.91% 73.62%

Table 6: Comparison of EFT+LoRA and PRT+LoRA across model sizes

I. Empirical Evaluation for ε and C

We conducted additional experiments to measure KL-divergence ε between pretrained models and the constant C appeared
in Proposition 3.2. In Table 7, we reported averaged results over inputs from the dataset. These results indicate that (1) KL
divergences between similar models are small as expected, (2) KL divergences are affected by differences in pretraining
datasets, rather than model architectures, and (3) the constant C is finitely bounded in this setting.

J. Evaluation on Various Vision Tasks
Figure 12 shows an extensive evaluation of inference-time tuning on various vision datasets.
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πpt π̃pt ε C
RN50 (OpenAI) RN50 (OpenAI) 0.0 19.41
RN50 (OpenAI) RN101 (OpenAI) 0.0016 –

ViT-B (OpenAI) 0.0030 –
ViT-B (LAION-400M) 0.0107 –
ViT-L (OpenAI) 0.0044 –
ViT-L (LAION-400M) 0.0158 –

Table 7: Empirical Evaluation of ε and C in Proposition 3.2.

K. Evaluation on Code Generation Tasks
To evaluate the code generation capabilities of PRT, we conducted a comparison using HumanEval (Chen et al., 2021).

HumanEval : A dataset for evaluating the ability of models to generate correct code based on natural language descriptions.

Result As shown in Figure 13, the effectiveness of PRT was confirmed for Llama2, Llama3, and Qwen2.5. On the other
hand, for Falcon3 with target model sizes of 7B and 10B, the score actually declined compared to the Pretrained model. We
believe this is because, during training, the same 1B model was used as the target, which exhibited little improvement over
the Pretrained model in code generation. As a result, the PRT model did not acquire code generation capabilities during
training; consequently, when applied to larger model sizes, it acts as noise rather than providing a benefit.

L. Evaluation on Various NLP Tasks
To investigate the effectiveness of PRT, we conducted comparisons using a diverse set of evaluation datasets. In addition to
GSM8k, IFEval, and HumanEval, we used the following datasets for evaluation.

• Academic / General Knowledge MCQ

– ARC (Clark et al., 2018): The AI2 Reasoning Challenge (ARC) dataset is designed to test a model’s ability to
answer grade-school level science questions.

– MMLU (Hendrycks et al., 2020): The Massive Multitask Language Understanding (MMLU) benchmark tests a
model’s ability to perform a wide range of language understanding tasks.

– MMLU Pro (Wang et al., 2024c): An extension of the MMLU benchmark with more challenging tasks.

• Code Generation / Programming

– MBPP (Austin et al., 2021): The Mostly Basic Programming Problems (MBPP) dataset is designed to test a
model’s ability to solve basic programming problems.

• Commonsense Reasoning

– Hellaswag (Zellers et al., 2019): A dataset for evaluating commonsense reasoning and natural language inference.
– GPQA (Rein et al., 2023): A dataset for evaluating general-purpose question answering capabilities of models.

• Truthfulness

– TruthfulQA (Lin et al., 2021): A dataset for evaluating the truthfulness of answers generated by models.

In Figure 14, we compared PRT with the baseline using the Llama2 series on these benchmarks. Each method employs the
same models used in the NLP experiments in Section 4, which were trained with Tulu v2.
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(a) ResNet-50 (OpenAI)
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Figure 12: Evaluations of inference-time tuned models for vision tasks. Each subcaption refers to the source pretrained
model, and the labels in x-axis are target pretrained models. Pretrained means the zero-shot classification by each target
model as a baseline, and FT means the fine-tuned target model as an oracle result.
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Figure 13: Comparison of PRT and EFT on HumanEval.
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Figure 14: Evaluations of inference-time instruction-tuned models on Llama 2 Series. Each subcaption refers to the task
name, and the labels in x-axis are target pretrained models. Pretrained means the zero-shot inference by each target model
as a baseline, and Instruct means the instruct-tuned target model as an oracle result.
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