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Abstract

Federated clustering (FC) aims to discover global cluster structures across decentral-
ized clients without sharing raw data, making privacy preservation a fundamental
requirement. There are two critical challenges: (1) privacy leakage during collab-
oration, and (2) robustness degradation due to aggregation of proxy information
from non-independent and identically distributed (Non-IID) local data, leading to
inaccurate or inconsistent global clustering. Existing solutions typically rely on
model-specific local proxies, which are sensitive to data heterogeneity and inherit
inductive biases from their centralized counterparts, thus limiting robustness and
generality. We propose Omni Federated Clustering (OmniFC), a unified and model-
agnostic framework. Leveraging Lagrange coded computing, our method enables
clients to share only encoded data, allowing exact reconstruction of the global
distance matrix—a fundamental representation of sample relationships—without
leaking private information, even under client collusion. This construction is nat-
urally resilient to Non-IID data distributions. This approach decouples FC from
model-specific proxies, providing a unified extension mechanism applicable to
diverse centralized clustering methods. Theoretical analysis confirms both re-
construction fidelity and privacy guarantees, while comprehensive experiments
demonstrate OmniFC’s superior robustness, effectiveness, and generality across
various benchmarks compared to state-of-the-art methods. Code will be released.

1 Introduction

Traditional clustering methods presuppose centralized access to the entire dataset, enabling the
construction of global structures such as cluster centroids or kernel matrices. However, in federated
settings characterized by data fragmentation across clients and privacy constraints, this assumption
breaks down, precluding direct application.

To overcome this, federated clustering (FC) [1] has emerged, enabling clients to collaboratively group
data without sharing raw samples, and has found applications in client selection and exploratory data
analysis. There are two fundamental challenges: (1) privacy leakage during collaboration, and (2)
robustness degradation under non-independent and identically distributed (Non-IID) data. Existing
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Figure 1: Robustness to heterogeneity. We employ COIL-100 and 100 clients to compare the
proposed OmniFC with the federated extensions of centralized clustering methods [1, 3, 2, 6, 7].
Compared to existing one-to-one extensions, OmniFC not only unifies the extension of centralized
clustering methods but also achieves superior robustness and effectiveness.

FC methods approximate global structures by aggregating model-specific local proxies: federated
k-means (KM) and fuzzy c-means (FCM) aggregate local cluster centroids [1, 2, 3, 4, 5], federated
spectral clustering (SC) [6] reconstructs the global kernel matrix from local low-rank factors, and
federated non-negative matrix factorization (NMF) [7] aggregates local basis matrices. These proxies,
however, are computed from biased client-specific datasets, fail to reliably capture global structures,
leading to degraded robustness and performance (Fig. 1). Moreover, such methods are tightly
bound to specific centralized clustering methods, inheriting restrictive inductive biases—e.g., data
compactness in KM [8] and FCM [9], data connectivity in SC [10], and low-rank representation in
NMF [11]—thereby confining their performance to assumption-compliant data and limiting their
generality.

This work addresses both limitations through a unifying perspective: reconstructing the global
pairwise distance matrix, which offers a model-agnostic and fundamental representation of sample
relationships, naturally resilient to the Non-IID problem. The key challenge, however, lies in securely
computing this matrix without exposing private data. To this end, we propose Omni Federated Clus-
tering (OmniFC), a novel framework that facilitates a unified extension from centralized clustering
to FC through lossless and secure distance reconstruction. OmniFC comprises three main steps:
local Lagrange-encoded sharing, global distance reconstruction, and cluster assignment. Each client
initially encrypts its local data using Lagrange coded computing [12], shares the encoded data with
peers for pairwise distance computation, and subsequently transmits the resulting distances to the
central server for constructing the global distance matrix. Finally, the global distance matrix can serve
as input to centralized clustering methods for performing cluster assignment. Fig. 1 demonstrates the
superiority of OmniFC. With respect to distance reconstruction, the proposed OmniFC exhibits two
salient features: 1) Efficacy. Both theoretical and empirical analyses consistently demonstrate the
capability for lossless reconstruction and robustness to the Non-IID problem. Benefiting from this, the
proposed OmniFC achieves lossless federated extensions for pairwise-distance-dependent methods
(e.g., SC) and enhances federated extensions for methods (e.g., KM) without explicit dependence on
pairwise distances. 2) Security. Theoretical analysis demonstrates that the privacy of local data is
preserved during data sharing, as the encoded data prevents the inference of private information even
under client collusion. In summary, our contributions are threefold:
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1) We propose OmniFC, a novel framework that facilitates a unified extension from centralized
clustering to FC through lossless and secure distance reconstruction.

2) We establish theoretical assurances regarding the efficacy and security of distance reconstruction.

3) Experimental results show that our OmniFC outperforms SOTA methods on various benchmarks.

2 Related Work

Centralized Clustering. Traditional centralized clustering aggregates client-held local data on
a central server for grouping, with methods making different assumptions—such as compactness
[8, 13], connectivity [10, 14], density [15, 16], hierarchy [17, 18], and low-rank representation
[11, 19] of the data distribution—to adapt to diverse datasets. However, these methods may become
inapplicable due to privacy constraints that prevent the centralization of client data.

Federated Clustering (FC). Unlike centralized clustering, which requires collecting raw client
data for model training, FC collects local proxies instead, thus strengthening user privacy protection.
To handle this, several recent works have shifted from sharing local private data to exchanging local
cluster centroids [1, 2, 4, 5], local basis matrices [7] or synthetic data [20]. Although these methods
show promise, these methods either suffer from performance degradation caused by the Non-IID
problem or achieve gains at the expense of privacy [20].

Secure FC. Secure FC leverages advanced privacy-preserving techniques—including differential
privacy [21], machine unlearning [22], and Lagrange coded computing [12]—to concurrently improve
clustering efficacy and fortify data confidentiality. Existing methods typically focus on the effective
and secure construction of either global cluster centroids for k-means [23, 3, 24, 25, 26] or a global
kernel matrix for spectral clustering [6]. Although promising, these methods remain limited by
the Non-IID problem or fail to offer a model-agnostic solution. Moreover, they inherently retain
assumptions—such as data compactness [8, 13] and connectivity [10, 14]—from their centralized
counterparts, limiting their effectiveness to compliant datasets and thereby reducing their practical
applicability.

The most closely related work is SecFC [23], which also leverages Lagrange coded computing to
improve clustering accuracy while preserving data confidentiality. In comparison, the proposed
OmniFC exhibits the following distinctive characteristics: 1) Generality. As a federated variant
of k-means (KM), SecFC naturally inherits KM’s assumption of data compactness, limiting their
effectiveness to KM-friendly datasets. In contrast, the proposed unified and model-agnostic framework
OmniFC accommodates diverse datasets by extending beyond KM to encompass alternatives such
as spectral clustering and DBSCAN. 2) One-shot communication scheme. To obtain more accurate
cluster centroids, SecFC requires multiple rounds of communication between the clients and the
server. However, multi-round training is unfeasible in some scenarios, like model markets, where
users can solely purchase pre-trained models [27]. In contrast, the proposed OmniFC, requiring
merely one communication round, exhibits enhanced applicability in such scenarios.

3 Omni Federated Clustering (OmniFC)

This section begins with an overview of the problem definition and the OmniFC framework, followed
by a detailed description of OmniFC, and concludes with its privacy analysis and complexity analysis.

3



Figure 2: An overview of the proposed OmniFC. The architecture comprises three main steps: 1)
Local Lagrange-Encoded Sharing. Each client j (j ∈ [m]) encodes its private data using Lagrange
polynomial interpolation and distributes the encoded data to all peers, enabling each client to construct
a global encoded dataset while preserving data privacy. 2) Global Distance Reconstruction. Each
client j computes pairwise distances within its global encoded dataset and transmits the results
to the central server, which leverages them to reconstruct the global distance matrix. 3) Cluster
Assignment. A centralized clustering method (e.g., k-means) is applied to the global distance matrix
to produce the final clustering result π∗.

3.1 Overview

Problem Definition. Consider a real world dataset X ∈ Rn×d comprising n d-dimensional
samples {xi}ni=1, which are distributed among m clients, i.e., X =

⋃m
j=1 Xj . FC aims to partition

X into k clusters with high intra-cluster similarity and low inter-cluster similarity while retaining Xj

(j ∈ [m] = {1, 2, · · · , m}) locally. A more detailed summary of notations is presented in Table 3
of the appendix.

Framework Overview. As shown in Fig. 2, OmniFC comprises three main steps: local Lagrange-
encoded sharing, global distance reconstruction, and cluster assignment. Each client j (j ∈ [m])

initially encrypts its local data using Lagrange coded computing (LCC) [12], shares the encoded data
with peers for pairwise distance computation, and subsequently transmits the resulting distances to
the central server for constructing the global distance matrix. Finally, the global distance matrix can
serve as input to centralized clustering methods for performing cluster assignment.

3.2 OmniFC

Local Lagrange-encoded Sharing. First, each sample xi ∈ X (i ∈ [n])—regardless of the client
to which it is distributed to—is independently transformed from the real domain Rd to the finite
field Fd

p to ensure numerical stability in secure computation [12], with p denoting a prime. The
transformation is defined as:

x̃i = round(2q · xi) + p · |sign(xi)| − sign(xi)

2
, (1)

where q ∈ Z regulates the quantization loss. round(·) and sign(·) represent element-wise rounding
and sign functions, respectively. Rounding discretizes continuous values to ensure finite field
compatibility, while the sign function facilitates correct mapping of negative values [28]. We denote
the transformed form of X ∈ Rn×d as X̃ ∈ Fn×d

p .

Then, each sample x̃i ∈ X̃ (i ∈ [n]) is independently encoded via Lagrange polynomial interpolation
by the client (Fig. 3), enabling secret sharing among clients. Specifically, x̃i ∈ Fd

p is partitioned
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Figure 3: An illustration of the Lagrange encoding. Each sample x̃i (i ∈ [n]) is initially divided
into l segments {si,o}lo=1. Incorporating t additional noises {si,l+o}to=1, Lagrange interpolation
is then conducted as per Equation (2) to yield f x̃i

(α). Subsequently, the encoded representations
{zi,j}mj=1 of x̃i are computed according to Equation (3).

into l segments {si,o}lo=1, i.e., x̃i = [sTi,1, s
T
i,2, · · · , sTi,l]T , and combined with t random noises

to construct a polynomial that serves to encode x̃i. The noises are introduced to ensure privacy
protection against potential client collusion [12]. Assuming that d is divisible by l, the client holds

data segments si,o ∈ F
d
l
p (o ∈ [l]), and samples t additional noises si,l+o (o ∈ [t]) uniformly from

F
d
l
p . Based on the segments {si,o}l+t

o=1, the Lagrange interpolation polynomial f x̃i
: Fp → F

d
l
p of

degree l + t− 1 can be constructed as follows:

f x̃i
(α) =

l+t∑
o=1

si,o ·
∏
o′ ̸=o

α− αo′

αo − αo′
, (2)

where {αo}l+t
o=1 denotes a set of l + t distinct hyperparameters from Fp, pre-specified through

agreement among all clients and the central server. Particularly, each data segment si,o (o ∈ [l]) can
be recovered by setting α = αo, i.e., f x̃i

(αo) = si,o. Beyond the {αo}l+t
o=1 employed in constructing

the polynomial f x̃i
, all clients and the central server also pre-select m distinct public hyperparameters

{βj}mj=1 for encoding, where βj ∈ Fp and {αo}l+t
o=1 ∩ {βj}mj=1 = ∅. Based on {βj}mj=1, the client

encodes its local data x̃i into m distinct representations {zi,j}mj=1 for secret sharing, with each
representation

zi,j = f x̃i
(βj) (3)

delivered to the j-th client.

As these operations are defined per sample, they are universally applicable to local data across all

clients. Hence, each client j (j ∈ [m]) will possess a global encoded dataset Zj ∈ Fn× d
l

p correspond-
ing to X̃ ∈ Fn×d

p , where Zj = [z1,j , z2,j , · · · , zn,j ]
T = [f x̃1

(βj),f x̃2
(βj), ...,f x̃n

(βj)]
T .

Global Distance Reconstruction. For each client j (j ∈ [m]), pairwise distances between all
encoded representations zi,j and zi′,j in Zj (i, i

′ ∈ [n]) are calculated and subsequently sent to the
central server for constructing the global distance matrix. Specifically, the pairwise distance between
zi,j and zi′,j can be calculated as:

dis(zi,j , zi′,j) = ∥zi,j − zi′,j∥22 . (4)
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Based on the m distances {dis(zi,j , zi′,j)}mj=1 provided by the clients, the server can accurately
recover the pairwise distance between the corresponding samples x̃i and x̃i′ , as demonstrated in
Theorem 1.

Theorem 1. Let f x̃i,x̃i′
(β) : Fp → Fp denote the Lagrange interpolation polynomial interpolated

from the set {(βj , dis(zi,j , zi′,j)}mj=1:

f x̃i,x̃i′
(β) =

m∑
j=1

dis(zi,j , zi′,j) ·
∏
j′ ̸=j

β − βj′

βj − βj′
, (5)

where zi,j and zi′,j denote the encoded representations of arbitrary samples x̃i and x̃i′ distributed
among clients. When m ≥ 2l + 2t− 1, the distance dis(x̃i, x̃i′) can be precisely recovered:

dis(x̃i, x̃i′) =

l∑
o=1

f x̃i,x̃i′
(αo), (6)

irrespective of how data is distributed among clients.

Remark 1. The condition m ≥ 2l + 2t − 1 imposes minimal practical constraint, given that m
is predefined by the system while l and t are tunable hyperparameters. This flexibility allows the
condition to be met easily, ensuring the theorem’s practical applicability and highlighting its relevance
to real-world implementations.

Then, by converting dis(x̃i, x̃i′) from the finite field Fp back to the real domain R, the server
recovers:

dis(xi,xi′) =


1
2q · dis(x̃i, x̃i′) if 0 ≤ dis(x̃i, x̃i′) <

p−1
2

1
2q · (dis(x̃i, x̃i′)− p) if p−1

2 ≤ dis(x̃i, x̃i′) < p
. (7)

Based on the recovered distances, we denote the global distance matrix as D ∈ Rn×n, with each
entry defined as Dii′ = dis(xi,xi′) for i, i′ ∈ [n].

Cluster Assignment. With the recovered global distance matrix D ∈ Rn×n, the server can directly
perform clustering without requiring any modification to existing centralized clustering methods.
This characteristic demonstrates the simplicity and flexibility of the proposed OmniFC framework.

Specifically, pairwise-distance-dependent centralized clustering methods—such as spectral clustering
(SC) [10], DBSCAN [15], hierarchical clustering (HC) [17], and k-medoids (KMed) [29]—can
seamlessly utilize D for model training, owing to their intrinsic reliance on pairwise sample distances
during the clustering process. For methods that do not explicitly depend on pairwise relation-
ships—such as k-means (KM) [8], fuzzy c-means (FCM) [9], and nonnegative matrix factorization
(NMF) [11]—the server employs D as a proxy for the raw features X ∈ Rn×d to perform clustering,
i.e., the distance values become the new features of the samples. This allows these algorithms to
operate as if on centralized data, while implicitly leveraging the global structure encoded in D.
These federated extensions of centralized methods built upon OmniFC are denoted as OmniFC-SC,
OmniFC-DBSCAN, OmniFC-HC, OmniFC-KMed, OmniFC-KM, OmniFC-FCM, and OmniFC-
NMF, respectively. Algorithm 1 in the appendix delineates the pseudocode of OmniFC.

3.3 Privacy Analysis

OmniFC adopts LCC encryption to enhance clustering performance while fortifying data privacy.
Although LCC enables clients to obtain global awareness via inter-client sharing of Lagrange-encoded
data, it also poses emerging privacy threats, as colluding clients may leverage the shared information
to infer others’ private data [12]. Hence, evaluating OmniFC’s resistance to client collusion is
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essential for delineating its practical applicability. Theorem 2 provides a formal guarantee that each
data point x̃i maintains information-theoretic security in the presence of up to t colluding clients,
thereby affirming the practical applicability of OmniFC.

Theorem 2. Given the number of noises t, a t-private OmniFC is achievable if m ≥ 2l+ 2t− 1, i.e.,

I(x̃i; {zi,j}j∈C) = 0, (8)

where I(·; ·) denotes the mutual information function, C ⊂ [m] and |C| ≤ t.

Remark 2. Mutual information essentially measures how much one piece of information reveals
about another—when it equals zero, it means one reveals nothing about the other, thereby preserving
privacy. Furthermore, mutual information is not an isolated privacy-preserving metric; it can be
compared with other privacy measures (such as differential privacy) within a unified framework [30].

Remark 3. The condition for achieving t-private security in Theorem 2 coincides with that for
exact distance reconstruction in Theorem 1, i.e., m ≥ 2l + 2t − 1. Consequently, by adhering to
this constraint, we can increase the number of noises t to strengthen privacy protection without
compromising the precision of distance reconstruction.

3.4 Complexity Analysis

Recall that reconstructing the global pairwise distance matrix involves two main stages: local
encoding and distance computation on the client side, followed by server-side decoding to recover the
global matrix. For each client j, fast polynomial interpolation and evaluation [31] yield an encoding
complexity of O(

dnjm log2 m
l ), while distance computation on the encoded data incurs a complexity of

O(dn
2

l ), leading to an overall complexity of O(
d(n2+njm log2 m)

l ). nj is the number of samples held
by client j. For the server side, the decoding operation has a complexity of O(n2(l + t) log2(l + t)).

The analysis indicates that, on the client side, increasing the number of data segments l substantially
reduces computational complexity, thereby facilitating the calculation of pairwise distances in a
d
l -dimensional space, where the feature count (dl ) involved in pairwise comparisons decreases as
l rises. On the server side, however, a larger l results in greater computational complexity. As for
the impact of l on the overall complexity of the reconstruction process, a theoretical analysis is
challenging due to the differing hyperparameters involved on both sides.

To handle this, we presented the runtime for reconstructing the global pairwise distance matrix across
varying data scales on 10x_73k. As shown in Table 4, one can observe that: Although the runtime
exhibits a marked increase as n grows, enhancing the number of data segments l can considerably
boost computational efficiency when n is fixed. For instance, processing 70k samples takes 4352
seconds with l = 8, demonstrating that our method remains computationally feasible on large-scale
datasets. Importantly, as long as the constraints m ≥ 2(l + t− 1) + 1 holds, increasing l have no
effect on the reconstruction effectiveness of the global pairwise distance matrix (Theorem 1 and Fig.
5).

4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Criteria. The proposed OmniFC is assessed using seven benchmark
datasets across tabular, visual, temporal, and genomic domains, including Iris [32], MNIST [33],
Fashion-MNIST [34], COIL-20 [35], COIL-100 [35], Pendigits [36], and 10x_73k [37]. The cho-
sen datasets encompass diverse modalities, dimensionalities, and cluster patterns, facilitating a
comprehensive evaluation of the method’s generalizability in practical scenarios.
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Figure 4: Comparison between the ground-truth (top row) and reconstructed (bottom row)
pairwise distance matrices. The visual consistency indicates that the proposed OmniFC faithfully
recovers the inter-sample similarity.

The evaluation criteria encompass Normalized Mutual Information (NMI) [38] and Kappa [39], with
higher scores indicating improved clustering performance. Despite the widespread use of NMI,
increasing evidence suggests it may be misleading, whereas Kappa is more reliable [39, 20, 40].
Hence, our analysis is grounded in Kappa-based results, with NMI-based outcomes relegated to the
appendix for reference. Details of datasets and evaluation criteria are provided in Appendix C.1.

Baselines. OmniFC is evaluated in comparison with the federated extensions of several centralized
clustering methods, including KM-based (k-FED [1], MUFC [3]), FCM-based (FFCM [2]), SC-
based (FedSC [6]), and NMF-based (FedMAvg [7]) methods. To contextualize the performance of
federated clustering against its centralized counterpart, we also present results of vanilla KM, FCM,
SC, and NMF under centralized settings, referred to as KM_central, FCM_central, SC_central, and
NMF_central, respectively.

Federated Settings. Following Ref. [41, 20], we simulate diverse federated settings by partitioning
the real-world dataset into k⋆ subsets—each representing a client—and adjusting the non-IID level
p, where k⋆ denotes the number of true clusters. Specifically, for each client, a fraction p of its
data is sampled from a single cluster, while the remaining 1− p portion is drawn uniformly across
all clusters. As such, p = 0 recovers the IID setting, whereas p = 1 induces a maximally skewed
distribution, where each client’s data is fully concentrated within a single cluster. Since OmniFC is
immune to the Non-IID degree, the Non-IID level p is indicated solely during comparisons with the
existing FC baselines and omitted elsewhere.

4.2 Experimental Results

Our experiments center on three key aspects: 1) the comparative advantage of OmniFC over existing
approaches; 2) the generality of OmniFC in extending centralized clustering methods; and 3) the
sensitivity of OmniFC to hyperparameters. Implementation details are provided in Appendix C.2,
and supplementary experimental results are presented in Appendix D.

Efficacy Analysis. To comprehensively validate the efficacy of OmniFC, we simulate five scenarios
per dataset: IID (p = 0), mildly non-IID (p = 0.25), moderately non-IID (p = 0.5), highly non-IID
(p = 0.75), and fully non-IID (p = 1). As shown in Table 1, the proposed OmniFC enables superior
federated extensions for both pairwise-distance-dependent SC and methods that do not explicitly
depend on pairwise relationships, such as KM, FCM, and NMF. For SC, our extended results attain
centralized-level clustering fidelity while remaining robust to diverse Non-IID conditions, owing to
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Table 1: Kappa of clustering methods in different federated scenarios. For each comparison, the
best result is highlighted in boldface.

Dataset p
SC-based methods KM-based methods FCM-based methods NMF-based methods

SC_central FedSC Ours KM_central k-FED MUFC Ours FCM_central FFCM Ours NMF_central FedMAvg Ours

Iris

0.00

0.95

0.95 0.95

0.95

0.38 0.83 0.95

0.95

0.96 0.95

0.57

0.50 0.95
0.25 0.93 0.95 0.95 0.93 0.95 0.49 0.95 0.50 0.95
0.50 0.85 0.95 0.93 0.79 0.95 0.93 0.95 0.50 0.95
0.75 0.93 0.95 0.95 0.81 0.95 0.96 0.95 0.50 0.95
1.00 0.31 0.95 0.71 0.77 0.95 0.97 0.95 0.50 0.95

MNIST

0.00

0.55

0.53 0.55

0.47

0.43 0.41 0.42

0.50

0.48 0.41

0.46

0.40 0.38

0.25 0.54 0.55 0.45 0.50 0.42 0.52 0.41 0.44 0.38

0.50 0.54 0.55 0.29 0.46 0.42 0.53 0.41 0.39 0.38

0.75 0.58 0.55 0.32 0.47 0.42 0.45 0.41 0.45 0.38

1.00 0.38 0.55 0.47 0.43 0.42 0.48 0.41 0.46 0.38

Fashion-MNIST

0.00

0.53

0.54 0.53

0.50

0.46 0.43 0.51

0.53

0.51 0.50

0.51

0.46 0.49
0.25 0.52 0.53 0.43 0.40 0.51 0.47 0.50 0.46 0.49
0.50 0.54 0.53 0.48 0.50 0.51 0.43 0.50 0.46 0.49
0.75 0.47 0.53 0.45 0.45 0.51 0.50 0.50 0.46 0.49
1.00 0.38 0.53 0.32 0.50 0.51 0.46 0.50 0.46 0.49

COIL-20

0.00

0.61

0.68 0.63

0.64

0.42 0.58 0.64

0.59

0.51 0.59

0.56

0.50 0.61
0.25 0.68 0.63 0.46 0.61 0.64 0.47 0.59 0.51 0.61
0.50 0.73 0.63 0.42 0.57 0.64 0.51 0.59 0.44 0.61
0.75 0.54 0.63 0.41 0.58 0.64 0.55 0.59 0.51 0.61
1.00 0.29 0.63 0.46 0.56 0.64 0.59 0.59 0.52 0.61

COIL-100

0.00

0.54

0.34 0.54

0.49

0.48 0.49 0.56

0.49

0.37 0.53

0.43

0.39 0.50
0.25 0.32 0.54 0.45 0.50 0.56 0.38 0.53 0.38 0.50
0.50 0.32 0.54 0.41 0.48 0.56 0.49 0.53 0.39 0.50
0.75 0.29 0.54 0.41 0.50 0.56 0.48 0.53 0.39 0.50
1.00 0.27 0.54 0.43 0.52 0.56 0.51 0.53 0.38 0.50

Pendigits

0.00

0.72

0.74 0.72

0.61

0.59 0.59 0.62

0.66

0.62 0.66

0.45

0.33 0.72
0.25 0.73 0.72 0.46 0.58 0.62 0.61 0.66 0.33 0.72
0.50 0.72 0.72 0.48 0.60 0.62 0.53 0.66 0.33 0.72
0.75 0.69 0.72 0.33 0.49 0.62 0.49 0.66 0.33 0.72
1.00 0.52 0.72 0.53 0.62 0.62 0.70 0.66 0.33 0.72

10x_73k

0.00

0.89

0.52 0.89

0.85

0.40 0.63 0.56

0.53

0.46 0.55

0.88

0.49 0.82
0.25 0.52 0.89 0.55 0.63 0.56 0.47 0.55 0.49 0.82
0.50 0.52 0.89 0.57 0.62 0.56 0.72 0.55 0.49 0.82
0.75 0.54 0.89 0.37 0.65 0.56 0.64 0.55 0.50 0.82
1.00 0.24 0.89 0.30 0.79 0.56 0.64 0.55 0.50 0.82

count - - 8 27 - 2 9 24 - 13 22 - 5 30

lossless pairwise distance reconstruction, which remains unaffected by non-IID severity (see Theorem
1 and Figure 4). For centralized methods not explicitly reliant on pairwise relationships, our extended
results generally match—and occasionally exceed—their performance under centralized settings,
indicating that the global distance matrix D can serve as an effective surrogate for the raw feature
matrix X to perform clustering.

Generality Analysis. To assess OmniFC’s generalizability in extending centralized clustering
methods, we integrate it with three additional methods (KMed, DBSCAN, and HC) that have been
well-studied in centralized contexts but remain underexplored in federated settings. Like SC, all three
methods perform clustering based on inter-sample pairwise distances. Hence, by utilizing OmniFC’s
lossless distance reconstruction, these three methods can be effortlessly integrated into the OmniFC
framework to facilitate lossless federated extensions, as shown in Table 2.
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Table 2: Kappa of different clustering methods.

Dataset
KMed-based methods DBSCAN-based methods HC-based methods

Central Ours Central Ours Central Ours
Iris 0.94 0.94 0.50 0.50 0.94 0.95
MNIST 0.31 0.30 0.21 0.21 0.41 0.41
Fashion-MNIST 0.42 0.42 0.14 0.14 0.45 0.45
COIL-20 0.41 0.42 0.58 0.58 0.45 0.45
COIL-100 0.34 0.34 0.37 0.37 0.48 0.48
Pendigits 0.44 0.45 0.48 0.48 0.57 0.57
10x_73k 0.30 0.30 0.01 0.01 0.28 0.28

Figure 5: Hyperparameter sensitivity of the global distance matrix reconstruction loss. The
gray-highlighted region denotes hyperparameter settings that violate the condition m ≥ 2l + 2t− 1

in Theorem 1, thus precluding distance reconstruction.

Sensitivity Analysis. To assess the hyperparameter sensitivity of OmniFC, we measure the global
distance matrix reconstruction loss—defined as the root-mean-square deviation (RMSE) between the
ground-truth and reconstructed pairwise distance matrices—across varying number of clients (m),
noises (t), and segments (l). In fact, a theoretical guarantee for this has already been provided in
Theorem 1: as long as the condition m ≥ 2l+2t− 1 holds, OmniFC is capable of achieving accurate
distance reconstruction. This theoretical result is further substantiated by the empirical evidence
presented in Fig. 5.

5 Conclusion

This work introduces OmniFC, a unified and model-agnostic framework via lossless and secure
distance reconstruction. Unlike existing methods that rely on model-specific proxies and suffer from
data heterogeneity, OmniFC adopts a distance-based perspective that is decoupled from specific
clustering models. Benefit from this, theoretical and empirical results show that this framework
improves robustness under non-IID settings and supports the extension of a wide range of centralized
clustering algorithms to FC.

Beyond FC, the proposed framework may open broader opportunities across federated learning. In
particular, the reconstructed global distance matrix can naturally function as a global affinity graph,
offering new possibilities for advancing federated graph learning and other domains where capturing
global sample relationships is fundamental.
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(c) If the contribution is a new model (e.g., a large language model), then there should
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to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We have provided publicly available dataset information in Section C.1. The
code for the proposed OmniFC will be released upon the paper’s formal publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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• While we encourage the release of code and data, we understand that this might not be
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental setting/details
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Justification: Please refer to Sections 4.1 and C.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The deterministic nature of the global distance matrix reconstruction in the
proposed OmniFC ensures consistent quality evaluations across multiple runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Section C.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper mainly targets privacy-preserving clustering in federated scenarios.
By addressing this challenge, we can further promote the practical deployment of clustering
in sensitive domains, such as healthcare and finance, while safeguarding data security and
user privacy.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original sources of the datasets are cited in Section C.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
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asset is used.
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Pseudocode of the Proposed OmniFC

The procedure of OmniFC is formally presented in Algorithm 1. On the client side, each sample
x̃i is independently encoded into zi,j based on Equation (3), and then transmitted to the j-th client,
where i ∈ [n] and j ∈ [m]. Then, each client j computes pairwise distances between all encoded
representations zi,j and zi′,j (i, i

′ ∈ [n]) using Equation (4), and transmits the results to the central
server. On the server side, the global distance matrix is reconstructed based on Equations (6) and (7),
and subsequently utilized by a centralized clustering algorithm to derive the final clustering outcome
π∗.

Algorithm 1: OmniFC
Input: Local datasets {Xj}mj=1, prime number p, the number of segments l, the number of

noises t, pre-specified hyperparameters {αo}l+t
o=1 and {βj}mj=1.

Output: The final partition π∗.
1 Clients execute:
2 Local Lagrange Encoding and Secret Sharing:
3 Each sample x̃i is encoded via Equation (3), i.e., zi,j = f x̃i

(βj), and subsequently
4 transmitted to the j-th client, where i ∈ [n] and j ∈ [m].
5 Global Distance Reconstruction:
6 Each client j computes pairwise distances between all encoded representations zi,j and
7 zi′,j (i, i

′ ∈ [n]) using Equation (4), and transmits the results to the central server.
8 Server executes:
9 Global Distance Reconstruction:

10 The server reconstructs the global distance matrix according to Equations (6) and (7).
11 Cluster assignment:
12 The global distance matrix is fed into a centralized clustering method to obtain π∗.

B Proofs of Theorems

Before proving the theorems, we first summarize some notations used throughout the main text and
this appendix, and introduce two lemmas from Ref. [42] and [12]. Refer to Table 3 for the notions,
with the lemmas delineated below.

Lemma 1. [42] Given n distinct points {(xi,yi)}ni=1 with mutually different xi, there exists a unique
polynomial f(x) of degree no greater than n− 1 that interpolates the data, i.e., f(xi) = yi.

Lemma 2. [12] Given the number of noises t, and a polynomial f used to compute f(X̃), and the
degree of f is denoted as deg(f). When m ≥ deg(f)(l + t− 1) + 1, a t-private LCC encryption is
achievable, e.g.,

I(x̃i; {zi,j}j∈C) = 0, (9)

where I(·; ·) denotes the mutual information function, C ⊂ [m] and |C| ≤ t.

Proof of Theorem 1. With Lemma 1, we prove Theorem 1 as follows.

Proof. The server possesses only the pre-defined public hyperparameters {αo}l+t
o=1, {βj}mj=1 and

the distance {dis(zi,j , zi′,j}mj=1. For each distance dis(zi,j , zi′,j) (j ∈ [m]), it can be further
formulated as:

dis(zi,j , zi′,j) = ∥zi,j − zi′,j∥22 =
∥∥∥f x̃i

(βj)− f x̃i′
(βj)

∥∥∥2
2
, (10)
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Table 3: Notations.

Notation Explanation

m Number of clients.

X ∈ Rn×d The centralized dataset X ∈ Rn×d consists of n d-dimensional samples {xi}ni=1,
which are distributed among m clients, i.e., X =

⋃m
j=1 Xj .

X̃ ∈ Fn×d
p

X̃ denotes the representation of X over the finite field Fn×d
p , consisting of n d-

dimensional samples {x̃i}ni=1, where each x̃i corresponds to the transformed version
of xi in Fd

p.

l Number of data segments.

t Number of noises.

si,o ∈ F
d
l
p

x̃i = [sTi,1, s
T
i,2, · · · , sTi,l]T , where si,o denotes the o-th segment of x̃i for o ∈ [l] =

{1, 2, · · · , l}. For l < o ≤ l + t, si,o corresponds to the o-th noise uniformly sampled

from F
d
l
p .

{αo}l+t
o=1

A collection of l + t distinct hyperparameters from Fp, predetermined by consensus
between all clients and the central server, serves to construct the Lagrange interpolation
polynomial.

{βj}mj=1

A collection of m distinct hyperparameters from Fp, predetermined by consensus
between all clients and the central server, serves to encode the local data into m distinct
representations.

Zj ∈ Fn× d
l

p

The global encoded dataset possessed by client j (j ∈ [m]). Zj =

[z1,j , z2,j , · · · , zn,j ]
T , where zi,j (i ∈ [n]) is the encoded representation of x̃i at

client j.

implying that it corresponds to the evaluation of a degree-2(l+ t− 1) polynomial at βj . According to
Lemma 1, the polynomial can be uniquely interpolated from 2(l + t− 1) + 1 distinct points. That is,
when m ≥ 2l + 2t− 1, the polynomial can be interpolated from the set {(βj , dis(zi,j , zi′,j))}mj=1,
and it is exactly f x̃i,x̃i′

(β), i.e.,

f x̃i,x̃i′
(β) =

∥∥∥f x̃i
(β)− f x̃i′

(β)
∥∥∥2
2
. (11)

Particularly, by assigning β = αo (o ∈ [l]), the distance between the o-th data segments of x̃i and
x̃i′ can be accurately recovered:

f x̃i,x̃i′
(αo) =

∥∥∥f x̃i
(αo)− f x̃i′

(αo)
∥∥∥2
2
= ∥si,o − si′,o∥22 . (12)

Consequently, the distance between x̃i and x̃i′ can be precisely reconstructed:

l∑
o=1

f x̃i,x̃i′
(αo) =

l∑
o=1

∥si,o − si′,o∥22 = dis(x̃i, x̃i′) (13)

Note that since the above proof does not impose any constraints on the distribution of x̃i and x̃i′

across clients, Equation (13) holds irrespective of how data is distributed among clients.

Proof of Theorem 2. With Lemma 2, we prove Theorem 2 as follows.
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Table 4: Reconstruction time (seconds) of the global pairwise distance matrix across diverse
data scales under varying l. Computational efficiency can be substantially improved by increasing
the number of data segments l.

n 1k 2k 5k 10k 20k 40k 70k

l = 2 4 15 78 285 1053 4634 13576

l = 4 3 9 55 154 620 2037 7094

l = 8 2 6 32 124 435 1471 4352

Proof. We prove Theorem 2 by instantiating Lemma 2 with the specific polynomial structure used in
the OmniFC framework.

Recall that Lemma 2 states that a t-private LCC encryption is achievable when

m ≥ deg(f)(l + t− 1) + 1,

where f is the polynomial used in the encoding scheme, and l is the number of data segments.

In the OmniFC setting, the polynomial f is a quadratic distance-based function of degree 2, i.e.,
deg(f) = 2. Plugging this into the general LCC bound yields:

m ≥ 2l + 2t− 1.

Therefore, under this condition, the mutual information between any private input x̃i and the encoded
messages observed by up to t colluding clients satisfies:

I(x̃i; {zi,j}j∈C) = 0,

where C ⊂ [m] and |C| ≤ t.

This guarantees t-privacy in the OmniFC framework, thus completing the proof.

C Experimental Details

All experiments are implemented in Python and executed on a system equipped with an Intel Core
i7-12650H CPU, 16GB of RAM, and an NVIDIA GeForce RTX 4060 GPU.

C.1 Datasets and Evaluation Criteria

Datasets. As shown in Table 5, we select seven benchmark datasets across tabular, visual, tempo-
ral, and genomic domains, including Iris [32], MNIST [33], Fashion-MNIST [34], COIL-20 [35],
COIL-100 [35], Pendigits [36], and 10x_73k [37]. The chosen datasets encompass diverse modali-
ties, dimensionalities, and cluster patterns, facilitating a comprehensive evaluation of the method’s
generalizability in practical scenarios.

Fig. 6 exemplifies, through the Iris dataset, our simulation of federated scenarios under different
Non-IID conditions. We simulate diverse federated settings by evenly partitioning the Iris dataset
into 3 (the number of true clusters) subsets—each representing a client—and adjusting the non-IID
level p. For a client with 50 datapoints, the first p · 50 datapoints are sampled from a single cluster,
and the remaining (1− p) · 50 ones are randomly sampled from any cluster. As such, p = 0 recovers
the IID setting, whereas p = 1 induces a maximally skewed distribution, where each client’s data is
fully concentrated within a single cluster.
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Table 5: Description of datasets.

Dataset Type Size Image size/Features Class
Iris tabular 150 4 3
MNIST image 70000 28× 28 10
Fashion-MNIST image 70000 28× 28 10
COIL-20 image 1440 128× 128 20
COIL-100 image 7200 128× 128 100
Pendigits time series 10992 16 10
10x_73k gene 73233 720 8

Figure 6: Data partition visualization on Iris.

Evaluation Criteria. Evaluation is based on two metrics—normalized mutual information (NMI)
[38] and Kappa [39]—where elevated scores denote superior clustering quality. Despite being widely
adopted, NMI has been shown to have limitations, such as the finite size effect, and fails to account for
the importance of small clusters [39, 20, 40]. In contrast, Kappa addresses these concerns, making it
a more reliable alternative for clustering evaluation. Hence, our analysis is grounded in Kappa-based
results, with NMI-based outcomes serving only as supplementary references.

C.2 Implementation Details

All centralized clustering methods are implemented by leveraging existing open-source Python
libraries: KM, KMed, SC, NMF, and DBSCAN utilize the sklearn library [43], HC employs the
scipy library [44], and FCM adopts an individual open-source implementation [45]. For OmniFC,
{αo}l+t

o=1 is set as a sequence of l+ t consecutive odd integers starting from 1, while {βj}mj=1 is set as
a sequence of m consecutive even integers starting from 0. The default values of l and t are set to 2.

We acknowledge the importance of the constraint m ≥ 2(l + t − 1) + 1 for successful distance
reconstruction. Among these hyperparameters, m (number of clients) is typically predetermined
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by the federated scenario, while l (segments) and t (noises) are tunable hyperparameters that can
be adjusted to satisfy this constraint. In practice, violating this condition is extremely rare because
the number of clients m in typical federated learning scenarios ranges from tens to millions [46],
providing substantial flexibility for hyperparameter selection. In practice, m is fixed by the sys-
tem, while the choice of l and t depends on the relative emphasis placed on communication and
computational efficiency versus privacy preservation. Note that as long as m ≥ 2(l + t − 1) + 1

holds, the specific values of l and t have no effect on the reconstruction effectiveness of the global
pairwise distance matrix (Theorem 1 and Fig. 5). The hyperparameter l governs the dimensionality
(dl ) of both the shared encoded data across clients and the features involved in pairwise distance
computation. A larger l reduces the volume of shared data and the number of features compared, thus
improving communication and computational efficiency (Table 4). The hyperparameter t governs
the information-theoretic security, with higher values enhancing resilience against client collusion
(Theorem 2). However, the constraint m ≥ 2(l + t− 1) + 1 precludes simultaneous increases in l

and t, indicating that their selection hinges on the trade-off between communication/computational
efficiency and privacy preservation.

Additionally, several clustering methods evaluated in our experiments demand full n× n pairwise
distance matrix computations, imposing substantial computational and memory burdens on large-scale
datasets. To facilitate the execution of comprehensive experiments, we implement a subsampling
strategy whereby 1000 samples are randomly drawn from datasets exceeding 5000 entries to form the
experimental subset. This approach balances computational efficiency with the preservation of the
original data distribution, enabling fair and meaningful comparisons across methods. The sensitivity
of the proposed OmniFC with respect to the number of samples is presented in Appendix D.2.

D Supplementary Experimental Results

D.1 NMI-based Evaluation Results

To supplement the Kappa-based evaluation results and to enable broader comparability with existing
FC works, we additionally provide NMI-based evaluation results in Tables 6 and 7. Similar to the
Kappa-based evaluation results, the numerical results based on NMI also confirm the effectiveness
and generalizability of OmniFC.

D.2 Sensitivity Analysis

To assess the sensitivity of the proposed OmniFC concerning the number of samples, we evaluate
the global distance matrix reconstruction loss—defined as the root-mean-square deviation (RMSE)
between the ground-truth and the reconstructed pairwise distance matrices—across different sample
sizes. As shown in Table 8, OmniFC exhibits favorable scalability concerning sample size.

D.3 Non-IID Partitioning based on Dirichlet Distributions

To test more diverse Non-IID scenarios, we used Dirichlet distributions with varying concentrations
α to model label heterogeneity on Pendigits in Table 9, and other experimental settings are consistent
with those in Table 1. Experimental results indicate that the OmniFC method exhibits superior
efficacy and robustness.

D.4 The Feasibility of Extending Deep Clustering

To further showcase the flexibility of the proposed framework, we validated the feasibility of employ-
ing OmniFC to extend deep clustering. As a foundational deep k-means (KM) method, DCN [47]
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Table 6: NMI of clustering methods in different federated scenarios. For each comparison, the
best result is highlighted in boldface.

Dataset p
SC-based methods KM-based methods FCM-based methods NMF-based methods

SC_central FedSC Ours KM_central k-FED MUFC Ours FCM_central FFCM Ours NMF_central FedMAvg Ours

Iris

0.00

0.90

0.90 0.90

0.90

0.66 0.76 0.90

0.90

0.91 0.90

0.56

0.73 0.90
0.25 0.85 0.90 0.90 0.85 0.90 0.72 0.90 0.73 0.90
0.50 0.75 0.90 0.87 0.70 0.90 0.87 0.90 0.73 0.90
0.75 0.85 0.90 0.90 0.74 0.90 0.91 0.90 0.73 0.90
1.00 0.29 0.90 0.70 0.70 0.90 0.93 0.90 0.73 0.90

MNIST

0.00

0.58

0.59 0.58

0.54

0.51 0.48 0.46

0.55

0.53 0.43

0.47

0.48 0.47

0.25 0.60 0.58 0.49 0.52 0.46 0.53 0.43 0.45 0.47
0.50 0.59 0.58 0.39 0.50 0.46 0.52 0.43 0.43 0.47
0.75 0.59 0.58 0.46 0.52 0.46 0.52 0.43 0.47 0.47
1.00 0.45 0.58 0.51 0.55 0.46 0.57 0.43 0.47 0.47

Fashion-MNIST

0.00

0.61

0.61 0.61

0.62

0.56 0.56 0.52

0.61

0.61 0.53

0.60

0.53 0.55
0.25 0.60 0.61 0.54 0.54 0.52 0.59 0.53 0.53 0.55
0.50 0.61 0.61 0.57 0.60 0.52 0.58 0.53 0.53 0.55
0.75 0.55 0.61 0.55 0.54 0.52 0.61 0.53 0.53 0.55
1.00 0.39 0.61 0.48 0.59 0.52 0.58 0.53 0.53 0.55

COIL-20

0.00

0.75

0.80 0.75

0.74

0.65 0.74 0.74

0.75

0.71 0.72

0.70

0.62 0.75
0.25 0.78 0.75 0.70 0.73 0.74 0.69 0.72 0.62 0.75
0.50 0.80 0.75 0.66 0.72 0.74 0.72 0.72 0.62 0.75
0.75 0.69 0.75 0.67 0.73 0.74 0.74 0.72 0.63 0.75
1.00 0.46 0.75 0.69 0.72 0.74 0.75 0.72 0.63 0.75

COIL-100

0.00

0.79

0.67 0.79

0.77

0.76 0.76 0.79

0.79

0.69 0.79

0.72

0.70 0.76
0.25 0.66 0.79 0.75 0.76 0.79 0.71 0.79 0.70 0.76
0.50 0.66 0.79 0.75 0.76 0.79 0.77 0.79 0.70 0.76
0.75 0.64 0.79 0.75 0.76 0.79 0.77 0.79 0.70 0.76
1.00 0.61 0.79 0.75 0.79 0.79 0.81 0.79 0.70 0.76

Pendigits

0.00

0.72

0.77 0.72

0.69

0.67 0.67 0.67

0.69

0.68 0.70

0.55

0.42 0.71
0.25 0.76 0.72 0.62 0.66 0.67 0.68 0.70 0.42 0.71
0.50 0.74 0.72 0.63 0.67 0.67 0.67 0.70 0.42 0.71
0.75 0.75 0.72 0.50 0.64 0.67 0.65 0.70 0.42 0.71
1.00 0.62 0.72 0.64 0.71 0.67 0.69 0.70 0.42 0.71

10X_73k

0.00

0.85

0.71 0.85

0.82

0.68 0.65 0.58

0.68

0.69 0.58

0.83

0.66 0.78
0.25 0.71 0.85 0.70 0.68 0.58 0.70 0.58 0.66 0.78
0.50 0.70 0.85 0.73 0.72 0.58 0.79 0.58 0.66 0.78
0.75 0.59 0.85 0.65 0.73 0.58 0.83 0.58 0.66 0.78
1.00 0.19 0.85 0.49 0.80 0.58 0.82 0.58 0.66 0.78

count - - 13 22 - 5 12 18 - 22 13 - 1 34

Table 7: NMI of different clustering methods.

Dataset
KMed-based methods DBSCAN-based methods HC-based methods

Central Ours Central Ours Central Ours
Iris 0.86 0.86 0.73 0.73 0.89 0.90
MNIST 0.38 0.38 0.56 0.56 0.49 0.49
Fashion-MNIST 0.49 0.49 0.53 0.53 0.54 0.54
COIL-20 0.60 0.61 0.86 0.86 0.70 0.69
COIL-100 0.69 0.69 0.85 0.85 0.78 0.78
Pendigits 0.56 0.55 0.74 0.74 0.69 0.69
10x_73k 0.31 0.31 0.45 0.45 0.51 0.50

Table 8: Sample-size sensitivity of the global distance matrix reconstruction loss on MNIST.

n 1000 2000 3000 5000 7000 10000
RMSE 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
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Table 9: Kappa of clustering methods in different federated scenarios. For each comparison, the
best result is highlighted in boldface.

α
SC-based methods KM-based methods FCM-based methods NMF-based methods

SC_central FedSC OmniFC-SC KM_central k-FED MUFC OmniFC-KM FCM_central FFCM OmniFC-FCM NMF_central FedMAvg OmniFC-NMF

1000

0.72

0.71 0.72

0.62

0.58 0.61 0.62

0.65

0.60 0.66

0.70

0.33 0.72

5 0.73 0.72 0.48 0.61 0.62 0.52 0.66 0.33 0.72

0.001 0.59 0.72 0.51 0.60 0.62 0.54 0.66 0.33 0.72

count - 1 2 - 0 0 3 - 0 3 - 0 3

Table 10: Kappa of clustering methods in different simulated federated datasets. OmniFC-DCN
achieves superior clustering performance relative to its shallow counterpart, OmniFC-KM.

Method MNIST Pendigits 10x_73k
OmniFC-KM 0.42 0.62 0.56
OmniFC-DCN 0.43 0.64 0.60

has spurred a range of advanced clustering techniques and found widespread use in privacy-sensitive
domains such as medicine and finance [48]. Therefore, extending DCN could significantly impact
multiple research fields and accelerate progress on downstream applications.

To this end, we extend DCN analogously to KM by using the reconstructed distance matrix in
place of raw features as the model input. This extended variant is denoted as OmniFC-DCN. As
evidenced in Table 10, OmniFC-DCN outperforms its shallow counterpart, OmniFC-KM, in clustering
performance, further highlighting the flexibility of OmniFC.

E Limitation

This work primarily focuses on extending shallow centralized clustering methods and may be less
effective for high-dimensional or intrinsically complex data. A promising future direction is to explore
how the reconstructed global distance matrix can substantially support the federated extension of
deep centralized clustering methods, thereby enabling more powerful representation learning under
complex data distributions [49, 50, 51, 52].
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