Under review as a conference paper at ICLR 2026

OUT OF THE SHADOWS: EXPLORING A LATENT SPACE
FOR NEURAL NETWORK VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks are ubiquitous. However, they are often sensitive to small input
changes. Hence, to prevent unexpected behavior in safety-critical applications,
their formal verification — a notoriously hard problem — is necessary. Many state-
of-the-art verification algorithms use reachability analysis or abstract interpreta-
tion to enclose the set of possible outputs of a neural network. Often, the verifi-
cation is inconclusive due to the conservatism of the enclosure. To address this
problem, we design a novel latent space for formal verification that enables the
transfer of output specifications to the input space for an iterative specification-
driven input refinement, i.e., we iteratively reduce the set of possible inputs to
only enclose the unsafe ones. The latent space is constructed from a novel view of
projection-based set representations, e.g., zonotopes, which are commonly used
in reachability analysis of neural networks. A projection-based set representation
is a “shadow” of a higher-dimensional set — a latent space — that does not change
during a set propagation through a neural network. Hence, the input set and the
output enclosure are “shadows” of the same latent space that we can use to trans-
fer constraints. We present an efficient verification tool for neural networks that
uses our iterative refinement to significantly reduce the number of subproblems
in a branch-and-bound procedure. Using zonotopes as a set representation, unlike
many other state-of-the-art approaches, our approach can be realized by only using
matrix operations, which enables a significant speed-up through efficient GPU ac-
celeration. We demonstrate that our tool achieves competitive performance, which
would place it among the top-ranking tools of the last neural network verification
competition (VNN-COMP’24).

1 INTRODUCTION

Neural networks perform exceptionally well across many complex tasks, e.g., object detection [Zou
et al.| (2023) or protein structure prediction Jumper et al.[(2021). However, neural networks can
be sensitive towards small input changes, e.g., often adversarial attacks can provoke misclassifica-
tions|Goodfellow et al.|(2015)). Thus, neural networks must be formally verified to avoid unexpected
behavior in safety-critical applications, e.g., autonomous driving (Chib & Singh| (2023) or airborne
collision avoidance |Irfan et al.|(2020), where the inputs can be influenced by sensor noise or external
disturbances.

The goal of formal verification of neural networks is to find a mathematical proof that every possible
output for a given input set is safe with respect to a given specification; in this work, we demand that
the output avoids an unsafe set. The verification problem is undecidable in the general case Ivanov
et al.| (2019) and NP-complete for neural networks with ReL.U-activiation functions (Katz et al.,
2017, Appendix I). Many prominent verification algorithms use reachability analysis or abstract in-
terpretation to enclose the intersection of an unsafe set with the output of the neural network |Gehr
et al.| (2018); Singh et al.| (2019a)); Xu et al.| (2021); Bak! (2021); [Kochdumper et al.[(2023): The
input set is represented using a continuous set representation (such as intervals or zonotopes), which
is conservatively propagated through the layers of a neural network to enclose all possible outputs.
If the intersection of the output enclosure with an unsafe set is empty, the safety of the given input
set is formally verified. Out of the box, most reachability-based algorithms do not scale well to
large neural networks with high-dimensional input spaces because the conservatism of the set prop-
agation increases due to over-approximating nonlinearities in the neural network. Most verification

Under review as a conference paper at ICLR 2026

algorithms reduce the conservatism by integrating a branch-and-bound procedure to recursively split
the verification problem into smaller and simpler subproblems, e.g., by exploiting the piecewise lin-
earity of a ReLU-activiation function to reduce approximation errors [Bunel et al.| (2018)) or splitting
the input set to reduce its size. However, in the worst case, the verification problem is split into
exponentially many subproblems, all of which must be verified.

In this paper, we speed up the formal verification of neural networks by iteratively refining the in-
put set to only enclose the unsafe inputs. Thereby, we reduce the size of the input set to reduce the
number of splits and, ultimately, the number of subproblems to be verified. For our iterative input re-
finement, we construct a novel latent space to transfer the unsafe set backwards through the network
from the output space to the input space for the enclosure of all unsafe inputs, i.e., we can discard all
inputs that are already proven to be safe. We construct the latent space by using projection-based set
representations that represent the projection (“shadow”) of a higher-dimensional set, e.g., a zonotope
is the ”shadow” of a higher-dimensional hypercube. The set propagation through a neural network
only changes the “shadow”, while the higher-dimensional set remains unchanged. Hence, all con-
sidered sets are different "shadows” of the same higher-dimensional set, representing a latent space.
We can exploit the dependencies between the considered sets through our novel latent space to trans-
fer the unsafe set from the output space to the input space to refine the input set Kochdumper et al.
(2020). Moreover, if we cannot verify the safety of the neural network, we can utilize the latent
space to extract candidates for counterexamples. Ultimately, we propose a verification algorithm
that integrates our novel iterative input refinement into a branch-and-bound procedure for verifying
and falsifying neural networks. Further, unlike many other state-of-the-art verification algorithms,
we implement our verification algorithm using only matrix operations to take full advantage of GPU
acceleration to simultaneously verify entire batches of subproblems.

To summarize, our main contributions are:

* A latent space for the verification of neural networks constructed from a novel view of the
propagation of projection-based sets, where all considered sets are ”shadows” of the same
higher-dimensional set.

* By utilizing the latent space, we propose an iterative specification-driven input refinement
and an approach for counterexample extraction to speed up branch-and-bound verification
and falsification of neural networks.

* An efficient algorithm for neural network verification that takes full advantage of GPU
acceleration.

* An extensive evaluation and comparison with state-of-the-art neural network verification
algorithms on benchmarks from the neural network verification competition 2024 (VNN-
COMP’24) Brix et al.|(2024). Additionally, we conduct extensive ablation studies to justify
the design choices of our verification algorithm.

2 PRELIMINARIES

2.1 NOTATION

Lowercase letters denote vectors and uppercase letters denote matrices. We denote the ¢-th entry
of a vector x by x(;) and the entry in the i-th row and the j-th column of a matrix A € R"*™
by A ;). The i-th row is written as A(; .y and the j-th column as A(. ;). The identity matrix is
denoted by I,, € R™*"™. We write the matrix (with appropriate size) that contains only zeros or ones
as 0 and 1. Given two matrices A € R™*™ and B € R™*"2, their (horizontal) concatenation is
denoted by [A B] € R™*("1+72) The operation Diag(v) returns a diagonal matrix with the entries
of vector v on its diagonal, and the operation | A| takes the elementwise absolute value of a matrix
A € R™ ™, We denote sets by uppercase calligraphic letters. Given two sets S1, So C R™, we write
their Minkowski sum as S1 @ Sy = {s1 + s2 | 51 € S1, s2 € So}. Forn € N, [n] = {1,2,...,n}
is the set of all natural numbers up to n. The n-dimensional interval Z C R™ with bounds [, v € R™
is written as Z = [z, 7], where Vi € [n]: ;) < Z(;). For a function f: R" — R™, we abbreviate
the image of S C R” with f(S) = {f(s) | s € S§}.

Under review as a conference paper at ICLR 2026

(a) (Constrained) Zonotope (b) (Constrained) Zonotope (”Shadow”)

0.5 |- .

[Constrained Zonotope +Sample [Constrained Hypercube

Figure 1: (a) An illustration of a constrained zonotope and a sample with its generators; (b) the same
constrained zonotope as the ”shadow” of a constrained hypercube.

2.2 FEED-FORWARD NEURAL NETWORKS

A (feed-forward) neural network ®: R™° — R"~ is a sequence of x € N layers. Each layer applies
an affine map (linear layer) or an element-wise nonlinear activation function (nonlinear layer).
Definition 1 (Neural Network, (Bishop} 2006, Sec. 5.1)). For an input x € R"™, the output of a
neural network y = ®(x) € R™~ is

ho =z, hi = Li(hg—1) fork € [k], y = h,,
where
Wi hg—1 + by if k-th layer is linear,
o (hg—1) otherwise,

Leli) = {

with weights Wy, € R™ %™ =1 biqs by, € R™*, and (element-wise) nonlinear function ¢y,.

2.3 SET-BASED COMPUTING

A zonotope is a convex set representation popular in reachability analysis due to its favorable com-
putational complexity |Singh et al.|(2019b)); |[Kochdumper et al.| (2023).

Definition 2 (Zonotope, (Girard, 2005, Def. 1)). Given a center ¢ € R™ and a generator matrix
G € R™™9, a zonotope is defined as
g€ [-1,1] }

Subsequently, we define the set-based operations for zonotopes required for our verification algo-
rithm. The Minkowski sum of a zonotope Z = (¢,G), C R”" and an interval [z,z] C R" is
computed by (Althoff}, 2010, Prop. 2.1 & Sec. 2.4)

Z[z,T] = (c+12(T + 2), [G diag(V/2 (T — 2))]) , - (1)

The image of a zonotope Z = (¢,G), C R™ under an affine map f: R” — R™, z — Wa +b
with W € R™*™ and b € R™ is computed by (Althoff} 2010, Sec. 2.4)

FZ)=WZab=(Wc+bWG),.)

q
Z = <C, G>Z = {C—l— ZG("i) ﬁ(i)

i=1

Using an affine map, we can write a zonotope Z = (c, G)Z C R™ with ¢ generators, i.e., G € R™*9,
as the projection of a g-dimensional (unit)-hypercube B, = [—1,1]: Z = ¢®G B,. Thus, intuitively,
a zonotope is the “shadow” of a higher-dimensional hypercube.

Under review as a conference paper at ICLR 2026

A convex polytope is the intersection of a finite number of halfspaces (Althoffl 2010} Def. 2.1); we
denote a polytope by (A,b) ; = {z € R" | Az < b} C R", where A € R"*? and b € RP.

All zonotopes are convex and point-symmetric. However, by constraining the hypercube, we can
represent arbitrary convex polytopes (Scott et al.l 2016, Thm. 1).

Definition 3 (Constrained Zonotope, (Scott et al., 2016, Def. 3)). Given a zonotope Z = (c,G), C
R™ with ¢ € R™ and G € R™*9, the zonotope with constraints C' § < d, for § € B, with C € RP*?
and d € RP, is defined as

Zlogca={c+GB|Bec[-1,1,C<d}=cdCGB,
where B, .= {8 € [-1,1] | C B < d} = B, N (C,d),; is the constrained unit-hypercube.

Compared to (Scott et al.,|2016| Def. 3), we use inequality constraints instead of equality constraints
for convenience. Both types of constraints are equivalent and can be translated by introducing
slack variables. Moreover, the considered set-based operations, i.e., Minkowski sum (I)) and affine
map (2)), are identical for zonotopes and constrained zonotope (Scott et al., 2016, Prop. 1). Fig.
illustrates a constrained zonotope as a ’shadow” of a constrained hypercube.

2.4 FORMAL VERIFICATION OF NEURAL NETWORKS

The output set of a neural network can be enclosed by conservatively propagating a zonotope through
the layers of the neural network.

Proposition 1 (Set Propagation, (Ladner & Althoff, 2023, Sec. 2.4)). Given a neural network
®: R*™ — R™ and an input set X C R™, an enclosure J) = enclose(®,X) C R"™~ of the
image Y* := ®(X) C Y can be computed as

Ho =X, Hy = enclose(Ly, Hi—1) fork € [k], Y ="%H,.

The operation enclose(L,, Hi—_1) encloses the image of the k-th layer for the input set Hj;_1,
ie., L, (Hr—1) C enclose(L,,Hr_1) (Ladner & Althoff, 2023, Prop. 2.14). If the k-th layer is
linear, an affine map is applied): enclose(L,,Hy—_1) = Wy Hir_1 & bi; otherwise, the ac-
tivation function ¢y is enclosed with a linear function and corresponding approximation errors:
enclose(L,, Hy—1) = diag(mg) Hr—1 @ [ey, €], where my; is the approximation slope and
€1 (i)» €k (i)] the approximation error of the i-th neuron, with i € [ny] (Koller et al., [2025, Sec. IV).

2.5 PROBLEM STATEMENT

Given a neural network ®: R™ — R™~_ an input set X C R™°, and an unsafe set i/ C R"~, our
goal is to derive an efficient and practical algorithm that can either formally verify the safety of the
neural network, i.e.,

d(X)NU =0, 3)

or find a counterexample, i.e.,
x € X such that &(x) € U. “4)

3 A NOVEL VIEW ON ZONOTOPE PROPAGATION

A zonotope is the “shadow” of a higher-dimensional hypercube (Fig. [Ib). The propagation of a
zonotope through the layers of a neural network transforms the projection of the hypercube, but the
hypercube itself remains unchanged. Thus, all enclosed sets, i.e., the input, hidden, and output sets,
are different “shadows” of the same hypercube. Therefore, the hypercube represents a latent space.
Let us demonstrate this novel view by an example:

Example 1. Fig. 2] illustrates the propagation of a two-dimensional input set X through a linear
layer and a ReL.U-activation function, i.e., x — ReLU(27"/? H _11] z+[}]). Intuitively, the linear
layer rotates the hypercube, and the nonlinear layer tilts it to compute the output set as its ”shadow.”

Under review as a conference paper at ICLR 2026

(a) Input Space (b) Hidden Space (c) Output Space

[——1Zonotope Unsafe Set [Hypercube [Unsafe Output Set ‘

Figure 2: Illustrating the zonotope propagation through a linear layer and a nonlinear layer as the
”shadows” of the same hypercube: (a) The input set in the input space; (b) The output of the linear
layer, which rotates and offsets the input set; (c) The output of the nonlinear layer tilts the hypercube
to add the approximation errors. Using the hypercube, the unsafe set ([[]) is transferred from the
output space to the input space. Additionally, the hypercube is split along a hyperplane ([]) to
exploit the piecewise linearity of the ReL.U-activation function.

For input set X = <0, 2712 Ig>Z , the hidden set H, and the Y are computed using Prop. ‘

werefp e - (el)
s3] (6 0] (G 2 9D,

The approximation slope and errors for enclosing the output of the ReLU-activation function are
computed using (Koller et al., |2025| Prop. 10). For each input x € X and its corresponding output

y = ®(x) € Y, we use the definition of a zonotope (Def. IZI) fo obtain B € [—1, 1]3 such that

vz 0 1 I —1/2 0
T = [0 1/\/5} B2 y= [1/4} + {1/4 1/4} B + [1/4} B3 (©)
The input x and the output y are represented using the same factors [3([2)) with an additional

factor B3y for the approximation error. We can use an unsafe set y1y > 3/2 to formluate con-
straints ([] in Fig. EI) on the factors ([2)) of the input:

®)

Yoy = 32 8B,y (Y2 =12] Bapy + 083y 23/2 <= [“Y2 2] By < ~Y2. ()
0 ined

Therefore, all unsafe inputs are enclosed by X|c<q. Analogously, we can split the set along hy <
0 < [Y2 1/2| o)) <0, for hy € Ha, to exploit the piecewise linearity of the ReL.U-activiation
Sunction ([[] in Fig.2).

As example [T|demonstrates, we can contrain the input set with an unsafe set in the output space by
exploiting the dependencies between the considered sets through the latent space. Prop. [2]formalizes
an input refinement based on our observations.

Proposition 2 (Enclosing Unsafe Inputs). Given are a neural network ®: R™ — R, an input
set X = (cz,Gz), C R™ with G, € R™*%, and an unsafe set U = (A,b); C R™. Let
Y = {cy,Gy), = enclose(®, X) be an enclosure of the output set with G, € R™~*9<. We enclose
all unsafe inputs with

{l’ eX I ‘I)(.Z‘) EU} - X'ng»

)andd::b—Acy—FfAGy(.[])|1.

slax]\lgo

where C .= A Gy

',[QO]

Under review as a conference paper at ICLR 2026

(a) Input Space (b) Output Space
[
1 | -
—1F
0 - |
—2 -
B |
| | |
-1 0 1
’ 1 Constrained Zonotope Unsafe Set [Exact Output Set 1 Unsafe Output Set

Figure 3: Illustration of an iterative refinement of the input set: The input set is iteratively re-
fined (Prop. [2). After the fourth iteration, the intersection with the unsafe set is empty, and the
neural network is verified.

Proof. See Appendix

We can iteratively apply Prop. [2]to refine the input set to minimize the intersection of the computed
output set and the unsafe set. During each iteration, we transfer the unsafe set from the output
space to the input space to remove the parts of the input set that are provably safe. In Fig. 3] we
iterate Prop. [J]until the intersection of the output set and the unsafe set is empty, and thus the problem
is verified.

4 SET-BASED FALSIFICATION, VERIFICATION, AND INPUT REFINEMENT

For the fast and practical verification of neural networks, we integrate our novel input refine-
ment (Prop. [2) into a branch-and-bound procedure (Alg. [I), where we utilize the enclosed output
set for verification, falsification, and input refinement. In each iteration, we perform the following
computations: (i) The output set of the current input set is enclosed (Prop. [I). (ii) The intersection
with the unsafe set is checked (Sec. [d.1)). (iii) If the intersection is non-empty, the verification is
inconclusive, and falsification is attempted (Sec.[d.2). (iv) Finally, if we cannot verify the input set
nor find a counterexample, we refine the input set (Prop. [2). Moreover, we reduce the conservatism
of the zonotope propagation by splitting the refined input set through additional constraints of the
hypercube (Scott et al., 2016, Prop. 3); e.g., we can formulate constraints that exploit the piecewise
linearity of the ReLU-activation function ([T in Fig. 2). Please see Appendix [B|for details on our
splitting heuristic. The subsequent subsections describe the steps of Alg. [I]in detail.

4.1 SET-BASED VERIFICATION

We compute the output set Y = (c,,G,), C R"~ of the current input set using Prop. [_Tl and check
if the intersection with the unsafe set U = (A,b); C R™* with A € RP*"™~ is empty (Scott et al.,
2016, Prop. 2):

i e [p] A(i,.) Cy — |A(z,) Gy| 1> b(l) = YnuU=40. ®)
4.2 SET-BASED FALSIFICATION

If we cannot verify the current input set, we try to find a counterexample within it. For that, we utilize
the latent space (Sec. [3) to identify the input for a boundary point of the intersection of the enclosed
output set and the unsafe set. For each normal vector of the unsafe set specification A(; .y € R™~,

1

e e NN ! R W W

[S
AW N =S

17
18
19
20
21
22

Under review as a conference paper at ICLR 2026

Algorithm 1: Set-based verification algorithm. We store input sets in a queue and use the oper-
ations initQueue, isNonEmpty, enqueue, and dequeue from (Knuth, |1997, Sec. 2.2.1)
Data: Neural network ®: R"° — R™~, input set X' = (¢, Gz),, C R™, unsafe set

U= (A by CR™
Result: Verification result: VERIFIED, FALSIFIED(Z) with counterexample © € X
function verify(®, X, U)

Q <+ initQueue(),i +—1 // Initialize queue & counter.
Q.enqueue(X) // Add the initial input set.
while Q.isNonEmpty() do
X; < Q.dequeue() // Get the next input set.
Y; < enclose(®, X;) // Enclose the output set (Prop. [1).
lfyl nNU = (Z) then // 1. Verification (Sec.)
‘ continue // Verified input set.
else // 2. Falsification (Sec.)
Z; +— Compute an adversarial input. //_©)
:lji — (I)(J}) // Compute the adversarial output (Def.) .
if y; € U then
‘ return FALSIFIED(Z;) // Found an unsafe input.
else // 3. Refinement & Splitting (Prop. Appendix)
C, d < Compute the constraints for the input set. // Prop. |2
Xilcy<dys - - - Xilce<d, < Refine and split the input set. // Prop. (scott)
et al., |2016|, Prop. 3)
Q.enqueue (Xz Ci<dys- - Xi|Cg§d§) // Add new sets to the queue.
i — ’L -|—]. // Increment the counter.
end
end
end
return VERIFIED // Queue is empty; verified all input sets.

for ¢ € [p], we compute a boundary point (Althoff & Frehse, 2016, Lemma 1):
Bi = sign(Agi,) Gy), §=c,+Gy B 9)

Finally, we check if the corresponding input £ = ¢, +G,, B([qo]) € Xintheinputset X = (¢cz, Gz,
with G, € R™0*% i a counterexample, i.e., whether ®(Z) € U.

5 EVALUATION

We have implemented our verification algorithm in MATLAB. To make our evaluation as trans-
parent and reproducible as possible, we compare the results of our tool on benchmarks from the
neural network verification competition 2024 (VNN-COMP’24) Brix et al| (2024) with the top-5
tools of last year’s competition: a-3-CROWN [Wang et al.|(2021), NeuralSAT |Duong et al.| (2023),
PyRat|Lemesle et al.| (2024)), Marabou |Wu et al.|(2024), and nnenum Bak! (2021)).

Tab. [I] presents the results for 8 competitive and standardized benchmarks of the VNN-
COMP’24 Brix et al,| (2024). Please see Appendix |A]for details. Across all benchmarks, our ver-
ification algorithm achieves competitive performance, even matching the top performance in four
benchmarks. These results would place our tool in the top 5 of the competition.

5.1 ABLATION STUDIES

We run extensive ablation studies to justify the different design choices of our algorithm.

Input Refinement We evaluate the improvement through our input refinement (Tab. 2a). There-
fore, we compare the number of subproblems required for verifying instances with (v') and with-
out (X) our input refinement enabled: We observe that our refinement reduces the number of sub-
problems by 60.5% for acasxu and 24.8% for safenlp.

Under review as a conference paper at ICLR 2026

Table 1: Main Results [%Solved 1 (#Verified / #Falsified)].

collins dist linear meta tllverify
Tool acasxu cora i i safenlp
—rul-cnn -shift -izenn -room —bench

99.5% 100.0% 81.1% 98.6% 100.0% 97.0% 89.2% 100.0%
(138/747) (30/32) (18/128) (63/8) (59/1) (90/7) (311/652) (15/17)

Results from VNN-COMP’24|Brix et al.|(2024)
a-B-CROWN 100.0% 100.0% 87.8% 98.6% 100.0% 98.0% 100.0% 100.0%
(139/47) (30/32) (24/134) (63/8) (59/1) (91/7) (421/659) (15/17)
98.9% 100.0% 87.2% 98.6% 100.0% 98.0% 90.5% 100.0%

Ours

NeuralSAT (138/46) (30/32) (23/134) (63/8) (59/1) (91/7) (327/650) (15/17)

PyRAT 98.9% 93.5% 83.3% 98.6% 100.0% 97.0% 79.9% 100.0%

(137/47) (30/28) (22/128) (63/8) (59/1) (91/6) (277/586) (15/17)

Marabou 96.2% 100.0% 86.7% 95.8% 100.0% 53.0% 62.5% 93.8%

(134/45) (30/32) (22/134) (62/7) (59/1) (46/7) (300/375) (13/17)

nenum 99.5% 100.0% 14.4 - 983% 46.0% 89.2% 56.2%

(139/46) (30/32) (0/6) (=/-) (59/0) (44/2) (321/642) (2/16)

Table 2: Ablation studies.
(a) without (X) vs. with (v') Input Refinement (b) GPU vs. CPU
[avg. Time | (%Solved)]
acasxu safenlp
Input Refinement X/ (Ours) X v/ (Ours) Method
(Batch Size) acasxu safenlp
avg. #Sub- 2104.1 830.2 12774.3 9598.1
problems | (max) (133438) (36134) (293303) (180015) 7.3s 3.6s
CPUM 9529 (83.1%)
%Solved 99.5% 99.5% 80.9 89.2% : :
(#Verified / #Falsified) (138/47) (138/47) (299/575) (311/652) 1.7s 2.9s
GPUA28) 99 50) (36.8%)
avg. Time |, 1.2s 1.5s 5.1s 2.6s ’ ’

1.5 2.6s
GPUA024) " 99 50) (89.2%)

GPU Acceleration and Batch Size We demonstrate the efficacy and speed up of the GPU ac-
celeration by comparing the results of the acasxu and safenlp benchmark computed on a
CPU (Tab. 2b): The GPU acceleration enables a significant speed up, which allows the verifica-
tion of more instances within the allotted timeout, i.e., the GPU speeds up the verification by 79.4%
on acasxu and 38.5% on safenlp.

Falsification Method We compare our set-based adversar- 1o 3. Ralsification [#Falsi-
ial attack (Sec. [.2) against the fast-gradient-sign method ﬁ? d? (% Si l?/]e dc)a]l ion [#Falsi
(FGSM) Goodfellow et al.| (2015) on the safenlp benchmark. '
Tab. Bl shows the number of instances falsified within the first 50

iterations to compare the falsification strength without influence Falsification (zaggl;tl;r)
from the runtime. Our set-based adversarial attack outperforms - ’

FGSM by falsifying 60.3% more instances. Further, the main re- FGSM 257 (23.8%)
sults (Tab. [I) show that in most benchmarks we match the falsifica- Ours 647 (59.9%)

tion performance of the top tools.

6 RELATED WORK

Neural Network Verification and Adversarial Attacks Most algorithms for neural network ver-
ification either (i) formulate an optimization or constraint satisfaction problem and apply an of-
f-the-shelf solver, e.g., satisfiability modulo theories |[Katz et al| (2017); Duong et al.| (2023); [Wu
et al.| (2024) or (mixed-integer) linear programming |Singh et al.| (2019b); Miiller et al.[(2022), or
(ii) use abstract interpretation or reachability analysis to enclose the intersection of the specification
with the output of the neural network |Gehr et al.| (2018)); [Wang et al.| (2018); |Singh et al.| (2019a);
Wang et al.| (2021); Kochdumper et al.| (2023)); Ladner & Althoff] (2023)); Lemesle et al.| (2024)).

Under review as a conference paper at ICLR 2026

The most common abstract domains or set representations are intervals |Gehr et al.| (2018)), zono-
topes |Gehr et al.| (2018), or polytopes Miiller et al.|(2022)); Zhang et al.|(2018)); |Singh et al.|(2019a),
that use linear relaxations of activation functions for the propagation. More complex set representa-
tions can enclose the output set more tightly, e.g., polynomial zonotopes [Kochdumper et al.| (2023),
hybrid zonotopes|Ortiz et al.|(2023), star sets|Bak!(2021)); however, due to higher computational cost,
these approaches do not scale to large neural networks. The results of multiple abstract domains
can be combined to obtain a tighter enclosure Lemesle et al.| (2024). A popular abstract domain,
DeepPoly/CROWN |Singh et al.| (2019a)); [Zhang et al.| (2018)), uses bounded polytopes, which are
represented as the intersection of linear bounds and intervals. Further, gradient-based optimization
can be applied to bounding parameters to tighten the computed enclosure Wang et al.[(2021)).

If formal verification is computationally infeasible, an alternative is to falsify neural networks using
adversarial attacks. Often, gradient-based attacks are fast and effective at finding adversarial per-
turbations |Goodfellow et al.[(2015); Kurakin et al.|(2017). Further, stronger adversarial examples
can be computed with optimization-based approaches (Carlini & Wagner| (2017). Our set-based fal-
sification does not require the gradient of the neural network while being faster to compute than an
optimization problem.

Iterative Neural Network Refinement There are different iterative refinement approaches, e.g.,
refining bounds using (mixed-integer) linear programs Wang et al.| (2018)); [Singh et al.| (2019b);
Yang et al.| (2021), counterexample guided abstraction refinement [Wu et al| (2024), and refining
the hyperparameters of output set enclosure Xu et al.[(2021); [Ladner & Althoff] (2023). Our novel
specification-driven input refinement iteratively encloses the set of inputs that cause an intersection
with an unsafe set in the output space. Therefore, our refinement does not require tuning hyper-
parameters or solving expensive (mixed-integer) linear programs. The refinement procedure uses
dependencies between propagated zonotopes, which can be used to simplify computations for reach-
ability analysis or identify falsifying states Kochdumper et al.| (2020).

Further, our input refinement can be used to enclose the preimage of a neural network. Linear
bounding techniques can be used to enclose preimages by solving multiple linear programs to com-
pute bounds with respect to constraints or dimensions separately [Kotha et al.|(2023); [Zhang et al.
(2024). Conversely, we compute a zonotope enclosing the preimage that we optimize with an itera-
tive procedure with respect to all constraints and dimensions simultaneously.

Branch-and-Bound Algorithms and Splitting Heuristics For large neural networks, most ver-
ification approaches are too conservative. Therefore, in practice, most verification approaches use
a branch-and-bound procedure that recursively splits the verification problem into smaller subprob-
lems that are easier to solve Brix et al.| (2023;|2024)), e.g., by exploiting the piece-wise linearity of the
ReLU-activation function. There are various approaches and heuristics for splitting a verification
problem, e.g., largest radius, largest approximation error and its effect on the output constraints Hen-
riksen & Lomuscio| (2021), gradient or sensitivity-based heuristics to estimate the impact of a neuron
on the output Balunovic et al.[(2019); [Ladner & Althoft] (2023), magnitude of the coefficient of lin-
ear relaxation [Durand et al.| (2022]), largest unstable neuron in the first undecidable layer |Yin et al.
(2022), multi-neuron constraints |Ferrari et al.|(2022)), least unstable neuron |Duong et al.| (2023)).

7 CONCLUSION

In this paper, we construct a novel latent space for an iterative refinement procedure to speed up
the formal verification of neural networks. The latent space is constructed from the propagation of
projection-based set representations, e.g., zonotopes, through the layers of a neural network. Our
procedure iteratively refines an enclosure of the set of unsafe inputs by using the latent space to
constrain the input set with the unsafe set from the output space. We integrate our refinement proce-
dure into a branch-and-bound neural network verification algorithm. In an extensive evaluation, we
show a significant reduction in the number of recursive splits required for verification. Moreover,
we show that our algorithm achieves competitive performance compared to the top-5 tools of the last
neural network verification competition. In summary, our novel latent space presents a promising
new direction for the formal verification of neural networks.

Under review as a conference paper at ICLR 2026

REFERENCES

Matthias Althoff. Reachability analysis and its application to the safety assessment of autonomous
cars. PhD thesis, Technische Universitiat Miinchen, 2010.

Matthias Althoff. An introduction to CORA 2015. In ARCH Workshop, pp. 120-151, 2015.

Matthias Althoff and Goran Frehse. Combining zonotopes and support functions for efficient reach-
ability analysis of linear systems. In CDC, pp. 7439-7446, 2016.

Stanley Bak. nnenum: Verification of relu neural networks with optimized abstraction refinement.
In NASA formal methods symposium, pp. 19-36, 2021.

Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, and Martin Vechev. Certi-
fying geometric robustness of neural networks. In NeurIPS, volume 32, 2019.

Christopher Bishop. Pattern recognition and machine learning. Springer New York, NY, 2006.

Christopher Brix, Mark Niklas Miiller, Stanley Bak, Taylor Johnson, and Changliu Liu. First three
years of the international verification of neural networks competition (VNN-COMP). STTT, 25
(3):329-339, 2023.

Christopher Brix, Stanley Bak, Taylor Johnson, and Haoze Wu. The fifth international verifica-
tion of neural networks competition (VNN-COMP 2024): Summary and results. arXiv preprint
arXiv:2412.19985, 2024.

Rudy Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan Mudigonda. A unified view
of piecewise linear neural network verification. In NeurIPS, volume 31, 2018.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In IEEE
SSP, pp. 39-57, 2017.

Pranav Singh Chib and Pravendra Singh. Recent advancements in end-to-end autonomous driving
using deep learning: A survey. IEEE T-1V, 9(1):103-118, 2023.

Christophe Combastel. Zonotopes and Kalman observers: Gain optimality under distinct uncertainty
paradigms and robust convergence. Automatica, 55:265-273, 2015.

Hai Duong, ThanhVu Nguyen, and Matthew Dwyer. A dpll (t) framework for verifying deep neural
networks. arXiv preprint arXiv:2307.10266, 2023.

Serge Durand, Augustin Lemesle, Zakaria Chihani, Caterina Urban, and Francois Terrier. ReCIPH:
Relational coefficients for input partitioning heuristic. In WFVML, 2022.

Claudio Ferrari, Mark Niklas Miiller, Nikola Jovanovi¢, and Martin Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. In ICLR, 2022.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar-
tin Vechev. Ai2: Safety and robustness certification of neural networks with abstract interpreta-
tion. In IEEE SSP, pp. 3—18, 2018.

Antoine Girard. Reachability of uncertain linear systems using zonotopes. In HSCC, pp. 291-305,
2005.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

Patrick Henriksen and Alessio Lomuscio. DEEPSPLIT: An efficient splitting method for neural
network verification via indirect effect analysis. In IJCAI pp. 2549-2555, 2021.

Ahmed Irfan, Kyle D. Julian, Haoze Wu, Clark Barrett, Mykel J. Kochenderfer, Baoluo Meng,
and James Lopez. Towards verification of neural networks for small unmanned aircraft collision
avoidance. In DASC, pp. 1-10, 2020.

Radoslav Ivanov, James Weimer, Rajeev Alur, George Pappas, and Insup Lee. Verisig: verifying
safety properties of hybrid systems with neural network controllers. In HSCC, pp. 169-178, 2019.

10

Under review as a conference paper at ICLR 2026

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583-589, 2021.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In CAV, pp. 97-117, 2017.

Donald Knuth. The Art of Computer Programming, volume 1: Fundamental Algorithms. Addison-
Wesley, 1997.

Niklas Kochdumper, Bastian Schiirmann, and Matthias Althoff. Utilizing dependencies to obtain
subsets of reachable sets. In HSCC, 2020.

Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stanley Bak. Open- and closed-loop
neural network verification using polynomial zonotopes. In NASA Formal Methods, pp. 16-36,
2023.

Lukas Koller, Tobias Ladner, and Matthias Althoff. Set-based training for neural network verifica-
tion. TMLR, 2025.

Suhas Kotha, Christopher Brix, Zico Kolter, Krishnamurthy Dvijotham, and Huan Zhang. Provably
bounding neural network preimages. In NeurlPS, 2023.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In /CLR,
2017.

Tobias Ladner and Matthias Althoff. Automatic abstraction refinement in neural network verification
using sensitivity analysis. In HSCC, pp. 1-13, 2023.

Augustin Lemesle, Julien Lehmann, and Tristan Le Gall. Neural network verification with pyrat.
arXiv preprint arXiv:2410.23903, 2024.

Mark Niklas Miiller, Gleb Makarchuk, Gagandeep Singh, Markus Piischel, and Martin Vechev.
PRIMA: general and precise neural network certification via scalable convex hull approximations.
PACMPL, 6(POPL), 2022.

Joshua Ortiz, Alyssa Vellucci, Justin Koeln, and Justin Ruths. Hybrid zonotopes exactly represent
relu neural networks. In CDC, pp. 5351-5357, 2023.

Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

Joseph Scott, Davide Raimondo, Giuseppe Roberto Marseglia, and Richard Braatz. Constrained
zonotopes: A new tool for set-based estimation and fault detection. Automatica, 69:126-136,
2016.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. An abstract domain for certi-
fying neural networks. PACMPL, 3(POPL), 2019a.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. Boosting robustness certifica-
tion of neural networks. In /CLR, 2019b.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In NeurlIPS, pp. 6369-6379, 2018.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and Zico Kolter. Beta-

crown: Efficient bound propagation with per-neuron split constraints for neural network robust-
ness verification. NeurIPS, 34:29909-29921, 2021.

11

Under review as a conference paper at ICLR 2026

Haoze Wu, Omri Isac, Aleksandar Zelji¢, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan
Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, et al. Marabou 2.0: a versatile formal analyzer
of neural networks. In CAV, pp. 249-264, 2024.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. In /ICLR, 2021.

Pengfei Yang, Renjue Li, Jianlin Li, Cheng-Chao Huang, Jingyi Wang, Jun Sun, Bai Xue, and Lijun
Zhang. Improving neural network verification through spurious region guided refinement. In
TACAS, pp. 389-408, 2021.

Banghu Yin, Liqgian Chen, Jiangchao Liu, and Ji Wang. Efficient complete verification of neural
networks via layerwised splitting and refinement. /EEE TCAD, 41(11):3898-3909, 2022.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. NeurIPS, 31, 2018.

Xiyue Zhang, Benjie Wang, and Marta Kwiatkowska. Provable preimage under-approximation for
neural networks. In TACAS, 2024.

Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20
years: A survey. Proc. IEEE, 111(3):257-276, 2023.

A APPENDIX — EVALUATION DETAILS

For the evaluation, we implement our verification algorithm in MATLAB using the CORA |Al-
thoff] (2015) toolbox. To avoid an unfair comparison with the results of the VNN-COMP’24 Brix
et al.| (2024), we run all our evaluations on a laptop with inferior hardware compared to the VNN-
COMP’24, i.e., Intel Core i7-13700H and a NVIDIA RTX 4070 Laptop GPU (8GB). The compe-
tition uses servers that are equipped with an NVIDIA A10G GPU with significantly more memory
(24GB) (Brix et al}, 2024, Sec. 2).

The selected benchmarks are taken from the VNN-COMP’24 Brix et al.| (2024): acasxu a stan-
dard benchmark used by many prior works containing neural networks for airborne collision detec-
tion; collins-rul-cnn containing neural networks for condition-based maintenance; cora and
metaroom containing neural networks for high-dimensional image classification; dist-shift
containing neural networks for distribution shift detection; 1 inearizenn containing neural net-
works for an autonomous aircraft taxiing system; safenlp containing neural networks for sentence
classification; t 1 1verifybench containing two-level lattice neural networks.

Our selection of the top-5 tools is based on the ranking after the tool updates that resolved many
penalties due to incorrectly formatted counterexamples (Brix et al.,[2024] Tab. 35).

B APPENDIX — ENCLOSURE-GRADIENT SPLITTING HEURISTIC

In each iteration of our verification algorithm (Alg. [T), we split each input set along the middle
of an input dimension or exploit the piece-wise linearity of an unstable ReLU-neuron. Typical
gradient-based splitting heuristics use the local gradient of the neural network to rank the importance
of different input dimensions or neurons Balunovic et al.| (2019); |[Ladner & Althoff] (2023). The
local gradient does not explicitly consider effects of splitting input dimensions or neurons on the
conservatism of the enclosure, i.e., a split does not guarantee a tighter enclosure. Therefore, we
compute the gradient of the size of the output set with respect to the enclosure. Thus, with each split
we can guarantee a reduction in the conservatism of the enclosure. We use the F-radius to measure
the size of the output enclosure) = (c,, G) , = enclose(®, X), i.e., the F-radius is defined as the

Frobenius norm of the generator matrix (Combastel, 2015, Def. 3): || V|| r == \/ i1 g1 Gy

Intuitively, we use the gradient of the F-radius to measure the contribution of an input dimension or
an approximation error to the overall size of the output enclosure. For an input dimension i € [ng],
we compute the score

s()) = () Vg, [Vl (10)

12

Under review as a conference paper at ICLR 2026

Table 4: Splitting Heuristics.

Heuristic YoSolved t Time | avg. #Subproblems
+ Input Refinement Prop. 2| (#Verified / #Falsified) avg. time (max) |,
acasxu
. 98.4% 11546.18
Local Gradient (136 /47) 3.7s (430403)
. 99.5% 830.2
Enclosure Gradient (Ours) (138 /47) 1.5s (36 134)
safenlp
. 87.4% 6334.1
Local Gradient (2977 647) 2.8s (177 123)
. ‘ 89.2% 4700.3]
Enclosure Gradient (Ours) (3117652) 2.6s (138367)

where the r = |G| 1 is the radius of the input set X = (¢;,G,), C R". If the k-th layer is a
ReLU-activation layer, for k € [x], we compute the score for the i-th neuron, for i € [n], by

$(Ly,1) = ex(i) Vepn 1VIIF, (11)

where e, = 1/2 (€, — ¢,,) is the radius of the approximation error. In each iteration, we split the
input dimension or the neuron with the largest score.

In Tab. @ we compare our enclosure-gradient heuristic against a local-gradient heurtistic defined
as Ladner & Althoff| (2023)

s(1) = () Ve, yll2 $(Ly, 1) = ex(i) I Vern 2, (12)

where y € R™~ is the output of the neural network for the center of the input set, i.e., y = ®(c,). Our
enclosure-gradient heuristic outperforms the local-gradient heuristic on the considered benchmarks
(acasxu and safenlp), demonstrating its effectiveness.

C APPENDIX — IMPLEMENTATION TRICKS

We efficiently implement our algorithm with only matrix operations to take full advantage of GPU
acceleration. Further, to make our algorithm practical, we reduce the memory footprint by only
storing the bounds of the constrained zonotopes in the queue. We use zonotopes for the set prop-
agation (line [T). However, we compute the bounds of a constrained zonotope before an enqueue
operation.

Computing the bounds of constrained zonotopes requires solving two linear programs for each di-
mension, which limits GPU acceleration. Hence, we avoid solving linear programs by efficiently
approximating the bounds of a constrained zonotope by approximating the bounds of the constrained
hypercube (Prop.[3). The approximation is inspired by the Fourier-Motzkin elimination (Schrijver,
1998, Sec. 12.2).

To avoid clutter, we introduce further notation: For a matrix A € R"*™, we denote the matrix with
all non-positive entries set to zero with AT € Rxq, i.e., AT = 1/2 (A + |A|); the matrix A~ € R>g
is defined analogously.

Proposition 3 (Bounds of Bounded Polytope). A constrained hypercube P = (C,d)y, N
[QO,BO} C R? with C € RP*? and d € RP is enclosed by [g,m ie, P C @,B] For
each dimension j € [q], let X\(;3 = I, — e;e/, and for each i € [p], let Cuy =

"To provide a fair comparison, we only compute the number of verified subproblems across the instances
solved by both heuristics. The additional instances solved with the enclosure-gradient heuristic would inflate
the number of verified subproblems, i.e., avg. #Subproblems: 9 598.2 and max. #Subproblems of 180 015.

13

Under review as a conference paper at ICLR 2026

(de) — C(t.’_) S\ By — C'(;’.) S\(j1 B0)/Cli.j)- The bounds of P are computed by
ﬁ(]) = max {Q(1,j) ‘ (S [p] O(h]) < 0} U {EO(j)}’

Proof. We fix a point 3 € P and indices i € [p] and j € [q] and show that 8 € [3, 3]. From the
definition of a polytope, it holds that: C(; .y 8 < d;). By rearranging the terms, we obtain

CanB<dy < Cunby <dm— Y Cumbu =du —Cu iy b
kelg\{s}
We split cases on the sign of C(; jy:

Case I (C(; jy < 0). We obtain a lower bound for j3;:
di) = Cliy) E\isy B
Clig)
Using the initial bounds, i.e., ﬁo(j) < B(j) < Bo(j)’ we can approximate the bounds of B(j):

diiy = Clayy Bngsy B diiy = Clayy Bngsy B

< B)-

(<D dg) = Cliy By B

> min > min

W= Cig) peP Cig) ~ Bel8,.Bo] Clig)
A —minges 5006 DNy B day — CF Ly S\ By — Chy Dy Bo
Clig) Cling) —
Case 2 (C(; jy > 0). We obtain an upper bound for 3;:
dipy —Cuy S B
B < ©) CS) AP
(4,5)
Using the initial bounds, i.e., 3 o05) < By < Bo(j)’ we can approximate the bounds of 3;y:
" @20 diy = Can 2 b o 0 =CanBn B 4o = Cin Bvn B
Clig) GeP Clig) Be(8,,Bo] Clig)
dy — minéemoﬁo] Cliy X5y B day — C(JQ,.) iy By = Cly 2\ 153 Bo _c
- Cli.j) - Clig) S

Each row 1 of the constraint matrix C' generates an inequality for each dimension j of 3. Thus, with
b€ {ﬁ . Eo} , we set 3) to maximum lower bound and B(;) to minimum lower bound. O

Note that Prop. |3| can be iterated: For P = (C,d), N {é(yﬁo} with bounds [8, B], it holds that

P = (Cdy N @, B] thus, Prop. [3| can be applied again to obtain potentially smaller bounds.
Fig. @illustrates the approximated bounds and exact bounds of a bounded polytope.

The bounds of a constrained zonotope Z|c<q C R™ with Z = (¢, G),, can be approximated by
applying an affine map to the bounds [é , m - E of its constrained hypercube:

Zlo<a Cc® G [B,8] & G [B,B]. (13)

In Tab. 5| we evaluate the effects of our fast bounding a constraint zonotope (Prop. [3) on the ver-
ification accuracy. We turned off the timeout because with the exact bounds, we could not verify
any instance within the allotted time. Both approaches can verify all instances, and as expected,
computing the exact bounds is significantly slower, i.e., the average verification time is 823.3s vs.
1.0s for our fast bound approximation. Further, the exact bounds only marginally reduce the number
of verified subproblems, i.e., on average 276.98 vs. 277.58 for the fast bound approximation, which
indicates that our approximated bounds are sufficiently tight for the verification of neural networks.

2Computing the exact bounds of a high-dimensional constrained zonotope is computationally expensive,
thus, we can only compare our approximation on the first 45 instances of the acasxu benchmark (prop1l).

14

Under review as a conference paper at ICLR 2026

—-0.5

| | | | |
-1 -0.5 0 0.5 1

1 Approx. Bounds [z,] — Initial Bounds [z, Zo]
— Polytope P - - - Exact Bounds

Figure 4: Illustrating the approximated bounds (Prop. |3)) and the exact bounds of a bounded poly-
tope.

Table 5: Approximation of Constraint Zonotope Bounds.

acaSXLE]
Exact Bounds v X (Prop.
avg. #Sub- 276.98 277.58
problems | (max) (1045) (1051)
%Solved 100% 100%
(#Verified / #Falsified) T (45 /0) 45/0)
avg. Time | 823.3s 1.0s

D APPENDIX — PROOFS

Proposition 2| Given are a neural network ®: R™ — R™~, an input set X = (¢, G,), C R™
with G, € R™*%, and an unsafe set U = (A,b) ; C R™. LetY = (c,,Gy), = enclose(®,X)
be an enclosure of the output set with G, € R"=*9_ We enclose all unsafe inputs with

{zeX|0(x) eU} C X|o<a
where C'i= A Gy (qo)) and d == = Acy + [A Gy g \(ao))| 1
Proof. We fix an unsafe input x € {x € X | ®(z) € U}. Lety = ®(x) be its corresponding

output. We use the definition of the unsafe set ¢/ and the definition of a zonotope, i.e., there are
factors 8 € By, s.t.

y=cy+Gyp. (14)
For an unsafe output, we have the following inequality:
yed £ A(c, +G,B) <b < AG,B<b— Ac,.

Please note that the first gy factors of the output y are the factors of the input z, i.e., z = ¢, +
Gz B([40))- Our goal is to constrain the factors 3([4,)). Therefore, we rearrange the terms

AGyB<b—Acy <= AGy(100]) Bllao)) T AGy(laa\ao)) Bllan\ao) S b — Acy
= CBg)) £b— (Aey + AGy(. [g.\ o)) Blax)\ao]))-

15

Under review as a conference paper at ICLR 2026

We bound the right-hand side to get to obtain constraints C' 3([4,]) < d on the factors of x:

CBlgo) < b= (Aey + AGy(fgngol) Bllanhlaoh) < b= Acy + [AGy(g \aop| 1 = d
Thus, we conclude that the input x is contained in the constrained input set X:

x e X|C§d- O

The following corollary proves the soundness of our refinement for neural network verification and
falsification.

Corollary 1. Given a neural network ®: R™ — R"~, an input set X C R™, and unsafe set
U = (A,b); C R™, the refinement of the input set (Prop. |2) can be used for verification and
falsification
(I)(X|C§d) NnNU = @ < (I)(X) NnNU = @,
dz € X|c<a: @) €U <= Tz € X: O(z) € U.

Proof. With Prop. [2] we obtain X \ X|c<q C {& € X | ®(x) ¢ U}, and therefore, we have
(I)(X \ X‘ng) NU =0 and _\(31‘ ceX \ X'ng: (I)(.T) S U) Thus,
@(X‘ng) NU=0 (I)(X|C§d) NU = @/\(I)(X\ijgd) NU=0
— (2(X|c<a) UR(X\ X|c<a)) NU =10
= PX)NU =0,

E|.Z‘€X|C§dt fI)(ZL’) cU — E|.Z’€X|ng: (I)(I) EUVHIEX\Xk*Sd: ‘I)(CC) ceu
< dr € (X‘ngUX\X|C§d): @(l‘) ceu
<= Jx e X: P(x) €U. O

E DISCLOSURE — USAGE OF LARGE LANGUAGE MODELS (LLMS)

We employed a large language model (LLM) as a general-purpose tool to refine the writing and
enhance clarity of expression. All research ideas, methodology, analysis, and conclusions are solely
the work of the authors.

16

	Introduction
	Preliminaries
	Notation
	Feed-Forward Neural Networks
	Set-Based Computing
	Formal Verification of Neural Networks
	Problem Statement

	A Novel View on Zonotope Propagation
	Set-Based Falsification, Verification, and Input Refinement
	Set-Based Verification
	Set-Based Falsification

	Evaluation
	Ablation Studies

	Related Work
	Conclusion
	Appendix – Evaluation Details
	Appendix – Enclosure-Gradient Splitting Heuristic
	Appendix – Implementation Tricks
	Appendix – Proofs
	Disclosure – Usage of Large Language Models (LLMs)

