
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OUT OF THE SHADOWS: EXPLORING A LATENT SPACE
FOR NEURAL NETWORK VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks are ubiquitous. However, they are often sensitive to small input
changes. Hence, to prevent unexpected behavior in safety-critical applications,
their formal verification – a notoriously hard problem – is necessary. Many state-
of-the-art verification algorithms use reachability analysis or abstract interpreta-
tion to enclose the set of possible outputs of a neural network. Often, the verifi-
cation is inconclusive due to the conservatism of the enclosure. To address this
problem, we design a novel latent space for formal verification that enables the
transfer of output specifications to the input space for an iterative specification-
driven input refinement, i.e., we iteratively reduce the set of possible inputs to
only enclose the unsafe ones. The latent space is constructed from a novel view of
projection-based set representations, e.g., zonotopes, which are commonly used
in reachability analysis of neural networks. A projection-based set representation
is a ”shadow” of a higher-dimensional set – a latent space – that does not change
during a set propagation through a neural network. Hence, the input set and the
output enclosure are ”shadows” of the same latent space that we can use to trans-
fer constraints. We present an efficient verification tool for neural networks that
uses our iterative refinement to significantly reduce the number of subproblems
in a branch-and-bound procedure. Using zonotopes as a set representation, unlike
many other state-of-the-art approaches, our approach can be realized by only using
matrix operations, which enables a significant speed-up through efficient GPU ac-
celeration. We demonstrate that our tool achieves competitive performance, which
would place it among the top-ranking tools of the last neural network verification
competition (VNN-COMP’24).

1 INTRODUCTION

Neural networks perform exceptionally well across many complex tasks, e.g., object detection Zou
et al. (2023) or protein structure prediction Jumper et al. (2021). However, neural networks can
be sensitive towards small input changes, e.g., often adversarial attacks can provoke misclassifica-
tions Goodfellow et al. (2015). Thus, neural networks must be formally verified to avoid unexpected
behavior in safety-critical applications, e.g., autonomous driving Chib & Singh (2023) or airborne
collision avoidance Irfan et al. (2020), where the inputs can be influenced by sensor noise or external
disturbances.

The goal of formal verification of neural networks is to find a mathematical proof that every possible
output for a given input set is safe with respect to a given specification; in this work, we demand that
the output avoids an unsafe set. The verification problem is undecidable in the general case Ivanov
et al. (2019) and NP-complete for neural networks with ReLU-activiation functions (Katz et al.,
2017, Appendix I). Many prominent verification algorithms use reachability analysis or abstract in-
terpretation to enclose the intersection of an unsafe set with the output of the neural network Gehr
et al. (2018); Singh et al. (2019a); Xu et al. (2021); Bak (2021); Kochdumper et al. (2023): The
input set is represented using a continuous set representation (such as intervals or zonotopes), which
is conservatively propagated through the layers of a neural network to enclose all possible outputs.
If the intersection of the output enclosure with an unsafe set is empty, the safety of the given input
set is formally verified. Out of the box, most reachability-based algorithms do not scale well to
large neural networks with high-dimensional input spaces because the conservatism of the set prop-
agation increases due to over-approximating nonlinearities in the neural network. Most verification

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

algorithms reduce the conservatism by integrating a branch-and-bound procedure to recursively split
the verification problem into smaller and simpler subproblems, e.g., by exploiting the piecewise lin-
earity of a ReLU-activiation function to reduce approximation errors Bunel et al. (2018) or splitting
the input set to reduce its size. However, in the worst case, the verification problem is split into
exponentially many subproblems, all of which must be verified.

In this paper, we speed up the formal verification of neural networks by iteratively refining the in-
put set to only enclose the unsafe inputs. Thereby, we reduce the size of the input set to reduce the
number of splits and, ultimately, the number of subproblems to be verified. For our iterative input re-
finement, we construct a novel latent space to transfer the unsafe set backwards through the network
from the output space to the input space for the enclosure of all unsafe inputs, i.e., we can discard all
inputs that are already proven to be safe. We construct the latent space by using projection-based set
representations that represent the projection (”shadow”) of a higher-dimensional set, e.g., a zonotope
is the ”shadow” of a higher-dimensional hypercube. The set propagation through a neural network
only changes the ”shadow”, while the higher-dimensional set remains unchanged. Hence, all con-
sidered sets are different ”shadows” of the same higher-dimensional set, representing a latent space.
We can exploit the dependencies between the considered sets through our novel latent space to trans-
fer the unsafe set from the output space to the input space to refine the input set Kochdumper et al.
(2020). Moreover, if we cannot verify the safety of the neural network, we can utilize the latent
space to extract candidates for counterexamples. Ultimately, we propose a verification algorithm
that integrates our novel iterative input refinement into a branch-and-bound procedure for verifying
and falsifying neural networks. Further, unlike many other state-of-the-art verification algorithms,
we implement our verification algorithm using only matrix operations to take full advantage of GPU
acceleration to simultaneously verify entire batches of subproblems.

To summarize, our main contributions are:

• A latent space for the verification of neural networks constructed from a novel view of the
propagation of projection-based sets, where all considered sets are ”shadows” of the same
higher-dimensional set.

• By utilizing the latent space, we propose an iterative specification-driven input refinement
and an approach for counterexample extraction to speed up branch-and-bound verification
and falsification of neural networks.

• An efficient algorithm for neural network verification that takes full advantage of GPU
acceleration.

• An extensive evaluation and comparison with state-of-the-art neural network verification
algorithms on benchmarks from the neural network verification competition 2024 (VNN-
COMP’24) Brix et al. (2024). Additionally, we conduct extensive ablation studies to justify
the design choices of our verification algorithm.

2 PRELIMINARIES

2.1 NOTATION

Lowercase letters denote vectors and uppercase letters denote matrices. We denote the i-th entry
of a vector x by x(i) and the entry in the i-th row and the j-th column of a matrix A ∈ Rn×m

by A(i,j). The i-th row is written as A(i,·) and the j-th column as A(·,j). The identity matrix is
denoted by In ∈ Rn×n. We write the matrix (with appropriate size) that contains only zeros or ones
as 0 and 1. Given two matrices A ∈ Rm×n1 and B ∈ Rm×n2 , their (horizontal) concatenation is
denoted by [A B] ∈ Rm×(n1+n2). The operation Diag(v) returns a diagonal matrix with the entries
of vector v on its diagonal, and the operation |A| takes the elementwise absolute value of a matrix
A ∈ Rn×m. We denote sets by uppercase calligraphic letters. Given two sets S1,S2 ⊂ Rn, we write
their Minkowski sum as S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2}. For n ∈ N, [n] = {1, 2, . . . , n}
is the set of all natural numbers up to n. The n-dimensional interval I ⊂ Rn with bounds l, u ∈ Rn

is written as I = [x, x], where ∀i ∈ [n] : x(i) ≤ x(i). For a function f : Rn → Rm, we abbreviate
the image of S ⊂ Rn with f(S) = {f(s) | s ∈ S}.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

−0.5 0 0.5

−0.5

0

0.5

(a) (Constrained) Zonotope

−0.5

0

0.5 −0.5
0

0.5

(b) (Constrained) Zonotope (”Shadow”)

Constrained Zonotope Sample Constrained Hypercube

Figure 1: (a) An illustration of a constrained zonotope and a sample with its generators; (b) the same
constrained zonotope as the ”shadow” of a constrained hypercube.

2.2 FEED-FORWARD NEURAL NETWORKS

A (feed-forward) neural network Φ: Rn0 → Rnκ is a sequence of κ ∈ N layers. Each layer applies
an affine map (linear layer) or an element-wise nonlinear activation function (nonlinear layer).
Definition 1 (Neural Network, (Bishop, 2006, Sec. 5.1)). For an input x ∈ Rn0 , the output of a
neural network y = Φ(x) ∈ Rnκ is

h0 = x, hk = Lk(hk−1) for k ∈ [κ], y = hκ,

where

Lk(hk−1) =

{
Wk hk−1 + bk if k-th layer is linear,
ϕk(hk−1) otherwise,

with weights Wk ∈ Rnk×nk−1 , bias bk ∈ Rnk , and (element-wise) nonlinear function ϕk.

2.3 SET-BASED COMPUTING

A zonotope is a convex set representation popular in reachability analysis due to its favorable com-
putational complexity Singh et al. (2019b); Kochdumper et al. (2023).
Definition 2 (Zonotope, (Girard, 2005, Def. 1)). Given a center c ∈ Rn and a generator matrix
G ∈ Rn×q , a zonotope is defined as

Z = ⟨c,G⟩Z :=

{
c+

q∑
i=1

G(·,i) β(i)

∣∣∣∣∣β ∈ [−1,1]
}

.

Subsequently, we define the set-based operations for zonotopes required for our verification algo-
rithm. The Minkowski sum of a zonotope Z = ⟨c,G⟩Z ⊂ Rn and an interval [x, x] ⊂ Rn is
computed by (Althoff, 2010, Prop. 2.1 & Sec. 2.4)

Z ⊕ [x, x] = ⟨c+ 1/2 (x+ x), [G diag(1/2 (x− x))]⟩
Z

. (1)

The image of a zonotope Z = ⟨c,G⟩Z ⊂ Rn under an affine map f : Rn → Rm, x 7→ W x + b
with W ∈ Rm×n and b ∈ Rm is computed by (Althoff, 2010, Sec. 2.4)

f(Z) = W Z ⊕ b = ⟨W c+ b,W G⟩Z . (2)

Using an affine map, we can write a zonotopeZ = ⟨c,G⟩Z ⊂ Rn with q generators, i.e., G ∈ Rn×q ,
as the projection of a q-dimensional (unit)-hypercubeBq = [−1,1]: Z = c⊕GBq . Thus, intuitively,
a zonotope is the ”shadow” of a higher-dimensional hypercube.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A convex polytope is the intersection of a finite number of halfspaces (Althoff, 2010, Def. 2.1); we
denote a polytope by ⟨A, b⟩H = {x ∈ Rn | Ax ≤ b} ⊂ Rn, where A ∈ Rn×p and b ∈ Rp.

All zonotopes are convex and point-symmetric. However, by constraining the hypercube, we can
represent arbitrary convex polytopes (Scott et al., 2016, Thm. 1).

Definition 3 (Constrained Zonotope, (Scott et al., 2016, Def. 3)). Given a zonotope Z = ⟨c,G⟩Z ⊂
Rn with c ∈ Rn and G ∈ Rn×q , the zonotope with constraints C β ≤ d, for β ∈ Bq with C ∈ Rp×q

and d ∈ Rp, is defined as

Z|C≤d := {c+Gβ | β ∈ [−1,1], C β ≤ d} = c⊕GBq ,

where Bq := {β ∈ [−1,1] | C β ≤ d} = Bq ∩ ⟨C, d⟩H is the constrained unit-hypercube.

Compared to (Scott et al., 2016, Def. 3), we use inequality constraints instead of equality constraints
for convenience. Both types of constraints are equivalent and can be translated by introducing
slack variables. Moreover, the considered set-based operations, i.e., Minkowski sum (1) and affine
map (2), are identical for zonotopes and constrained zonotope (Scott et al., 2016, Prop. 1). Fig. 1
illustrates a constrained zonotope as a ”shadow” of a constrained hypercube.

2.4 FORMAL VERIFICATION OF NEURAL NETWORKS

The output set of a neural network can be enclosed by conservatively propagating a zonotope through
the layers of the neural network.

Proposition 1 (Set Propagation, (Ladner & Althoff, 2023, Sec. 2.4)). Given a neural network
Φ: Rn0 → Rnκ and an input set X ⊂ Rn0 , an enclosure Y = enclose(Φ,X) ⊂ Rnκ of the
image Y∗ := Φ(X) ⊆ Y can be computed as

H0 = X , Hk = enclose(Lk,Hk−1) for k ∈ [κ], Y = Hκ.

The operation enclose(Lk,Hk−1) encloses the image of the k-th layer for the input set Hk−1,
i.e., Lk(Hk−1) ⊆ enclose(Lk,Hk−1) (Ladner & Althoff, 2023, Prop. 2.14). If the k-th layer is
linear, an affine map is applied (2): enclose(Lk,Hk−1) = WkHk−1 ⊕ bk; otherwise, the ac-
tivation function ϕk is enclosed with a linear function and corresponding approximation errors:
enclose(Lk,Hk−1) = diag(mk)Hk−1 ⊕ [ek, ek], where mk(i) is the approximation slope and
[ek(i), ek(i)] the approximation error of the i-th neuron, with i ∈ [nk] (Koller et al., 2025, Sec. IV).

2.5 PROBLEM STATEMENT

Given a neural network Φ: Rn0 → Rnκ , an input set X ⊂ Rn0 , and an unsafe set U ⊂ Rnκ , our
goal is to derive an efficient and practical algorithm that can either formally verify the safety of the
neural network, i.e.,

Φ(X) ∩ U = ∅, (3)

or find a counterexample, i.e.,
x ∈ X such that Φ(x) ∈ U . (4)

3 A NOVEL VIEW ON ZONOTOPE PROPAGATION

A zonotope is the ”shadow” of a higher-dimensional hypercube (Fig. 1b). The propagation of a
zonotope through the layers of a neural network transforms the projection of the hypercube, but the
hypercube itself remains unchanged. Thus, all enclosed sets, i.e., the input, hidden, and output sets,
are different ”shadows” of the same hypercube. Therefore, the hypercube represents a latent space.
Let us demonstrate this novel view by an example:

Example 1. Fig. 2 illustrates the propagation of a two-dimensional input set X through a linear
layer and a ReLU-activation function, i.e., x 7→ ReLU(2−1/2

[
1 −1
1 1

]
x+[10]). Intuitively, the linear

layer rotates the hypercube, and the nonlinear layer tilts it to compute the output set as its ”shadow.”

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

−1

0

1

−1
0

1

(a) Input Space

0

1

2
−1

0
1

(b) Hidden Space

0

1

2
0

1

(c) Output Space

Zonotope Unsafe Set Hypercube Unsafe Output Set

Figure 2: Illustrating the zonotope propagation through a linear layer and a nonlinear layer as the
”shadows” of the same hypercube: (a) The input set in the input space; (b) The output of the linear
layer, which rotates and offsets the input set; (c) The output of the nonlinear layer tilts the hypercube
to add the approximation errors. Using the hypercube, the unsafe set () is transferred from the
output space to the input space. Additionally, the hypercube is split along a hyperplane () to
exploit the piecewise linearity of the ReLU-activation function.

For input set X =
〈
0, 2−1/2 I2

〉
Z

, the hidden setH1 and the Y are computed using Prop. 1:

H1 = 2
−1/2

[
1 −1
1 1

]
X +

[
1
0

]
=

〈[
1
0

]
, 1/2

[
1 −1
1 1

]〉
Z

,

Y = diag

([
1
1/2

])
H1 +

[[
0
0

]
,

[
0
1/2

]]
=

〈[
1
1/4

]
, 1/4

[
2 −2 0
1 1 1

]〉
Z

.
(5)

The approximation slope and errors for enclosing the output of the ReLU-activation function are
computed using (Koller et al., 2025, Prop. 10). For each input x ∈ X and its corresponding output
y = Φ(x) ∈ Y , we use the definition of a zonotope (Def. 2) to obtain β ∈ [−1, 1]3 such that

x =

[
1/

√
2 0

0 1/
√
2

]
β([2]), y =

[
1
1/4

]
+

[
1/2 −1/2
1/4 1/4

]
β([2]) +

[
0
1/4

]
β(3). (6)

The input x and the output y are represented using the same factors β([2]) with an additional
factor β(3) for the approximation error. We can use an unsafe set y(1) ≥ 3/2 to formluate con-
straints (in Fig. 2) on the factors β([2]) of the input:

y(1) ≥ 3/2
(6)⇐⇒ 1 + [1/2 −1/2]β([2]) + 0β(3) ≥ 3/2 ⇐⇒ [−1/2 1/2]︸ ︷︷ ︸

=C

β([2]) ≤ −1/2︸︷︷︸
=d

. (7)

Therefore, all unsafe inputs are enclosed by X|C≤d. Analogously, we can split the set along h1 ≤
0 ⇐⇒ [1/2 1/2]β([2]) ≤ 0, for h1 ∈ H1, to exploit the piecewise linearity of the ReLU-activiation
function (in Fig. 2).

As example 1 demonstrates, we can contrain the input set with an unsafe set in the output space by
exploiting the dependencies between the considered sets through the latent space. Prop. 2 formalizes
an input refinement based on our observations.
Proposition 2 (Enclosing Unsafe Inputs). Given are a neural network Φ: Rn0 → Rnκ , an input
set X = ⟨cx, Gx⟩Z ⊂ Rn0 with Gx ∈ Rn0×q0 , and an unsafe set U = ⟨A, b⟩H ⊂ Rnκ . Let
Y = ⟨cy, Gy⟩Z = enclose(Φ,X) be an enclosure of the output set with Gy ∈ Rnκ×qκ . We enclose
all unsafe inputs with

{x ∈ X | Φ(x) ∈ U} ⊆ X |C≤d,
where C := AGy(·,[q0]) and d := b−Acy +

∣∣AGy(·,[qκ]\[q0])
∣∣1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

−1 0 1

−1

0

1

1

2

3

4

(a) Input Space

−1 0 1

−3

−2

−1

1

2
3

4

(b) Output Space

Constrained Zonotope Unsafe Set Exact Output Set Unsafe Output Set

Figure 3: Illustration of an iterative refinement of the input set: The input set is iteratively re-
fined (Prop. 2). After the fourth iteration, the intersection with the unsafe set is empty, and the
neural network is verified.

Proof. See Appendix D.

We can iteratively apply Prop. 2 to refine the input set to minimize the intersection of the computed
output set and the unsafe set. During each iteration, we transfer the unsafe set from the output
space to the input space to remove the parts of the input set that are provably safe. In Fig. 3, we
iterate Prop. 2 until the intersection of the output set and the unsafe set is empty, and thus the problem
is verified.

4 SET-BASED FALSIFICATION, VERIFICATION, AND INPUT REFINEMENT

For the fast and practical verification of neural networks, we integrate our novel input refine-
ment (Prop. 2) into a branch-and-bound procedure (Alg. 1), where we utilize the enclosed output
set for verification, falsification, and input refinement. In each iteration, we perform the following
computations: (i) The output set of the current input set is enclosed (Prop. 1). (ii) The intersection
with the unsafe set is checked (Sec. 4.1). (iii) If the intersection is non-empty, the verification is
inconclusive, and falsification is attempted (Sec. 4.2). (iv) Finally, if we cannot verify the input set
nor find a counterexample, we refine the input set (Prop. 2). Moreover, we reduce the conservatism
of the zonotope propagation by splitting the refined input set through additional constraints of the
hypercube (Scott et al., 2016, Prop. 3); e.g., we can formulate constraints that exploit the piecewise
linearity of the ReLU-activation function (in Fig. 2). Please see Appendix B for details on our
splitting heuristic. The subsequent subsections describe the steps of Alg. 1 in detail.

4.1 SET-BASED VERIFICATION

We compute the output set Y = ⟨cy, Gy⟩Z ⊂ Rnκ of the current input set using Prop. 1 and check
if the intersection with the unsafe set U = ⟨A, b⟩H ⊂ Rnκ with A ∈ Rp×nκ is empty (Scott et al.,
2016, Prop. 2):

∃i ∈ [p] : A(i,·) cy −
∣∣A(i,·) Gy

∣∣1 > b(i) =⇒ Y ∩ U = ∅. (8)

4.2 SET-BASED FALSIFICATION

If we cannot verify the current input set, we try to find a counterexample within it. For that, we utilize
the latent space (Sec. 3) to identify the input for a boundary point of the intersection of the enclosed
output set and the unsafe set. For each normal vector of the unsafe set specification A(i,·) ∈ Rnκ ,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1: Set-based verification algorithm. We store input sets in a queue and use the oper-
ations initQueue, isNonEmpty, enqueue, and dequeue from (Knuth, 1997, Sec. 2.2.1)
Data: Neural network Φ: Rn0 → Rnκ , input set X = ⟨cx, Gx⟩Z ⊂ Rn0 , unsafe set

U = ⟨A, b⟩H ⊂ Rnκ

Result: Verification result: VERIFIED, FALSIFIED(x̃) with counterexample x̃ ∈ X
1 function verify(Φ,X ,U)
2 Q← initQueue(), i← 1 // Initialize queue & counter.

3 Q.enqueue(X) // Add the initial input set.

4 while Q.isNonEmpty() do
5 Xi ← Q.dequeue() // Get the next input set.

6 Yi ← enclose(Φ,Xi) // Enclose the output set (Prop. 1).

7 if Yi ∩ U = ∅ then // 1. Verification (Sec. 4.1)

8 continue // Verified input set.

9 else // 2. Falsification (Sec. 4.2)

10 x̃i ← Compute an adversarial input. // (9)

11 ỹi ← Φ(x) // Compute the adversarial output (Def. 1).

12 if ỹi ∈ U then
13 return FALSIFIED(x̃i) // Found an unsafe input.

14 else // 3. Refinement & Splitting (Prop. 2, Appendix B)

15 C, d← Compute the constraints for the input set. // Prop. 2

16 Xi|C1≤d1
, . . . ,Xi|Cξ≤dξ

← Refine and split the input set. // Prop. 2, (Scott

et al., 2016, Prop. 3)

17 Q.enqueue
(
Xi|C1≤d1

, . . . ,Xi|Cξ≤dξ

)
// Add new sets to the queue.

18 i← i+ 1 // Increment the counter.

19 end
20 end
21 end
22 return VERIFIED // Queue is empty; verified all input sets.

for i ∈ [p], we compute a boundary point (Althoff & Frehse, 2016, Lemma 1):

β̃i = sign
(
A(i,·) Gy

)
, ỹ = cy +Gy β̃i. (9)

Finally, we check if the corresponding input x̃ = cx+Gx β̃([q0]) ∈ X in the input setX = ⟨cx, Gx⟩Z
with Gx ∈ Rn0×q0 is a counterexample, i.e., whether Φ(x̃) ∈ U .

5 EVALUATION

We have implemented our verification algorithm in MATLAB. To make our evaluation as trans-
parent and reproducible as possible, we compare the results of our tool on benchmarks from the
neural network verification competition 2024 (VNN-COMP’24) Brix et al. (2024) with the top-5
tools of last year’s competition: α-β-CROWN Wang et al. (2021), NeuralSAT Duong et al. (2023),
PyRat Lemesle et al. (2024), Marabou Wu et al. (2024), and nnenum Bak (2021).

Tab. 1 presents the results for 8 competitive and standardized benchmarks of the VNN-
COMP’24 Brix et al. (2024). Please see Appendix A for details. Across all benchmarks, our ver-
ification algorithm achieves competitive performance, even matching the top performance in four
benchmarks. These results would place our tool in the top 5 of the competition.

5.1 ABLATION STUDIES

We run extensive ablation studies to justify the different design choices of our algorithm.

Input Refinement We evaluate the improvement through our input refinement (Tab. 2a). There-
fore, we compare the number of subproblems required for verifying instances with (✓) and with-
out (✗) our input refinement enabled: We observe that our refinement reduces the number of sub-
problems by 60.5% for acasxu and 24.8% for safenlp.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Main Results [%Solved ↑ (#Verified / #Falsified)].

Tool acasxu
collins

-rul-cnn
cora

dist

-shift

linear

-izenn

meta

-room
safenlp

tllverify

-bench

Ours 99.5% 100.0% 81.1% 98.6% 100.0% 97.0% 89.2% 100.0%
(138 / 47) (30 / 32) (18 / 128) (63 / 8) (59 / 1) (90 / 7) (311 / 652) (15 / 17)

Results from VNN-COMP’24 Brix et al. (2024)

α-β-CROWN 100.0% 100.0% 87.8% 98.6% 100.0% 98.0% 100.0% 100.0%
(139 / 47) (30 / 32) (24 / 134) (63 / 8) (59 / 1) (91 / 7) (421 / 659) (15 / 17)

NeuralSAT 98.9% 100.0% 87.2% 98.6% 100.0% 98.0% 90.5% 100.0%
(138 / 46) (30 / 32) (23 / 134) (63 / 8) (59 / 1) (91 / 7) (327 / 650) (15 / 17)

PyRAT 98.9% 93.5% 83.3% 98.6% 100.0% 97.0% 79.9% 100.0%
(137 / 47) (30 / 28) (22 / 128) (63 / 8) (59 / 1) (91 / 6) (277 / 586) (15 / 17)

Marabou 96.2% 100.0% 86.7% 95.8% 100.0% 53.0% 62.5% 93.8%
(134 / 45) (30 / 32) (22 / 134) (62 / 7) (59 / 1) (46 / 7) (300 / 375) (13 / 17)

nnenum 99.5% 100.0% 14.4 – 98.3% 46.0% 89.2% 56.2%
(139 / 46) (30 / 32) (20 / 6) (– / –) (59 / 0) (44 / 2) (321 / 642) (2 / 16)

Table 2: Ablation studies.

(a) without (✗) vs. with (✓) Input Refinement

Input Refinement acasxu safenlp

✗ ✓ (Ours) ✗ ✓ (Ours)

avg. #Sub- 2 104.1 830.2 12 774.3 9 598.1
problems ↓ (max) (133 438) (36 134) (293 303) (180 015)

%Solved ↑ 99.5% 99.5% 80.9 89.2%
(#Verified / #Falsified) (138 / 47) (138 / 47) (299 / 575) (311 / 652)

avg. Time ↓ 1.2s 1.5s 5.1s 2.6s

(b) GPU vs. CPU
[avg. Time ↓ (%Solved ↑)]

Method
(Batch Size) acasxu safenlp

CPU (1) 7.3s 3.6s
(95.2%) (83.1%)

GPU (128) 1.7s 2.9s
(99.5%) (86.8%)

GPU (1024) 1.5 2.6s
(99.5%) (89.2%)

GPU Acceleration and Batch Size We demonstrate the efficacy and speed up of the GPU ac-
celeration by comparing the results of the acasxu and safenlp benchmark computed on a
CPU (Tab. 2b): The GPU acceleration enables a significant speed up, which allows the verifica-
tion of more instances within the allotted timeout, i.e., the GPU speeds up the verification by 79.4%
on acasxu and 38.5% on safenlp.

Table 3: Falsification [#Falsi-
fied ↑ (%Solved)].

Falsification safenlp

(≤ 50 iter.)

FGSM 257 (23.8%)
Ours 647 (59.9%)

Falsification Method We compare our set-based adversar-
ial attack (Sec. 4.2) against the fast-gradient-sign method
(FGSM) Goodfellow et al. (2015) on the safenlp benchmark.
Tab. 3 shows the number of instances falsified within the first 50
iterations to compare the falsification strength without influence
from the runtime. Our set-based adversarial attack outperforms
FGSM by falsifying 60.3% more instances. Further, the main re-
sults (Tab. 1) show that in most benchmarks we match the falsifica-
tion performance of the top tools.

6 RELATED WORK

Neural Network Verification and Adversarial Attacks Most algorithms for neural network ver-
ification either (i) formulate an optimization or constraint satisfaction problem and apply an of-
f-the-shelf solver, e.g., satisfiability modulo theories Katz et al. (2017); Duong et al. (2023); Wu
et al. (2024) or (mixed-integer) linear programming Singh et al. (2019b); Müller et al. (2022), or
(ii) use abstract interpretation or reachability analysis to enclose the intersection of the specification
with the output of the neural network Gehr et al. (2018); Wang et al. (2018); Singh et al. (2019a);
Wang et al. (2021); Kochdumper et al. (2023); Ladner & Althoff (2023); Lemesle et al. (2024).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The most common abstract domains or set representations are intervals Gehr et al. (2018), zono-
topes Gehr et al. (2018), or polytopes Müller et al. (2022); Zhang et al. (2018); Singh et al. (2019a),
that use linear relaxations of activation functions for the propagation. More complex set representa-
tions can enclose the output set more tightly, e.g., polynomial zonotopes Kochdumper et al. (2023),
hybrid zonotopes Ortiz et al. (2023), star sets Bak (2021); however, due to higher computational cost,
these approaches do not scale to large neural networks. The results of multiple abstract domains
can be combined to obtain a tighter enclosure Lemesle et al. (2024). A popular abstract domain,
DeepPoly/CROWN Singh et al. (2019a); Zhang et al. (2018), uses bounded polytopes, which are
represented as the intersection of linear bounds and intervals. Further, gradient-based optimization
can be applied to bounding parameters to tighten the computed enclosure Wang et al. (2021).

If formal verification is computationally infeasible, an alternative is to falsify neural networks using
adversarial attacks. Often, gradient-based attacks are fast and effective at finding adversarial per-
turbations Goodfellow et al. (2015); Kurakin et al. (2017). Further, stronger adversarial examples
can be computed with optimization-based approaches Carlini & Wagner (2017). Our set-based fal-
sification does not require the gradient of the neural network while being faster to compute than an
optimization problem.

Iterative Neural Network Refinement There are different iterative refinement approaches, e.g.,
refining bounds using (mixed-integer) linear programs Wang et al. (2018); Singh et al. (2019b);
Yang et al. (2021), counterexample guided abstraction refinement Wu et al. (2024), and refining
the hyperparameters of output set enclosure Xu et al. (2021); Ladner & Althoff (2023). Our novel
specification-driven input refinement iteratively encloses the set of inputs that cause an intersection
with an unsafe set in the output space. Therefore, our refinement does not require tuning hyper-
parameters or solving expensive (mixed-integer) linear programs. The refinement procedure uses
dependencies between propagated zonotopes, which can be used to simplify computations for reach-
ability analysis or identify falsifying states Kochdumper et al. (2020).

Further, our input refinement can be used to enclose the preimage of a neural network. Linear
bounding techniques can be used to enclose preimages by solving multiple linear programs to com-
pute bounds with respect to constraints or dimensions separately Kotha et al. (2023); Zhang et al.
(2024). Conversely, we compute a zonotope enclosing the preimage that we optimize with an itera-
tive procedure with respect to all constraints and dimensions simultaneously.

Branch-and-Bound Algorithms and Splitting Heuristics For large neural networks, most ver-
ification approaches are too conservative. Therefore, in practice, most verification approaches use
a branch-and-bound procedure that recursively splits the verification problem into smaller subprob-
lems that are easier to solve Brix et al. (2023; 2024), e.g., by exploiting the piece-wise linearity of the
ReLU-activation function. There are various approaches and heuristics for splitting a verification
problem, e.g., largest radius, largest approximation error and its effect on the output constraints Hen-
riksen & Lomuscio (2021), gradient or sensitivity-based heuristics to estimate the impact of a neuron
on the output Balunovic et al. (2019); Ladner & Althoff (2023), magnitude of the coefficient of lin-
ear relaxation Durand et al. (2022), largest unstable neuron in the first undecidable layer Yin et al.
(2022), multi-neuron constraints Ferrari et al. (2022), least unstable neuron Duong et al. (2023).

7 CONCLUSION

In this paper, we construct a novel latent space for an iterative refinement procedure to speed up
the formal verification of neural networks. The latent space is constructed from the propagation of
projection-based set representations, e.g., zonotopes, through the layers of a neural network. Our
procedure iteratively refines an enclosure of the set of unsafe inputs by using the latent space to
constrain the input set with the unsafe set from the output space. We integrate our refinement proce-
dure into a branch-and-bound neural network verification algorithm. In an extensive evaluation, we
show a significant reduction in the number of recursive splits required for verification. Moreover,
we show that our algorithm achieves competitive performance compared to the top-5 tools of the last
neural network verification competition. In summary, our novel latent space presents a promising
new direction for the formal verification of neural networks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Matthias Althoff. Reachability analysis and its application to the safety assessment of autonomous
cars. PhD thesis, Technische Universität München, 2010.

Matthias Althoff. An introduction to CORA 2015. In ARCH Workshop, pp. 120–151, 2015.

Matthias Althoff and Goran Frehse. Combining zonotopes and support functions for efficient reach-
ability analysis of linear systems. In CDC, pp. 7439–7446, 2016.

Stanley Bak. nnenum: Verification of relu neural networks with optimized abstraction refinement.
In NASA formal methods symposium, pp. 19–36, 2021.

Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, and Martin Vechev. Certi-
fying geometric robustness of neural networks. In NeurIPS, volume 32, 2019.

Christopher Bishop. Pattern recognition and machine learning. Springer New York, NY, 2006.

Christopher Brix, Mark Niklas Müller, Stanley Bak, Taylor Johnson, and Changliu Liu. First three
years of the international verification of neural networks competition (VNN-COMP). STTT, 25
(3):329–339, 2023.

Christopher Brix, Stanley Bak, Taylor Johnson, and Haoze Wu. The fifth international verifica-
tion of neural networks competition (VNN-COMP 2024): Summary and results. arXiv preprint
arXiv:2412.19985, 2024.

Rudy Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan Mudigonda. A unified view
of piecewise linear neural network verification. In NeurIPS, volume 31, 2018.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In IEEE
SSP, pp. 39–57, 2017.

Pranav Singh Chib and Pravendra Singh. Recent advancements in end-to-end autonomous driving
using deep learning: A survey. IEEE T-IV, 9(1):103–118, 2023.

Christophe Combastel. Zonotopes and Kalman observers: Gain optimality under distinct uncertainty
paradigms and robust convergence. Automatica, 55:265–273, 2015.

Hai Duong, ThanhVu Nguyen, and Matthew Dwyer. A dpll (t) framework for verifying deep neural
networks. arXiv preprint arXiv:2307.10266, 2023.

Serge Durand, Augustin Lemesle, Zakaria Chihani, Caterina Urban, and François Terrier. ReCIPH:
Relational coefficients for input partitioning heuristic. In WFVML, 2022.

Claudio Ferrari, Mark Niklas Müller, Nikola Jovanović, and Martin Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. In ICLR, 2022.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar-
tin Vechev. Ai2: Safety and robustness certification of neural networks with abstract interpreta-
tion. In IEEE SSP, pp. 3–18, 2018.

Antoine Girard. Reachability of uncertain linear systems using zonotopes. In HSCC, pp. 291–305,
2005.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

Patrick Henriksen and Alessio Lomuscio. DEEPSPLIT: An efficient splitting method for neural
network verification via indirect effect analysis. In IJCAI, pp. 2549–2555, 2021.

Ahmed Irfan, Kyle D. Julian, Haoze Wu, Clark Barrett, Mykel J. Kochenderfer, Baoluo Meng,
and James Lopez. Towards verification of neural networks for small unmanned aircraft collision
avoidance. In DASC, pp. 1–10, 2020.

Radoslav Ivanov, James Weimer, Rajeev Alur, George Pappas, and Insup Lee. Verisig: verifying
safety properties of hybrid systems with neural network controllers. In HSCC, pp. 169–178, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583–589, 2021.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In CAV, pp. 97–117, 2017.

Donald Knuth. The Art of Computer Programming, volume 1: Fundamental Algorithms. Addison-
Wesley, 1997.

Niklas Kochdumper, Bastian Schürmann, and Matthias Althoff. Utilizing dependencies to obtain
subsets of reachable sets. In HSCC, 2020.

Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stanley Bak. Open- and closed-loop
neural network verification using polynomial zonotopes. In NASA Formal Methods, pp. 16–36,
2023.

Lukas Koller, Tobias Ladner, and Matthias Althoff. Set-based training for neural network verifica-
tion. TMLR, 2025.

Suhas Kotha, Christopher Brix, Zico Kolter, Krishnamurthy Dvijotham, and Huan Zhang. Provably
bounding neural network preimages. In NeurIPS, 2023.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In ICLR,
2017.

Tobias Ladner and Matthias Althoff. Automatic abstraction refinement in neural network verification
using sensitivity analysis. In HSCC, pp. 1–13, 2023.

Augustin Lemesle, Julien Lehmann, and Tristan Le Gall. Neural network verification with pyrat.
arXiv preprint arXiv:2410.23903, 2024.

Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev.
PRIMA: general and precise neural network certification via scalable convex hull approximations.
PACMPL, 6(POPL), 2022.

Joshua Ortiz, Alyssa Vellucci, Justin Koeln, and Justin Ruths. Hybrid zonotopes exactly represent
relu neural networks. In CDC, pp. 5351–5357, 2023.

Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

Joseph Scott, Davide Raimondo, Giuseppe Roberto Marseglia, and Richard Braatz. Constrained
zonotopes: A new tool for set-based estimation and fault detection. Automatica, 69:126–136,
2016.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for certi-
fying neural networks. PACMPL, 3(POPL), 2019a.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. Boosting robustness certifica-
tion of neural networks. In ICLR, 2019b.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In NeurIPS, pp. 6369–6379, 2018.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and Zico Kolter. Beta-
crown: Efficient bound propagation with per-neuron split constraints for neural network robust-
ness verification. NeurIPS, 34:29909–29921, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haoze Wu, Omri Isac, Aleksandar Zeljić, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan
Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, et al. Marabou 2.0: a versatile formal analyzer
of neural networks. In CAV, pp. 249–264, 2024.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. In ICLR, 2021.

Pengfei Yang, Renjue Li, Jianlin Li, Cheng-Chao Huang, Jingyi Wang, Jun Sun, Bai Xue, and Lijun
Zhang. Improving neural network verification through spurious region guided refinement. In
TACAS, pp. 389–408, 2021.

Banghu Yin, Liqian Chen, Jiangchao Liu, and Ji Wang. Efficient complete verification of neural
networks via layerwised splitting and refinement. IEEE TCAD, 41(11):3898–3909, 2022.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. NeurIPS, 31, 2018.

Xiyue Zhang, Benjie Wang, and Marta Kwiatkowska. Provable preimage under-approximation for
neural networks. In TACAS, 2024.

Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20
years: A survey. Proc. IEEE, 111(3):257–276, 2023.

A APPENDIX – EVALUATION DETAILS

For the evaluation, we implement our verification algorithm in MATLAB using the CORA Al-
thoff (2015) toolbox. To avoid an unfair comparison with the results of the VNN-COMP’24 Brix
et al. (2024), we run all our evaluations on a laptop with inferior hardware compared to the VNN-
COMP’24, i.e., Intel Core i7-13700H and a NVIDIA RTX 4070 Laptop GPU (8GB). The compe-
tition uses servers that are equipped with an NVIDIA A10G GPU with significantly more memory
(24GB) (Brix et al., 2024, Sec. 2).

The selected benchmarks are taken from the VNN-COMP’24 Brix et al. (2024): acasxu a stan-
dard benchmark used by many prior works containing neural networks for airborne collision detec-
tion; collins-rul-cnn containing neural networks for condition-based maintenance; cora and
metaroom containing neural networks for high-dimensional image classification; dist-shift
containing neural networks for distribution shift detection; linearizenn containing neural net-
works for an autonomous aircraft taxiing system; safenlp containing neural networks for sentence
classification; tllverifybench containing two-level lattice neural networks.

Our selection of the top-5 tools is based on the ranking after the tool updates that resolved many
penalties due to incorrectly formatted counterexamples (Brix et al., 2024, Tab. 35).

B APPENDIX – ENCLOSURE-GRADIENT SPLITTING HEURISTIC

In each iteration of our verification algorithm (Alg. 1), we split each input set along the middle
of an input dimension or exploit the piece-wise linearity of an unstable ReLU-neuron. Typical
gradient-based splitting heuristics use the local gradient of the neural network to rank the importance
of different input dimensions or neurons Balunovic et al. (2019); Ladner & Althoff (2023). The
local gradient does not explicitly consider effects of splitting input dimensions or neurons on the
conservatism of the enclosure, i.e., a split does not guarantee a tighter enclosure. Therefore, we
compute the gradient of the size of the output set with respect to the enclosure. Thus, with each split
we can guarantee a reduction in the conservatism of the enclosure. We use the F-radius to measure
the size of the output enclosure Y = ⟨cy, Gy⟩Z = enclose(Φ,X), i.e., the F-radius is defined as the

Frobenius norm of the generator matrix (Combastel, 2015, Def. 3): ∥Y∥F :=
√∑n

i=1

∑q
j=1 G

2
y(i,j).

Intuitively, we use the gradient of the F-radius to measure the contribution of an input dimension or
an approximation error to the overall size of the output enclosure. For an input dimension i ∈ [n0],
we compute the score

s(i) = r(i) ∇r(i)∥Y∥F , (10)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 4: Splitting Heuristics.

Heuristic
+ Input Refinement Prop. 2

%Solved ↑
(#Verified / #Falsified) avg. Time ↓ avg. #Subproblems

(max) ↓
acasxu

Local Gradient 98.4% 3.7s 11 546.18
(136 / 47) (430 403)

Enclosure Gradient (Ours) 99.5% 1.5s 830.2
(138 / 47) (36 134)

safenlp

Local Gradient 87.4% 2.8s 6 334.1
(297 / 647) (177 123)

Enclosure Gradient (Ours) 89.2% 2.6s 4 700.31

(311 / 652) (138 367)

where the r = |Gx|1 is the radius of the input set X = ⟨cx, Gx⟩Z ⊂ Rn0 . If the k-th layer is a
ReLU-activation layer, for k ∈ [κ], we compute the score for the i-th neuron, for i ∈ [nk], by

s(Lk, i) = ek(i) ∇ek(i)
∥Y∥F , (11)

where ek = 1/2 (ek − ek) is the radius of the approximation error. In each iteration, we split the
input dimension or the neuron with the largest score.

In Tab. 4, we compare our enclosure-gradient heuristic against a local-gradient heurtistic defined
as Ladner & Althoff (2023)

s(i) = r(i) ∥∇r(i)y∥2 s(Lk, i) = ek(i) ∥∇ek(i)
y∥2, (12)

where y ∈ Rnκ is the output of the neural network for the center of the input set, i.e., y = Φ(cx). Our
enclosure-gradient heuristic outperforms the local-gradient heuristic on the considered benchmarks
(acasxu and safenlp), demonstrating its effectiveness.

C APPENDIX – IMPLEMENTATION TRICKS

We efficiently implement our algorithm with only matrix operations to take full advantage of GPU
acceleration. Further, to make our algorithm practical, we reduce the memory footprint by only
storing the bounds of the constrained zonotopes in the queue. We use zonotopes for the set prop-
agation (line 1). However, we compute the bounds of a constrained zonotope before an enqueue
operation.

Computing the bounds of constrained zonotopes requires solving two linear programs for each di-
mension, which limits GPU acceleration. Hence, we avoid solving linear programs by efficiently
approximating the bounds of a constrained zonotope by approximating the bounds of the constrained
hypercube (Prop. 3). The approximation is inspired by the Fourier-Motzkin elimination (Schrijver,
1998, Sec. 12.2).

To avoid clutter, we introduce further notation: For a matrix A ∈ Rn×m, we denote the matrix with
all non-positive entries set to zero with A+ ∈ R≥0, i.e., A+ = 1/2 (A+ |A|); the matrix A− ∈ R≥0

is defined analogously.

Proposition 3 (Bounds of Bounded Polytope). A constrained hypercube P = ⟨C, d⟩H ∩[
β
0
, β0

]
⊂ Rq with C ∈ Rp×q and d ∈ Rp is enclosed by

[
β, β

]
, i.e., P ⊆

[
β, β

]
. For

each dimension j ∈ [q], let Σ\{j} := Iq − ej e
⊤
j , and for each i ∈ [p], let C(i,j) :=

1To provide a fair comparison, we only compute the number of verified subproblems across the instances
solved by both heuristics. The additional instances solved with the enclosure-gradient heuristic would inflate
the number of verified subproblems, i.e., avg. #Subproblems: 9 598.2 and max. #Subproblems of 180 015.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(d(i) − C+
(i,·) Σ\{j} β0

− C−
(i,·) Σ\{j} β0)/C(i,j). The bounds of P are computed by

β
(j)

= max {C(i,j) | i ∈ [p] : C(i,j) < 0} ∪ {β
0(j)
},

β(j) = min {C(i,j) | i ∈ [p] : C(i,j) > 0} ∪ {β0(j)}.

Proof. We fix a point β ∈ P and indices i ∈ [p] and j ∈ [q] and show that β ∈
[
β, β

]
. From the

definition of a polytope, it holds that: C(i,·) β ≤ d(i). By rearranging the terms, we obtain

C(i,·) β ≤ d(i) ⇐⇒ C(i,j) β(j) ≤ d(i) −
∑

k∈[q]\{j}

C(i,k) β(k) = d(i) − C(i,·) Σ\{j} β.

We split cases on the sign of C(i,j):

Case 1 (C(i,j) < 0). We obtain a lower bound for β(j):
d(i) − C(i,·) Σ\{j} β

C(i,j)
≤ β(j).

Using the initial bounds, i.e., β
0(j)
≤ β(j) ≤ β0(j), we can approximate the bounds of β(j):

β(j)

(C(i,j)<0)

≥ d(i) − C(i,·) Σ\{j} β

C(i,j)
≥ min

β̃∈P

d(i) − C(i,·) Σ\{j} β̃

C(i,j)
≥ min

β̃∈[β
0
,β0]

d(i) − C(i,·) Σ\{j} β̃

C(i,j)

=
d(i) −minβ̃∈[β

0
,β0]

C(i,·) Σ\{j} β̃

C(i,j)
=

d(i) − C+
(i,·) Σ\{j} β0

− C−
(i,·) Σ\{j} β0

C(i,j)
= C(i,j).

Case 2 (C(i,j) > 0). We obtain an upper bound for β(j):

β(j) ≤
d(i) − C(i,·) Σ\{j} β

C(i,j)
.

Using the initial bounds, i.e., β
0(j)
≤ β(j) ≤ β0(j), we can approximate the bounds of β(j):

β(j)

(C(i,j)>0)

≤ d(i) − C(i,·) Σ\{j} β

C(i,j)
≤ max

β̃∈P

d(i) − C(i,·) Σ\{j} β̃

C(i,j)
≤ max

β̃∈[β
0
,β0]

d(i) − C(i,·) Σ\{j} β̃

C(i,j)

=
d(i) −minβ̃∈[β

0
,β0]

C(i,·) Σ\{j} β̃

C(i,j)
=

d(i) − C+
(i,·) Σ\{j} β0

− C−
(i,·) Σ\{j} β0

C(i,j)
= C(i,j).

Each row i of the constraint matrix C generates an inequality for each dimension j of β. Thus, with
β ∈

[
β
0
, β0

]
, we set β

(j)
to maximum lower bound and β(j) to minimum lower bound.

Note that Prop. 3 can be iterated: For P = ⟨C, d⟩H ∩
[
β
0
, β0

]
with bounds

[
β, β

]
, it holds that

P = ⟨C, d⟩H ∩
[
β, β

]
; thus, Prop. 3 can be applied again to obtain potentially smaller bounds.

Fig. 4 illustrates the approximated bounds and exact bounds of a bounded polytope.

The bounds of a constrained zonotope Z|C≤d ⊂ Rn with Z = ⟨c,G⟩Z can be approximated by
applying an affine map to the bounds

[
β, β

]
⊆ Bq of its constrained hypercube:

Z|C≤d ⊆ c⊕G− [
β, β

]
⊕G+

[
β, β

]
. (13)

In Tab. 5, we evaluate the effects of our fast bounding a constraint zonotope (Prop. 3) on the ver-
ification accuracy. We turned off the timeout because with the exact bounds, we could not verify
any instance within the allotted time. Both approaches can verify all instances, and as expected,
computing the exact bounds is significantly slower, i.e., the average verification time is 823.3s vs.
1.0s for our fast bound approximation. Further, the exact bounds only marginally reduce the number
of verified subproblems, i.e., on average 276.98 vs. 277.58 for the fast bound approximation, which
indicates that our approximated bounds are sufficiently tight for the verification of neural networks.

2Computing the exact bounds of a high-dimensional constrained zonotope is computationally expensive,
thus, we can only compare our approximation on the first 45 instances of the acasxu benchmark (prop1).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Approx. Bounds [x, x] Initial Bounds [x0, x0]

Polytope P Exact Bounds

Figure 4: Illustrating the approximated bounds (Prop. 3) and the exact bounds of a bounded poly-
tope.

Table 5: Approximation of Constraint Zonotope Bounds.

Exact Bounds acasxu2

✓ ✗ (Prop. 3)

avg. #Sub- 276.98 277.58
problems ↓ (max) (1 045) (1 051)

%Solved ↑ 100% 100%
(#Verified / #Falsified) ↑ (45 / 0) (45 / 0)

avg. Time ↓ 823.3s 1.0s

D APPENDIX – PROOFS

Proposition 2. Given are a neural network Φ: Rn0 → Rnκ , an input set X = ⟨cx, Gx⟩Z ⊂ Rn0

with Gx ∈ Rn0×q0 , and an unsafe set U = ⟨A, b⟩H ⊂ Rnκ . Let Y = ⟨cy, Gy⟩Z = enclose(Φ,X)
be an enclosure of the output set with Gy ∈ Rnκ×qκ . We enclose all unsafe inputs with

{x ∈ X | Φ(x) ∈ U} ⊆ X |C≤d,

where C := AGy(·,[q0]) and d := b−Acy +
∣∣AGy(·,[qκ]\[q0])

∣∣1.

Proof. We fix an unsafe input x ∈ {x ∈ X | Φ(x) ∈ U}. Let y = Φ(x) be its corresponding
output. We use the definition of the unsafe set U and the definition of a zonotope, i.e., there are
factors β ∈ Bqκ s.t.

y = cy +Gy β. (14)

For an unsafe output, we have the following inequality:

y ∈ U (14)⇐⇒ A (cy +Gy β) ≤ b ⇐⇒ AGy β ≤ b−Acy .

Please note that the first q0 factors of the output y are the factors of the input x, i.e., x = cx +
Gx β([q0]). Our goal is to constrain the factors β([q0]). Therefore, we rearrange the terms

AGy β ≤ b−Acy ⇐⇒ AGy(·,[q0]) β([q0]) +AGy(·,[qκ]\[q0]) β([qκ]\[q0]) ≤ b−Acy

⇐⇒ C β([q0]) ≤ b− (Acy +AGy(·,[qκ]\[q0]) β([qκ]\[q0])).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We bound the right-hand side to get to obtain constraints C β([q0]) ≤ d on the factors of x:

C β([q0]) ≤ b− (Acy +AGy(·,[qκ]\[q0]) β([qκ]\[q0])) ≤ b−Acy +
∣∣AGy(·,[qκ]\[q0])

∣∣1 = d.

Thus, we conclude that the input x is contained in the constrained input set X :

x ∈ X |C≤d.

The following corollary proves the soundness of our refinement for neural network verification and
falsification.
Corollary 1. Given a neural network Φ: Rn0 → Rnκ , an input set X ⊂ Rn0 , and unsafe set
U = ⟨A, b⟩H ⊂ Rnκ , the refinement of the input set (Prop. 2) can be used for verification and
falsification

Φ(X|C≤d) ∩ U = ∅ ⇐⇒ Φ(X) ∩ U = ∅,
∃x ∈ X |C≤d : Φ(x) ∈ U ⇐⇒ ∃x ∈ X : Φ(x) ∈ U .

Proof. With Prop. 2 we obtain X \ X |C≤d ⊆ {x ∈ X | Φ(x) /∈ U}, and therefore, we have
Φ(X \ X |C≤d) ∩ U = ∅ and ¬(∃x ∈ X \ X |C≤d : Φ(x) ∈ U). Thus,

Φ(X|C≤d) ∩ U = ∅ ⇐⇒ Φ(X|C≤d) ∩ U = ∅ ∧ Φ(X \ X |C≤d) ∩ U = ∅
⇐⇒ (Φ(X|C≤d) ∪ Φ(X \ X |C≤d)) ∩ U = ∅
⇐⇒ Φ(X) ∩ U = ∅,

∃x ∈ X |C≤d : Φ(x) ∈ U ⇐⇒ ∃x ∈ X |C≤d : Φ(x) ∈ U ∨ ∃x ∈ X \ X |C≤d : Φ(x) ∈ U
⇐⇒ ∃x ∈ (X|C≤d ∪ X \ X |C≤d) : Φ(x) ∈ U
⇐⇒ ∃x ∈ X : Φ(x) ∈ U .

E DISCLOSURE – USAGE OF LARGE LANGUAGE MODELS (LLMS)

We employed a large language model (LLM) as a general-purpose tool to refine the writing and
enhance clarity of expression. All research ideas, methodology, analysis, and conclusions are solely
the work of the authors.

16

	Introduction
	Preliminaries
	Notation
	Feed-Forward Neural Networks
	Set-Based Computing
	Formal Verification of Neural Networks
	Problem Statement

	A Novel View on Zonotope Propagation
	Set-Based Falsification, Verification, and Input Refinement
	Set-Based Verification
	Set-Based Falsification

	Evaluation
	Ablation Studies

	Related Work
	Conclusion
	Appendix – Evaluation Details
	Appendix – Enclosure-Gradient Splitting Heuristic
	Appendix – Implementation Tricks
	Appendix – Proofs
	Disclosure – Usage of Large Language Models (LLMs)

