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Abstract
Mathematical inverse problems of determining
a governing differential equation for given solu-
tion data remain a fundamental challenge. To
find a working example of AI for math, we pro-
vide a concrete example using a physical setup
of a quantum gravity problem. We present a
novel sparse Neural Network (NN) model which
is interpretable, to solve the inverse problem: the
AdS/CFT correspondence. According to the con-
jectured correspondence, a special condensed mat-
ter system on a ring is equivalent to a gravity sys-
tem on a bulk disk. The inverse problem is to
reconstruct the higher-dimensional gravity metric
from the data of the condensed matter system. We
use the response functions of a condensed matter
system as our data, and by supervised machine
learning, we successfully train the neural network
which is equivalent to a scalar field equation on an
emergent geometry of the bulk spacetime. The de-
veloped method may work as a ground for generic
bulk reconstruction, i.e. a solution to the inverse
problem of the AdS/CFT correspondence. From a
technical perspective, to achieve better numerical
control, our neural network model incorporates
a novel layer that implements the Runge-Kutta
method.

1. Introduction
Inverse problems are at the heart of mathematics, as they
are indispensable for proving equivalence. In general, math-
ematics can provide some existence theorem which makes
sure the existence of the solution of an inverse problem, but
in reality for the application of the mathematical framework
to sciences, the existence theorem is often of no use except
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for just consolation for practitioners. One major example of
this kind is the universal approximation theorem of neural
networks (Cybenko, 1989), which makes sure that there
exists a set of neural network weights with which the output
of the neural network approximates very well a given target
function. As popularly known, it is a different problem to
find how to update the weights to make the approximation
in practice. This is related to the problem of interpretability
of a given neural network.

Physical systems provide a playground for this kind of in-
verse problems, because one has some physical intuition
for the solutions of the inverse problems. One of the major
inverse problems is to find a set of differential equations
which provides its solutions satisfying a certain boundary
condition. One can use neural networks for solving this in-
verse problem of finding the governing equations, but again,
the interpretability of the obtained trained neural network is
in question.

In this paper, to approach this question, we set up a con-
crete physical model concerning the long-standing problem
of quantum gravity. The most promising formulation of
quantum gravity is to use the AdS/CFT correspondence
(Maldacena, 1999), which is a conjecture that two physical
quantum theories, conformal field theory (CFT) and gravity
theory, are equivalent to each other. Unfortunately, there
has been no proof of the conjecture, but there are a lot of
working examples. The principal concern against this con-
jecture is that for a given CFT data, there is no constructive
way to find a background geometry in the dual equivalent
gravity theory. This is precisely the inverse problem which
we stated above: CFT provides a boundary data, and the
issue is to find a differential equation in a curved geometry
(which is unknown) whose solution is consistent with the
boundary data.

A possible solution to this inverse problem (widely known
as “bulk reconstruction program” in the field of theoretical
particle physics) can be a ground-breaking path to a proof
of the conjecture, and furthermore, a working example for
AI for math of inverse problems.

The best and the simplest setup for solving this inverse prob-
lem of the AdS/CFT correspondence is with a low-enough
spacetime dimensions and the simplest matter content in
the bulk spacetime, thus we follow the situation provided in

1



AI for an inverse problem: Physical model solving quantum gravity

(Hashimoto et al., 2023) where the CFT (material quantum
theory) lives on a one-dimensional circle while the corre-
sponding gravity background is a disk which is rotationally
symmetric. We follow the method developed in (Hashimoto
et al., 2018a) which replaces the bulk differential equation
with a sparse neural network securing the interpretability
by regarding the weights as a metric on the curved space-
time.1 With this setup, if we find what kind of differential
equations are emergent and what are not, it would be a great
step for proving the AdS/CFT correspondence — the major
inverse problem in physics. And it would be a ground to
develop a solving method for the inverse problem of finding
consistent governing differential equations. In this paper,
we would like to report our first-step results.

2. Physics Background
2.1. The AdS/CFT Correspondence (Maldacena, 1999)

The AdS/CFT correspondence (Maldacena, 1999) is a con-
jecture stating that a quantum gravity theory with a negative
cosmological constant in d+ 1-dimensional asymptotically
AdS spacetime is equivalent to a non-gravitating quantum
field theory in d-dimensional spacetime. The former is
called bulk theory, and the latter is boundary theory. The
AdS is the anti de-Sitter space, the maximally symmetric
spacetime of constant negative curvature. While the con-
jecture has not yet been proven mathematically, various
evidences are found and its application is now broad, for
example to condensed matter physics and quantum compu-
tation.

Starting with a given bulk gravity theory, we can straightfor-
wardly compute the correlators on the dual boundary CFT.
All we have to do is to calculate the bulk on-shell action by
solving the equation of motion (EOM) under certain bound-
ary conditions. This on-shell action becomes the generating
functional of CFT correlators of the boundary. On the other
hand, it is in general hard to construct bulk fields from the
boundary, as we need to identify the EOM consistent with a
given set of CFT correlators. This inverse problem is called
“bulk reconstruction” and a well-posed inverse problem real-
ized in an area of physics toward quantum gravity.

2.2. Spacetime-emergent Material (SEM)

The spacetime-emergent material (SEM) is a ring-shaped
material whose properties are equivalently described by a
(2 + 1)-dimensional quantum gravity under the AdS/CFT

1The gravitational spacetime itself is identified with a deep
neural network also in (You et al., 2018). See also subsequent de-
velopment in (Hashimoto et al., 2018b; Hashimoto, 2019; Vasseur
et al., 2019; Tan & Chen, 2019; Akutagawa et al., 2020; Hu et al.,
2020; Yan et al., 2020; Hashimoto et al., 2021; Lam & You, 2021;
Song et al., 2021; Yaraie et al., 2021; Li et al., 2023).

conjecture.

According to the AdS/CFT, when the bulk is a black hole
spacetime, the corresponding boundary theory is a finite
temperature CFT (Witten, 1998). Since generic condensed
matter systems near a quantum critical point (QCP) are
dictated by a thermal CFT, it is expected that there may
exist a material which allows a higher-dimensional gravity
description, which was named spacetime-emergent material
in (Hashimoto et al., 2023). The simplest realization of
the AdS/CFT in our world would be a ring-shaped thermal
material near a QCP, whose spacetime topology is S1 × R.
In this case, the dual 3-dimensional gravity theory is defined
on the region surrounded by the ring.

The experimental verification of SEMs will help us under-
stand the conjecture and unveil the mystery of quantum
gravity. To do so, we first reconstruct the bulk from limited
experimental data of the candidate material, and check if the
reconstructed bulk is capable of predicting other phenomena
and consistent with the succeeding experiments. Therefore,
as a first step, we need to establish a universal way to deter-
mine the bulk metric from available experimental data.

3. Method
In this study, we consider a theoretical setup for a material
experiment of acting a small external source to some local
operator in the theory and measuring its linear response
function. Thus the boundary data available for us is the
values of the source and the response, which according to
the AdS/CFT dictionary are related to the asymptotic behav-
ior of a scalar field in a gravitational curved spacetime. To
reconstruct the bulk metric, we use the NN based equiva-
lent to the Klein-Gordon equation of the scalar field on the
unknown metric.

Let Φ(t, θ, ξ) be the scalar field in the 3-dimensional bulk,
where t is the time coordinate, θ is the coordinate along S1,
and ξ ∈ [0, 1] is the radial coordinate (the extra dimension
unique to the bulk). It is always possible to choose ξ so
that ξ = 1 corresponds to the ring on which the dual CFT
lives. We Fourier-expand the scalar field as Φ(t, θ, ξ) =∑

n Φn(ξ)e
−iωt+iknθ, where kn = 2πn/a with a being the

ring circumference, and ω is the frequency of the external
source that is controllable in experiment. Since our interest
is the forced oscillation part which remains after enough
time has passed, only the component with frequency ω is
taken into consideration. We introduce the conjugate of the
scalar field Πn(ξ) = Φ′

n(ξ), with which the Klein-Gordon
equation is reduced to the first order equations. This is
essential for the equation of motion to be rewritten as a NN
architecture.

In the phase of verification of SEM, it is reasonable to
use a material that is static, rotationally symmetric, and in

2



AI for an inverse problem: Physical model solving quantum gravity

equilibrium. Supposing this situation, we can assume that
the metric is of the following form:

ds2 = −gtt(ξ)dt2 + gξξ(ξ)dξ
2 + gθθ(ξ)dθ

2. (1)

The Klein-Gordon equation with this metric is

0 = −ω2Ξ(ξ)Φn(ξ) + ∂ξ
(
ln
√
−ggξξ

)
Πn(ξ)

+ Π′
n(ξ)− k2nΘ(ξ)Φn(ξ). (2)

Here we have introduced the product combinations of the
metric:

Ξ(ξ) = gξξg
tt , Θ(ξ) = gξξg

θθ . (3)

By using the residual redundancy of the diffeomorphism,
we gauge-fix the metric as

√
−ggξξ = Cξ−1, (4)

where any constant is allowed for C and we will choose
a value for it later. The validity of this gauge-fixing is
explained in appendix A, where we will also see how to
recover the metric under this gauge condition. Thus, all we
have to do to reconstruct the metric is to determine (Ξ,Θ).

3.1. Numerical accuracy and discretization scheme

Discretizing (2), we would like to provide a NN represen-
tation of it. Before doing so, we have to determine the
solver of the EOM, since the discretization scheme depends
on the solver. Here we compare two solvers: the Euler
method and the Runge-Kutta method. We use these solvers
to numerically solve the EOM (2) on the BTZ black hole
metric respectively, and compare how these solvers repro-
duce the exact solution to find which solver is suitable for
our machine learning in later sections.

3.1.1. EXACT SOLUTION

On the BTZ black hole metric:

ds2BTZ =

− r2hξ

L2(1− ξ)
dt2 +

L2

4ξ(1− ξ)2
dξ2 +

r2h
L2(1− ξ)

dθ2,

(5)

the exact solution of the EOM (2) satisfying the in-going
boundary condition on the horizon is given as

Φn = ξ
αn+βn

2 F (αn, βn, γn; ξ), (6)

where F is a Hypergeometric function, and αn, βn and γn
are defined as

αn := −i
(
L2

2rh
(ω + kn)

)
, βn := −i

(
L2

2rh
(ω − kn)

)
,

γn := 1 + αn + βn. (7)

In this expression, L and rh are respectively related to the
cosmological constant Λ and the system temperature T as

Λ = − 1

L2
, rh = 2πL2T. (8)

The temperature T is controllable in the experiment. We
set L = rh = 1.00 for the numerical analysis below, and
C = 2r2h/L

2 in (4) for the simplicity of the comparison
between the true value of (Ξ,Θ) and the learned one.

3.1.2. EULER METHOD

Euler method uses the following recurrence relation to de-
termine the values of Φn and Πn:

Zn(ξ +∆ξ) =(
1 ∆ξ

∆ξ(ω2Ξ(ξ) + k2nΘ(ξ)) 1−∆ξ/ξ

)
Zn(ξ) .

(9)

Here, Zn = (Φn,Πn)
T and ∆ξ is the discretization unit

(the lattice constant) in ξ, which in this study is set to be
equal to −10−2. The initial value of Zn is set to the value
of the exact solution at ξ = 0.99 and we use the recurrence
relation repeatedly to obtain Zn(ξ = 0.1).

3.1.3. RUNGE-KUTTA METHOD

To illustrate the Runge-Kutta method, we first rewrite the
EOM (2) into a vector form:

Z′
n(ξ) = F(ξ,Zn(ξ)) , (10)

F(ξ,Z) =

(
0 1

ω2Ξ(ξ) + k2nΘ(ξ) −1/ξ

)
Z . (11)

The recurrence relation of the Runge-Kutta method is

Zn(ξ +∆ξ) = Zn(ξ) +
∆ξ(F1 + 2F2 + 2F3 + F4)

6
,

(12)

with

F1 = F(ξ,Zn(ξ)),

F2 = F

(
ξ +

∆ξ

2
,Zn(ξ) + F1

∆ξ

2

)
,

F3 = F

(
ξ +

∆ξ

2
,Zn(ξ) + F2

∆ξ

2

)
,

F4 = F(ξ +∆ξ,Zn(ξ) + F3∆ξ).

We use the same initial value as the Euler Method and find
Zn for ξ ∈ [0.1, 0.99].
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Figure 1. The profile of ReΦn(ξ) for the exact solution, and numerical results with the Euler method and the Runge-Kutta method. For
the parameters, we have chosen (kn, ω) = (3.00, 3.00) (left) and (kn, ω) = (2.00, 3.00) (right), respectively. The blue line, orange line,
and green dotted line represent the Euler method, the Runge-Kutta method, and the exact solution respectively.

3.1.4. COMPARISON

We compare the above two solvers by examining their nu-
merical reproduction accuracy against the exact solution.
Fig.1 shows the numerical calculation results for the real
part of Φn. As can be seen from this figure, the Runge-
Kutta method better approximates the exact solution than
the Euler method. In fact, for the real component of Φn at
ξ = 0.1, the relative error between the Runge-Kutta result
and the exact solution is 1.5× 10−4 while the one between
the Euler result and the exact solution is 7.5× 10−2, for the
case of kn = ω = 1.00.

This result apparently shows that the Euler method used
in (Hashimoto et al., 2018a) is not sufficient for numerical
reconstruction of the differential equation for the present
case.2 Thus, as we will describe in the next subsection, we
construct a NN model based on the Runge-Kutta method.

3.2. Neural network model based on Runge-Kutta
method

Based on the results above, we choose the Runge-Kutta
method and construct the NN. The structure of our NN
model is shown in Fig. 2. We use the Runge-Kutta layer
multiple times as well as the single boundary condition
layer, where both layers are illustrated in the succeeding
subsections.

2Note that the data structure and the bulk equations of motion
in the present study are different from those in (Hashimoto et al.,
2018a): the latter uses the data only at kn = ω = 0, and uses a
nonlinear differential equation. So, a naive comparison with the
present work using (Hashimoto et al., 2018a) as a benchmark is
not possible.

Figure 2. The model architecture.

3.2.1. RUNGE-KUTTA LAYER

The implementation of the Runge-Kutta layer is given
by (12), where the input and the output of this layer are
(Zn(ξ), ω

2, k2n) and (Zn(ξ + ∆ξ), ω2, k2n). The flow of
data in the Runge-Kutta layer is depicted in fig. 3. The
Runge-Kutta layer involves four custom layers, bulk lay-
ers to compute F1,F2,F3,F4 in turn. Fig. 4 shows the
structure of the bulk layer. The bulk layer receives a four di-
mensional vector (Z, ω2, k2n) and returns a two dimensional
vector F(ξ,Z), where F(ξ,Z) is defined in (11).

In this study, the numerical range of ξ in the radial direction
is set to 0.99 ∼ 0.10, and the discretization is performed
with ∆ξ, the incremental width, set to −10−2. Therefore,
the number of Runge-Kutta layers is 89.

3.2.2. BOUNDARY CONDITION (BC) LAYER

The gravity spacetimes can take two different topologies:
one is the topology the BTZ black hole, and the other is
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Figure 3. The data flow of the Runge-Kutta layer.

that the AdS soliton. One of these is supposed to be favored
depending on the temperature. These topologies have dif-
ferent boundary conditions at the deepest part of the radial
direction. Therefore, in order to reconstruct the boundary
conditions with learning, we introduce the complex trainable
parameter ρn which can control the boundary conditions, at
the deepest layer of the neural network, as follows:

ξfinΠn(ξfin) + ρnΦn(ξfin)√
|ξfinΠn(ξfin)|2 + |ρnΦn(ξfin)|2 + ϵ

= 0. (13)

Here Φn(ξfin),Πn(ξfin) are the values of the fields at ξfin. ϵ
is the regularization parameter such that the expression (13)
is numerically well-defined, In practice, we take ϵ = 10−6.
To be more precise, ρn is parameterized as

ρn = iωan + |kn|bn, (14)

with real parameters an and bn.

This form incorporates both of the boundary conditions for
the BTZ black hole and the AdS soliton, with the following
choices for ρn:

an =
L2

2rh
, bn = 0 , for BTZ , (15)

an = 0 , bn =
L2

2rs
, for AdS soliton . (16)

For example, the above choice of an, bn for the BTZ case
implies the in-going boundary condition. In summary, the

Figure 4. The bulk layer. Here Z1,2 is a component of Z and
the activation f is a function of a six dimensional vector x =
(x1, x2, . . . , x6) and gives the four dimensional vector (x3, x4 +
x5x1 + x6x2, x5, x6).

trainable parameters of our NN model are Ξ(ξ),Θ(ξ) and a
complex parameter ρn.

3.2.3. INITIAL WEIGHTS

Since our purpose is to reconstruct an asymptotically AdS
spacetime3, it is reasonable to choose the initial weights as
those of the pure AdS3 spacetime:

ds2AdS3
= − 1

1− ξ
dt2 +

1

4ξ(1− ξ)2
dξ2 +

ξ

1− ξ
dθ2.

(17)

In Fig. 5, we show the profiles of the pure AdS spacetime,
(Ξ,Θ). Moreover, the initial values of the learning param-
eters an, bn included in the BC layer are set to L2

2rh
, L2

2rs
respectively. In practice, we set rs = 1.0 as well as rh and
L.

3.2.4. LOSS FUNCTION

This study is a supervised learning, and the data has a label 0
or 1 according to whether it satisfies the boundary conditions
at the deepest boundary of the spacetime. To implement

3“Asymptotically AdS” means that the metric approaches to
(17) in ξ → 1. In AdS/CFT correspondence, this is assumed most
of the time.
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Figure 5. Profiles of the metric (Ξ,Θ) are shown. The orange lines represent the pure AdS3 metric (17) which is the initial condition.
The green lines represent the BTZ black hole metric (1) which is used for generating the training set and also is expected to be reproduced
by the learning.

this, we adopt the following loss function L for the training,

L(t) = −tdata log t− (1− tdata + ϵ) log(1− t+ ϵ),

(18)

t =
1

2
[tanh (100(O− 0.1))− tanh (100(O + 0.1))],

(19)

O =

∣∣∣∣∣ ξfinΠn(ξfin) + ρnΦn(ξfin)√
|ξfinΠn(ξfin)|2 + |ρnΦn(ξfin)|2 + ϵ

∣∣∣∣∣ , (20)

where O is the output of the BC layer and is the LHS of (13).
Notice that Φn(ξfin) and Πn(ξfin) are obtained from the
output of the last Runge-Kutta layer and ρn is parameterized
as (14). tdata is the ground truth label and its determination
method is shown in the subsequent subsection. As a result of
(19), t is close to 0 if O is sufficiently small but it suddenly
approaches 1 if O moves away from 0.

3.3. Dataset

As we shall explain in this subsection, the element of our
dataset consists of Zn(ξini), ω

2, k2n, tdata. Here we describe
how to determine the value of tdata. In this study, we will
demonstrate if the learning of our NN model reproduces the
BTZ black hole metric in the higher temperature phase. The
exact solution to the EOM (2) with the background of the
BTZ black hole is a linear combination of two independent
solutions (Hashimoto et al., 2023):

Φn(ξ) = C1
nξ

αn+βn
2 F (αn, βn, γn; ξ)

+ C2
nξ

−αn+βn
2 F (−βn,−1− αn, 1− αn − βn; ξ).

(21)

Here C1
n (or C2

n) is a coefficient of in-going (or out-going)
solution. When we expand this solution around the boundary
(ξ = 1), we have

Φn(ξ) ∼ D1
n(1 + αnβn(1− ξ) ln(1− ξ)

− (1 + αnβn)(1− ξ)) +D2
n(1− ξ)/r2h,

Πn(ξ) ∼ D1
n(1− αnβn ln(1− ξ))−D2

n/r
2
h, (22)

with

D1
n = (C2

nΓ(1− αn − βn))/(Γ(1− αn)Γ(2− βn)))

+ ((C1
nΓ(1 + αn + βn))/(Γ(1 + αn)Γ(1 + βn)),

D2
n =

1

2
r2
C2

n(2 + αn − βn)Γ(1− αn − βn)

Γ(1− αn)Γ(2− βn)

+ C1
nΓ(1 + αn + βn){2− αn − βn + 4γαnβn

+ 2αnβnψ(1 + αn)

+ 2αnβnψ(1 + βn)/Γ(1 + αn)Γ(1 + βn)}. (23)

Here γ is the Euler’s constant and ψ is the digamma function.
According to the AdS/CFT dictionary, D1

n is regarded as
the source of the force exerted on the SEM, and D2

n is the
response of it.

Furthermore, for this to be exactly a solution in all regions
of the spacetime, the solution needs to satisfy the boundary
condition at the black hole horizon, which is the in-going
boundary condition. So, the out-going term of this solution
needs to be infinitesimally small: C2

n = 0.

Taking the above into consideration, the following steps are
used to generate the dataset.

1. Generate C1,2
n randomly. We randomly sample the
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Figure 6. Top: Evolution of the scalar field values during the training. The left (right) panel is the value of the real part of Φ (Π) at ξ = 0.1
for each epoch of the training. The boundary value of the field is chosen to be that of the exact solution for ω = 3.0, kn = 1.0. Bottom:
the loss curve and the accuracy curve during the training.

real and imaginary parts of C1
n from the uniform distri-

butions U(0.01, 1.0) respectively. We adopt C1
n when

0.5 < |C1
n| < 1.2 otherwise we abandon it. On the one

hand, the real and imaginary parts of C2
n are randomly

sampled from U(0.001, 0.5).

2. Randomly drown ω, kn from the uniform distribution
U(0.0, 3.0) and U(0.0, ω) respectively.4

3. Classify the positive/negative data by the following
decision condition,

tdata =

{
0 (|C2

n/C
1
n| < 0.01) : positive

1 (|C2
n/C

1
n| > 1.00) : negative

. (24)

Here we discard the data if 0.01 ≤ |C2
n/C

1
n| ≤ 1.0.

4. Obtain D1,2
n from C1,2

n using equation (23).

4When kn > ω, the numerical solution of the scalar field on
BTZ metric turns out to have a significant difference from the exact
solution. To avoid this, kn is set to be smaller than ω.

5. Obtain Zn(ξini) through (22) by substituting ξini for ξ.

6. Formulate the data as {(Zn(ξini), ω
2, k2n, tdata)}.

We repeat this procedure until we obtain 1000 examples
for tdata = 0 and tdata = 1 respectively to obtain 2000
examples in total.

4. Results
We build a Neural Network based on the Runge-Kutta
method. The following hyperparameters are commonly
used in this study: optimizer = Adam, batch size = 10,
epoch = 800.

Before training, the class loss was 7.75. After 800 epochs
of training, the class loss value decreased to −1.02× 10−7,
with an accuracy of 1.0. The loss went down significantly,
and the training was successful. See Fig. 6.

In addition, in this study, the parameter (an, bn) in the ex-
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Figure 7. Profiles of Ξ,Θ after learning. The orange line is the weights of the NN, and the green line is the ground truth, the BTZ metric
(1).

pression for the boundary condition was introduced as a
learning parameter to discriminate spacetimes at the BC
layer. After the learning, this parameter (an, bn) is found to
take a value (0.50, 0.01). If the spacetime is a BTZ black
hole, the solution of equation (15) gives the value of (an, bn)
equal to (0.50, 0.00), which means that we obtained the in-
going boundary condition at the black hole horizon properly:
The emergence of the black hole horizon is successful.

Fig. 7 shows profiles of metric Ξ,Θ after learning. Com-
pared to the initial condition shown by the orange lines in
Fig. 5, the tendency of the correct BTZ metric is finely re-
produced, and the metric is smooth almost everywhere so
that we can interpret it as a smooth geometry emergent.

A finer look at the near horizon part of the emergent ge-
ometry ξ ∼ 0.1, we find that the profile of Θ shown in
Fig. 7 appears to be a little bit deviated from the ground
truth. However, this is expected, as this Θ is related to the
angular direction of the metric whose deep IR part near the
horizon is largely affected by black hole red shift, meaning
that high ω and large kn data is needed to probe this part
of Θ. Since we used only the range |ω|, |kn| ≲ O(3), the
difficulty in a fine reproduction of Θ near the horizon was
expected.

5. Future Directions
When using a neural network to extract the information
of a dual gravitational spacetime from the SEM response
function, the radial direction ξ must be discretized, and nu-
merical results show that the accuracy is insufficient unless
the Runge-Kutta method is used. Therefore, we construct
a neural network model based on the Runge-Kutta method

and propose a reconstruction of BTZ black hole spacetime
by using the coefficients in the equation as training parame-
ters. As a result, we succeeded in reconstructing the BTZ
black hole.

Nevertheless, this study still has room for improvement. For
example, in this study, we built a layer called BC Layer,
which identifies the spacetime based on the satisfaction
of boundary conditions. Although it can be said that the
BTZ black hole was successfully identified after training,
it cannot be said that it can identify any spacetime, since
it has not yet identified other spacetimes such as the AdS
soliton. Therefore, we plan to reconstruct the spacetime of
AdS soliton from the response function of a SEM.

One concern is about the initial condition. We used the
pure AdS spacetime for the initial condition, and we are
interested in whether the BTZ black hole is reconstructed
even with some other initial condition for the weights. In
Appendix B, we discuss different initial weights.

Another concern is the question about whether our neural
network architecture is not too sparse to obtain the bulk
spacetimes. In fact, in the metric we have two unidentified
functions (Ξ(ξ),Θ(ξ)) which are to be determined by learn-
ing, while the data is a single linear response function on
the ring against a source which has a temporal and spatial
(angular) dependence in general, J(ω, kn). So, regarding
the dimensionality, our system is over-deterministic. How-
ever, since we used the data generated only in a finite region
of kn, and also since the number of data points is finite,
the dimensionality argument based on continuous functions
may not be sufficient. In fact, to improve the metric function
near the horizon, physically it is expected to be necessary to
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have the data with large kn and ω.5

For these reasons, this study may be extended to be tested in
more variety of situations. If this research makes it possible
to reconstruct any spacetime, it will be possible to combine
physics and machine learning to conduct quantum gravity
experiments that were previously impossible.

6. Broader Impact
In general, in scientific application of machine learning, in-
terpretability is indispensable. Although one could obtain
some solutions of a given equation, if the numerical solution
does not allow any good human interpretation, we cannot
expect any scientific progress from the obtained numerical
solutions. Here in this work, we express the differential
equation with unknown functional coefficient in terms of a
novel neural network, and train it by using the data of the
boundary information of its solutions. With an appropri-
ate physical intuition for the sparsity of the neural network,
the training was done successfully and the emergent net-
work allows a spacetime interpretation. In this way, the
inverse problem of reconstructing the differential equation
is done by the machinery of AI, by imposing a physical bias
appropriately.

This demonstrates that in any physically interpretable AI
one needs to impose an appropriate physical conditions
on the AI architecture itself. Of course, one could use
some physical regression from the obtained NN weights,
but normally the dimensions of the NN weight space is huge,
it is almost impossible. Neural ODE (Chen et al., 2018) is
not an exception. In view of this, sparse neural network such
as recently proposed KANs (Kolmogolov-Arnold networks)
(Liu et al., 2024) could be used for future study. Our study
is solely based on the most popular feed-forward neural
network with sparsity imposed, and this could be thought
of as a firm example exhibiting the effectiveness of the
imposition of the sparsity based on physical knowledge.

Study of AI for inverse problems is not restricted to the
interpretable architecture which we studied in detail; Trans-
formers(Vaswani et al., 2017) may be combined to execute
mathematical regressions (Kamienny et al., 2022; Charton,
2021) based on the correspondence between mathematical
expressions and language sentences (Lample & Charton,
2019). In fact, recently Transformers were used for par-
ticle theory problems (Park et al., 2023; Cai et al., 2024;
Hashimoto et al., 2024), among which the application of
Transformers to decoding scattering amplitudes in N = 4

5Note that the allowed values of kn = 2πn/a are equally
spaced, while in this paper we took 2000 points randomly from
the uniform distribution over a compact region of R. This means
that we have assumed a ≫ 1 so that any random point may have a
corresponding value of an integer n.

Super Yang-Mills theory (Cai et al., 2024) has a quite close
subject to ours, as that theory is the most popular model in
AdS/CFT correspondence. We expect that the combination
of the present formulation and other machine learning tech-
niques will enhance the solving ability of inverse problems
by AI.
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A. On the gauge-fixing
Here, we will explain that the gauge condition (4) is possible.

First, we find the generic behavior of
√
−ggξξ in ξ → 1. Since the metric is asymptotically AdS, the asymptotic form

of any such metric is generated by using a coordinate transformation of (17). As the metric is assumed to be static and
rotationally-symmetric in (1), the remaining gauge freedom is limited to the transformation as η = η(ξ), where η is a
smooth bijection map [0, 1] → [0, 1]. From (17), the asymptotic form of the metric in the η coordinate will be

ds2 ∼ − α

1− ξ(η)
dt2 +

ξ′(η)2

4ξ(η)(1− ξ(η))2
dη2 +

α ξ(η)

1− ξ(η)
dθ2 (η → 1), (25)

with ξ(η) being the inverse mapping of η(ξ). Here, we have taken into account not only the gauge-transformation, but also
the possibility of an extra constant factor α as in (5). In this coordinate, we have

(
√
−ggηη)−1 ∼ α

2
ξ′(η) (η → 1). (26)

Then, the r.h.s. could diverge depending on the gauge choice, but the integral is always convergent at η → 1 owing to
ξ(1) = 1.

Thus, from the above, we conclude

∫ 1

dξ (
√
−ggξξ)−1 =

∫ 1

dξ

√
g(ξ)

f(ξ)h(ξ)
= finite (27)

for general metric (1) unless the lower limit is a singularity. This fact is essential for guaranteeing that our gauge condition
is possible.

Next, we survey the limit ξ → 0. The behavior of the metric in this limit differs depending on whether the spacetime
contains a black hole or not. When there is no black hole, it usually happens that the S1 of t = const and ξ = const in (1)
shrinks to vanish as ξ → 0, while f(0) takes finite nonzero value. Thus, we can write h(ξ) ∼ A2ξ2n with some positive
constants A and n.

To avoid conical singularity, (ξ, θ)-plane must approach to the flat R2 in ξ → 0. Performing a coordinate transformation
r = ξn, we have

g(ξ)dξ2 + h(ξ)dθ2 ∼ g(r1/n)r2/n−2

n2
dr2 +A2r2dθ2 (ξ → 0), (28)

where a is the periodicity of θ. For the r.h.s. to be flat, g(ξ) must behave as

g(ξ) ∼
(
Aan

2π

)2

ξ2(n−1) (ξ → 0). (29)

Then, there exists a positive constant B such that

√
−ggξξ =

√
f(ξ)h(ξ)

g(ξ)
∼ Bξ (ξ → 0). (30)

When there is a black hole, the same result is reproduced with the roles of f and h exchanged. In our convention of ξ, ξ = 0
is supposed to be the horizon, where f vanishes and is written of the form f ∼ A2ξ2n.6 Recalling that the periodicity of t in
the Euclidean version of (1) is given by T−1, the same logic as above again leads to (29) with the replacement a→ T−1.
Thus, we obtain (30) in this case as well.

6Technically speaking, the horizon of a static black hole is characterized as the hypersurface on which the Killing vector ∂t becomes
null. This is equivalent to f(0) = 0.
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Now, our task is to find a smooth bijective map ϕ : [0, 1] → [0, 1], ϕ = ϕ(ξ), with ϕ(0) = 0 and ϕ(1) = 1 such that the
following is satisfied in the ϕ coordinate:

√
−ggϕϕ =

√
f(ξ(ϕ))h(ξ(ϕ))

g(ξ(ϕ))

1

ξ′(ϕ)
= Cϕ. (31)

Here, C must be positive since the l.h.s. is positive, and f , g, and h are those in (1), which is a generic asymptotically AdS
metric that satisfies (27) and (30). Seeing (31) as a differential equation, we have

ϕ(ξ) = exp

[
C

∫ ξ

1

dξ′

√
g(ξ′)

f(ξ′)h(ξ′)

]
. (32)

By (27), the integrand in the r.h.s. is well-defined. In the limit ξ = ϵ≪ 1, we obtain from (30)

ϕ(ϵ) ∼ exp

[
C

B

∫ ϵ

dξ
dξ′

ξ′

]
∼ ϵC/B , (33)

which is consistent with ϕ(0) = 0. We also see that the r.h.s. of (32) is in [0, 1] and monotonically increasing for ξ ∈ [0, 1],
because the integrand is always positive. Therefore, (32) concretely provides a smooth bijection map ϕ with ϕ(0) = 0 and
ϕ(1) = 1, which is the transformation to reproduce (31).

Under the gauge condition (4), all the metric components are recovered form (Ξ,Θ) as

f(ξ) = −gtt(ξ) = Cξ2Θ, g(ξ) = gξξ(ξ) = −Cξ2ΞΘ, h(ξ) = gθθ(ξ) = −Cξ2Ξ. (34)

B. Initial weight dependence
As we stated, the initial condition for the geometry used in the neural network is the pure AdS spacetime (17). In this
appendix, we report the training results with a different initial condition to check whether our obtained result is general or
not. Our choice for the different initial condition is just a constant function for Ξ(ξ) and Θ(ξ). With precisely the same
dataset, architecture and weight update methods, we obtain the trained weights which are shown in Fig. 8.

As we can see in Fig. 8, the obtained metric is consistent with the BTZ black hole metric, while the deviation from the
ground truth is bigger compared to the case of the pure AdS initial condition reported in Fig. 7. The reason is obvious: Since
the BTZ black hole metric is asymptotically AdS, meaning that at large ξ it is equal to the pure AdS, the training should be
easier for the pure AdS initial condition. Nevertheless, it is encouraging that, even with the constant initial condition, the
trained metric is confirmed to be consistent with the BTZ black hole metric.

Figure 8. Profiles of Ξ,Θ after learning with the constant initial condition. The orange line is the weights of the NN, and the green line is
the BTZ metric (5).
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C. Physics-informed regularization
In our future study we plan to use some actual experimental data of a ring-shaped material, and in that case, the emergent
bulk metric will not be a solution of an Einstein equation. Furthermore, even for a single set of data, there could be various
emergent spacetimes, depending on the amount of data.7 To single out a plausible geometry which is physically easier to be
interpreted, here we introduce the notion of free energy regularization to measure to what extent the emergent geometry
satisfies the Einstein equation. As has been mentioned around (1), the system is supposed to be at a thermal equilibrium,
which physically means that the free energy takes its minimum for a fixed temperature T .

In the AdS/CFT, the leading term of the free energy in the expansion of the string scale in the bulk is known to be the
following Euclidean action8:

SE = SEH + SGH + SCT,

SEH = 2πβ

∫ ξini

ξfin

dξ
√
fgh

[
1

L2
− Ricci

]
, SGH = −2πβ

√
fh

g

(
f ′

f ′
+
h′

h

)∣∣∣∣∣
ξini

, SCT =
4πβ

L

√
fh

∣∣∣∣
ξini

,

Ricci =
1

2f2g2h2
(fg′h(fh)′ + f2gh′2 + f ′2gh2 − 2ff ′′gh2 − ff ′ghh′ − 2f2ghh′′), (35)

where SEH is Einstein-Hilbert action, SGH is Gibbons-Hawking-York boundary term (Chakraborty, 2017), and we have
introduced

f(ξ) = −gtt(ξ) = −gξξ(ξ)
Ξ(ξ)

, g(ξ) = gξξ(ξ) = −4r4hξ
2Ξ(ξ)Θ(ξ)

L6
, h(ξ) = gθθ(ξ) =

gξξ(ξ)

Θ(ξ)
. (36)

Since the action is Euclidean, we have used the Euclidean signature of (1). The minimization of the action is equivalent to
the equations of motion which is the Einstein equation.

Then, to ensure that the system is in thermal equilibrium, we can introduce the following regularization term:

RE = SE. (37)

To complete the free energy regularization, the temperature must be fixed. The temperature is in the bulk description
provided by the metric value on the horizon as

T =
1

4π

f ′(ξfin)√
f(ξfin)g(ξfin)

. (38)

This is derived by imposing the regularity of the Euclidean version of (1) at ξ = 0, which determines the inverse temperature
T−1, the periodicity of the Euclidean time. Thus, in addition to (37), we further have to introduce

RT =

(
T − 1

4π

f ′(ξfin)√
f(ξfin)g(ξfin)

)2

, (39)

as a regularization term.

We train the NN with the addition of the regularization terms RE and RT, and find that our previous results shown in Sec. 4
are not altered significantly, while the loss value of the newly added regularization terms are significantly small. This
suggests that our obtained emergent metric is close to the BTZ black hole, as we stated in Sec. 4.

Here is a technical note on the training protocols. First we train the NN using the loss function (18). Then after 400 epochs,
we add (37) and (39). This is because the initial condition (which is the pure AdS spacetime) is already one of the stationary
points of the action SE. It was expected that our choice of the initial weight in (17) is trapped near the initial value in the
weight space and prevents the NN from being successfully trained.

7For example, in our case, we have used limited range of ω and kn. If one uses data with all possible values of ω and kn, then one
should be able to pin down a single emergent geometry. However, for limited amount of data, a variety of emergent geometries may be
learned.

8This kind of “Einstein regularization” was described in (Hashimoto et al., 2018a) and (Hashimoto, 2019).
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After 400 epochs of the learning with the additional regularizations (37) and (39), the total loss is 1.16, the class loss is
1.00 × 10−7, the accuracy is 1.00 and (an, bn) is (0.50, 0.03). These results are comparable to the ones in the previous
section, suggesting that the emergent geometry is interpreted as a BTZ black hole. See Fig. 9 for the trained profiles of the
metric functions.

The claim above is merely suggestive, since we have the following concern. A subtlety about the temperature regularization
term (39) is that it can always be satisfied only by tuning of a few of the near-horizon weights. In fact, careful comparison
between the profiles shown in Figs. 7 and 9 indicates that this very local adjustment was going on in learning, and physically
the regularization (39) may not have worked well. We plan to come back to this concern in the future.

Figure 9. Profiles of Ξ,Θ after learning with the addition of the physics-informed regularization. The orange line is the weights of the
NN, and the green line is the BTZ metric (5).

14


