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ABSTRACT

Pre-trained multi-modal Vision Language Models like CLIP are widely used off-
the-shelf for a variety of applications. Previous work has shown that, due to con-
trastive pre-training, there is a modality gap between the text and image feature
embedding spaces. In this paper, we show that the common practice of individ-
ually exploiting the text or image encoders of these powerful multimodal models
is highly suboptimal for intra-modal tasks like image-to-image retrieval. We ar-
gue that this is inherently due to the inter-modal contrastive loss commonly used
to train CLIP models. To demonstrate this, we leverage two optimization-based
modality inversion techniques and the inductive bias of the pre-trained encoder
of the complementary modality to transform native modality inputs into inter-
modal representations. We empirically show in multiple settings (image retrieval,
text retrieval, and zero-shot image classification), and at the single-feature level –
i.e. each individual feature embedding is mapped to its complementary modality
without any need for auxiliary data or additional trained adapters – that approach-
ing these tasks inter-modally significantly improves performance with respect to
intra-modal baselines on more than fifteen datasets.

1 INTRODUCTION

In recent years the availability of massive, pre-trained Vision-Language Models (VLMs) has en-
abled a wide variety of applications ranging from zero-shot image segmentation (Zhou et al., 2022a;
Lüddecke & Ecker, 2022) to visual question answering (Song et al., 2022; Parelli et al., 2023). These
models are typically composed of independent image and text encoders which are simultaneously
trained on massive corpora of image-text pairs to align the text and image embeddings of associ-
ated inputs. For example, the Contrastive Language-Image Pre-training (CLIP) model is trained on
a corpus of 400M image-text pairs to map inputs from both modalities into a shared embedding
space (Radford et al., 2021). CLIP is trained with an inter-modal contrastive loss that aims to max-
imize the similarity of corresponding image-text samples while minimizing the similarity with all
the other examples within a batch.

Despite CLIP’s shared embedding space, visual and textual features lie in distinct regions. This
phenomenon, known as the modality gap (Liang et al., 2022), originates from model initializa-
tion, and during training the inter-modal contrastive loss preserves and worsens it. Moreover, we
note that the CLIP contrastive training strategy focuses on inter-modal (i.e. image-text) similarities
between paired samples and disregards intra-modal (i.e. image-image and text-text) similarities.
Consequently, the intra-image and intra-text similarities between CLIP representations might not
faithfully correspond to those of the actual images or texts, as depicted in the left section of Fig. 1
and quantified in Sec. 2. We refer to this issue as intra-modality misalignment.

Aspects of this misalignment have been accounted for in the limited scope of zero- and few-shot
image classification (Udandarao et al., 2023; Yi et al., 2024). However, many recent works overlook
this phenomenon and employ CLIP representations for intra-modal similarity comparisons, thus
leading to suboptimal similarity measurements. Examples range from KNN classification (Geirhos
et al., 2024) to text-to-image generation (Gal et al., 2022; Ruiz et al., 2023) and video synthesis
(Esser et al., 2023; Zhang et al., 2024).

In this paper we argue that relying on intra-modal similarities computed using pre-trained CLIP
encoders is inherently suboptimal. To support this we conduct an extensive analysis of the behavior
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Figure 1: Motivation and overview. Left: CLIP is often used off-the-shelf for intra-modal tasks.
Inter-modal contrastive loss used in pretraining enforces paired images and texts to be at a given
distance r but does not encourage intra-modal alignment. Consequently, intra-modal similarity
scores, might not correspond to those of actual images and texts (i.e. r1 < r2). Right: We show that
approaching intra-modal tasks (e.g. image-to-image retrieval) inter-modally via modality inversion
improves the performance.

of intra-modal similarities on the intra-modal tasks of image-to-image and text-to-text retrieval. We
contrast this analysis by transforming intra-modal tasks into inter-modal ones to leverage CLIP’s
inter-modal alignment. Specifically, we map features from their native modality (i.e. the same as
the input) into their complementary one. We refer to this process as modality inversion. To perform
modality inversion we adapt Optimization-based Textual Inversion (OTI) (Baldrati et al., 2023) and
introduce Optimization-based Visual Inversion (OVI). OTI and OVI are iterative modality inversion
strategies that map image features into text features and vice versa. These techniques operate at the
single-feature level, i.e. they do not require external data nor the training of a mapping network.

Our experimental results show that tackling intra-modal tasks inter-modally via modality inversion
– as illustrated in the right side of Fig. 1 – outperforms intra-modal baselines on more than fifteen
datasets. To additionally support our claim that this performance improvement stems from inter-
modal alignment and not the modality inversion process itself, we transform inter-modal tasks into
intra-modal ones. Specifically, we show that applying modality inversion to the inherently inter-
modal zero-shot image classification task yields worse performance than the inter-modal baseline.
Moreover, we investigate whether the inclusion of an intra-modal loss during image-text contrastive
pre-training reduces intra-modal misalignment. For this analysis we use SLIP (Mu et al., 2022),
which employs just such an intra-modal loss to improve the alignment within the image embedding
space. Results confirm that adding intra-modal loss terms during the pre-training of VLMs signifi-
cantly mitigates intra-modal misalignment. Finally, we study the relation between the modality gap
phenomenon and the intra-modal misalignment. In particular, similar to Liang et al. (2022) we fine-
tune CLIP to reduce the modality gap and we observe a decrease in the performance of approaching
intra-modal tasks inter-modally. This indicates that a narrower modality gap diminishes the impact
of intra-modal misalignment.

The main contributions of this work are:

• we conduct a thorough and comprehensive study of CLIP’s intra-modal misalignment. We
find that the common practice of relying on intra-modal similarities computed through pre-
trained CLIP encoders is inherently suboptimal;

• we propose to transform intra-modal tasks to inter-modal ones via modality inversion to
exploit CLIP’s inter-modal alignment. To this end we introduce OVI, a single-feature level
modality inversion strategy that maps textual features into the image embedding space;

• we conduct extensive experiments that show that approaching intra-modal tasks inter-
modally significantly outperforms intra-modal baselines on more than fifteen datasets; and

• we demonstrate that adding intra-modal loss terms during VLM pre-training mitigates the
impact of intra-modal misalignment. Moreover, we show that reducing the modality gap
also alleviates intra-modal misalignment.
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2 QUANTITATIVE INSIGHTS ON INTRA-MODAL MISALIGNMENT
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Figure 2: Distribution of pair-
wise dog-dog and dog-cat image
similarities. The significant over-
lap highlights the intra-modal mis-
alignment issue.

To provide quantitative insights into the intra-modal misalign-
ment issue we conduct a simple experiment using the CLIP
ViT-B/32 model and the “Dogs vs Cats” dataset (Elson et al.,
2007). This dataset consists of 25K images evenly distributed
between two classes: dog and cat. Our goal is to demonstrate
that, despite inter-modal alignment, the intra-modal similarity
scores are misaligned, i.e. they might not reflect those of actual
images and texts, as illustrated in the left section of Fig. 1.

We start by filtering out images with incorrect inter-modal
alignment to class-specific prompts. Specifically, we remove
dog images that exhibit higher similarity to the prompt “a
photo of a cat” than to the prompt “a photo of a dog”. Then we
use the dog-related prompt to query the gallery of all images
and filter out the minimal number of images that are incor-
rectly ranked for this query. We repeat the same procedure for cat images. This filtering ensures
perfect inter-modal alignment and text-image retrieval scores. On the resulting filtered dataset, we
perform image-to-image retrieval using dog images as queries and the whole set of images as the
gallery. If inter-modal alignment guarantees intra-modal alignment, all dog images should rank
higher than cat images for any dog query, resulting in perfect retrieval. However, our results con-
tradict this assumption. Specifically, we observe a mean Average Precision (mAP) of 81.4% and an
average R-Precision of 71.5%, where R-Precision represents the precision at rank R, with R being
the total number of relevant items for a given query. These findings indicate that on average at least
28.5% of dog images are ranked below cat images for a given dog query. Figure 2 qualitatively
illustrates this issue, revealing significant overlap between the distributions of pairwise dog-dog and
dog-cat image similarities. We observe similar results when employing cat images as queries. Given
the evidence of intra-modal misalignment in such a toy dataset, we believe that the issue is likely to
be even more pronounced in more complex datasets with more classes.

3 RELATED WORK

Contrastively trained Vision-Language Models. VLMs have become increasingly popular for
their ability to learn aligned representations across visual and textual modalities (Radford et al.,
2021; Jia et al., 2021; Zhai et al., 2022; 2023; Mu et al., 2022; Li et al., 2021). This alignment
enables VLMs to be used in a broad variety of downstream tasks, including image-text retrieval and
zero-shot image classification, by projecting images and text into a shared feature space. The most
prominent example is the Contrastive Language-Image Pretraining (CLIP) model (Radford et al.,
2021), which maximizes the similarity between paired images and text captions while minimizing
the similarity with the other samples in the batch. SigLIP, on the other hand, employs a sigmoid-
based contrastive loss instead of relying on the softmax, thus considering only the single image-text
pairs and neglecting the other samples in the same batch (Zhai et al., 2023). More recently, several
approaches have extended the CLIP-style contrastive loss by incorporating intra-modal similarities
into the training objectives (Mu et al., 2022; Li et al., 2021). For instance, SLIP (Mu et al., 2022) in-
tegrates a self-supervised component that maximizes the similarity between different augmentations
of the same image, following a strategy akin to SimCLR (Chen et al., 2020).

The modality gap in multi-modal models. Liang et al. (2022) demonstrated a consistent phe-
nomenon affecting VLMs known as the modality gap. This refers to the geometric separation be-
tween feature embeddings of different modalities (e.g. text and images) within their shared repre-
sentation space (Liang et al., 2022). The modality gap arises due to both model initialization and the
contrastive learning objective used during training. At initialization, independent encoders for each
modality produce embeddings that are restricted to distinct regions (or cones) within the representa-
tion space. During training, the contrastive learning process preserves and worsens this separation.
Several works have studied the causes and implications of the modality gap in CLIP (Shi et al., 2023;
Schrodi et al., 2024; Zhang et al., 2023). Schrodi et al. (2024) analyzed the embedding space and
demonstrated that a minimal number of embedding dimensions – often as few as two – are sufficient
to perfectly separate the image and text modalities.
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Intra-modal misalignment. Some studies have investigated the problem of misaligned intra-modal
embedding distances within the context of zero- and few-shot image classification (Udandarao et al.,
2023; Yi et al., 2024). To address this, Udandarao et al. (2023) proposed mitigating the issue by com-
puting similarities in the image-text space, rather than working exclusively with image embeddings,
thereby leveraging the inter-modal nature of the feature representations. Similarly, CODER (Yi
et al., 2024) introduced an enhanced image representation technique based on measuring distances
between images and their K-Nearest Neighboring texts within CLIP’s embedding space.

Our contribution with respect to the state-of-the-art. While these prior works have addressed var-
ious aspects of intra-modal and inter-modal relationships within VLMs, their scope remains limited,
often focusing on specific tasks, datasets, or narrow perspectives on the modality gap and its effects.
None of these studies comprehensively investigate the fundamental nature of the intra-modal versus
inter-modal representations across diverse tasks and datasets, nor do they fully explore the potential
performance improvements achievable by leveraging inter-modal features for intra-modal problems.
The motivation behind our work is to shed light on the phenomenon of intra-modal misalignment,
its relationship to the modality gap, and to demonstrate the importance of either ensuring intra-
modal alignment during pre-training or deriving inter-modal representations better aligned with the
semantics relevant to downstream intra-modal tasks like image and text retrieval.

4 CLIP PRELIMINARIES

CLIP (Contrastive Language-Image Pre-training) is a vision-language model trained to align im-
ages and textual captions in a shared embedding space (Radford et al., 2021). It consists of an image
encoder fθ and a text encoder gϕ. Given an image I , the image encoder extracts its feature represen-
tation fθ(I) ∈ Rd, where d is the size of the shared embedding space. Likewise, for a given textual
caption Y , first a word embedding layerEv maps each tokenized word to the token embedding space
V . Then, the text encoder gϕ generates the textual feature representation gϕ(Ev(Y )) ∈ Rd.

When using a Vision Transformer (ViT) (Dosovitskiy et al., 2020) as the visual encoder fθ, the
encoding process begins by splitting the image into U fixed-size non-overlapping patches. Each
patch is then transformed into a corresponding patch embedding {w1, w2, . . . , wU} through a linear
projection by the patch embedding layer Ew, where each wi resides in the patch embedding space
W . A learnable class (CLS) token c is concatenated with the patch embeddings, resulting in the
input to the vision transformer being Ī = {c, w1, w2, . . . , wU}. Finally, the CLS token of the final
transformer layer is projected into the shared embedding space via a linear projection to obtain the
final representation fθ([c, Ew(I))] = fθ(Ī) ∈ Rd. For brevity, when unnecessary we will omit both
the patch embedding layer Ew and the token embedding layer Ev , and use the simplified notations
fθ(I) instead of fθ([c, Ew(I)]) and gϕ(Y ) instead of gϕ(Ev(Y )).

Given a batch of image-caption pairs B = {(In, Yn)}Nn=1, CLIP aims to maximize the cosine sim-
ilarity for the N correct pairs while minimizing it for the N2 − N other pairs. This is achieved by
optimizing a symmetric, multi-class N-pair contrastive loss (Sohn, 2016). Let ψnI = fθ(In) and
ψnT = gϕ(Ev(Yn)) denote the image and text embeddings, respectively. The CLIP loss is:

LCLIP = − 1

N

N∑
n=1

(
log

exp(c(ψnI , ψ
n
T )/τ)∑N

m=1 exp(c(ψ
n
I , ψ

m
T )/τ)

+ log
exp(c(ψnT , ψ

n
I )/τ)∑N

m=1 exp(c(ψ
n
T , ψ

m
I )/τ)

)
(1)

where c(·, ·) denotes the cosine similarity function, and τ is a learnable temperature parameter. As
shown by Liang et al. (2022), Eq. (1) leads to a measurable separation between embeddings of the
different modalities, creating what is known as the modality gap. This gap is significantly affected
by the temperature τ , with a larger gap occurring as the temperature decreases.

Note that the CLIP training loss focuses exclusively on inter-modal similarities between paired sam-
ples while neglecting intra-modal similarities. For example, consider an image feature anchor ψI
and two distinct text features ψ1

T and ψ2
T that are both a distance r from the image feature, such

that c(ψI , ψ1
T ) = c(ψI , ψ

2
T ) = r. In this case, the text embeddings lie within a hypersphere of

radius r centered at ψI . The absence of intra-modal constraints means the alignment between ψ1
T

and ψ2
T remains uncalibrated; thus, we have 0 ≤ c(ψ1

T , ψ
2
T ) ≤ 2r. This indicates that, while both

text features are equidistant from the image feature, their intra-modal similarity is not constrained in
any way, leading to potential inconsistencies and intra-modal misalignment. We argue that CLIP’s
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inter-modal contrastive loss directly leads to inferior performance of intra-modal similarity compar-
isons and thus must either be mitigated via additional intra-modal losses during pre-training or must
be compensated for by deriving inter-modal representations for use in intra-modal tasks.

5 INTER-MODAL REPRESENTATIONS VIA MODALITY INVERSION

Due to the modality gap, images and text features lie in distinct regions in the shared embedding
space. Previous work introduced modality inversion techniques to map features from the native
modality to the complementary one (Ramesh et al., 2022; Patel et al., 2024; Li et al., 2023).

Our goal is to demonstrate that tackling intra-modal tasks in an inter-modal way outperforms CLIP’s
intra-modal representations. To this end, we propose to employ a modality inversion strategy to de-
rive representations that exploit both native and complementary modality encoders. Most existing
modality inversion techniques rely on external data or the training of a mapping network, making
the inversion process dependent on factors beyond CLIP. Therefore, we leverage two modality in-
version strategies that operate at a single-feature level, i.e. that maps each individual feature to its
complementary modality without the need for any external resources.

Specifically, we adapt Optimization-based Textual Inversion (OTI) (Baldrati et al., 2023; Agnolucci
et al., 2024) and we introduce Optimization-based Visual Inversion (OVI) to map an image to the
text embedding space and vice versa. Both are iterative, optimization-based approaches. The core
concept behind OTI and OVI is to learn vectors of trainable parameters that are passed through the
encoder of the complementary modality to yield features aligned with the representations of the
native modality encoder. In the following we define OTI and OVI for CLIP, but they can be applied
to any VLM that maps images and texts into a shared embedding space.

5.1 OPTIMIZATION-BASED TEXTUAL INVERSION (OTI)

Starting from an image I , OTI involves iteratively optimizing a set of R pseudo-word tokens v∗ =
{v∗1 , v∗2 , . . . , v∗R}, with v∗i ∈ V for i ∈ {1, . . . , R}, for a given number of optimization steps S.
We refer to v∗ as pseudo-word tokens since it belongs to the word-embedding space V but it is not
associated with an existing word. Algorithm 1 in Appendix A shows the pseudo-code of OTI.

The pseudo-word tokens v∗ are randomly initialized and concatenated with the template sentence
“a photo of” to form Y v∗ = [Ev(“a photo of”), v∗] input into the CLIP text encoder gϕ to obtain
ψT = gϕ(Y v∗). Then we extract the features of the image I with the CLIP image encoder fθ,
resulting in ψI = fθ(I). Since we aim to obtain a textual feature representation ψT that captures the
informative content of I , we minimize the gap between image and text features via a cosine loss:

Lcos = 1− cos (ψI , ψT ) (2)

While OTI is adapted from Baldrati et al. (2023) our goal is significantly different. Their work
focuses on deriving a single pseudo-word token that captures the informative content of the image
I and can interact with existing words to form meaningful sentences (e.g., “a photo of v∗ that
is running . . . ”). In contrast, we use OTI purely as a mapping technique from visual to textual
features. We do not focus on the pseudo-word tokens themselves but aim to obtain an accurate final
feature representation that effectively captures the content of the image I . Additionally, the original
OTI technique employs a regularization loss that exploits an auxiliary vocabulary that constrains the
pseudo-word token to remain in the CLIP token embedding space. However we are not interested in
using the learned v∗ in different contexts – and more importantly, we aim to avoid influencing the
inversion process with external data. For this reason we do not use a regularization loss.

5.2 OPTIMIZATION-BASED VISUAL INVERSION (OVI)

We propose the OVI approach to map text features from the CLIP text embedding space to the visual
embedding space. Since OVI learns vectors of trainable parameters in the patch embedding space
W , it can be applied only to ViT-based image encoders. Given a sentence Y , we first extract its text
features ψT = gϕ(Ev(Y )). OVI then optimizes a set of P randomly initialized pseudo-patches in
CLIP’s patch embedding space W , denoted as w∗ = {w∗

1 , w
∗
2 , . . . , w

∗
P }, where each w∗

i ∈ W .
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This optimization is performed for a fixed number of optimization steps S. Similarly to the ter-
minology introduced in Sec. 5.1, we refer to w∗ as pseudo-patches since they belong to the patch
embedding space W but are not associated with any existing image. Algorithm 2 in Appendix A
illustrates the pseudo-code of the OVI method.

Since the ViT employs learned positional embeddings, the number of input patches U to the image
encoder is fixed. Consequently, when P < U directly using w∗ as input is impossible. In cases,
we repeat the pseudo-patches to match the U by applying nearest-neighbor interpolation to w∗.
Specifically, given the pre-trained CLS token c, the input to the ViT is given by:

Īw∗ = {c, w∗
1 , w

∗
1 , . . . , w

∗
1︸ ︷︷ ︸

H1 times

, w∗
2 , w

∗
2 , . . . , w

∗
2︸ ︷︷ ︸

H2 times

, . . . , w∗
P , w

∗
P , . . . , w

∗
P︸ ︷︷ ︸

HP times

}, (3)

where H1, H2, . . . ,HP represent the number of times each pseudo-patch is repeated, and H1 +
H2 + · · ·+HP = U . The specific values are determined by the nearest-neighbor interpolation.

Finally, the input Īw∗ is passed through CLIP’s image encoder to obtain the features ψI = fθ(Īw∗).
To obtain a visual feature representation ψI that captures the informative content of Y , we minimize
the gap between the image and text features using the same cosine-based loss in Eq. (2).

5.3 CROSSING THE MODALITY GAP WITH OTI AND OVI

The goal of OTI and OVI is to map features from the native modality into the complementary one.
We observe that in cases where the loss Lcos approaches zero, the complementary features converge
to the native ones, thus drifting onto the native modality embedding manifold. This undermines the
goal of leveraging the image-text alignment inherent in the CLIP training objective.

For OTI, in our experiments the loss never approaches zero – within a reasonable number of opti-
mization steps – when considering a single pseudo-word token (i.e.R = 1). We argue that this stems
from the strong inductive biases of the frozen encoders and the modality gap, making it challenging
for a single pseudo-word token to bridge the distance between image and text representations. Nev-
ertheless, the OTI-inverted features retain the informative content of the corresponding image. As a
result, the potential drift related to Lcos does not pose a significant issue, and inter-modal alignment
is preserved. In all experiments we use R = 1 unless stated otherwise.

Also for OVI we observe that the loss only approaches zero when the number of pseudo patches P
is relatively large. Unlike OTI, we find that for some experiments a single pseudo-patch (i.e. P = 1)
is insufficient for embedding the informative content of the corresponding text. We believe that this
discrepancy stems from the inherent differences between images and texts. Specifically, in textual
inputs a single word (or pseudo-word token) can significantly alter the meaning of a sentence. For
instance, the sentences “a photo of a building” and ”a photo of a dog” convey completely different
meanings, despite differing by only one word. In contrast, a single (pseudo-)patch has less influence
on the overall semantic content of an image. Therefore, while a single pseudo-word token is enough
for an effective modality inversion with OTI, more pseudo-patches may be necessary when applying
OVI. Consequently, in our experiments, we employ a number of pseudo-patches P ranging from 1
to 4, based on the considered model (see Appendix C for more details). For such values, inter-modal
alignment is maintained and the drift does not constitute a significant problem.

6 EXPERIMENTAL RESULTS

Here we report on a broad range of experiments supporting our claims. We show that transform-
ing intra-modal tasks into inter-modal ones consistently improves performance by better aligning
with the original CLIP training objective. We first evaluate two intra-modal tasks: image-to-image
and text-to-text retrieval, using OTI and OVI to transform them into inter-modal tasks. Next, we
evaluate zero-shot image classification, an inter-modal task, and show that modality inversion re-
duces performance by making the task intra-modal. Finally, we investigate OTI and analyze the
modality gap phenomenon. In the following, we denote as inter-modal approaches those involving
inter-modal similarity comparisons, i.e. similarity comparisons between features of two different
modalities (such as image-text, OTI-image, and OVI-text). Conversely, intra-modal approaches
refer to methods that employ intra-modal similarity comparisons (such as image-image, text-text,
OTI-OTI, and OVI-OVI).
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Table 1: Performance (mAP) evaluation on the image-to-image retrieval task. ✓ and X denote
inter-modal and intra-modal approaches, respectively. Blue rows indicate the usage of OTI-inverted
features, while white rows refer to the intra-modal baseline.
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✓ 34.3 44.5 54.4 75.8 50.5 50.5 78.0 20.1 40.9 54.5 42.9 37.8 83.3 48.2 27.3 49.5

L/14 X 56.4 50.7 69.0 83.9 65.4 61.4 91.6 32.5 40.4 63.8 61.1 42.2 86.9 62.6 38.8 60.4
✓ 58.9 51.9 73.2 87.7 72.6 67.3 92.7 34.3 44.3 63.1 65.2 45.8 89.7 64.7 42.6 63.6

Si
g

L
IP B/16 X 39.4 49.9 50.6 73.9 65.7 56.5 87.0 37.9 39.9 52.4 56.3 42.8 87.3 56.7 35.9 55.5

✓ 41.8 53.0 55.2 79.1 71.8 64.2 89.7 37.6 43.3 52.9 59.0 43.6 88.9 54.9 38.8 58.3

To ensure a comprehensive analysis, we experiment using multiple CLIP models with different back-
bones and pre-training datasets. We also consider SigLIP to demonstrate that our observations are
not specific to the CLIP loss but generalize to other inter-modal contrastive losses. Specifically, we
use OpenAI CLIP with ViT-B/32 and ViT-L/14 backbones, OpenCLIP pre-trained on the DataComp
dataset (Gadre et al., 2024) with the same backbones, and SigLIP-B/16. Due to space limitations,
implementation details and description of all datasets used are given in Appendices A and E.

6.1 IMAGE-TO-IMAGE RETRIEVAL

Pre-trained CLIP image encoders are often used to extract features for image-to-image similarity
comparisons. Here we perform image-to-image retrieval experiments in order to compare intra-
modal features with inter-modal ones derived using our OTI approach described in Sec. 5.1.

Experiment design. The objective is to retrieve images from a gallery that are visually similar to
a given query image. We consider a total of 15 datasets commonly employed for image-to-image
retrieval and image classification. We begin by extracting the features of the gallery images using
a pre-trained CLIP image encoder and then consider two evaluation settings. In the first, which
we call intra-modal, we directly extract the features of the query image using the same pre-trained
CLIP image encoder and retrieve gallery images according to cosine similarity. In the second, we
transform the intra-modal image-to-image retrieval task into an inter-modal task by applying OTI to
the query image to obtain the corresponding inter-modal features. Then we again retrieve the images
from the gallery most similar to the query features using cosine similarity.

Results. In Tab. 1 we report results on image-to-image retrieval on 15 datasets and for five dif-
ferent pre-trained models. Using OTI features outperforms the native image features, highlighting
that intra-modal features lead to suboptimal results. Moreover, the performance improvement for
OpenCLIP and SigLIP shows that the misaligned representation phenomenon is independent of the
pre-training dataset and pre-training contrastive loss, respectively.

6.2 TEXT-TO-TEXT RETRIEVAL

Although text features from pre-trained CLIP models are not commonly used for text-to-text tasks,
we believe that it is important to show that our findings also apply to the textual embedding space.

Experiment design. Applying the CLIP text encoder to text-only tasks presents several challenges.
Specifically, the CLIP text encoder is trained on short, descriptive texts. As a result, using it for tasks
such as sentiment analysis or text classification, which involve longer texts and abstract concepts,
results in a mismatch with the pre-training data. Moreover, VLMs like CLIP have a limited input
token capacity (e.g. 77 tokens for CLIP), which makes using longer texts impractical.

To avoid these problems, we formulate a text-to-text retrieval task using image captioning datasets.
Specifically, we select datasets in which each sample consists of an image and multiple associated
captions (e.g. Flickr30K (Plummer et al., 2015)). These captions are comparable to those used in
VLM training and are short enough to avoid token limit issues. We ignore the images and use the
first caption associated with each image as the query text. The goal is to retrieve the other captions
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Table 2: Left: Performance (mAP) evaluation on the text-to-text retrieval task. ✓ and X denote inter-
modal and intra-modal approaches, respectively. Purple rows indicate the usage of OVI-inverted fea-
tures, while white rows refer to the intra-modal baseline. Right: Performance (accuracy) evaluation
on the zero-shot image classification task. Blue rows indicate the usage of OTI-inverted features,
while white rows refer to the inter-modal baseline.
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B/32 ✓ 60.4 87.5 67.0 19.1 43.6 45.2 80.5 62.0 91.2 62.0 62.1 61.9
X 54.5 80.9 61.2 17.3 41.8 39.4 75.3 54.6 83.7 58.5 53.6 56.4

L/14 ✓ 76.8 93.6 79.3 32.5 53.0 58.1 91.0 67.6 94.9 74.2 73.5 72.2
X 72.1 89.8 73.1 29.4 52.3 56.4 87.6 62.4 90.2 71.3 68.0 68.4

O
PE

N B/32 ✓ 88.4 90.3 73.5 24.4 53.9 56.5 83.0 67.0 96.2 61.6 68.6 69.4
X 86.0 87.6 70.9 23.1 52.8 47.5 80.3 61.5 93.6 59.8 63.9 66.1

L/14 ✓ 93.7 95.0 82.5 47.6 62.7 68.0 92.3 74.2 97.6 75.0 78.9 78.9
X 93.0 94.0 82.0 44.9 61.2 66.6 91.8 71.7 91.6 73.1 77.0 77.0
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g

L
IP B/16 ✓ 90.7 94.1 85.8 43.9 62.0 42.3 89.2 69.6 97.4 74.9 75.7 75.1

X 86.3 90.4 69.5 35.1 58.6 32.5 84.6 55.9 89.5 64.8 62.1 66.3

related to the same image from a gallery of all captions in the dataset. As in the image-to-image
retrieval experiments above, we consider two evaluation settings. In the first, we use the textual
features of the query to retrieve from the gallery of captions. In the second, we apply OVI to each
query, transforming the task from intra-modal to an inter-modal retrieval task.

Results. Tab. 2 (left) gives the results on text-to-text retrieval. Similar to image-to-image retrieval,
intra-modal representations yield suboptimal performance. By applying OVI to the query text fea-
tures, we obtain inter-modal features that exploit the inter-modal alignment of the pre-trained CLIP
model. With OVI we achieve better performance for all VLMs and backbones.

6.3 ZERO-SHOT IMAGE CLASSIFICATION

Experiment design. We evaluate the performance of modality inversion on zero-shot image classifi-
cation. CLIP-like models can perform this task by predicting the output class based on the similarity
between the input image and a set of textual prompts in the form of “a photo of a [CLASS]”, where
CLASS represents each class name, such as “cat” or “dog”. Since an image is compared with texts,
this task is inherently inter-modal, and we expect that converting it to an intra-modal task by ap-
plying a modality inversion technique should hinder performance due to intra-modal misalignment.
Following Zhou et al. (2022b), we take into account 11 different datasets (see Appendix E for dataset
details). We consider three evaluation settings. The first is the standard one, where we use the input
image features and the textual features of the set of prompts. In the second, we apply OTI to the
input image. In the third, we apply OVI to each textual prompt.

Results. In Tab. 2 (right) we show the results of the first two evaluation settings described above.
Results for the third setting are given in Appendix F. As expected, using modality inversion results
in performance degradation as we are transforming an inter-modal task into an intra-modal one.
Note that the datasets used in zero-shot image classification are the same as those employed for
image-to-image retrieval in Sec. 6.1. This allows us to reuse the same OTI-inverted features for
both tasks. Interestingly, the results are the opposite: performance improves in image-to-image
retrieval but decreases in zero-shot image classification. The reason for this is that in the former
we are transforming an intra-modal task into an inter-modal one, while in the latter we are doing
the opposite. This experiment demonstrates that modality inversion does not inherently improve
performance, as the same OTI-inverted features can either enhance or hinder results depending on
the nature of the task. Performance improvement is observed only when an intra-modal task is
converted into an inter-modal one. To further confirm this claim, we also performed experiments on
image-text retrieval and report the results in Appendix F.

6.4 ANALYZING MODALITY INVERSION

In this section we study how and why transforming native modality features into complementary
ones via modality inversion leads to performance improvement on intra-modal tasks. For brevity,
we consider only OTI, but we find that the same considerations apply to OVI.
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Figure 3: (a, b) Loss values and retrieval performance over OTI optimization steps for different
numbers of pseudo-word tokens R. (c) Distribution of pairwise image-image, text-image, and OTI-
image cosine similarities. The similarities related to the OTI-inverted features are closer to those
related to texts than images.

In Figs. 3(a) and 3(b) we investigate how the image-to-image retrieval performance and the values
of the loss Lcos vary based on the number of optimization steps and the number of pseudo-word
tokens R. We consider the Cars dataset (Krause et al., 2013) and the CLIP ViT-B/32 model.

We notice first of all that with a single pseudo-word token (i.e. R = 1) the loss does not approach
zero within a reasonable number of optimization steps. On the contrary, as R increases (i.e. the
number of trainable parameters grows) the loss decreases more rapidly and approaches zero. As dis-
cussed in Sec. 5.3, as the loss decreases the OTI-inverted features shift away from the text manifold
towards the image embedding manifold as they approach the original, native image features. This
phenomenon is reflected in the image retrieval performance shown in Fig. 3(b) since for enough
optimization steps and pseudo-word tokens the performance approaches those obtained by the na-
tive, intra-modal image features. Moreover, we observe that, regardless of the value of R, the best
performance corresponds to a relatively low number of optimization steps.

We argue that in proximity to the performance peak observed during OTI optimization, the OTI-
inverted features capture the informative content of the corresponding image while still remaining
within the text embedding manifold. To support this claim, we compute the pairwise image-image,
text-image, and OTI-image cosine similarities for features extracted from the COCO validation set
(Lin et al., 2014). For the OTI-inverted features, we consider those obtained using R = 1 after 150
optimization steps. In Fig. 3(c) we plot the distribution of these inter- and intra-modal similarities.
We observe that the similarities related to the OTI-inverted features are closer to those related to texts
than images. This suggests that the OTI-inverted features still lie in the text manifold for R = 1 and
only 150 optimization steps, confirming our hypothesis that the performance improvement obtained
by OTI stems from leveraging CLIP’s inter-modal alignment.

Finally, we notice that R = 1 is not the optimal choice to achieve the best performance with OTI.
Still, we use R = 1 in the experiments as the associated OTI-inverted features are less prone to
drift towards the native image features, thus being more robust to the number of optimization steps.
Moreover, the main goal of this work is not to achieve the best results on the downstream tasks but
rather show that using VLMs intra-modally is suboptimal. The number of learnable tokens and op-
timization steps are hyperparameters that could be cross-validated to further improve performance.

6.5 THE ROLE OF INTRA-MODAL CONSTRAINTS

We study whether incorporating an intra-modal loss term during image-text contrastive pre-training
effectively mitigates the issue of intra-modality misalignment. To this end, we consider SLIP (Mu
et al., 2022), which, in addition to the standard CLIP inter-modal contrastive loss (Eq. (1)), adds a
self-supervised intra-modal loss based on SimCLR (Chen et al., 2020) (see Appendix B for more
details). This loss encourages the model to yield similar representations for two augmentations of
the same image, aiming to improve the intra-modality alignment within the image embedding space.

To analyze this, we performed an image-to-image retrieval experiment following the evaluation pro-
tocol from Sec. 6.1. We report these results in Tab. 3. Notably, the complementary representations
obtained via OTI achieve comparable performance to native image features. This contrasts with
results from VLMs trained solely with an inter-modal contrastive loss (see Tab. 1) in which OTI led
to a substantial performance boost. This experiment demonstrates that the intra-modal loss used in
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Table 3: Performance (mAP) evaluation on the image-to-image retrieval task using SLIP. ✓ and
X denote inter-modal and intra-modal approaches, respectively. Blue rows indicate the usage of
OTI-inverted features, while white rows refer to the intra-modal baseline.
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B/16 X 16.6 49.3 36.2 78.9 4.9 17.8 65.2 9.1 29.8 53.0 19.3 26.2 65.5 40.3 14.5 35.1
✓ 16.2 48.8 36.4 79.3 5.0 19.3 65.1 9.0 30.5 50.6 20.0 26.4 67.6 40.6 14.8 35.3

L/16 X 19.5 46.4 36.3 75.3 5.3 21.7 69.2 9.7 28.8 56.5 24.25 27.4 71.0 41.2 17.4 36.7
✓ 19.6 45.8 38.0 75.1 5.5 23.3 70.2 9.8 29.7 53.7 25.2 27.8 72.3 41.4 18.2 37.1

SLIP effectively reduces intra-modal misalignment and suggests the importance of including such a
loss when pre-training VLMs if intra-modal similarity comparisons are important downstream.

6.6 THE ROLE OF THE MODALITY GAP Table 4: Impact of the modality gap on
the performance (mAP) for the image-
to-image retrieval task on image retrieval
datasets. ✓ and X denote inter-modal
and intra-modal approaches, respectively.
Blue rows indicate the usage of OTI-
inverted features, while white rows refer
to the intra-modal baseline.
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τ = 1
(no gap)

X 15.9 23.7 29.3 46.6 19.3 27.0
✓ 14.0 20.4 26.7 43.1 17.4 24.2

τ = 0.01
X 24.0 35.0 43.1 68.6 25.7 39.3
✓ 24.1 35.2 44.0 70.2 27.6 40.2

The temperature parameter τ in Eq. (1) critically affects
the resulting modality gap: higher temperatures consid-
erably reduce or close it (Liang et al., 2022). To exam-
ine whether reducing the modality gap alleviates intra-
modal misalignment we fine-tune a CLIP B/32 model
on the COCO dataset (Lin et al., 2014) using a tempera-
ture τ = 1.0, which closes the modality gap. To provide
a reference, we repeat the experiment with τ = 0.01,
i.e. the value employed during CLIP pre-training. See
Tab. A2 for more details about the specific magnitudes
of the modality gap for the different models.

We reproduce our image-to-image retrieval experi-
ments using these fine-tuned models and report results
in Tab. 4. Clearly, in the absence of the modality gap tackling intra-modal tasks inter-modally does
not improve performance. The results of the reference model demonstrate that this outcome does
not stem from the fine-tuning strategy.

Therefore, this experiment shows that closing the modality gap mitigates the intra-modality mis-
alignment. However, as also observed by Liang et al. (2022), we note that using higher temperature
values during training leads to an overall performance decrease in downstream tasks, despite reduc-
ing the modality gap. For this reason, we argue that – in practice – simply increasing the temperature
value in Eq. (1) does not represent a viable strategy to address intra-modal misalignment.

7 CONCLUSIONS

In this work we show that relying solely on intra-modal similarity comparisons of features extracted
using contrastively-trained VLMs hinders performance on intra-modal tasks like image-to-image
and text-to-text retrieval. The inter-modal contrastive loss frequently employed for pre-training
these models leads to a gap between the image and text modalities and misaligned intra-modal
representations. We demonstrate that transforming native modality inputs to the complementary
modality through modality inversion improves performance since these representations exploit inter-
modal alignment. In addition, we show that employing an intra-modal loss or reducing the modality
gap alleviates the intra-modal misalignment induced by the CLIP contrastive loss. Our analyses and
experimental results demonstrate that exploiting the inter-modal alignment of off-the-shelf VLMs
improves performance even on intra-modal tasks.

Limitations. Our analyses demonstrate the significance of intra-modal misalignment when exploit-
ing pre-trained CLIP models, but fall short of offering practical alternatives. The modality inversion
techniques we propose to derive inter-modal representations are computationally expensive. They
are based on iterative optimization of learnable input parameters (150 optimization steps for OTI and
1000 for OVI in our experiments). This limits their practical applicability and future work should
concentrate on efficient methods for deriving inter-modal features from pre-trained VLMs.
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REPRODUCIBILITY STATEMENT

We have taken steps in this work to ensure the reproducibility of our results. All code, models, and
datasets used in our experiments are publicly available, and we will release the complete source code
after the reviewing period. In the main paper and appendices material we provide complete details
of all experimental setups, including model architectures, training and evaluation protocols, and
hyperparameters. All random seeds are fixed in our experiments, ensuring that others can replicate
our results with the provided code. Finally, our work only relies on publicly accessible datasets, and
we include clear references for any dataset-specific processing. We believe that the measures we
have taken to ensure reproducibility will facilitate straightforward replication and verification of our
findings, as well as allow the community to build upon our results in the future.
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Algorithm 1 Optimization-based Textual Inversion (OTI)

1: Input: Image I , number of pseudo-word tokensR, number of
optimization steps S

2: Initialize v∗ = {v∗1 , v
∗
2 , . . . , v

∗
R}

3: Extract image features: ψI = fθ(I)
4: for s = 1 to S do
5: Form Y v∗ = [Ev(”a photo of”), v∗]
6: Extract text features: ψT = gϕ(Y v∗ )
7: Compute loss: Lcos = 1 − cos (ψI , ψT )
8: Update v∗ to minimize Lcos
9: end for

10: Output: OTI-inverted text features ψT = gϕ(Y v∗ )

Algorithm 2 Optimization-based Visual Inversion (OVI)

1: Input: Text Y , number of pseudo-patches P , number of optimiza-
tion steps S

2: Initialize w∗ = {w∗
1 , w

∗
2 , . . . , w

∗
P }

3: Extract text features: ψT = gϕ(Ev(Y ))
4: for s = 1 to S do
5: Form input Īw∗ using Eq. (3)
6: Extract image features: ψI = fθ(Īw∗ )
7: Compute loss: Lcos = 1 − cos (ψI , ψT )
8: Update w∗ to minimize Lcos
9: end for

10: Output: OVI-inverted image features ψI = fθ(Īw∗ )

Algorithms 1 and 2. Left: OTI maps an image into the textual embedding space by optimiz-
ing pseudo-word tokens. Right: OVI maps a text into the visual embedding space by optimizing
pseudo-patches. Both approaches iteratively minimize the cosine distance between the feature rep-
resentations of the native and complementary modality.

APPENDIX A IMPLEMENTATION DETAILS

We give the pseudo-code of Optimization-based Textual Inversion (OTI) and Optimization-based
Visual Inversion (OVI) in Algorithm 1 and Algorithm 2, respectively. We use the same hyperparam-
eters for both OTI and OVI unless stated otherwise. We employ the AdamW optimizer with learning
rate equal to 0.02, β1 = 0.9, β2 = 0.999, and weight decay 0.01. The results presented in the main
paper are evaluated at step 150 for OTI and step 1000 for OVI. The computational cost of OTI and
OVI is linear with respect to the number of queries and the inversion processes can be parallelized.
On average, OTI takes approximately 0.2 seconds per image, while OVI takes around 0.5 seconds
per text prompt on a single A100 GPU (40GBs) with a batch size of 2048 and OpenAI ViT/B-32
as the backbone. The memory usage scales linearly with the batch size. Specifically, when using
the CLIP ViT-B/32 model, OTI requires approximately 1,878 MiB plus 18.6 MiB per sample in the
batch. For example, with a batch size of 128, the memory consumption is about 4,260 MiB. For
OVI, the memory usage is approximately 2,218 MiB plus 16.2 MiB per sample, resulting in about
4,290 MiB with the same batch size.

APPENDIX B ADDITIONAL VLMS

In this section we provide a more detailed explanation of the SigLIP and SLIP models, and we
highlight the main differences between these models and CLIP.

SigLIP. In SigLIP (Zhai et al., 2023), given a batch of image-caption pairs B = {(Ii, Yi)}Ni=1,
training maximizes the cosine similarity for the N correct pairs and minimizes it for the N2 −
N incorrect pairs. Unlike the softmax-based contrastive loss from Eq. (1) used in CLIP, SigLIP
employs a sigmoid-based loss that avoids global normalization factors. Each image-text pair is
processed independently, transforming the learning task into a binary classification problem across
all pair combinations. The matching pair (Ii, Yi) receives a positive label, while all other pairs
(Ii, Yj ̸=i) receive negative labels. SigLIP consists of an image encoder fθ and a text encoder gϕ.
We denote the image and text embeddings as ψiI = fθ(Ii) and ψiT = gϕ(Yi), respectively. The
SigLIP loss is:

LSigLIP = − 1

N

N∑
i=1

N∑
j=1

log

(
1

1 + ezij(−c(ψ
i
I ,ψ

j
T )/τ+b)

)
, (4)

where c(·, ·) denotes the cosine similarity, τ is a learnable temperature parameter, b is a learnable
bias, and zij is the label for a given image and text input (zij = 1 if i = j and zij = −1 otherwise).
Similar to CLIP, the SigLIP loss does not include explicit intra-modal constraints; the loss focuses
solely on inter-modal alignment between image and text embeddings, without directly enforcing
intra-modal alignment.

SLIP. SLIP (Mu et al., 2022) is a model trained with both language supervision and image self-
supervision. It is trained with a loss consisting of two components: the first is the same loss used in

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

CLIP (Eq. (1)), while the second term is a self-supervised learning (SSL) term that forces the model
to represent different views or augmentations of the same image similarly. In particular, for the
self-supervised loss component, SLIP adopts an adaptation of SimCLR (Chen et al., 2020). At each
training step, CLIP and SSL losses are computed on the relevant embeddings and then summed
together. The self-supervised component of the loss, LSimCLR, aims to maximize the agreement
between two augmented views of the same image:

LSimCLR = − 1

2N

2N∑
i=1

log
exp

(
c(ψiI , ψ

p(i)
I /τ

)
∑2N
k=1,k ̸=i exp

(
c(ψiI , ψ

k
I )/τ

) , (5)

where ψiI is the embedding of sample i, p(i) is the other augmented view of the same image,
c(ψiI , ψ

k
I ) represents the cosine similarity between ψiI and ψkI , and τ is a temperature parameter.

The final loss used in SLIP is a combination of CLIP and self-supervised losses:
LSLIP = LCLIP + LSimCLR. (6)

By incorporating the self-supervised loss, SLIP encourages better intra-modal alignment within the
image embedding space. This intra-modal constraint aims to mitigate some of the limitations seen
in models like CLIP, which solely rely on inter-modal contrastive loss. We confirm this empirically
in Tab. 3.

APPENDIX C SELECTING THE NUMBER OF PSEUDO-PATCHES FOR OVI

As mentioned in Sec. 5.3 our initial experiments showed that in OVI learning a single pseudo-patch
(P = 1) often failed to adequately minimize the loss. This leads to a poor representation of the
input caption. To determine the optimal number of pseudo-patches for each VLM, we conduct a
text-to-text retrieval experiment using the Flickr30K (Plummer et al., 2015) validation set, varying
the number of pseudo-patches P from 1 to 16.

Table A1: Ablation on the number of OVI pseudo-
patches for text-to-text retrieval on the Flickr30K
validation set. The highest mAP score in each row
is highlighted in bold.

Number of Pseudo-Patches P

VLM Backbone Intra-modal 1 2 4 8 16

CLIP B/32 51.4 54.5 52.9 51.8 51.6 51.6
L/14 52.6 51.7 55.2 56.0 55.3 54.1

OPEN B/32 57.3 59.6 57.9 57.5 57.4 57.4
L/14 59.6 60.6 62.5 62.4 61.2 60.4

SigLIP B/16 56.3 45.2 58.0 60.1 59.9 59.4

SLIP B/16 45.8 46.4 46.4 46.1 45.9 45.9
L/16 49.8 48.9 50.0 49.8 49.9 49.8

Table A1 presents the results of this abla-
tion study. We observe that the ideal number
of pseudo-patches changes depending on the
backbone. In particular, larger models – with
a greater number of input patches U – tend to
require more pseudo-patches. We hypothesize
that this is because, as the number of patches
increases, the influence of a single (pseudo-
)patch decreases, necessitating a larger number
of pseudo-patches to capture sufficient informa-
tion. Note that in certain cases where differ-
ent numbers of pseudo-patches lead to similar
performance (e.g., SLIP B/16), we choose the
smallest number of patches for the experiments.

APPENDIX D DIFFERENT VLM, DIFFERENT MODALITY GAP

In the main paper we show how intra-modal misalignment arises from the contrastive inter-modal
pre-training of CLIP-like VLMs. We also demonstrate that models introducing an intra-modal train-
ing constraint (e.g. SLIP) can mitigate this issue. Additionally, we highlight how this is inherently
inter-connected with the modality gap, an expression of the separation between the feature distribu-
tions of the different modalities in the shared embedding space.

To facilitate a clearer comparison of modality gaps across the different VLMs, in Table A2 we report
the magnitude of the modality gaps evaluated on the COCO validation split. The modality gap is
defined as the difference between the two centroids of the image and text modality embeddings:

∆gap =
1

N

N∑
i=1

xi −
1

N

N∑
i=1

yi, (7)

where xi and yi are the L2-normalized image and text embeddings, respectively, and N is the
number of image-text pairs.
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Table A2: ∥∆gap∥ for different VLMs on COCO.

VLM Backbone Loss ∥∆gap∥

CLIP B/32 LCLIP
0.82

L/14 0.82

OPEN B/32 LCLIP
0.82

L/14 0.80

SigLIP B/16 LSigLIP 1.05

SLIP B16 LCLIP + LSimCLR
0.57

L/16 0.49

Hot/Cold CLIP B/32 LCLIP(τ = 1) 0.007
LCLIP(τ = 0.01) 0.88

In addition to CLIP, OpenCLIP, SigLIP, and
SLIP, we fine-tuned only the final projec-
tions layers of two OpenAI B/32 models us-
ing AdamW optimizer with β1 = 0.9 and
β2 = 0.98 and weight decay of 0.2, learning
rate of 1e-6 and batch size of 512 for more than
30k training steps and with softmax tempera-
tures τ = 0.01 and τ = 1 on the COCO train-
ing set (Lin et al., 2014). We refer to these
two fine-tuned CLIP models as Cold CLIP and
Hot CLIP, respectively, in relation to their fine-
tuning temperatures.

These results show that models trained with an additional intra-modal constraint (i.e. SLIP), or
fine-tuned with a higher temperature (i.e. our B/32 we fine-tuned on COCO with temperature τ =
1), significantly reduce the modality gap. Notably there seems to be a correlation between the
magnitude of the modality gap and the improvement in approaching intra-modal tasks inter-modally
using OTI (or OVI).

APPENDIX E DATASET DETAILS

Our experimental evaluation is performed on 18 datasets. Here we report all the evaluated splits and
details of the datasets used in our experiments.

Zero-shot Image Classification. Following Zhou et al. (2022b), we validate our zero-shot im-
age classification experiments on 11 publicly available datasets with diverse characteristics: Im-
ageNet (Deng et al., 2009) for large-scale object classification; Caltech101 (Fei-Fei et al., 2004)
for general object classification; EuroSAT (Helber et al., 2019) for satellite image recognition;
Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), OxfordPets (Parkhi et al., 2012),
Flowers102 (Nilsback & Zisserman, 2008), and StanfordCars (Krause et al., 2013) for fine-grained
classification; UCF101 (Soomro et al., 2012) for action recognition; and the Describable Textures
Dataset (DTD) (Cimpoi et al., 2014) for texture classification. Following Zhou et al. (2022b), we
discard the “BACKGROUND Google” and “Faces easy” classes from Caltech101. For UCF101, a
video dataset, we follow Radford et al. (2021) and use the middle frame of each video clip as the
input image. In all classification experiments, we report the accuracy results on the test set.

Image-to-Image Retrieval. For Image-to-Image retrieval we use the 11 datasets used for zero-shot
image classification (i.e. using the test set as the query set and the training set as the gallery) and
four widely used datasets commonly used for metric learning and image retrieval: CUB-200-2011
(CUB) (Wah et al., 2011), Stanford Online Products (SOP) (Oh Song et al., 2016), ROxford (Rade-
nović et al., 2018), and RParis (Radenović et al., 2018), for a total of 15 datasets. For CUB we
use the entire dataset as both the query and gallery sets. In SOP, we use the test set for both query
and gallery sets. In all experiments involving ROxford and RParis, following the standard bench-
mark we include the R1M distractor set, containing 1 million images, as negative samples for all the
queries. For brevity in the paper we report only the metric calculated on the Easy setting. For image-
to-image retrieval evaluation, we use the standard mean Average Precision (mAP) metric. Note that
reusing the 11 classification datasets allows us to evaluate and compare the same OTI features in
both the classification and retrieval tasks.

Text-to-Text Retrieval. We perform our text-to-text retrieval experiments using three image-caption
datasets: COCO (Lin et al., 2014), Flickr30K (Plummer et al., 2015), and NoCaps (Agrawal et al.,
2019). We selected these datasets for two reasons: they contain short, descriptive text similar to
the ones used to train VLMs, and they provide multiple captions for each image. In our evaluation,
we use the first caption of each image as the query and aim to retrieve the other captions associated
with the same image from a gallery of all captions in the dataset. On average, COCO and Flickr30K
images have 5 captions each, while NoCaps images have 10. We use the Karpathy split (Karpathy
& Fei-Fei, 2015) for both COCO and Flickr30K and report results using captions from the test
split. For NoCaps, we report results on the validation split. Although these datasets contain images
associated with captions, we ignore the images in this setting. For a fair comparison we report mean
Average Precision (mAP) for all the Text-to-Text retrieval datasets.
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Table A3: Performance (accuracy) evaluation on the zero-shot image classification task. ✓ and
X denote inter-modal and intra-modal approaches, respectively. Purple rows indicate the usage of
OVI-inverted features, while white rows refer to the inter-modal baseline.

Backbone
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ow
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Im
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er
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e

C
L
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B/32 ✓ 60.4 87.5 67.0 19.1 43.6 45.2 80.5 62.0 91.2 62.0 62.1 61.9
X 37.4 59.9 35.0 9.2 26.2 18.9 65.1 44.1 83.9 51.2 42.9 43.1

L/14 ✓ 76.8 93.6 79.3 32.5 53.0 58.1 91.0 67.6 94.9 74.2 73.5 72.2
X 46.9 71.1 65.1 23.3 41.4 23.8 73.6 46.2 41.6 63.5 54.8 50.1

O
PE

N B/32 ✓ 88.4 90.3 73.5 24.4 53.9 56.5 83.0 67.0 96.2 61.6 68.6 69.4
X 81.4 82.1 62.4 17.9 45.8 36.6 76.1 56.9 93.6 55.1 59.6 60.7

L/14 ✓ 93.7 95.0 82.5 47.6 62.7 68.0 92.3 74.2 97.6 75.0 78.9 78.9
X 78.6 85.3 71.1 35.9 48.6 47.9 86.2 50.7 92.9 62.4 67.3 66.1

Si
g

L
IP B/16 ✓ 90.7 94.1 85.8 43.9 62.0 42.3 89.2 69.6 97.4 74.9 75.7 75.1

X 67.2 68.9 32.6 23.5 40.5 14.2 59.6 27.8 35.1 21.0 22.1 37.5

Table A4: Performance evaluation on the image-to-text and on the text-to-image retrieval task. ✓
and X denote inter-modal and intra-modal approaches, respectively. Blue rows and Purple rows
indicate the usage of OTI- and OVI-inverted features, respectively. White rows refer to the inter-
modal baselines.

Image-to-Text Text-to-Image
Flickr30k COCO Flickr30k COCO

Backbone
Inter

modal R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

C
L

IP

B/32 ✓ 78.8 94.9 98.2 50.1 75.0 83.5 58.8 83.5 90.0 30.5 56.0 66.9
X 64.5 86.6 92.5 39.8 64.5 74.6 52.7 77.9 86.2 25.6 49.1 60.5

L/14 ✓ 85.2 97.4 99.2 56.3 79.3 86.6 64.9 87.3 92.0 36.5 61.0 71.1
X 75.8 92.9 95.9 49.0 72.8 81.2 60.7 84.8 90.3 33.2 55.1 67.7

O
PE

N B/32 ✓ 79.2 93.8 96.2 53.5 77.7 86.0 61.1 84.9 90.9 37.1 62.4 72.7
X 72.8 90.3 94.1 49.2 73.4 82.0 57.4 81.5 88.4 33.1 58.0 68.4

L/14 ✓ 89.1 98.6 99.7 63.3 84.2 90.4 73.4 91.8 95.5 45.7 70.1 79.2
X 86.0 97.7 98.9 60.8 81.5 88.3 67.4 88.1 93.0 39.0 63.4 73.2

Si
g

L
IP B/16 ✓ 89.0 98.0 99.2 65.7 85.4 91.2 74.6 92.3 95.6 47.8 72.4 81.0

X 81.8 95.5 97.3 57.0 79.0 86.2 57.9 82.6 88.7 33.7 58.2 68.9

APPENDIX F ADDITIONAL EXPERIMENTS

Here we report on additional experiments that support our claims about the importance of inter-
modal representations for intra-modal problems when using contrastively-trained VLMs.

Zero-shot Image Classification with OVI. In the main paper we transform zero-shot image classifi-
cation from being natively inter-modal to intra-modal using OVI (see the right section of Tab. 2). As
expected, this approach decreased performance. Similarly, to further confirm our results, in Tab. A3
we transform it to intra-modal but using OVI instead. Consistent with our findings, approaching
classification in an intra-modal manner also decreases performance.

Image-to-Text and Text-to-Image Retrieval with OTI and OVI. To provide additional experimen-
tal evidence that transforming inter-modal tasks in intra-modal decreases performance, we perform
experiments on image-text retrieval benchmarks using both OTI and OVI. Specifically, we apply
OTI to the query image and use the resulting features to retrieve from the text gallery. Conversely,
we apply OVI to the query text and use its features to retrieve from the image gallery. For image-
to-text, and text-to-image retrieval we adhere to the standard benchmark and we report recall at 1
(R@1), recall at 5 (R@5), and recall at 10 (R@10). In Tab. A4 we show the quantitative results
of these experiments, which confirm our findings from the zero-shot image classification setting:
transforming an inter-modal task into an intra-modal one always leads to performance degradation
due to intra-modal misalignment.
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Table A5: Performance (mAP) evaluation on the text-to-text retrieval task using purely textual
datasets. ✓ and X denote inter-modal and intra-modal approaches, respectively. Purple rows in-
dicate the usage of OVI-inverted features.
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Baseline X 52.2 19.2 11.2 30.3 58.4 8.9 23.3 13.5 26.3 27.0
OVI ✓ 52.3 33.1 15.3 39.1 70.5 12.2 33.6 16.8 33.2 34.0

Table A6: Performance (mAP) comparison between the proposed modality inversion techniques and
the adapter-based approaches on the image-to-image (left) and text-to-text (right) retrieval tasks. ✓
and X denote inter-modal and intra-modal approaches, respectively. Blue rows and Purple rows
indicate the usage of OTI- and OVI-inverted features, respectively.
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Baseline X 22.9 34.4 42.6 67.9 24.6 38.5
Adapter ✓ 23.7 35.0 44.3 69.5 25.5 39.6
OTI ✓ 24.6 35.1 43.0 70.3 28.0 40.2
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Baseline X 51.7 26.2 35.1 37.7
Adapter ✓ 51.9 28.3 37.8 39.3
OVI ✓ 54.8 28.3 38.8 40.6

Text-to-text Retrieval on Purely Textual Datasets. In Sec. 6.2 we conduct a text-to-text retrieval
experiment using image captioning datasets to avoid a mismatch with VLMs pre-training data. In
this section, we evaluate the performance of OVI on purely textual datasets using the CLIP ViT
B/32 model. Specifically, we select seven datasets from the NanoBEIR1 benchmark, spanning di-
verse domains such as scientific documents (SciDOCS) and climate-related texts (ClimateFEVER).
We discard Question-Answering (QA) datasets and those with queries whose average length ex-
ceeds the context length of CLIP’s text encoder (77 tokens). Additionally, we include the IMDB
Reviews (Maas et al., 2011) and 20 Newsgroups (Lang, 1995) datasets. All selected datasets
comprise texts that cannot be easily represented visually. Examples include “Learning Actionable
Representations with Goal-Conditioned Policies” (SciDocs), “Atheism, philosophy, and the absence
of belief in deities” (20 Newsgroup), and “The carbon footprint on wind energy is significant” (Cli-
mateFEVER). Since gallery texts often exceed CLIP’s context length, we employ a Large-Language
Model (Llama-3.2-1B-Instruct2) to summarize them to fit within the token limit. We report the re-
sults in Tab. A5. OVI achieves a significant performance improvement over the intra-modal baseline.
This outcome demonstrates that OVI is effective even when considering texts that can not be easily
represented visually.

Inter-modal Representation via Adapters. To broaden our comparative analysis we conduct an
additional experiment where we train two single-layer linear adapters: one maps image features
to text features (aligned with the goal of OTI), and the other maps text features to image features
(aligned with the goal of OVI). For training, we leverage the LLaVA-CC3M3 dataset (Liu et al.,
2024), which comprises 595K image-text pairs. This dataset is derived by filtering the CC3M dataset
(Sharma et al., 2018) to achieve a more balanced distribution of concept coverage. We train each
adapter using a cosine loss that minimizes the distance between the adapter output and the corre-
sponding complementary features. Additionally, following Patel et al. (2024), we also employ a
CLIP-based contrastive loss component. Table A6 presents the results for image-to-image and text-
to-text retrieval tasks using the CLIP ViT-B/32 model. The adapter-based approach improves perfor-
mance over the intra-modal baseline for both tasks. These findings support our claim that leveraging
inter-modal representations for intra-modal tasks enhances performance thanks to CLIP’s inherent
inter-modal alignment. Nevertheless, we observe that OTI and OVI outperform the adapter-based
approach in most scenarios. This result emphasizes the effectiveness of OTI and OVI, as they do not
require a training dataset but rather map individual features directly to the complementary modality
without relying on external resources.

1https://huggingface.co/collections/zeta-alpha-ai/nanobeir-66e1a0af21dfd93e620cd9f6
2https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
3https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K
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Table A7: Performance (mAP) comparison between the proposed OTI technique and the captioning-
based approach on the image-to-image retrieval task. ✓ and X denote inter-modal and intra-modal
approaches, respectively. Blue rows indicate the usage of OTI-inverted features.
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Baseline X 22.9 34.4 42.6 67.9 24.6 38.5
DeCap ✓ 4.4 2.0 0.1 1.2 2.5 2.0
CoCa (COCO) ✓ 3.5 0.8 0.0 0.7 1.8 1.4
CoCa (LAION) ✓ 17.6 3.9 8.4 28.2 23.6 16.3
OTI ✓ 24.6 35.1 43.0 70.3 28.0 40.2

Inter-modal Representations via Captioning. We compare the performance of OTI on image-
to-image retrieval with a captioning-based approach using the CLIP ViT-B/32 model. Specifically,
given a query image, such an approach involves generating a caption with a pre-trained captioning
model, leveraging CLIP’s text encoder to extract text features from the caption and using them to
perform retrieval. We experiment with three pre-trained captioning models: 1) DeCap (Li et al.,
2023), which directly generates captions from CLIP image features; 2) CoCa (LAION)4 (Yu et al.),
trained on the Laion2B (Schuhmann et al., 2022) dataset; and 3) CoCa (COCO)5 (Yu et al.), pre-
trained on Laion2B and fine-tuned on COCO (Lin et al., 2014).

DeCap:
A large building with a
clock tower on the front.

CoCa (COCO):

CoCa (LAION):

An old building with two
towers has a clock on it.

All souls college, oxford,
united kingdom.

Figure A1: Captions generated by pre-
trained captioning models for an image
from the ROxford dataset.

Table A7 shows the results. Regardless of the cap-
tioning model, the captioning-based approach achieves
unsatisfactory performance, even falling short of the
intra-modal baseline despite leveraging CLIP’s inter-
modal alignment. This outcome stems from the fact that
the generated captions are not discriminative enough
to perform image retrieval. This is particularly evi-
dent in fine-grained domains such as the buildings of
the ROxford and RParis datasets (Radenović et al.,
2018). Figure A1 shows an example of generated cap-
tions for a randomly chosen image from the ROxford
dataset. We observe that all the captioning models gen-
erate generic and not sufficiently discriminative cap-
tions. CoCa (LAION) produces a more precise descrip-
tion than the other models, reflecting its higher performance. Nevertheless, OTI obtains better results
than the captioning-based approach and the intra-modal baseline.

Intra-OTI Similarity Comparisons. We conduct an experiment on image-to-image retrieval where
we apply OTI to both the query and gallery images and perform retrieval via the similarity between
the OTI-inverted features. Since OTI maps image features into text features, this intra-OTI strategy
involves intra-modal similarity comparisons within the text embedding space.

Table A8: Performance (mAP) evaluation on the
image-to-image retrieval task. ✓ and X denote inter-
modal and intra-modal approaches, respectively.
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Baseline X 22.9 34.4 42.6 67.9 24.6 38.5
Intra-OTI X 21.3 31.9 42.3 68.2 24.9 37.7
OTI (ours) ✓ 24.6 35.1 43.0 70.3 28.0 40.2

Table A8 shows the results on image re-
trieval datasets using the CLIP ViT-B/32
model. We observe that employing inter-
modal similarity comparisons by apply-
ing OTI only to the query images achieves
better performance than using intra-modal
similarities with the intra-OTI approach.
These findings confirm that modality in-
version techniques do not inherently im-
prove performance. Instead, their effec-
tiveness lies in leveraging CLIP’s inter-
modal alignment by transforming intra-modal tasks into inter-modal ones.

4https://huggingface.co/laion/CoCa-ViT-B-32-laion2B-s13B-b90k
5https://huggingface.co/laion/mscoco finetuned CoCa-ViT-B-32-laion2B-s13B-b90k
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Table A9: Impact on the performance (mAP) of the OTI template sentence on the image-to-image
retrieval task. Each prompt is given by the combination of a template sentence with the pseudo-word
token v∗.
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“v∗” (empty prompt) 24.0 34.6 43.7 69.6 28.2 40.0
“We see v∗ in this photo” 24.5 34.7 43.0 69.7 28.3 40.0
“An image of v∗” 24.0 34.8 43.1 70.7 28.3 40.2
“A photo of v∗” (ours) 24.6 35.1 43.0 70.3 28.0 40.2

Impact of the OTI Template Sentence. As detailed in Sec. 5.1, for OTI we concatenate the tem-
plate sentence “a photo of” with the pseudo-word token v∗ to craft the prompt “a photo of v∗”. To
study the impact on the performance of the template sentence, we test the following prompts: 1)
“an image of v∗”; 2) “we see v∗ in this photo”; and 3) “v∗” (the empty prompt). Table A9 reports
the image-to-image retrieval results using the CLIP ViT-B/32 model. We observe that all the con-
sidered prompts achieve comparable performance. These results demonstrate the robustness of the
OTI technique to the template sentence.

Combining Native and Inverted Features. We conduct an experiment on image-to-image retrieval
to assess whether combining native image features with the corresponding OTI-inverted features
improves the performance. Let ψI = fθ(I) be the native image features and ψT = gϕ(Y v∗) be
the OTI-inverted features. We query the gallery using a weighted combination of native and OTI-
inverted representations:

ψIT = α ∗ ψT + (1− α) ∗ ψI , (8)
where α ∈ [0, 1] is a weighting factor that controls the contribution of each component.

Table A10: Performance (mAP) evaluation of the combina-
tion between native and OTI-inverted features for varying
weighting factors α for image-to-image retrieval.

Method C
U

B

SO
P

R
O

xf
or

d

R
Pa

ri
s

C
ar

s

Av
er

ag
e

Baseline (α = 0) 22.9 34.4 42.6 67.9 24.6 38.5
OTI (α = 0.25) 24.0 35.6 44.9 70.1 25.9 40.1
OTI (α = 0.50) 24.6 36.1 46.7 71.0 27.0 41.1
OTI (α = 0.75) 24.8 35.9 46.3 71.1 27.7 41.2
OTI (α = 1) (ours) 24.6 35.1 43.0 70.3 28.0 40.2

Table A10 reports the results on
image-to-image retrieval datasets for
varying values of α using the CLIP
ViT-B/32 model. Interestingly, for α
large enough, combining native and
inverted features obtains better re-
sults than relying solely on either of
them. Nevertheless, regardless of the
α value, we observe that employ-
ing inter-modal representations al-
ways improves the performance over
the intra-modal baseline. We will fur-
ther investigate the combination of
intra- and inter-modal representations in future work.
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